blob: 0e135f3a49622eed0c5d82baf92370813ed1e4fd [file] [log] [blame]
Misha Brukman91b5ca82004-07-26 18:45:48 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Chris Lattner847df252004-01-30 22:25:18 +000011// virtual registers into register stack instructions. This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code. In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges. Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet. The stackifier pass only works on local
27// basic blocks.
Chris Lattnera960d952003-01-13 01:01:59 +000028//
29//===----------------------------------------------------------------------===//
30
Chris Lattner95b2c7d2006-12-19 22:59:26 +000031#define DEBUG_TYPE "x86-codegen"
Chris Lattnera960d952003-01-13 01:01:59 +000032#include "X86.h"
33#include "X86InstrInfo.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000034#include "llvm/ADT/DepthFirstIterator.h"
Owen Andersoneaa009d2008-08-14 21:01:00 +000035#include "llvm/ADT/SmallPtrSet.h"
Evan Chengddd2a452006-11-15 20:56:39 +000036#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000037#include "llvm/ADT/Statistic.h"
38#include "llvm/ADT/STLExtras.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000039#include "llvm/CodeGen/MachineFunctionPass.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/Passes.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000043#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetMachine.h"
Chris Lattnera960d952003-01-13 01:01:59 +000048#include <algorithm>
Chris Lattnerf2e49d42003-12-20 09:58:55 +000049using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000050
Chris Lattner95b2c7d2006-12-19 22:59:26 +000051STATISTIC(NumFXCH, "Number of fxch instructions inserted");
52STATISTIC(NumFP , "Number of floating point instructions");
Chris Lattnera960d952003-01-13 01:01:59 +000053
Chris Lattner95b2c7d2006-12-19 22:59:26 +000054namespace {
Nick Lewycky6726b6d2009-10-25 06:33:48 +000055 struct FPS : public MachineFunctionPass {
Devang Patel19974732007-05-03 01:11:54 +000056 static char ID;
Dan Gohmanae73dc12008-09-04 17:05:41 +000057 FPS() : MachineFunctionPass(&ID) {}
Devang Patel794fd752007-05-01 21:15:47 +000058
Evan Chengbbeeb2a2008-09-22 20:58:04 +000059 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Dan Gohmandf090552009-08-01 00:26:16 +000060 AU.setPreservesCFG();
Evan Cheng8b56a902008-09-22 22:21:38 +000061 AU.addPreservedID(MachineLoopInfoID);
62 AU.addPreservedID(MachineDominatorsID);
Evan Chengbbeeb2a2008-09-22 20:58:04 +000063 MachineFunctionPass::getAnalysisUsage(AU);
64 }
65
Chris Lattnera960d952003-01-13 01:01:59 +000066 virtual bool runOnMachineFunction(MachineFunction &MF);
67
68 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
69
Chris Lattnera960d952003-01-13 01:01:59 +000070 private:
Evan Cheng32644ac2006-12-01 10:11:51 +000071 const TargetInstrInfo *TII; // Machine instruction info.
Evan Cheng32644ac2006-12-01 10:11:51 +000072 MachineBasicBlock *MBB; // Current basic block
73 unsigned Stack[8]; // FP<n> Registers in each stack slot...
74 unsigned RegMap[8]; // Track which stack slot contains each register
75 unsigned StackTop; // The current top of the FP stack.
Chris Lattnera960d952003-01-13 01:01:59 +000076
77 void dumpStack() const {
David Greenef5c95a62010-01-05 01:29:34 +000078 dbgs() << "Stack contents:";
Chris Lattnera960d952003-01-13 01:01:59 +000079 for (unsigned i = 0; i != StackTop; ++i) {
David Greenef5c95a62010-01-05 01:29:34 +000080 dbgs() << " FP" << Stack[i];
Misha Brukman0e0a7a452005-04-21 23:38:14 +000081 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
Chris Lattnera960d952003-01-13 01:01:59 +000082 }
David Greenef5c95a62010-01-05 01:29:34 +000083 dbgs() << "\n";
Chris Lattnera960d952003-01-13 01:01:59 +000084 }
85 private:
Chris Lattner447ff682008-03-11 03:23:40 +000086 /// isStackEmpty - Return true if the FP stack is empty.
87 bool isStackEmpty() const {
88 return StackTop == 0;
89 }
90
Chris Lattnera960d952003-01-13 01:01:59 +000091 // getSlot - Return the stack slot number a particular register number is
Chris Lattner447ff682008-03-11 03:23:40 +000092 // in.
Chris Lattnera960d952003-01-13 01:01:59 +000093 unsigned getSlot(unsigned RegNo) const {
94 assert(RegNo < 8 && "Regno out of range!");
95 return RegMap[RegNo];
96 }
97
Chris Lattner447ff682008-03-11 03:23:40 +000098 // getStackEntry - Return the X86::FP<n> register in register ST(i).
Chris Lattnera960d952003-01-13 01:01:59 +000099 unsigned getStackEntry(unsigned STi) const {
100 assert(STi < StackTop && "Access past stack top!");
101 return Stack[StackTop-1-STi];
102 }
103
104 // getSTReg - Return the X86::ST(i) register which contains the specified
Chris Lattner447ff682008-03-11 03:23:40 +0000105 // FP<RegNo> register.
Chris Lattnera960d952003-01-13 01:01:59 +0000106 unsigned getSTReg(unsigned RegNo) const {
Brian Gaeked0fde302003-11-11 22:41:34 +0000107 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +0000108 }
109
Chris Lattner447ff682008-03-11 03:23:40 +0000110 // pushReg - Push the specified FP<n> register onto the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000111 void pushReg(unsigned Reg) {
112 assert(Reg < 8 && "Register number out of range!");
113 assert(StackTop < 8 && "Stack overflow!");
114 Stack[StackTop] = Reg;
115 RegMap[Reg] = StackTop++;
116 }
117
118 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattner447ff682008-03-11 03:23:40 +0000119 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000120 MachineInstr *MI = I;
121 DebugLoc dl = MI->getDebugLoc();
Chris Lattner447ff682008-03-11 03:23:40 +0000122 if (isAtTop(RegNo)) return;
123
124 unsigned STReg = getSTReg(RegNo);
125 unsigned RegOnTop = getStackEntry(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000126
Chris Lattner447ff682008-03-11 03:23:40 +0000127 // Swap the slots the regs are in.
128 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Chris Lattnera960d952003-01-13 01:01:59 +0000129
Chris Lattner447ff682008-03-11 03:23:40 +0000130 // Swap stack slot contents.
131 assert(RegMap[RegOnTop] < StackTop);
132 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Chris Lattnera960d952003-01-13 01:01:59 +0000133
Chris Lattner447ff682008-03-11 03:23:40 +0000134 // Emit an fxch to update the runtime processors version of the state.
