blob: f35d50586e7112c13caa57bf51681a79e24b48d3 [file] [log] [blame]
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
Duncan Sands4cd2ad12010-11-23 10:50:08 +000011// that do not require creating new instructions. This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
Duncan Sandsee9a2e32010-12-20 14:47:04 +000014// ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
Chris Lattner9f3c25a2009-11-09 22:57:59 +000017//
18//===----------------------------------------------------------------------===//
19
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/Analysis/ConstantFolding.h"
Duncan Sands18450092010-11-16 12:16:38 +000022#include "llvm/Analysis/Dominators.h"
Chris Lattnerd06094f2009-11-10 00:55:12 +000023#include "llvm/Support/PatternMatch.h"
Duncan Sands18450092010-11-16 12:16:38 +000024#include "llvm/Support/ValueHandle.h"
Duncan Sandse60d79f2010-11-21 13:53:09 +000025#include "llvm/Target/TargetData.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000026using namespace llvm;
Chris Lattnerd06094f2009-11-10 00:55:12 +000027using namespace llvm::PatternMatch;
Chris Lattner9f3c25a2009-11-09 22:57:59 +000028
Duncan Sands18450092010-11-16 12:16:38 +000029#define RecursionLimit 3
Duncan Sandsa74a58c2010-11-10 18:23:01 +000030
Duncan Sands82fdab32010-12-21 14:00:22 +000031static Value *SimplifyAndInst(Value *, Value *, const TargetData *,
32 const DominatorTree *, unsigned);
Duncan Sandsa74a58c2010-11-10 18:23:01 +000033static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
Duncan Sands18450092010-11-16 12:16:38 +000034 const DominatorTree *, unsigned);
Duncan Sandsa74a58c2010-11-10 18:23:01 +000035static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
Duncan Sands18450092010-11-16 12:16:38 +000036 const DominatorTree *, unsigned);
Duncan Sands82fdab32010-12-21 14:00:22 +000037static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
38 const DominatorTree *, unsigned);
39static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
40 const DominatorTree *, unsigned);
Duncan Sands18450092010-11-16 12:16:38 +000041
42/// ValueDominatesPHI - Does the given value dominate the specified phi node?
43static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
44 Instruction *I = dyn_cast<Instruction>(V);
45 if (!I)
46 // Arguments and constants dominate all instructions.
47 return true;
48
49 // If we have a DominatorTree then do a precise test.
50 if (DT)
51 return DT->dominates(I, P);
52
53 // Otherwise, if the instruction is in the entry block, and is not an invoke,
54 // then it obviously dominates all phi nodes.
55 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
56 !isa<InvokeInst>(I))
57 return true;
58
59 return false;
60}
Duncan Sandsa74a58c2010-11-10 18:23:01 +000061
Duncan Sands3421d902010-12-21 13:32:22 +000062/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
63/// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
64/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
65/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
66/// Returns the simplified value, or null if no simplification was performed.
67static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
68 unsigned OpcodeToExpand, const TargetData *TD,
69 const DominatorTree *DT, unsigned MaxRecurse) {
70 // Recursion is always used, so bail out at once if we already hit the limit.
71 if (!MaxRecurse--)
72 return 0;
73
74 // Check whether the expression has the form "(A op' B) op C".
75 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
76 if (Op0->getOpcode() == OpcodeToExpand) {
77 // It does! Try turning it into "(A op C) op' (B op C)".
78 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
79 // Do "A op C" and "B op C" both simplify?
80 if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse))
81 if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
82 // They do! Return "L op' R" if it simplifies or is already available.
83 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
84 if ((L == A && R == B) ||
85 (Instruction::isCommutative(OpcodeToExpand) && L == B && R == A))
86 return LHS;
87 // Otherwise return "L op' R" if it simplifies.
88 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,MaxRecurse))
89 return V;
90 }
91 }
92
93 // Check whether the expression has the form "A op (B op' C)".
94 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
95 if (Op1->getOpcode() == OpcodeToExpand) {
96 // It does! Try turning it into "(A op B) op' (A op C)".
97 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
98 // Do "A op B" and "A op C" both simplify?
99 if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse))
100 if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) {
101 // They do! Return "L op' R" if it simplifies or is already available.
102 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
103 if ((L == B && R == C) ||
104 (Instruction::isCommutative(OpcodeToExpand) && L == C && R == B))
105 return RHS;
106 // Otherwise return "L op' R" if it simplifies.
107 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,MaxRecurse))
108 return V;
109 }
110 }
111
112 return 0;
113}
114
115/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
116/// using the operation OpCodeToExtract. For example, when Opcode is Add and
117/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
118/// Returns the simplified value, or null if no simplification was performed.
119static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
120 unsigned OpcodeToExtract, const TargetData *TD,
121 const DominatorTree *DT, unsigned MaxRecurse) {
122 // Recursion is always used, so bail out at once if we already hit the limit.
123 if (!MaxRecurse--)
124 return 0;
125
126 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
127 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
128
129 if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
130 !Op1 || Op1->getOpcode() != OpcodeToExtract)
131 return 0;
132
133 // The expression has the form "(A op' B) op (C op' D)".
Duncan Sands82fdab32010-12-21 14:00:22 +0000134 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
135 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
Duncan Sands3421d902010-12-21 13:32:22 +0000136
137 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
138 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
139 // commutative case, "(A op' B) op (C op' A)"?
140 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
141 Value *DD = A == C ? D : C;
142 // Form "A op' (B op DD)" if it simplifies completely.
143 // Does "B op DD" simplify?
144 if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) {
145 // It does! Return "A op' V" if it simplifies or is already available.
146 // If V equals B then "A op' V" is just the LHS.
147 if (V == B) return LHS;
148 // Otherwise return "A op' V" if it simplifies.
149 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse))
150 return W;
151 }
152 }
153
154 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
155 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
156 // commutative case, "(A op' B) op (B op' D)"?
157 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
158 Value *CC = B == D ? C : D;
159 // Form "(A op CC) op' B" if it simplifies completely..
160 // Does "A op CC" simplify?
161 if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) {
162 // It does! Return "V op' B" if it simplifies or is already available.
163 // If V equals A then "V op' B" is just the LHS.
164 if (V == B) return LHS;
165 // Otherwise return "V op' B" if it simplifies.
166 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse))
167 return W;
168 }
169 }
170
171 return 0;
172}
173
174/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
175/// operations. Returns the simpler value, or null if none was found.
