blob: c31f622e249ed5d547c5729299d9948040d943b9 [file] [log] [blame]
Lang Hames87e3bca2009-05-06 02:36:21 +00001//===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "virtregrewriter"
11#include "VirtRegRewriter.h"
12#include "llvm/Support/Compiler.h"
13#include "llvm/ADT/DepthFirstIterator.h"
14#include "llvm/ADT/Statistic.h"
15#include "llvm/ADT/STLExtras.h"
16#include <algorithm>
17using namespace llvm;
18
19STATISTIC(NumDSE , "Number of dead stores elided");
20STATISTIC(NumDSS , "Number of dead spill slots removed");
21STATISTIC(NumCommutes, "Number of instructions commuted");
22STATISTIC(NumDRM , "Number of re-materializable defs elided");
23STATISTIC(NumStores , "Number of stores added");
24STATISTIC(NumPSpills , "Number of physical register spills");
25STATISTIC(NumOmitted , "Number of reloads omited");
26STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
27STATISTIC(NumCopified, "Number of available reloads turned into copies");
28STATISTIC(NumReMats , "Number of re-materialization");
29STATISTIC(NumLoads , "Number of loads added");
30STATISTIC(NumReused , "Number of values reused");
31STATISTIC(NumDCE , "Number of copies elided");
32STATISTIC(NumSUnfold , "Number of stores unfolded");
33STATISTIC(NumModRefUnfold, "Number of modref unfolded");
34
35namespace {
Lang Hamesf41538d2009-06-02 16:53:25 +000036 enum RewriterName { simple, local, trivial };
Lang Hames87e3bca2009-05-06 02:36:21 +000037}
38
39static cl::opt<RewriterName>
40RewriterOpt("rewriter",
41 cl::desc("Rewriter to use: (default: local)"),
42 cl::Prefix,
Lang Hamesf41538d2009-06-02 16:53:25 +000043 cl::values(clEnumVal(simple, "simple rewriter"),
44 clEnumVal(local, "local rewriter"),
45 clEnumVal(trivial, "trivial rewriter"),
Lang Hames87e3bca2009-05-06 02:36:21 +000046 clEnumValEnd),
47 cl::init(local));
48
49VirtRegRewriter::~VirtRegRewriter() {}
50
51
52// ****************************** //
53// Simple Spiller Implementation //
54// ****************************** //
55
56struct VISIBILITY_HIDDEN SimpleRewriter : public VirtRegRewriter {
57
58 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
59 LiveIntervals* LIs) {
60 DOUT << "********** REWRITE MACHINE CODE **********\n";
61 DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
62 const TargetMachine &TM = MF.getTarget();
63 const TargetInstrInfo &TII = *TM.getInstrInfo();
64 const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
65
66
67 // LoadedRegs - Keep track of which vregs are loaded, so that we only load
68 // each vreg once (in the case where a spilled vreg is used by multiple
69 // operands). This is always smaller than the number of operands to the
70 // current machine instr, so it should be small.
71 std::vector<unsigned> LoadedRegs;
72
73 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
74 MBBI != E; ++MBBI) {
75 DOUT << MBBI->getBasicBlock()->getName() << ":\n";
76 MachineBasicBlock &MBB = *MBBI;
77 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
78 MII != E; ++MII) {
79 MachineInstr &MI = *MII;
80 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
81 MachineOperand &MO = MI.getOperand(i);
82 if (MO.isReg() && MO.getReg()) {
83 if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
84 unsigned VirtReg = MO.getReg();
85 unsigned SubIdx = MO.getSubReg();
86 unsigned PhysReg = VRM.getPhys(VirtReg);
87 unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg;
88 if (!VRM.isAssignedReg(VirtReg)) {
89 int StackSlot = VRM.getStackSlot(VirtReg);
90 const TargetRegisterClass* RC =
91 MF.getRegInfo().getRegClass(VirtReg);
92
93 if (MO.isUse() &&
94 std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
95 == LoadedRegs.end()) {
96 TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
97 MachineInstr *LoadMI = prior(MII);
98 VRM.addSpillSlotUse(StackSlot, LoadMI);
99 LoadedRegs.push_back(VirtReg);
100 ++NumLoads;
101 DOUT << '\t' << *LoadMI;
102 }
103
104 if (MO.isDef()) {
105 TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
106 StackSlot, RC);
107 MachineInstr *StoreMI = next(MII);
108 VRM.addSpillSlotUse(StackSlot, StoreMI);
109 ++NumStores;
110 }
111 }
112 MF.getRegInfo().setPhysRegUsed(RReg);
113 MI.getOperand(i).setReg(RReg);
114 MI.getOperand(i).setSubReg(0);
115 } else {
116 MF.getRegInfo().setPhysRegUsed(MO.getReg());
117 }
118 }
119 }
120
121 DOUT << '\t' << MI;
122 LoadedRegs.clear();
123 }
124 }
125 return true;
126 }
127
128};
129
Lang Hamesf41538d2009-06-02 16:53:25 +0000130/// This class is intended for use with the new spilling framework only. It
131/// rewrites vreg def/uses to use the assigned preg, but does not insert any
132/// spill code.