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000135 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
Dan Gohmanfe601042010-06-22 15:08:57 +0000136 ++NumFXCH;
Chris Lattnera960d952003-01-13 01:01:59 +0000137 }
138
Chris Lattner0526f012004-04-01 04:06:09 +0000139 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000140 DebugLoc dl = I->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000141 unsigned STReg = getSTReg(RegNo);
142 pushReg(AsReg); // New register on top of stack
143
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000144 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
Chris Lattnera960d952003-01-13 01:01:59 +0000145 }
146
147 // popStackAfter - Pop the current value off of the top of the FP stack
148 // after the specified instruction.
149 void popStackAfter(MachineBasicBlock::iterator &I);
150
Chris Lattner0526f012004-04-01 04:06:09 +0000151 // freeStackSlotAfter - Free the specified register from the register stack,
152 // so that it is no longer in a register. If the register is currently at
153 // the top of the stack, we just pop the current instruction, otherwise we
154 // store the current top-of-stack into the specified slot, then pop the top
155 // of stack.
156 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
157
Chris Lattnera960d952003-01-13 01:01:59 +0000158 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
159
160 void handleZeroArgFP(MachineBasicBlock::iterator &I);
161 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner4a06f352004-02-02 19:23:15 +0000162 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000163 void handleTwoArgFP(MachineBasicBlock::iterator &I);
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000164 void handleCompareFP(MachineBasicBlock::iterator &I);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000165 void handleCondMovFP(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000166 void handleSpecialFP(MachineBasicBlock::iterator &I);
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000167
168 bool translateCopy(MachineInstr*);
Chris Lattnera960d952003-01-13 01:01:59 +0000169 };
Devang Patel19974732007-05-03 01:11:54 +0000170 char FPS::ID = 0;
Chris Lattnera960d952003-01-13 01:01:59 +0000171}
172
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000173FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000174
Chris Lattner3cc83842008-01-14 06:41:29 +0000175/// getFPReg - Return the X86::FPx register number for the specified operand.
176/// For example, this returns 3 for X86::FP3.
177static unsigned getFPReg(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000178 assert(MO.isReg() && "Expected an FP register!");
Chris Lattner3cc83842008-01-14 06:41:29 +0000179 unsigned Reg = MO.getReg();
180 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
181 return Reg - X86::FP0;
182}
183
184
Chris Lattnera960d952003-01-13 01:01:59 +0000185/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
186/// register references into FP stack references.
187///
188bool FPS::runOnMachineFunction(MachineFunction &MF) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000189 // We only need to run this pass if there are any FP registers used in this
190 // function. If it is all integer, there is nothing for us to do!
Chris Lattner42e25b32005-01-23 23:13:59 +0000191 bool FPIsUsed = false;
192
193 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
194 for (unsigned i = 0; i <= 6; ++i)
Chris Lattner84bc5422007-12-31 04:13:23 +0000195 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000196 FPIsUsed = true;
197 break;
198 }
199
200 // Early exit.
201 if (!FPIsUsed) return false;
202
Evan Cheng32644ac2006-12-01 10:11:51 +0000203 TII = MF.getTarget().getInstrInfo();
Chris Lattnera960d952003-01-13 01:01:59 +0000204 StackTop = 0;
205
Chris Lattner847df252004-01-30 22:25:18 +0000206 // Process the function in depth first order so that we process at least one
207 // of the predecessors for every reachable block in the function.
Owen Andersoneaa009d2008-08-14 21:01:00 +0000208 SmallPtrSet<MachineBasicBlock*, 8> Processed;
Chris Lattner22686842004-05-01 21:27:53 +0000209 MachineBasicBlock *Entry = MF.begin();
Chris Lattner847df252004-01-30 22:25:18 +0000210
211 bool Changed = false;
Owen Andersoneaa009d2008-08-14 21:01:00 +0000212 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
Chris Lattner847df252004-01-30 22:25:18 +0000213 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
214 I != E; ++I)
Chris Lattner22686842004-05-01 21:27:53 +0000215 Changed |= processBasicBlock(MF, **I);
Chris Lattner847df252004-01-30 22:25:18 +0000216
Chris Lattnerba3598c2009-09-08 04:55:44 +0000217 // Process any unreachable blocks in arbitrary order now.
218 if (MF.size() == Processed.size())
219 return Changed;
220
221 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
222 if (Processed.insert(BB))
223 Changed |= processBasicBlock(MF, *BB);
224
Chris Lattnera960d952003-01-13 01:01:59 +0000225 return Changed;
226}
227
228/// processBasicBlock - Loop over all of the instructions in the basic block,
229/// transforming FP instructions into their stack form.
230///
231bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
Chris Lattnera960d952003-01-13 01:01:59 +0000232 bool Changed = false;
233 MBB = &BB;
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000234
Chris Lattnera960d952003-01-13 01:01:59 +0000235 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000236 MachineInstr *MI = I;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000237 uint64_t Flags = MI->getDesc().TSFlags;
Chris Lattnere12ecf22008-03-11 19:50:13 +0000238
239 unsigned FPInstClass = Flags & X86II::FPTypeMask;
Chris Lattner518bb532010-02-09 19:54:29 +0000240 if (MI->isInlineAsm())
Chris Lattnere12ecf22008-03-11 19:50:13 +0000241 FPInstClass = X86II::SpecialFP;
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000242
243 if (MI->isCopy() && translateCopy(MI))
244 FPInstClass = X86II::SpecialFP;
245
Chris Lattnere12ecf22008-03-11 19:50:13 +0000246 if (FPInstClass == X86II::NotFP)
Chris Lattner847df252004-01-30 22:25:18 +0000247 continue; // Efficiently ignore non-fp insts!
Chris Lattnera960d952003-01-13 01:01:59 +0000248
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000249 MachineInstr *PrevMI = 0;
Alkis Evlogimenosf81af212004-02-14 01:18:34 +0000250 if (I != BB.begin())
Chris Lattner6fa2f9c2008-03-09 07:05:32 +0000251 PrevMI = prior(I);
Chris Lattnera960d952003-01-13 01:01:59 +0000252
253 ++NumFP; // Keep track of # of pseudo instrs
David Greenef5c95a62010-01-05 01:29:34 +0000254 DEBUG(dbgs() << "\nFPInst:\t" << *MI);
Chris Lattnera960d952003-01-13 01:01:59 +0000255
256 // Get dead variables list now because the MI pointer may be deleted as part
257 // of processing!