Duncan Sands566edb02010-12-21 08:49:00 +0000176static Value *SimplifyAssociativeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
177 const TargetData *TD,
178 const DominatorTree *DT,
179 unsigned MaxRecurse) {
180 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
181
182 // Recursion is always used, so bail out at once if we already hit the limit.
183 if (!MaxRecurse--)
184 return 0;
185
186 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
187 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
188
189 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
190 if (Op0 && Op0->getOpcode() == Opcode) {
191 Value *A = Op0->getOperand(0);
192 Value *B = Op0->getOperand(1);
193 Value *C = RHS;
194
195 // Does "B op C" simplify?
196 if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
197 // It does! Return "A op V" if it simplifies or is already available.
198 // If V equals B then "A op V" is just the LHS.
Duncan Sands3421d902010-12-21 13:32:22 +0000199 if (V == B) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000200 // Otherwise return "A op V" if it simplifies.
201 if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse))
202 return W;
203 }
204 }
205
206 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
207 if (Op1 && Op1->getOpcode() == Opcode) {
208 Value *A = LHS;
209 Value *B = Op1->getOperand(0);
210 Value *C = Op1->getOperand(1);
211
212 // Does "A op B" simplify?
213 if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) {
214 // It does! Return "V op C" if it simplifies or is already available.
215 // If V equals B then "V op C" is just the RHS.
Duncan Sands3421d902010-12-21 13:32:22 +0000216 if (V == B) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000217 // Otherwise return "V op C" if it simplifies.
218 if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse))
219 return W;
220 }
221 }
222
223 // The remaining transforms require commutativity as well as associativity.
224 if (!Instruction::isCommutative(Opcode))
225 return 0;
226
227 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
228 if (Op0 && Op0->getOpcode() == Opcode) {
229 Value *A = Op0->getOperand(0);
230 Value *B = Op0->getOperand(1);
231 Value *C = RHS;
232
233 // Does "C op A" simplify?
234 if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
235 // It does! Return "V op B" if it simplifies or is already available.
236 // If V equals A then "V op B" is just the LHS.
Duncan Sands3421d902010-12-21 13:32:22 +0000237 if (V == A) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000238 // Otherwise return "V op B" if it simplifies.
239 if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse))
240 return W;
241 }
242 }
243
244 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
245 if (Op1 && Op1->getOpcode() == Opcode) {
246 Value *A = LHS;
247 Value *B = Op1->getOperand(0);
248 Value *C = Op1->getOperand(1);
249
250 // Does "C op A" simplify?
251 if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
252 // It does! Return "B op V" if it simplifies or is already available.
253 // If V equals C then "B op V" is just the RHS.
Duncan Sands3421d902010-12-21 13:32:22 +0000254 if (V == C) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000255 // Otherwise return "B op V" if it simplifies.
256 if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse))
257 return W;
258 }
259 }
260
261 return 0;
262}
263
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000264/// ThreadBinOpOverSelect - In the case of a binary operation with a select
265/// instruction as an operand, try to simplify the binop by seeing whether
266/// evaluating it on both branches of the select results in the same value.
267/// Returns the common value if so, otherwise returns null.
268static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000269 const TargetData *TD,
270 const DominatorTree *DT,
271 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000272 // Recursion is always used, so bail out at once if we already hit the limit.
273 if (!MaxRecurse--)
274 return 0;
275
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000276 SelectInst *SI;
277 if (isa<SelectInst>(LHS)) {
278 SI = cast<SelectInst>(LHS);
279 } else {
280 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
281 SI = cast<SelectInst>(RHS);
282 }
283
284 // Evaluate the BinOp on the true and false branches of the select.
285 Value *TV;
286 Value *FV;
287 if (SI == LHS) {
Duncan Sands18450092010-11-16 12:16:38 +0000288 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
289 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000290 } else {
Duncan Sands18450092010-11-16 12:16:38 +0000291 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
292 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000293 }
294
295 // If they simplified to the same value, then return the common value.
296 // If they both failed to simplify then return null.
297 if (TV == FV)
298 return TV;
299
300 // If one branch simplified to undef, return the other one.
301 if (TV && isa<UndefValue>(TV))
302 return FV;
303 if (FV && isa<UndefValue>(FV))
304 return TV;
305
306 // If applying the operation did not change the true and false select values,
307 // then the result of the binop is the select itself.
308 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
309 return SI;
310
311 // If one branch simplified and the other did not, and the simplified
312 // value is equal to the unsimplified one, return the simplified value.
313 // For example, select (cond, X, X & Z) & Z -> X & Z.
314 if ((FV && !TV) || (TV && !FV)) {
315 // Check that the simplified value has the form "X op Y" where "op" is the
316 // same as the original operation.
317 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
318 if (Simplified && Simplified->getOpcode() == Opcode) {
319 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
320 // We already know that "op" is the same as for the simplified value. See
321 // if the operands match too. If so, return the simplified value.
322 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
323 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
324 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
325 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
326 Simplified->getOperand(1) == UnsimplifiedRHS)
327 return Simplified;
328 if (Simplified->isCommutative() &&
329 Simplified->getOperand(1) == UnsimplifiedLHS &&
330 Simplified->getOperand(0) == UnsimplifiedRHS)
331 return Simplified;
332 }
333 }
334
335 return 0;
336}
337
338/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
339/// try to simplify the comparison by seeing whether both branches of the select
340/// result in the same value. Returns the common value if so, otherwise returns
341/// null.
342static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000343 Value *RHS, const TargetData *TD,
Duncan Sands18450092010-11-16 12:16:38 +0000344 const DominatorTree *DT,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000345 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000346 // Recursion is always used, so bail out at once if we already hit the limit.
347 if (!MaxRecurse--)
348 return 0;
349
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000350 // Make sure the select is on the LHS.
351 if (!isa<SelectInst>(LHS)) {
352 std::swap(LHS, RHS);
353 Pred = CmpInst::getSwappedPredicate(Pred);
354 }
355 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
356 SelectInst *SI = cast<SelectInst>(LHS);
357
358 // Now that we have "cmp select(cond, TV, FV), RHS", analyse it.
359 // Does "cmp TV, RHS" simplify?
Duncan Sands18450092010-11-16 12:16:38 +0000360 if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000361 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000362 // It does! Does "cmp FV, RHS" simplify?