Evan Chengddd2a452006-11-15 20:56:39 +0000258 SmallVector<unsigned, 8> DeadRegs;
259 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
260 const MachineOperand &MO = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +0000261 if (MO.isReg() && MO.isDead())
Evan Chengddd2a452006-11-15 20:56:39 +0000262 DeadRegs.push_back(MO.getReg());
263 }
Chris Lattnera960d952003-01-13 01:01:59 +0000264
Chris Lattnere12ecf22008-03-11 19:50:13 +0000265 switch (FPInstClass) {
Chris Lattner4a06f352004-02-02 19:23:15 +0000266 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000267 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
Chris Lattner4a06f352004-02-02 19:23:15 +0000268 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
Evan Cheng5cd3e9f2006-11-11 10:21:44 +0000269 case X86II::TwoArgFP: handleTwoArgFP(I); break;
Chris Lattnerab8decc2004-06-11 04:41:24 +0000270 case X86II::CompareFP: handleCompareFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000271 case X86II::CondMovFP: handleCondMovFP(I); break;
Chris Lattner4a06f352004-02-02 19:23:15 +0000272 case X86II::SpecialFP: handleSpecialFP(I); break;
Torok Edwinc23197a2009-07-14 16:55:14 +0000273 default: llvm_unreachable("Unknown FP Type!");
Chris Lattnera960d952003-01-13 01:01:59 +0000274 }
275
276 // Check to see if any of the values defined by this instruction are dead
277 // after definition. If so, pop them.
Evan Chengddd2a452006-11-15 20:56:39 +0000278 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
279 unsigned Reg = DeadRegs[i];
Chris Lattnera960d952003-01-13 01:01:59 +0000280 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
David Greenef5c95a62010-01-05 01:29:34 +0000281 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000282 freeStackSlotAfter(I, Reg-X86::FP0);
Chris Lattnera960d952003-01-13 01:01:59 +0000283 }
284 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000285
Chris Lattnera960d952003-01-13 01:01:59 +0000286 // Print out all of the instructions expanded to if -debug
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000287 DEBUG(
288 MachineBasicBlock::iterator PrevI(PrevMI);
289 if (I == PrevI) {
David Greenef5c95a62010-01-05 01:29:34 +0000290 dbgs() << "Just deleted pseudo instruction\n";
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000291 } else {
292 MachineBasicBlock::iterator Start = I;
293 // Rewind to first instruction newly inserted.
294 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
David Greenef5c95a62010-01-05 01:29:34 +0000295 dbgs() << "Inserted instructions:\n\t";
296 Start->print(dbgs(), &MF.getTarget());
Chris Lattner7896c9f2009-12-03 00:50:42 +0000297 while (++Start != llvm::next(I)) {}
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000298 }
299 dumpStack();
300 );
Chris Lattnera960d952003-01-13 01:01:59 +0000301
302 Changed = true;
303 }
304
Chris Lattner447ff682008-03-11 03:23:40 +0000305 assert(isStackEmpty() && "Stack not empty at end of basic block?");
Chris Lattnera960d952003-01-13 01:01:59 +0000306 return Changed;
307}
308
309//===----------------------------------------------------------------------===//
310// Efficient Lookup Table Support
311//===----------------------------------------------------------------------===//
312
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000313namespace {
314 struct TableEntry {
315 unsigned from;
316 unsigned to;
317 bool operator<(const TableEntry &TE) const { return from < TE.from; }
Jeff Cohen9471c8a2006-01-26 20:41:32 +0000318 friend bool operator<(const TableEntry &TE, unsigned V) {
319 return TE.from < V;
320 }
321 friend bool operator<(unsigned V, const TableEntry &TE) {
322 return V < TE.from;
323 }
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000324 };
325}
Chris Lattnera960d952003-01-13 01:01:59 +0000326
Evan Chenga022bdf2008-07-21 20:02:45 +0000327#ifndef NDEBUG
Chris Lattnera960d952003-01-13 01:01:59 +0000328static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
329 for (unsigned i = 0; i != NumEntries-1; ++i)
330 if (!(Table[i] < Table[i+1])) return false;
331 return true;
332}
Evan Chenga022bdf2008-07-21 20:02:45 +0000333#endif
Chris Lattnera960d952003-01-13 01:01:59 +0000334
335static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
336 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
337 if (I != Table+N && I->from == Opcode)
338 return I->to;
339 return -1;
340}
341
Chris Lattnera960d952003-01-13 01:01:59 +0000342#ifdef NDEBUG
343#define ASSERT_SORTED(TABLE)
344#else
345#define ASSERT_SORTED(TABLE) \
346 { static bool TABLE##Checked = false; \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000347 if (!TABLE##Checked) { \
Owen Anderson718cb662007-09-07 04:06:50 +0000348 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Chris Lattnera960d952003-01-13 01:01:59 +0000349 "All lookup tables must be sorted for efficient access!"); \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000350 TABLE##Checked = true; \
351 } \
Chris Lattnera960d952003-01-13 01:01:59 +0000352 }
353#endif
354
Chris Lattner58fe4592005-12-21 07:47:04 +0000355//===----------------------------------------------------------------------===//
356// Register File -> Register Stack Mapping Methods
357//===----------------------------------------------------------------------===//
358
359// OpcodeTable - Sorted map of register instructions to their stack version.
360// The first element is an register file pseudo instruction, the second is the
361// concrete X86 instruction which uses the register stack.
362//
363static const TableEntry OpcodeTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000364 { X86::ABS_Fp32 , X86::ABS_F },
365 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000366 { X86::ABS_Fp80 , X86::ABS_F },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000367 { X86::ADD_Fp32m , X86::ADD_F32m },
368 { X86::ADD_Fp64m , X86::ADD_F64m },
369 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000370 { X86::ADD_Fp80m32 , X86::ADD_F32m },
371 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000372 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
373 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000374 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000375 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
376 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000377 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000378 { X86::CHS_Fp32 , X86::CHS_F },
379 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000380 { X86::CHS_Fp80 , X86::CHS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000381 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
382 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000383 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000384 { X86::CMOVB_Fp32 , X86::CMOVB_F },
385 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000386 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000387 { X86::CMOVE_Fp32 , X86::CMOVE_F },
388 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000389 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000390 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
391 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000392 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000393 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
394 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000395 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000396 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
397 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000398 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000399 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
400 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000401 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000402 { X86::CMOVP_Fp32 , X86::CMOVP_F },
403 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000404 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000405 { X86::COS_Fp32 , X86::COS_F },
406 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000407 { X86::COS_Fp80 , X86::COS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000408 { X86::DIVR_Fp32m , X86::DIVR_F32m },
409 { X86::DIVR_Fp64m , X86::DIVR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000410 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000411 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
412 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000413 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
414 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000415 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000416 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
417 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000418 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000419 { X86::DIV_Fp32m , X86::DIV_F32m },
420 { X86::DIV_Fp64m , X86::DIV_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000421 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000422 { X86::DIV_Fp80m32 , X86::DIV_F32m },
423 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000424 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
425 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000426 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000427 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
428 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000429 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000430 { X86::ILD_Fp16m32 , X86::ILD_F16m },
431 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000432 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000433 { X86::ILD_Fp32m32 , X86::ILD_F32m },
434 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000435 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000436 { X86::ILD_Fp64m32 , X86::ILD_F64m },
437 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000438 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000439 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
440 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesena996d522007-08-07 01:17:37 +0000441 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000442 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
443 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesena996d522007-08-07 01:17:37 +0000444 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000445 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
446 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesena996d522007-08-07 01:17:37 +0000447 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000448 { X86::IST_Fp16m32 , X86::IST_F16m },
449 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000450 { X86::IST_Fp16m80 , X86::IST_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000451 { X86::IST_Fp32m32 , X86::IST_F32m },
452 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000453 { X86::IST_Fp32m80 , X86::IST_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000454 { X86::IST_Fp64m32 , X86::IST_FP64m },
455 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000456 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000457 { X86::LD_Fp032 , X86::LD_F0 },
458 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000459 { X86::LD_Fp080 , X86::LD_F0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000460 { X86::LD_Fp132 , X86::LD_F1 },
461 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000462 { X86::LD_Fp180 , X86::LD_F1 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000463 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000464 { X86::LD_Fp32m64 , X86::LD_F32m },
465 { X86::LD_Fp32m80 , X86::LD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000466 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000467 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000468 { X86::LD_Fp80m , X86::LD_F80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000469 { X86::MUL_Fp32m , X86::MUL_F32m },
470 { X86::MUL_Fp64m , X86::MUL_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000471 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000472 { X86::MUL_Fp80m32 , X86::MUL_F32m },
473 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000474 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
475 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000476 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000477 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
478 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000479 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000480 { X86::SIN_Fp32 , X86::SIN_F },
481 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000482 { X86::SIN_Fp80 , X86::SIN_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000483 { X86::SQRT_Fp32 , X86::SQRT_F },
484 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000485 { X86::SQRT_Fp80 , X86::SQRT_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000486 { X86::ST_Fp32m , X86::ST_F32m },
487 { X86::ST_Fp64m , X86::ST_F64m },
488 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000489 { X86::ST_Fp80m32 , X86::ST_F32m },
490 { X86::ST_Fp80m64 , X86::ST_F64m },
491 { X86::ST_FpP80m , X86::ST_FP80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000492 { X86::SUBR_Fp32m , X86::SUBR_F32m },
493 { X86::SUBR_Fp64m , X86::SUBR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000494 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000495 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
496 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000497 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
498 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000499 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000500 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
501 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000502 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000503 { X86::SUB_Fp32m , X86::SUB_F32m },
504 { X86::SUB_Fp64m , X86::SUB_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000505 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000506 { X86::SUB_Fp80m32 , X86::SUB_F32m },
507 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000508 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
509 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000510 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000511 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
512 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000513 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000514 { X86::TST_Fp32 , X86::TST_F },
515 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000516 { X86::TST_Fp80 , X86::TST_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000517 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
518 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000519 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000520 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
521 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000522 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Chris Lattner58fe4592005-12-21 07:47:04 +0000523};
524
525static unsigned getConcreteOpcode(unsigned Opcode) {
526 ASSERT_SORTED(OpcodeTable);
Owen Anderson718cb662007-09-07 04:06:50 +0000527 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Chris Lattner58fe4592005-12-21 07:47:04 +0000528 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
529 return Opc;
530}
Chris Lattnera960d952003-01-13 01:01:59 +0000531
532//===----------------------------------------------------------------------===//
533// Helper Methods
534//===----------------------------------------------------------------------===//
535
536// PopTable - Sorted map of instructions to their popping version. The first
537// element is an instruction, the second is the version which pops.
538//
539static const TableEntry PopTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000540 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000541
Dale Johannesene377d4d2007-07-04 21:07:47 +0000542 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
543 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000544
Dale Johannesene377d4d2007-07-04 21:07:47 +0000545 { X86::IST_F16m , X86::IST_FP16m },
546 { X86::IST_F32m , X86::IST_FP32m },
Chris Lattnera960d952003-01-13 01:01:59 +0000547
Dale Johannesene377d4d2007-07-04 21:07:47 +0000548 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000549
Dale Johannesene377d4d2007-07-04 21:07:47 +0000550 { X86::ST_F32m , X86::ST_FP32m },
551 { X86::ST_F64m , X86::ST_FP64m },
552 { X86::ST_Frr , X86::ST_FPrr },
Chris Lattner113455b2003-08-03 21:56:36 +0000553
Dale Johannesene377d4d2007-07-04 21:07:47 +0000554 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
555 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000556
Dale Johannesene377d4d2007-07-04 21:07:47 +0000557 { X86::UCOM_FIr , X86::UCOM_FIPr },
Chris Lattnerc040bca2004-04-12 01:39:15 +0000558
Dale Johannesene377d4d2007-07-04 21:07:47 +0000559 { X86::UCOM_FPr , X86::UCOM_FPPr },
560 { X86::UCOM_Fr , X86::UCOM_FPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000561};
562
563/// popStackAfter - Pop the current value off of the top of the FP stack after
564/// the specified instruction. This attempts to be sneaky and combine the pop
565/// into the instruction itself if possible. The iterator is left pointing to
566/// the last instruction, be it a new pop instruction inserted, or the old
567/// instruction if it was modified in place.
568///
569void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000570 MachineInstr* MI = I;
571 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000572 ASSERT_SORTED(PopTable);
573 assert(StackTop > 0 && "Cannot pop empty stack!");
574 RegMap[Stack[--StackTop]] = ~0; // Update state
575
576 // Check to see if there is a popping version of this instruction...
Owen Anderson718cb662007-09-07 04:06:50 +0000577 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000578 if (Opcode != -1) {
Chris Lattner5080f4d2008-01-11 18:10:50 +0000579 I->setDesc(TII->get(Opcode));
Dale Johannesene377d4d2007-07-04 21:07:47 +0000580 if (Opcode == X86::UCOM_FPPr)
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000581 I->RemoveOperand(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000582 } else { // Insert an explicit pop
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000583 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
Chris Lattnera960d952003-01-13 01:01:59 +0000584 }
585}
586
Chris Lattner0526f012004-04-01 04:06:09 +0000587/// freeStackSlotAfter - Free the specified register from the register stack, so
588/// that it is no longer in a register. If the register is currently at the top
589/// of the stack, we just pop the current instruction, otherwise we store the
590/// current top-of-stack into the specified slot, then pop the top of stack.
591void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
592 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
593 popStackAfter(I);
594 return;
595 }
596
597 // Otherwise, store the top of stack into the dead slot, killing the operand
598 // without having to add in an explicit xchg then pop.
599 //
600 unsigned STReg = getSTReg(FPRegNo);
601 unsigned OldSlot = getSlot(FPRegNo);
602 unsigned TopReg = Stack[StackTop-1];
603 Stack[OldSlot] = TopReg;
604 RegMap[TopReg] = OldSlot;
605 RegMap[FPRegNo] = ~0;
606 Stack[--StackTop] = ~0;
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000607 MachineInstr *MI = I;
608 DebugLoc dl = MI->getDebugLoc();
609 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(STReg);
Chris Lattner0526f012004-04-01 04:06:09 +0000610}
611
612
Chris Lattnera960d952003-01-13 01:01:59 +0000613//===----------------------------------------------------------------------===//
614// Instruction transformation implementation
615//===----------------------------------------------------------------------===//
616
617/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner4a06f352004-02-02 19:23:15 +0000618///
Chris Lattnera960d952003-01-13 01:01:59 +0000619void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000620 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000621 unsigned DestReg = getFPReg(MI->getOperand(0));
Chris Lattnera960d952003-01-13 01:01:59 +0000622
Chris Lattner58fe4592005-12-21 07:47:04 +0000623 // Change from the pseudo instruction to the concrete instruction.