Duncan Sands18450092010-11-16 12:16:38 +0000363 if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000364 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000365 // It does! If they simplified to the same value, then use it as the
366 // result of the original comparison.
367 if (TCmp == FCmp)
368 return TCmp;
369 return 0;
370}
371
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000372/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
373/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
374/// it on the incoming phi values yields the same result for every value. If so
375/// returns the common value, otherwise returns null.
376static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000377 const TargetData *TD, const DominatorTree *DT,
378 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000379 // Recursion is always used, so bail out at once if we already hit the limit.
380 if (!MaxRecurse--)
381 return 0;
382
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000383 PHINode *PI;
384 if (isa<PHINode>(LHS)) {
385 PI = cast<PHINode>(LHS);
Duncan Sands18450092010-11-16 12:16:38 +0000386 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
387 if (!ValueDominatesPHI(RHS, PI, DT))
388 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000389 } else {
390 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
391 PI = cast<PHINode>(RHS);
Duncan Sands18450092010-11-16 12:16:38 +0000392 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
393 if (!ValueDominatesPHI(LHS, PI, DT))
394 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000395 }
396
397 // Evaluate the BinOp on the incoming phi values.
398 Value *CommonValue = 0;
399 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000400 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000401 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000402 if (Incoming == PI) continue;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000403 Value *V = PI == LHS ?
Duncan Sands18450092010-11-16 12:16:38 +0000404 SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
405 SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000406 // If the operation failed to simplify, or simplified to a different value
407 // to previously, then give up.
408 if (!V || (CommonValue && V != CommonValue))
409 return 0;
410 CommonValue = V;
411 }
412
413 return CommonValue;
414}
415
416/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
417/// try to simplify the comparison by seeing whether comparing with all of the
418/// incoming phi values yields the same result every time. If so returns the
419/// common result, otherwise returns null.
420static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000421 const TargetData *TD, const DominatorTree *DT,
422 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000423 // Recursion is always used, so bail out at once if we already hit the limit.
424 if (!MaxRecurse--)
425 return 0;
426
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000427 // Make sure the phi is on the LHS.
428 if (!isa<PHINode>(LHS)) {
429 std::swap(LHS, RHS);
430 Pred = CmpInst::getSwappedPredicate(Pred);
431 }
432 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
433 PHINode *PI = cast<PHINode>(LHS);
434
Duncan Sands18450092010-11-16 12:16:38 +0000435 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
436 if (!ValueDominatesPHI(RHS, PI, DT))
437 return 0;
438
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000439 // Evaluate the BinOp on the incoming phi values.
440 Value *CommonValue = 0;
441 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000442 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000443 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000444 if (Incoming == PI) continue;
Duncan Sands18450092010-11-16 12:16:38 +0000445 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000446 // If the operation failed to simplify, or simplified to a different value
447 // to previously, then give up.
448 if (!V || (CommonValue && V != CommonValue))
449 return 0;
450 CommonValue = V;
451 }
452
453 return CommonValue;
454}
455
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000456/// SimplifyAddInst - Given operands for an Add, see if we can
457/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000458static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
459 const TargetData *TD, const DominatorTree *DT,
460 unsigned MaxRecurse) {
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000461 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
462 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
463 Constant *Ops[] = { CLHS, CRHS };
464 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
465 Ops, 2, TD);
466 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000467
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000468 // Canonicalize the constant to the RHS.
469 std::swap(Op0, Op1);
470 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000471
Duncan Sandsfea3b212010-12-15 14:07:39 +0000472 // X + undef -> undef
473 if (isa<UndefValue>(Op1))
474 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000475
Duncan Sandsfea3b212010-12-15 14:07:39 +0000476 // X + 0 -> X
477 if (match(Op1, m_Zero()))
478 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000479
Duncan Sandsfea3b212010-12-15 14:07:39 +0000480 // X + (Y - X) -> Y
481 // (Y - X) + X -> Y
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000482 // Eg: X + -X -> 0
Duncan Sandsfea3b212010-12-15 14:07:39 +0000483 Value *Y = 0;
484 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
485 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
486 return Y;
487
488 // X + ~X -> -1 since ~X = -X-1
489 if (match(Op0, m_Not(m_Specific(Op1))) ||
490 match(Op1, m_Not(m_Specific(Op0))))
491 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands87689cf2010-11-19 09:20:39 +0000492
Duncan Sands82fdab32010-12-21 14:00:22 +0000493 /// i1 add -> xor.
Duncan Sands75d289e2010-12-21 14:48:48 +0000494 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000495 if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
496 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000497
Duncan Sands566edb02010-12-21 08:49:00 +0000498 // Try some generic simplifications for associative operations.
499 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT,
500 MaxRecurse))
501 return V;
502
Duncan Sands3421d902010-12-21 13:32:22 +0000503 // Mul distributes over Add. Try some generic simplifications based on this.
504 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
505 TD, DT, MaxRecurse))
506 return V;
507
Duncan Sands87689cf2010-11-19 09:20:39 +0000508 // Threading Add over selects and phi nodes is pointless, so don't bother.
509 // Threading over the select in "A + select(cond, B, C)" means evaluating
510 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
511 // only if B and C are equal. If B and C are equal then (since we assume
512 // that operands have already been simplified) "select(cond, B, C)" should
513 // have been simplified to the common value of B and C already. Analysing
514 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
515 // for threading over phi nodes.
516
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000517 return 0;
518}
519
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000520Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
521 const TargetData *TD, const DominatorTree *DT) {
522 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
523}
524
Duncan Sandsfea3b212010-12-15 14:07:39 +0000525/// SimplifySubInst - Given operands for a Sub, see if we can
526/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000527static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands3421d902010-12-21 13:32:22 +0000528 const TargetData *TD, const DominatorTree *DT,
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000529 unsigned MaxRecurse) {
Duncan Sandsfea3b212010-12-15 14:07:39 +0000530 if (Constant *CLHS = dyn_cast<Constant>(Op0))
531 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
532 Constant *Ops[] = { CLHS, CRHS };
533 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
534 Ops, 2, TD);
535 }
536
537 // X - undef -> undef
538 // undef - X -> undef
539 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
540 return UndefValue::get(Op0->getType());
541
542 // X - 0 -> X
543 if (match(Op1, m_Zero()))
544 return Op0;
545
546 // X - X -> 0
547 if (Op0 == Op1)
548 return Constant::getNullValue(Op0->getType());
549
550 // (X + Y) - Y -> X
551 // (Y + X) - Y -> X
552 Value *X = 0;
553 if (match(Op0, m_Add(m_Value(X), m_Specific(Op1))) ||
554 match(Op0, m_Add(m_Specific(Op1), m_Value(X))))
555 return X;
556
Duncan Sands82fdab32010-12-21 14:00:22 +0000557 /// i1 sub -> xor.
Duncan Sands75d289e2010-12-21 14:48:48 +0000558 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000559 if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
560 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000561
Duncan Sands3421d902010-12-21 13:32:22 +0000562 // Mul distributes over Sub. Try some generic simplifications based on this.
563 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
564 TD, DT, MaxRecurse))
565 return V;
566
Duncan Sandsfea3b212010-12-15 14:07:39 +0000567 // Threading Sub over selects and phi nodes is pointless, so don't bother.
568 // Threading over the select in "A - select(cond, B, C)" means evaluating
569 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
570 // only if B and C are equal. If B and C are equal then (since we assume
571 // that operands have already been simplified) "select(cond, B, C)" should
572 // have been simplified to the common value of B and C already. Analysing
573 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
574 // for threading over phi nodes.
575
576 return 0;
577}
578
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000579Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
580 const TargetData *TD, const DominatorTree *DT) {
581 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
582}
583
Duncan Sands82fdab32010-12-21 14:00:22 +0000584/// SimplifyMulInst - Given operands for a Mul, see if we can
585/// fold the result. If not, this returns null.
586static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
587 const DominatorTree *DT, unsigned MaxRecurse) {
588 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
589 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
590 Constant *Ops[] = { CLHS, CRHS };
591 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
592 Ops, 2, TD);
593 }
594
595 // Canonicalize the constant to the RHS.
596 std::swap(Op0, Op1);
597 }
598
599 // X * undef -> 0
600 if (isa<UndefValue>(Op1))
601 return Constant::getNullValue(Op0->getType());
602
603 // X * 0 -> 0
604 if (match(Op1, m_Zero()))
605 return Op1;
606
607 // X * 1 -> X
608 if (match(Op1, m_One()))
609 return Op0;
610
611 /// i1 mul -> and.
Duncan Sands75d289e2010-12-21 14:48:48 +0000612 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000613 if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1))
614 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000615
616 // Try some generic simplifications for associative operations.
617 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT,
618 MaxRecurse))
619 return V;
620
621 // Mul distributes over Add. Try some generic simplifications based on this.
622 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
623 TD, DT, MaxRecurse))
624 return V;
625
626 // If the operation is with the result of a select instruction, check whether
627 // operating on either branch of the select always yields the same value.
628 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
629 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT,
630 MaxRecurse))
631 return V;
632
633 // If the operation is with the result of a phi instruction, check whether
634 // operating on all incoming values of the phi always yields the same value.
635 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
636 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT,
637 MaxRecurse))
638 return V;
639
640 return 0;
641}
642
643Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
644 const DominatorTree *DT) {
645 return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit);
646}
647
Chris Lattnerd06094f2009-11-10 00:55:12 +0000648/// SimplifyAndInst - Given operands for an And, see if we can
Chris Lattner9f3c25a2009-11-09 22:57:59 +0000649/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000650static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
Duncan Sands18450092010-11-16 12:16:38 +0000651 const DominatorTree *DT, unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +0000652 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
653 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
654 Constant *Ops[] = { CLHS, CRHS };
655 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
656 Ops, 2, TD);
657 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000658
Chris Lattnerd06094f2009-11-10 00:55:12 +0000659 // Canonicalize the constant to the RHS.
660 std::swap(Op0, Op1);
661 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000662
Chris Lattnerd06094f2009-11-10 00:55:12 +0000663 // X & undef -> 0
664 if (isa<UndefValue>(Op1))
665 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +0000666
Chris Lattnerd06094f2009-11-10 00:55:12 +0000667 // X & X = X
668 if (Op0 == Op1)
669 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000670
Duncan Sands2b749872010-11-17 18:52:15 +0000671 // X & 0 = 0
672 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000673 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000674
Duncan Sands2b749872010-11-17 18:52:15 +0000675 // X & -1 = X
676 if (match(Op1, m_AllOnes()))
677 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000678
Chris Lattnerd06094f2009-11-10 00:55:12 +0000679 // A & ~A = ~A & A = 0
Chandler Carruthe89ada92010-11-29 01:41:13 +0000680 Value *A = 0, *B = 0;
Chris Lattner70ce6d02009-11-10 02:04:54 +0000681 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
682 (match(Op1, m_Not(m_Value(A))) && A == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000683 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +0000684
Chris Lattnerd06094f2009-11-10 00:55:12 +0000685 // (A | ?) & A = A
686 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
687 (A == Op1 || B == Op1))
688 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000689
Chris Lattnerd06094f2009-11-10 00:55:12 +0000690 // A & (A | ?) = A
691 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
692 (A == Op0 || B == Op0))
693 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000694
Duncan Sands566edb02010-12-21 08:49:00 +0000695 // Try some generic simplifications for associative operations.
696 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT,
697 MaxRecurse))
698 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +0000699
Duncan Sands3421d902010-12-21 13:32:22 +0000700 // And distributes over Or. Try some generic simplifications based on this.
701 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
702 TD, DT, MaxRecurse))
703 return V;
704
705 // And distributes over Xor. Try some generic simplifications based on this.
706 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
707 TD, DT, MaxRecurse))
708 return V;
709
710 // Or distributes over And. Try some generic simplifications based on this.
711 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
712 TD, DT, MaxRecurse))
713 return V;
714
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000715 // If the operation is with the result of a select instruction, check whether
716 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +0000717 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +0000718 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +0000719 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000720 return V;
721
722 // If the operation is with the result of a phi instruction, check whether
723 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +0000724 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +0000725 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +0000726 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000727 return V;
728
Chris Lattner9f3c25a2009-11-09 22:57:59 +0000729 return 0;
730}
731
Duncan Sands18450092010-11-16 12:16:38 +0000732Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
733 const DominatorTree *DT) {
734 return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000735}
736
Chris Lattnerd06094f2009-11-10 00:55:12 +0000737/// SimplifyOrInst - Given operands for an Or, see if we can
738/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000739static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
Duncan Sands18450092010-11-16 12:16:38 +0000740 const DominatorTree *DT, unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +0000741 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
742 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
743 Constant *Ops[] = { CLHS, CRHS };
744 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
745 Ops, 2, TD);
746 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000747
Chris Lattnerd06094f2009-11-10 00:55:12 +0000748 // Canonicalize the constant to the RHS.