624 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000625 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +0000626
627 // Result gets pushed on the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000628 pushReg(DestReg);
629}
630
Chris Lattner4a06f352004-02-02 19:23:15 +0000631/// handleOneArgFP - fst <mem>, ST(0)
632///
Chris Lattnera960d952003-01-13 01:01:59 +0000633void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000634 MachineInstr *MI = I;
Chris Lattner749c6f62008-01-07 07:27:27 +0000635 unsigned NumOps = MI->getDesc().getNumOperands();
Rafael Espindolab449a682009-03-28 17:03:24 +0000636 assert((NumOps == X86AddrNumOperands + 1 || NumOps == 1) &&
Chris Lattnerb97046a2004-02-03 07:27:34 +0000637 "Can only handle fst* & ftst instructions!");
Chris Lattnera960d952003-01-13 01:01:59 +0000638
Chris Lattner4a06f352004-02-02 19:23:15 +0000639 // Is this the last use of the source register?
Evan Cheng171d09e2006-11-10 01:28:43 +0000640 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000641 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattnera960d952003-01-13 01:01:59 +0000642
Evan Cheng2b152712006-02-18 02:36:28 +0000643 // FISTP64m is strange because there isn't a non-popping versions.
Chris Lattnera960d952003-01-13 01:01:59 +0000644 // If we have one _and_ we don't want to pop the operand, duplicate the value
645 // on the stack instead of moving it. This ensure that popping the value is
646 // always ok.
Dale Johannesenca8035e2007-09-17 20:15:38 +0000647 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Chris Lattnera960d952003-01-13 01:01:59 +0000648 //
Evan Cheng2b152712006-02-18 02:36:28 +0000649 if (!KillsSrc &&
Dale Johannesene377d4d2007-07-04 21:07:47 +0000650 (MI->getOpcode() == X86::IST_Fp64m32 ||
651 MI->getOpcode() == X86::ISTT_Fp16m32 ||
652 MI->getOpcode() == X86::ISTT_Fp32m32 ||
653 MI->getOpcode() == X86::ISTT_Fp64m32 ||
654 MI->getOpcode() == X86::IST_Fp64m64 ||
655 MI->getOpcode() == X86::ISTT_Fp16m64 ||
656 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen59a58732007-08-05 18:49:15 +0000657 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen41de4362007-09-20 01:27:54 +0000658 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesena996d522007-08-07 01:17:37 +0000659 MI->getOpcode() == X86::ISTT_Fp16m80 ||
660 MI->getOpcode() == X86::ISTT_Fp32m80 ||
661 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen59a58732007-08-05 18:49:15 +0000662 MI->getOpcode() == X86::ST_FpP80m)) {
Chris Lattnera960d952003-01-13 01:01:59 +0000663 duplicateToTop(Reg, 7 /*temp register*/, I);
664 } else {
665 moveToTop(Reg, I); // Move to the top of the stack...
666 }
Chris Lattner58fe4592005-12-21 07:47:04 +0000667
668 // Convert from the pseudo instruction to the concrete instruction.
Evan Cheng171d09e2006-11-10 01:28:43 +0000669 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000670 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000671
Dale Johannesene377d4d2007-07-04 21:07:47 +0000672 if (MI->getOpcode() == X86::IST_FP64m ||
673 MI->getOpcode() == X86::ISTT_FP16m ||
674 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesen88835732007-08-06 19:50:32 +0000675 MI->getOpcode() == X86::ISTT_FP64m ||
676 MI->getOpcode() == X86::ST_FP80m) {
Chris Lattnera960d952003-01-13 01:01:59 +0000677 assert(StackTop > 0 && "Stack empty??");
678 --StackTop;
679 } else if (KillsSrc) { // Last use of operand?
680 popStackAfter(I);
681 }
682}
683
Chris Lattner4a06f352004-02-02 19:23:15 +0000684
Chris Lattner4cf15e72004-04-11 20:21:06 +0000685/// handleOneArgFPRW: Handle instructions that read from the top of stack and
686/// replace the value with a newly computed value. These instructions may have
687/// non-fp operands after their FP operands.
688///
689/// Examples:
690/// R1 = fchs R2
691/// R1 = fadd R2, [mem]
Chris Lattner4a06f352004-02-02 19:23:15 +0000692///
693void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000694 MachineInstr *MI = I;
Evan Chenga022bdf2008-07-21 20:02:45 +0000695#ifndef NDEBUG
Chris Lattner749c6f62008-01-07 07:27:27 +0000696 unsigned NumOps = MI->getDesc().getNumOperands();
Evan Cheng171d09e2006-11-10 01:28:43 +0000697 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
Evan Chenga022bdf2008-07-21 20:02:45 +0000698#endif
Chris Lattner4a06f352004-02-02 19:23:15 +0000699
700 // Is this the last use of the source register?
701 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Cheng6130f662008-03-05 00:59:57 +0000702 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattner4a06f352004-02-02 19:23:15 +0000703
704 if (KillsSrc) {
705 // If this is the last use of the source register, just make sure it's on
706 // the top of the stack.
707 moveToTop(Reg, I);
708 assert(StackTop > 0 && "Stack cannot be empty!");
709 --StackTop;
710 pushReg(getFPReg(MI->getOperand(0)));
711 } else {
712 // If this is not the last use of the source register, _copy_ it to the top
713 // of the stack.
714 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
715 }
716
Chris Lattner58fe4592005-12-21 07:47:04 +0000717 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner4a06f352004-02-02 19:23:15 +0000718 MI->RemoveOperand(1); // Drop the source operand.