749 std::swap(Op0, Op1);
750 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000751
Chris Lattnerd06094f2009-11-10 00:55:12 +0000752 // X | undef -> -1
753 if (isa<UndefValue>(Op1))
754 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +0000755
Chris Lattnerd06094f2009-11-10 00:55:12 +0000756 // X | X = X
757 if (Op0 == Op1)
758 return Op0;
759
Duncan Sands2b749872010-11-17 18:52:15 +0000760 // X | 0 = X
761 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000762 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000763
Duncan Sands2b749872010-11-17 18:52:15 +0000764 // X | -1 = -1
765 if (match(Op1, m_AllOnes()))
766 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000767
Chris Lattnerd06094f2009-11-10 00:55:12 +0000768 // A | ~A = ~A | A = -1
Chandler Carruthe89ada92010-11-29 01:41:13 +0000769 Value *A = 0, *B = 0;
Chris Lattner70ce6d02009-11-10 02:04:54 +0000770 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
771 (match(Op1, m_Not(m_Value(A))) && A == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000772 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +0000773
Chris Lattnerd06094f2009-11-10 00:55:12 +0000774 // (A & ?) | A = A
775 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
776 (A == Op1 || B == Op1))
777 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000778
Chris Lattnerd06094f2009-11-10 00:55:12 +0000779 // A | (A & ?) = A
780 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
781 (A == Op0 || B == Op0))
782 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000783
Duncan Sands566edb02010-12-21 08:49:00 +0000784 // Try some generic simplifications for associative operations.
785 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT,
786 MaxRecurse))
787 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +0000788
Duncan Sands3421d902010-12-21 13:32:22 +0000789 // Or distributes over And. Try some generic simplifications based on this.
790 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And,
791 TD, DT, MaxRecurse))
792 return V;
793
794 // And distributes over Or. Try some generic simplifications based on this.
795 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
796 TD, DT, MaxRecurse))
797 return V;
798
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000799 // If the operation is with the result of a select instruction, check whether
800 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +0000801 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +0000802 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +0000803 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000804 return V;
805
806 // If the operation is with the result of a phi instruction, check whether
807 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +0000808 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +0000809 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +0000810 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000811 return V;
812
Chris Lattnerd06094f2009-11-10 00:55:12 +0000813 return 0;
814}
815
Duncan Sands18450092010-11-16 12:16:38 +0000816Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
817 const DominatorTree *DT) {
818 return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000819}
Chris Lattnerd06094f2009-11-10 00:55:12 +0000820
Duncan Sands2b749872010-11-17 18:52:15 +0000821/// SimplifyXorInst - Given operands for a Xor, see if we can
822/// fold the result. If not, this returns null.
823static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
824 const DominatorTree *DT, unsigned MaxRecurse) {
825 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
826 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
827 Constant *Ops[] = { CLHS, CRHS };
828 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
829 Ops, 2, TD);
830 }
831
832 // Canonicalize the constant to the RHS.
833 std::swap(Op0, Op1);
834 }
835
836 // A ^ undef -> undef
837 if (isa<UndefValue>(Op1))
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +0000838 return Op1;
Duncan Sands2b749872010-11-17 18:52:15 +0000839
840 // A ^ 0 = A
841 if (match(Op1, m_Zero()))
842 return Op0;
843
844 // A ^ A = 0
845 if (Op0 == Op1)
846 return Constant::getNullValue(Op0->getType());
847
848 // A ^ ~A = ~A ^ A = -1
Duncan Sands566edb02010-12-21 08:49:00 +0000849 Value *A = 0;
Duncan Sands2b749872010-11-17 18:52:15 +0000850 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
851 (match(Op1, m_Not(m_Value(A))) && A == Op0))
852 return Constant::getAllOnesValue(Op0->getType());
853
Duncan Sands566edb02010-12-21 08:49:00 +0000854 // Try some generic simplifications for associative operations.
855 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT,
856 MaxRecurse))
857 return V;
Duncan Sands2b749872010-11-17 18:52:15 +0000858
Duncan Sands3421d902010-12-21 13:32:22 +0000859 // And distributes over Xor. Try some generic simplifications based on this.
860 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
861 TD, DT, MaxRecurse))
862 return V;
863
Duncan Sands87689cf2010-11-19 09:20:39 +0000864 // Threading Xor over selects and phi nodes is pointless, so don't bother.
865 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
866 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
867 // only if B and C are equal. If B and C are equal then (since we assume
868 // that operands have already been simplified) "select(cond, B, C)" should
869 // have been simplified to the common value of B and C already. Analysing
870 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
871 // for threading over phi nodes.
Duncan Sands2b749872010-11-17 18:52:15 +0000872
873 return 0;
874}
875
876Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
877 const DominatorTree *DT) {
878 return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit);
879}
880
Chris Lattner210c5d42009-11-09 23:55:12 +0000881static const Type *GetCompareTy(Value *Op) {
882 return CmpInst::makeCmpResultType(Op->getType());
883}
884
Chris Lattner9dbb4292009-11-09 23:28:39 +0000885/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
886/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000887static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000888 const TargetData *TD, const DominatorTree *DT,
889 unsigned MaxRecurse) {
Chris Lattner9f3c25a2009-11-09 22:57:59 +0000890 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
Chris Lattner9dbb4292009-11-09 23:28:39 +0000891 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
Duncan Sands12a86f52010-11-14 11:23:23 +0000892
Chris Lattnerd06094f2009-11-10 00:55:12 +0000893 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner8f73dea2009-11-09 23:06:58 +0000894 if (Constant *CRHS = dyn_cast<Constant>(RHS))
895 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
Chris Lattnerd06094f2009-11-10 00:55:12 +0000896
897 // If we have a constant, make sure it is on the RHS.
898 std::swap(LHS, RHS);
899 Pred = CmpInst::getSwappedPredicate(Pred);
900 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000901
Chris Lattner210c5d42009-11-09 23:55:12 +0000902 // ITy - This is the return type of the compare we're considering.
903 const Type *ITy = GetCompareTy(LHS);
Duncan Sands12a86f52010-11-14 11:23:23 +0000904
Chris Lattner210c5d42009-11-09 23:55:12 +0000905 // icmp X, X -> true/false
Chris Lattnerc8e14b32010-03-03 19:46:03 +0000906 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
907 // because X could be 0.
908 if (LHS == RHS || isa<UndefValue>(RHS))
Chris Lattner210c5d42009-11-09 23:55:12 +0000909 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
Duncan Sands12a86f52010-11-14 11:23:23 +0000910
Chris Lattner210c5d42009-11-09 23:55:12 +0000911 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
912 // addresses never equal each other! We already know that Op0 != Op1.
Duncan Sands12a86f52010-11-14 11:23:23 +0000913 if ((isa<GlobalValue>(LHS) || isa<AllocaInst>(LHS) ||
Chris Lattner210c5d42009-11-09 23:55:12 +0000914 isa<ConstantPointerNull>(LHS)) &&
Duncan Sands12a86f52010-11-14 11:23:23 +0000915 (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
Chris Lattner210c5d42009-11-09 23:55:12 +0000916 isa<ConstantPointerNull>(RHS)))
917 return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
Duncan Sands12a86f52010-11-14 11:23:23 +0000918
Chris Lattner210c5d42009-11-09 23:55:12 +0000919 // See if we are doing a comparison with a constant.
920 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
921 // If we have an icmp le or icmp ge instruction, turn it into the
922 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
923 // them being folded in the code below.
924 switch (Pred) {
925 default: break;
926 case ICmpInst::ICMP_ULE:
927 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
928 return ConstantInt::getTrue(CI->getContext());
929 break;
930 case ICmpInst::ICMP_SLE:
931 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
932 return ConstantInt::getTrue(CI->getContext());
933 break;
934 case ICmpInst::ICMP_UGE:
935 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
936 return ConstantInt::getTrue(CI->getContext());
937 break;
938 case ICmpInst::ICMP_SGE:
939 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
940 return ConstantInt::getTrue(CI->getContext());
941 break;
942 }
Chris Lattner210c5d42009-11-09 23:55:12 +0000943 }
Duncan Sands1ac7c992010-11-07 16:12:23 +0000944
945 // If the comparison is with the result of a select instruction, check whether
946 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +0000947 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
948 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000949 return V;
950
951 // If the comparison is with the result of a phi instruction, check whether
952 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +0000953 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
954 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +0000955 return V;
Duncan Sands1ac7c992010-11-07 16:12:23 +0000956
Chris Lattner9f3c25a2009-11-09 22:57:59 +0000957 return 0;
958}
959
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000960Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000961 const TargetData *TD, const DominatorTree *DT) {
962 return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000963}
964
Chris Lattner9dbb4292009-11-09 23:28:39 +0000965/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
966/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000967static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000968 const TargetData *TD, const DominatorTree *DT,
969 unsigned MaxRecurse) {
Chris Lattner9dbb4292009-11-09 23:28:39 +0000970 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
971 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
972
Chris Lattnerd06094f2009-11-10 00:55:12 +0000973 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner9dbb4292009-11-09 23:28:39 +0000974 if (Constant *CRHS = dyn_cast<Constant>(RHS))
975 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
Duncan Sands12a86f52010-11-14 11:23:23 +0000976
Chris Lattnerd06094f2009-11-10 00:55:12 +0000977 // If we have a constant, make sure it is on the RHS.
978 std::swap(LHS, RHS);
979 Pred = CmpInst::getSwappedPredicate(Pred);
980 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000981
Chris Lattner210c5d42009-11-09 23:55:12 +0000982 // Fold trivial predicates.
983 if (Pred == FCmpInst::FCMP_FALSE)
984 return ConstantInt::get(GetCompareTy(LHS), 0);
985 if (Pred == FCmpInst::FCMP_TRUE)
986 return ConstantInt::get(GetCompareTy(LHS), 1);
987
Chris Lattner210c5d42009-11-09 23:55:12 +0000988 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef
989 return UndefValue::get(GetCompareTy(LHS));
990
991 // fcmp x,x -> true/false. Not all compares are foldable.
992 if (LHS == RHS) {
993 if (CmpInst::isTrueWhenEqual(Pred))
994 return ConstantInt::get(GetCompareTy(LHS), 1);
995 if (CmpInst::isFalseWhenEqual(Pred))
996 return ConstantInt::get(GetCompareTy(LHS), 0);
997 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000998
Chris Lattner210c5d42009-11-09 23:55:12 +0000999 // Handle fcmp with constant RHS
1000 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1001 // If the constant is a nan, see if we can fold the comparison based on it.
1002 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
1003 if (CFP->getValueAPF().isNaN()) {
1004 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
1005 return ConstantInt::getFalse(CFP->getContext());
1006 assert(FCmpInst::isUnordered(Pred) &&
1007 "Comparison must be either ordered or unordered!");
1008 // True if unordered.
1009 return ConstantInt::getTrue(CFP->getContext());
1010 }
Dan Gohman6b617a72010-02-22 04:06:03 +00001011 // Check whether the constant is an infinity.
1012 if (CFP->getValueAPF().isInfinity()) {
1013 if (CFP->getValueAPF().isNegative()) {
1014 switch (Pred) {
1015 case FCmpInst::FCMP_OLT:
1016 // No value is ordered and less than negative infinity.
1017 return ConstantInt::getFalse(CFP->getContext());
1018 case FCmpInst::FCMP_UGE:
1019 // All values are unordered with or at least negative infinity.
1020 return ConstantInt::getTrue(CFP->getContext());
1021 default:
1022 break;
1023 }
1024 } else {
1025 switch (Pred) {
1026 case FCmpInst::FCMP_OGT:
1027 // No value is ordered and greater than infinity.
1028 return ConstantInt::getFalse(CFP->getContext());
1029 case FCmpInst::FCMP_ULE:
1030 // All values are unordered with and at most infinity.
1031 return ConstantInt::getTrue(CFP->getContext());
1032 default:
1033 break;
1034 }
1035 }
1036 }
Chris Lattner210c5d42009-11-09 23:55:12 +00001037 }
1038 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001039
Duncan Sands92826de2010-11-07 16:46:25 +00001040 // If the comparison is with the result of a select instruction, check whether
1041 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001042 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
1043 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001044 return V;
1045
1046 // If the comparison is with the result of a phi instruction, check whether
1047 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00001048 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1049 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00001050 return V;
Duncan Sands92826de2010-11-07 16:46:25 +00001051
Chris Lattner9dbb4292009-11-09 23:28:39 +00001052 return 0;
1053}
1054
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001055Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001056 const TargetData *TD, const DominatorTree *DT) {
1057 return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001058}
1059
Chris Lattner04754262010-04-20 05:32:14 +00001060/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
1061/// the result. If not, this returns null.