719 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner5080f4d2008-01-11 18:10:50 +0000720 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner4a06f352004-02-02 19:23:15 +0000721}
722
723
Chris Lattnera960d952003-01-13 01:01:59 +0000724//===----------------------------------------------------------------------===//
725// Define tables of various ways to map pseudo instructions
726//
727
728// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
729static const TableEntry ForwardST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000730 { X86::ADD_Fp32 , X86::ADD_FST0r },
731 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000732 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000733 { X86::DIV_Fp32 , X86::DIV_FST0r },
734 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000735 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000736 { X86::MUL_Fp32 , X86::MUL_FST0r },
737 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000738 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000739 { X86::SUB_Fp32 , X86::SUB_FST0r },
740 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000741 { X86::SUB_Fp80 , X86::SUB_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000742};
743
744// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
745static const TableEntry ReverseST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000746 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
747 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +0000748 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +0000749 { X86::DIV_Fp32 , X86::DIVR_FST0r },
750 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000751 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000752 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
753 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +0000754 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +0000755 { X86::SUB_Fp32 , X86::SUBR_FST0r },
756 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000757 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000758};
759
760// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
761static const TableEntry ForwardSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000762 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
763 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +0000764 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +0000765 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
766 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000767 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000768 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
769 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +0000770 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +0000771 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
772 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000773 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000774};
775
776// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
777static const TableEntry ReverseSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000778 { X86::ADD_Fp32 , X86::ADD_FrST0 },
779 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000780 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000781 { X86::DIV_Fp32 , X86::DIV_FrST0 },
782 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000783 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000784 { X86::MUL_Fp32 , X86::MUL_FrST0 },
785 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000786 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000787 { X86::SUB_Fp32 , X86::SUB_FrST0 },
788 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000789 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000790};
791
792
793/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
794/// instructions which need to be simplified and possibly transformed.
795///
796/// Result: ST(0) = fsub ST(0), ST(i)
797/// ST(i) = fsub ST(0), ST(i)
798/// ST(0) = fsubr ST(0), ST(i)
799/// ST(i) = fsubr ST(0), ST(i)
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000800///
Chris Lattnera960d952003-01-13 01:01:59 +0000801void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
802 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
803 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000804 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000805
Chris Lattner749c6f62008-01-07 07:27:27 +0000806 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000807 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
Chris Lattnera960d952003-01-13 01:01:59 +0000808 unsigned Dest = getFPReg(MI->getOperand(0));
809 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
810 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000811 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
812 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000813 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000814
Chris Lattnera960d952003-01-13 01:01:59 +0000815 unsigned TOS = getStackEntry(0);
816
817 // One of our operands must be on the top of the stack. If neither is yet, we
818 // need to move one.
819 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
820 // We can choose to move either operand to the top of the stack. If one of
821 // the operands is killed by this instruction, we want that one so that we
822 // can update right on top of the old version.
823 if (KillsOp0) {
824 moveToTop(Op0, I); // Move dead operand to TOS.
825 TOS = Op0;
826 } else if (KillsOp1) {
827 moveToTop(Op1, I);
828 TOS = Op1;
829 } else {
830 // All of the operands are live after this instruction executes, so we
831 // cannot update on top of any operand. Because of this, we must
832 // duplicate one of the stack elements to the top. It doesn't matter
833 // which one we pick.
834 //
835 duplicateToTop(Op0, Dest, I);
836 Op0 = TOS = Dest;
837 KillsOp0 = true;
838 }
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000839 } else if (!KillsOp0 && !KillsOp1) {
Chris Lattnera960d952003-01-13 01:01:59 +0000840 // If we DO have one of our operands at the top of the stack, but we don't
841 // have a dead operand, we must duplicate one of the operands to a new slot
842 // on the stack.
843 duplicateToTop(Op0, Dest, I);
844 Op0 = TOS = Dest;
845 KillsOp0 = true;
846 }
847
848 // Now we know that one of our operands is on the top of the stack, and at
849 // least one of our operands is killed by this instruction.
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000850 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
851 "Stack conditions not set up right!");
Chris Lattnera960d952003-01-13 01:01:59 +0000852
853 // We decide which form to use based on what is on the top of the stack, and
854 // which operand is killed by this instruction.
855 const TableEntry *InstTable;
856 bool isForward = TOS == Op0;
857 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
858 if (updateST0) {
859 if (isForward)
860 InstTable = ForwardST0Table;
861 else
862 InstTable = ReverseST0Table;
863 } else {
864 if (isForward)
865 InstTable = ForwardSTiTable;
866 else
867 InstTable = ReverseSTiTable;
868 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000869
Owen Anderson718cb662007-09-07 04:06:50 +0000870 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
871 MI->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000872 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
873
874 // NotTOS - The register which is not on the top of stack...
875 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
876
877 // Replace the old instruction with a new instruction
Chris Lattnerc1bab322004-03-31 22:02:36 +0000878 MBB->remove(I++);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000879 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
Chris Lattnera960d952003-01-13 01:01:59 +0000880
881 // If both operands are killed, pop one off of the stack in addition to
882 // overwriting the other one.
883 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
884 assert(!updateST0 && "Should have updated other operand!");
885 popStackAfter(I); // Pop the top of stack
886 }
887
Chris Lattnera960d952003-01-13 01:01:59 +0000888 // Update stack information so that we know the destination register is now on
889 // the stack.
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000890 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
891 assert(UpdatedSlot < StackTop && Dest < 7);
892 Stack[UpdatedSlot] = Dest;
893 RegMap[Dest] = UpdatedSlot;
Dan Gohman8e5f2c62008-07-07 23:14:23 +0000894 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000895}
896
Chris Lattner0ca2c8e2004-06-11 04:49:02 +0000897/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000898/// register arguments and no explicit destinations.
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000899///
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000900void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
901 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
902 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
903 MachineInstr *MI = I;
904
Chris Lattner749c6f62008-01-07 07:27:27 +0000905 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattner0ca2c8e2004-06-11 04:49:02 +0000906 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000907 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
908 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000909 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
910 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000911
912 // Make sure the first operand is on the top of stack, the other one can be
913 // anywhere.
914 moveToTop(Op0, I);
915
Chris Lattner58fe4592005-12-21 07:47:04 +0000916 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner57790422004-06-11 05:22:44 +0000917 MI->getOperand(0).setReg(getSTReg(Op1));
918 MI->RemoveOperand(1);
Chris Lattner5080f4d2008-01-11 18:10:50 +0000919 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner57790422004-06-11 05:22:44 +0000920
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000921 // If any of the operands are killed by this instruction, free them.
922 if (KillsOp0) freeStackSlotAfter(I, Op0);
923 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
Chris Lattnera960d952003-01-13 01:01:59 +0000924}
925
Chris Lattnerc1bab322004-03-31 22:02:36 +0000926/// handleCondMovFP - Handle two address conditional move instructions. These
927/// instructions move a st(i) register to st(0) iff a condition is true. These
928/// instructions require that the first operand is at the top of the stack, but
929/// otherwise don't modify the stack at all.
930void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
931 MachineInstr *MI = I;
932
933 unsigned Op0 = getFPReg(MI->getOperand(0));
Chris Lattner6cdb1ea2006-09-05 20:27:32 +0000934 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Cheng6130f662008-03-05 00:59:57 +0000935 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000936
937 // The first operand *must* be on the top of the stack.
938 moveToTop(Op0, I);
939
940 // Change the second operand to the stack register that the operand is in.
Chris Lattner58fe4592005-12-21 07:47:04 +0000941 // Change from the pseudo instruction to the concrete instruction.
Chris Lattnerc1bab322004-03-31 22:02:36 +0000942 MI->RemoveOperand(0);
Chris Lattner6cdb1ea2006-09-05 20:27:32 +0000943 MI->RemoveOperand(1);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000944 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner5080f4d2008-01-11 18:10:50 +0000945 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +0000946
Chris Lattnerc1bab322004-03-31 22:02:36 +0000947 // If we kill the second operand, make sure to pop it from the stack.
Evan Chengddd2a452006-11-15 20:56:39 +0000948 if (Op0 != Op1 && KillsOp1) {
Chris Lattner76eb08b2005-08-23 22:49:55 +0000949 // Get this value off of the register stack.
950 freeStackSlotAfter(I, Op1);
951 }
Chris Lattnerc1bab322004-03-31 22:02:36 +0000952}
953
Chris Lattnera960d952003-01-13 01:01:59 +0000954
955/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +0000956/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +0000957/// instructions.
958///
959void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000960 MachineInstr *MI = I;
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000961 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000962 switch (MI->getOpcode()) {
Torok Edwinc23197a2009-07-14 16:55:14 +0000963 default: llvm_unreachable("Unknown SpecialFP instruction!");
Chris Lattner6fa2f9c2008-03-09 07:05:32 +0000964 case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
965 case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
966 case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
Chris Lattnera960d952003-01-13 01:01:59 +0000967 assert(StackTop == 0 && "Stack should be empty after a call!");
968 pushReg(getFPReg(MI->getOperand(0)));
969 break;
Chris Lattner24e0a542008-03-21 06:38:26 +0000970 case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
971 case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
972 case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
973 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
974 // The pattern we expect is:
975 // CALL
976 // FP1 = FpGET_ST0
977 // FP4 = FpGET_ST1
978 //
979 // At this point, we've pushed FP1 on the top of stack, so it should be
980 // present if it isn't dead. If it was dead, we already emitted a pop to
981 // remove it from the stack and StackTop = 0.
982
983 // Push FP4 as top of stack next.
984 pushReg(getFPReg(MI->getOperand(0)));
985
986 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
987 // dead. In this case, the ST(1) value is the only thing that is live, so
988 // it should be on the TOS (after the pop that was emitted) and is. Just
989 // continue in this case.
990 if (StackTop == 1)
991 break;
992
993 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
994 // elements so that our accounting is correct.
995 unsigned RegOnTop = getStackEntry(0);
996 unsigned RegNo = getStackEntry(1);
997
998 // Swap the slots the regs are in.
999 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
1000
1001 // Swap stack slot contents.
1002 assert(RegMap[RegOnTop] < StackTop);
1003 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
1004 break;
1005 }
Chris Lattnerafb23f42008-03-09 07:08:44 +00001006 case X86::FpSET_ST0_32:
1007 case X86::FpSET_ST0_64:
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001008 case X86::FpSET_ST0_80: {
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001009 unsigned Op0 = getFPReg(MI->getOperand(0));
1010
Rafael Espindola1c3329f2009-06-21 12:02:51 +00001011 // FpSET_ST0_80 is generated by copyRegToReg for both function return
1012 // and inline assembly with the "st" constrain. In the latter case,
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001013 // it is possible for ST(0) to be alive after this instruction.
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001014 if (!MI->killsRegister(X86::FP0 + Op0)) {
1015 // Duplicate Op0
Rafael Espindola63de5c32009-06-29 20:29:59 +00001016 duplicateToTop(0, 7 /*temp register*/, I);
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001017 } else {
1018 moveToTop(Op0, I);
Rafael Espindola1c3329f2009-06-21 12:02:51 +00001019 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001020 --StackTop; // "Forget" we have something on the top of stack!
1021 break;
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001022 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001023 case X86::FpSET_ST1_32:
1024 case X86::FpSET_ST1_64:
1025 case X86::FpSET_ST1_80:
1026 // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1027 if (StackTop == 1) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001028 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
Dan Gohmanfe601042010-06-22 15:08:57 +00001029 ++NumFXCH;
Evan Chenga0eedac2009-02-09 23:32:07 +00001030 StackTop = 0;
1031 break;
1032 }
1033 assert(StackTop == 2 && "Stack should have two element on it to return!");
Chris Lattnera960d952003-01-13 01:01:59 +00001034 --StackTop; // "Forget" we have something on the top of stack!
1035 break;
Dale Johannesene377d4d2007-07-04 21:07:47 +00001036 case X86::MOV_Fp3232:
1037 case X86::MOV_Fp3264:
1038 case X86::MOV_Fp6432:
Dale Johannesen59a58732007-08-05 18:49:15 +00001039 case X86::MOV_Fp6464:
1040 case X86::MOV_Fp3280:
1041 case X86::MOV_Fp6480:
1042 case X86::MOV_Fp8032:
1043 case X86::MOV_Fp8064:
1044 case X86::MOV_Fp8080: {
Evan Chengfb112882009-03-23 08:01:15 +00001045 const MachineOperand &MO1 = MI->getOperand(1);
1046 unsigned SrcReg = getFPReg(MO1);
Chris Lattnera960d952003-01-13 01:01:59 +00001047
Evan Chengfb112882009-03-23 08:01:15 +00001048 const MachineOperand &MO0 = MI->getOperand(0);
1049 // These can be created due to inline asm. Two address pass can introduce
1050 // copies from RFP registers to virtual registers.
1051 if (MO0.getReg() == X86::ST0 && SrcReg == 0) {
1052 assert(MO1.isKill());
1053 // Treat %ST0<def> = MOV_Fp8080 %FP0<kill>
1054 // like FpSET_ST0_80 %FP0<kill>, %ST0<imp-def>
1055 assert((StackTop == 1 || StackTop == 2)
1056 && "Stack should have one or two element on it to return!");
1057 --StackTop; // "Forget" we have something on the top of stack!
1058 break;
1059 } else if (MO0.getReg() == X86::ST1 && SrcReg == 1) {
1060 assert(MO1.isKill());
1061 // Treat %ST1<def> = MOV_Fp8080 %FP1<kill>
1062 // like FpSET_ST1_80 %FP0<kill>, %ST1<imp-def>
1063 // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1064 if (StackTop == 1) {
1065 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
Dan Gohmanfe601042010-06-22 15:08:57 +00001066 ++NumFXCH;
Evan Chengfb112882009-03-23 08:01:15 +00001067 StackTop = 0;
1068 break;
1069 }
1070 assert(StackTop == 2 && "Stack should have two element on it to return!");
1071 --StackTop; // "Forget" we have something on the top of stack!
1072 break;
1073 }
1074
1075 unsigned DestReg = getFPReg(MO0);
Evan Cheng6130f662008-03-05 00:59:57 +00001076 if (MI->killsRegister(X86::FP0+SrcReg)) {
Chris Lattnera960d952003-01-13 01:01:59 +00001077 // If the input operand is killed, we can just change the owner of the
1078 // incoming stack slot into the result.