1062Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
Duncan Sands18450092010-11-16 12:16:38 +00001063 const TargetData *TD, const DominatorTree *) {
Chris Lattner04754262010-04-20 05:32:14 +00001064 // select true, X, Y -> X
1065 // select false, X, Y -> Y
1066 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
1067 return CB->getZExtValue() ? TrueVal : FalseVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00001068
Chris Lattner04754262010-04-20 05:32:14 +00001069 // select C, X, X -> X
1070 if (TrueVal == FalseVal)
1071 return TrueVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00001072
Chris Lattner04754262010-04-20 05:32:14 +00001073 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
1074 return FalseVal;
1075 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
1076 return TrueVal;
1077 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
1078 if (isa<Constant>(TrueVal))
1079 return TrueVal;
1080 return FalseVal;
1081 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001082
Chris Lattner04754262010-04-20 05:32:14 +00001083 return 0;
1084}
1085
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001086/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
1087/// fold the result. If not, this returns null.
1088Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
Duncan Sands18450092010-11-16 12:16:38 +00001089 const TargetData *TD, const DominatorTree *) {
Duncan Sands85bbff62010-11-22 13:42:49 +00001090 // The type of the GEP pointer operand.
1091 const PointerType *PtrTy = cast<PointerType>(Ops[0]->getType());
1092
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001093 // getelementptr P -> P.
1094 if (NumOps == 1)
1095 return Ops[0];
1096
Duncan Sands85bbff62010-11-22 13:42:49 +00001097 if (isa<UndefValue>(Ops[0])) {
1098 // Compute the (pointer) type returned by the GEP instruction.
1099 const Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, &Ops[1],
1100 NumOps-1);
1101 const Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
1102 return UndefValue::get(GEPTy);
1103 }
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001104
Duncan Sandse60d79f2010-11-21 13:53:09 +00001105 if (NumOps == 2) {
1106 // getelementptr P, 0 -> P.
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001107 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
1108 if (C->isZero())
1109 return Ops[0];
Duncan Sandse60d79f2010-11-21 13:53:09 +00001110 // getelementptr P, N -> P if P points to a type of zero size.
1111 if (TD) {
Duncan Sands85bbff62010-11-22 13:42:49 +00001112 const Type *Ty = PtrTy->getElementType();
Duncan Sandsa63395a2010-11-22 16:32:50 +00001113 if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0)
Duncan Sandse60d79f2010-11-21 13:53:09 +00001114 return Ops[0];
1115 }
1116 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001117
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001118 // Check to see if this is constant foldable.
1119 for (unsigned i = 0; i != NumOps; ++i)
1120 if (!isa<Constant>(Ops[i]))
1121 return 0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001122
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001123 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]),
1124 (Constant *const*)Ops+1, NumOps-1);
1125}
1126
Duncan Sandsff103412010-11-17 04:30:22 +00001127/// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
1128static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
1129 // If all of the PHI's incoming values are the same then replace the PHI node
1130 // with the common value.
1131 Value *CommonValue = 0;
1132 bool HasUndefInput = false;
1133 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1134 Value *Incoming = PN->getIncomingValue(i);
1135 // If the incoming value is the phi node itself, it can safely be skipped.
1136 if (Incoming == PN) continue;
1137 if (isa<UndefValue>(Incoming)) {
1138 // Remember that we saw an undef value, but otherwise ignore them.
1139 HasUndefInput = true;
1140 continue;
1141 }
1142 if (CommonValue && Incoming != CommonValue)
1143 return 0; // Not the same, bail out.
1144 CommonValue = Incoming;
1145 }
1146
1147 // If CommonValue is null then all of the incoming values were either undef or
1148 // equal to the phi node itself.
1149 if (!CommonValue)
1150 return UndefValue::get(PN->getType());
1151
1152 // If we have a PHI node like phi(X, undef, X), where X is defined by some
1153 // instruction, we cannot return X as the result of the PHI node unless it
1154 // dominates the PHI block.
1155 if (HasUndefInput)
1156 return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
1157
1158 return CommonValue;
1159}
1160
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001161
Chris Lattnerd06094f2009-11-10 00:55:12 +00001162//=== Helper functions for higher up the class hierarchy.
Chris Lattner9dbb4292009-11-09 23:28:39 +00001163
Chris Lattnerd06094f2009-11-10 00:55:12 +00001164/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
1165/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001166static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001167 const TargetData *TD, const DominatorTree *DT,
1168 unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001169 switch (Opcode) {
Duncan Sandsee9a2e32010-12-20 14:47:04 +00001170 case Instruction::Add: return SimplifyAddInst(LHS, RHS, /* isNSW */ false,
1171 /* isNUW */ false, TD, DT,
1172 MaxRecurse);
1173 case Instruction::Sub: return SimplifySubInst(LHS, RHS, /* isNSW */ false,
1174 /* isNUW */ false, TD, DT,
1175 MaxRecurse);
Duncan Sands82fdab32010-12-21 14:00:22 +00001176 case Instruction::Mul: return SimplifyMulInst(LHS, RHS, TD, DT, MaxRecurse);
1177 case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
1178 case Instruction::Or: return SimplifyOrInst(LHS, RHS, TD, DT, MaxRecurse);
1179 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001180 default:
1181 if (Constant *CLHS = dyn_cast<Constant>(LHS))
1182 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
1183 Constant *COps[] = {CLHS, CRHS};
1184 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD);
1185 }
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001186
Duncan Sands566edb02010-12-21 08:49:00 +00001187 // If the operation is associative, try some generic simplifications.