1079 unsigned Slot = getSlot(SrcReg);
1080 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1081 Stack[Slot] = DestReg;
1082 RegMap[DestReg] = Slot;
1083
1084 } else {
1085 // For FMOV we just duplicate the specified value to a new stack slot.
1086 // This could be made better, but would require substantial changes.
1087 duplicateToTop(SrcReg, DestReg, I);
1088 }
Nick Lewycky3c786972008-03-11 05:56:09 +00001089 }
Chris Lattnera960d952003-01-13 01:01:59 +00001090 break;
Chris Lattner518bb532010-02-09 19:54:29 +00001091 case TargetOpcode::INLINEASM: {
Chris Lattnere12ecf22008-03-11 19:50:13 +00001092 // The inline asm MachineInstr currently only *uses* FP registers for the
1093 // 'f' constraint. These should be turned into the current ST(x) register
1094 // in the machine instr. Also, any kills should be explicitly popped after
1095 // the inline asm.
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001096 unsigned Kills = 0;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001097 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1098 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001099 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattnere12ecf22008-03-11 19:50:13 +00001100 continue;
1101 assert(Op.isUse() && "Only handle inline asm uses right now");
1102
1103 unsigned FPReg = getFPReg(Op);
1104 Op.setReg(getSTReg(FPReg));
1105
1106 // If we kill this operand, make sure to pop it from the stack after the
1107 // asm. We just remember it for now, and pop them all off at the end in
1108 // a batch.
1109 if (Op.isKill())
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001110 Kills |= 1U << FPReg;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001111 }
1112
1113 // If this asm kills any FP registers (is the last use of them) we must
1114 // explicitly emit pop instructions for them. Do this now after the asm has
1115 // executed so that the ST(x) numbers are not off (which would happen if we
1116 // did this inline with operand rewriting).
1117 //
1118 // Note: this might be a non-optimal pop sequence. We might be able to do
1119 // better by trying to pop in stack order or something.
1120 MachineBasicBlock::iterator InsertPt = MI;
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001121 while (Kills) {
1122 unsigned FPReg = CountTrailingZeros_32(Kills);
1123 freeStackSlotAfter(InsertPt, FPReg);
1124 Kills &= ~(1U << FPReg);
1125 }
Chris Lattnere12ecf22008-03-11 19:50:13 +00001126 // Don't delete the inline asm!
1127 return;
1128 }
1129
Chris Lattner447ff682008-03-11 03:23:40 +00001130 case X86::RET:
1131 case X86::RETI:
1132 // If RET has an FP register use operand, pass the first one in ST(0) and
1133 // the second one in ST(1).
1134 if (isStackEmpty()) return; // Quick check to see if any are possible.
1135
1136 // Find the register operands.
1137 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1138
1139 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1140 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001141 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattner447ff682008-03-11 03:23:40 +00001142 continue;
Chris Lattner35831d02008-03-21 20:41:27 +00001143 // FP Register uses must be kills unless there are two uses of the same
1144 // register, in which case only one will be a kill.
1145 assert(Op.isUse() &&
1146 (Op.isKill() || // Marked kill.
1147 getFPReg(Op) == FirstFPRegOp || // Second instance.
1148 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1149 "Ret only defs operands, and values aren't live beyond it");
Chris Lattner447ff682008-03-11 03:23:40 +00001150
1151 if (FirstFPRegOp == ~0U)
1152 FirstFPRegOp = getFPReg(Op);
1153 else {
1154 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1155 SecondFPRegOp = getFPReg(Op);
1156 }
1157
1158 // Remove the operand so that later passes don't see it.
1159 MI->RemoveOperand(i);
1160 --i, --e;
1161 }
1162
1163 // There are only four possibilities here:
1164 // 1) we are returning a single FP value. In this case, it has to be in
1165 // ST(0) already, so just declare success by removing the value from the
1166 // FP Stack.
1167 if (SecondFPRegOp == ~0U) {
1168 // Assert that the top of stack contains the right FP register.
1169 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1170 "Top of stack not the right register for RET!");
1171
1172 // Ok, everything is good, mark the value as not being on the stack
1173 // anymore so that our assertion about the stack being empty at end of
1174 // block doesn't fire.
1175 StackTop = 0;
1176 return;
1177 }
1178
Chris Lattner447ff682008-03-11 03:23:40 +00001179 // Otherwise, we are returning two values:
1180 // 2) If returning the same value for both, we only have one thing in the FP
1181 // stack. Consider: RET FP1, FP1
1182 if (StackTop == 1) {
1183 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1184 "Stack misconfiguration for RET!");
1185
1186 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1187 // register to hold it.
1188 unsigned NewReg = (FirstFPRegOp+1)%7;
1189 duplicateToTop(FirstFPRegOp, NewReg, MI);
1190 FirstFPRegOp = NewReg;
1191 }
1192
1193 /// Okay we know we have two different FPx operands now:
1194 assert(StackTop == 2 && "Must have two values live!");
1195
1196 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1197 /// in ST(1). In this case, emit an fxch.
1198 if (getStackEntry(0) == SecondFPRegOp) {
1199 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1200 moveToTop(FirstFPRegOp, MI);
1201 }
1202
1203 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1204 /// ST(1). Just remove both from our understanding of the stack and return.
1205 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
Chris Lattner03535262008-03-21 05:57:20 +00001206 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
Chris Lattner447ff682008-03-11 03:23:40 +00001207 StackTop = 0;
1208 return;
Chris Lattnera960d952003-01-13 01:01:59 +00001209 }
Chris Lattnera960d952003-01-13 01:01:59 +00001210
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001211 I = MBB->erase(I); // Remove the pseudo instruction
1212 --I;
Chris Lattnera960d952003-01-13 01:01:59 +00001213}
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +00001214
1215// Translate a COPY instruction to a pseudo-op that handleSpecialFP understands.
1216bool FPS::translateCopy(MachineInstr *MI) {
1217 unsigned DstReg = MI->getOperand(0).getReg();
1218 unsigned SrcReg = MI->getOperand(1).getReg();
1219
1220 if (DstReg == X86::ST0) {
1221 MI->setDesc(TII->get(X86::FpSET_ST0_80));
1222 MI->RemoveOperand(0);
1223 return true;
1224 }
1225 if (DstReg == X86::ST1) {
1226 MI->setDesc(TII->get(X86::FpSET_ST1_80));
1227 MI->RemoveOperand(0);
1228 return true;
1229 }
1230 if (SrcReg == X86::ST0) {
1231 MI->setDesc(TII->get(X86::FpGET_ST0_80));
1232 return true;
1233 }
1234 if (SrcReg == X86::ST1) {
1235 MI->setDesc(TII->get(X86::FpGET_ST1_80));
1236 return true;
1237 }
1238 if (X86::RFP80RegClass.contains(DstReg, SrcReg)) {
1239 MI->setDesc(TII->get(X86::MOV_Fp8080));
1240 return true;
1241 }
1242 return false;
1243}