1188 if (Instruction::isAssociative(Opcode))
1189 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT,
1190 MaxRecurse))
1191 return V;
1192
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001193 // If the operation is with the result of a select instruction, check whether
1194 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001195 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands18450092010-11-16 12:16:38 +00001196 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +00001197 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001198 return V;
1199
1200 // If the operation is with the result of a phi instruction, check whether
1201 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001202 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1203 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001204 return V;
1205
Chris Lattnerd06094f2009-11-10 00:55:12 +00001206 return 0;
1207 }
1208}
Chris Lattner9dbb4292009-11-09 23:28:39 +00001209
Duncan Sands12a86f52010-11-14 11:23:23 +00001210Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001211 const TargetData *TD, const DominatorTree *DT) {
1212 return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
Chris Lattner9dbb4292009-11-09 23:28:39 +00001213}
1214
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001215/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
1216/// fold the result.
1217static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001218 const TargetData *TD, const DominatorTree *DT,
1219 unsigned MaxRecurse) {
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001220 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
Duncan Sands18450092010-11-16 12:16:38 +00001221 return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
1222 return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001223}
1224
1225Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001226 const TargetData *TD, const DominatorTree *DT) {
1227 return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001228}
Chris Lattnere3453782009-11-10 01:08:51 +00001229
1230/// SimplifyInstruction - See if we can compute a simplified version of this
1231/// instruction. If not, this returns null.
Duncan Sandseff05812010-11-14 18:36:10 +00001232Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
1233 const DominatorTree *DT) {
Duncan Sandsd261dc62010-11-17 08:35:29 +00001234 Value *Result;
1235
Chris Lattnere3453782009-11-10 01:08:51 +00001236 switch (I->getOpcode()) {
1237 default:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001238 Result = ConstantFoldInstruction(I, TD);
1239 break;
Chris Lattner8aee8ef2009-11-27 17:42:22 +00001240 case Instruction::Add:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001241 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
1242 cast<BinaryOperator>(I)->hasNoSignedWrap(),
1243 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
1244 TD, DT);
1245 break;
Duncan Sandsfea3b212010-12-15 14:07:39 +00001246 case Instruction::Sub:
1247 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
1248 cast<BinaryOperator>(I)->hasNoSignedWrap(),
1249 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
1250 TD, DT);
1251 break;
Duncan Sands82fdab32010-12-21 14:00:22 +00001252 case Instruction::Mul:
1253 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT);
1254 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001255 case Instruction::And:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001256 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
1257 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001258 case Instruction::Or:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001259 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
1260 break;
Duncan Sands2b749872010-11-17 18:52:15 +00001261 case Instruction::Xor:
1262 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT);
1263 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001264 case Instruction::ICmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001265 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
1266 I->getOperand(0), I->getOperand(1), TD, DT);
1267 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001268 case Instruction::FCmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001269 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
1270 I->getOperand(0), I->getOperand(1), TD, DT);
1271 break;
Chris Lattner04754262010-04-20 05:32:14 +00001272 case Instruction::Select:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001273 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
1274 I->getOperand(2), TD, DT);
1275 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001276 case Instruction::GetElementPtr: {
1277 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
Duncan Sandsd261dc62010-11-17 08:35:29 +00001278 Result = SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT);
1279 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001280 }
Duncan Sandscd6636c2010-11-14 13:30:18 +00001281 case Instruction::PHI:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001282 Result = SimplifyPHINode(cast<PHINode>(I), DT);
1283 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001284 }
Duncan Sandsd261dc62010-11-17 08:35:29 +00001285
1286 /// If called on unreachable code, the above logic may report that the
1287 /// instruction simplified to itself. Make life easier for users by
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00001288 /// detecting that case here, returning a safe value instead.
1289 return Result == I ? UndefValue::get(I->getType()) : Result;
Chris Lattnere3453782009-11-10 01:08:51 +00001290}
1291
Chris Lattner40d8c282009-11-10 22:26:15 +00001292/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
1293/// delete the From instruction. In addition to a basic RAUW, this does a
1294/// recursive simplification of the newly formed instructions. This catches
1295/// things where one simplification exposes other opportunities. This only
1296/// simplifies and deletes scalar operations, it does not change the CFG.
1297///
1298void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
Duncan Sandseff05812010-11-14 18:36:10 +00001299 const TargetData *TD,
1300 const DominatorTree *DT) {
Chris Lattner40d8c282009-11-10 22:26:15 +00001301 assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
Duncan Sands12a86f52010-11-14 11:23:23 +00001302
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001303 // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
1304 // we can know if it gets deleted out from under us or replaced in a
1305 // recursive simplification.
Chris Lattner40d8c282009-11-10 22:26:15 +00001306 WeakVH FromHandle(From);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001307 WeakVH ToHandle(To);
Duncan Sands12a86f52010-11-14 11:23:23 +00001308
Chris Lattner40d8c282009-11-10 22:26:15 +00001309 while (!From->use_empty()) {
1310 // Update the instruction to use the new value.
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001311 Use &TheUse = From->use_begin().getUse();
1312 Instruction *User = cast<Instruction>(TheUse.getUser());
1313 TheUse = To;
1314
1315 // Check to see if the instruction can be folded due to the operand
1316 // replacement. For example changing (or X, Y) into (or X, -1) can replace
1317 // the 'or' with -1.
1318 Value *SimplifiedVal;
1319 {
1320 // Sanity check to make sure 'User' doesn't dangle across
1321 // SimplifyInstruction.
1322 AssertingVH<> UserHandle(User);
Duncan Sands12a86f52010-11-14 11:23:23 +00001323
Duncan Sandseff05812010-11-14 18:36:10 +00001324 SimplifiedVal = SimplifyInstruction(User, TD, DT);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001325 if (SimplifiedVal == 0) continue;
Chris Lattner40d8c282009-11-10 22:26:15 +00001326 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001327
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001328 // Recursively simplify this user to the new value.
Duncan Sandseff05812010-11-14 18:36:10 +00001329 ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001330 From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
1331 To = ToHandle;
Duncan Sands12a86f52010-11-14 11:23:23 +00001332
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001333 assert(ToHandle && "To value deleted by recursive simplification?");
Duncan Sands12a86f52010-11-14 11:23:23 +00001334
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001335 // If the recursive simplification ended up revisiting and deleting
1336 // 'From' then we're done.
1337 if (From == 0)
1338 return;
Chris Lattner40d8c282009-11-10 22:26:15 +00001339 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001340
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001341 // If 'From' has value handles referring to it, do a real RAUW to update them.
1342 From->replaceAllUsesWith(To);
Duncan Sands12a86f52010-11-14 11:23:23 +00001343
Chris Lattner40d8c282009-11-10 22:26:15 +00001344 From->eraseFromParent();
1345}