133struct VISIBILITY_HIDDEN TrivialRewriter : public VirtRegRewriter {
134
135 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
136 LiveIntervals* LIs) {
137 DOUT << "********** REWRITE MACHINE CODE **********\n";
138 DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
139 MachineRegisterInfo *mri = &MF.getRegInfo();
140
141 bool changed = false;
142
143 for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
144 liItr != liEnd; ++liItr) {
145
146 if (TargetRegisterInfo::isVirtualRegister(liItr->first)) {
147 if (VRM.hasPhys(liItr->first)) {
148 unsigned preg = VRM.getPhys(liItr->first);
149 mri->replaceRegWith(liItr->first, preg);
150 mri->setPhysRegUsed(preg);
151 changed = true;
152 }
153 }
154 else {
155 if (!liItr->second->empty()) {
156 mri->setPhysRegUsed(liItr->first);
157 }
158 }
159 }
160
161 return changed;
162 }
163
164};
165
Lang Hames87e3bca2009-05-06 02:36:21 +0000166// ************************************************************************ //
167
168/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
169/// from top down, keep track of which spill slots or remat are available in
170/// each register.
171///
172/// Note that not all physregs are created equal here. In particular, some
173/// physregs are reloads that we are allowed to clobber or ignore at any time.
174/// Other physregs are values that the register allocated program is using
175/// that we cannot CHANGE, but we can read if we like. We keep track of this
176/// on a per-stack-slot / remat id basis as the low bit in the value of the
177/// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
178/// this bit and addAvailable sets it if.
179class VISIBILITY_HIDDEN AvailableSpills {
180 const TargetRegisterInfo *TRI;
181 const TargetInstrInfo *TII;
182
183 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
184 // or remat'ed virtual register values that are still available, due to
185 // being loaded or stored to, but not invalidated yet.
186 std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
187
188 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
189 // indicating which stack slot values are currently held by a physreg. This
190 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
191 // physreg is modified.
192 std::multimap<unsigned, int> PhysRegsAvailable;
193
194 void disallowClobberPhysRegOnly(unsigned PhysReg);
195
196 void ClobberPhysRegOnly(unsigned PhysReg);
197public:
198 AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
199 : TRI(tri), TII(tii) {
200 }
201
202 /// clear - Reset the state.
203 void clear() {
204 SpillSlotsOrReMatsAvailable.clear();
205 PhysRegsAvailable.clear();
206 }
207
208 const TargetRegisterInfo *getRegInfo() const { return TRI; }
209
210 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
211 /// available in a physical register, return that PhysReg, otherwise
212 /// return 0.
213 unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
214 std::map<int, unsigned>::const_iterator I =
215 SpillSlotsOrReMatsAvailable.find(Slot);
216 if (I != SpillSlotsOrReMatsAvailable.end()) {
217 return I->second >> 1; // Remove the CanClobber bit.
218 }
219 return 0;
220 }
221
222 /// addAvailable - Mark that the specified stack slot / remat is available
223 /// in the specified physreg. If CanClobber is true, the physreg can be
224 /// modified at any time without changing the semantics of the program.
225 void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
226 // If this stack slot is thought to be available in some other physreg,
227 // remove its record.
228 ModifyStackSlotOrReMat(SlotOrReMat);
229
230 PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
231 SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
232 (unsigned)CanClobber;
233
234 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
235 DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
236 else
237 DOUT << "Remembering SS#" << SlotOrReMat;
238 DOUT << " in physreg " << TRI->getName(Reg) << "\n";
239 }
240
241 /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
242 /// the value of the specified stackslot register if it desires. The
243 /// specified stack slot must be available in a physreg for this query to
244 /// make sense.
245 bool canClobberPhysRegForSS(int SlotOrReMat) const {
246 assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
247 "Value not available!");
248 return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
249 }
250
251 /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
252 /// physical register where values for some stack slot(s) might be
253 /// available.
254 bool canClobberPhysReg(unsigned PhysReg) const {
255 std::multimap<unsigned, int>::const_iterator I =
256 PhysRegsAvailable.lower_bound(PhysReg);
257 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
258 int SlotOrReMat = I->second;
259 I++;
260 if (!canClobberPhysRegForSS(SlotOrReMat))
261 return false;
262 }
263 return true;
264 }
265
266 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
267 /// stackslot register. The register is still available but is no longer
268 /// allowed to be modifed.
269 void disallowClobberPhysReg(unsigned PhysReg);
270
271 /// ClobberPhysReg - This is called when the specified physreg changes
272 /// value. We use this to invalidate any info about stuff that lives in
273 /// it and any of its aliases.
274 void ClobberPhysReg(unsigned PhysReg);
275
276 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
277 /// slot changes. This removes information about which register the
278 /// previous value for this slot lives in (as the previous value is dead
279 /// now).
280 void ModifyStackSlotOrReMat(int SlotOrReMat);
281
282 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
283 /// into the specified MBB. Add available physical registers as potential
284 /// live-in's. If they are reused in the MBB, they will be added to the
285 /// live-in set to make register scavenger and post-allocation scheduler.
286 void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
287 std::vector<MachineOperand*> &KillOps);
288};
289
290// ************************************************************************ //
291
292// ReusedOp - For each reused operand, we keep track of a bit of information,
293// in case we need to rollback upon processing a new operand. See comments
294// below.
295struct ReusedOp {
296 // The MachineInstr operand that reused an available value.
297 unsigned Operand;
298
299 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
300 unsigned StackSlotOrReMat;
301
302 // PhysRegReused - The physical register the value was available in.
303 unsigned PhysRegReused;
304
305 // AssignedPhysReg - The physreg that was assigned for use by the reload.
306 unsigned AssignedPhysReg;
307
308 // VirtReg - The virtual register itself.
309 unsigned VirtReg;
310
311 ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
312 unsigned vreg)
313 : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
314 AssignedPhysReg(apr), VirtReg(vreg) {}
315};
316
317/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
318/// is reused instead of reloaded.
319class VISIBILITY_HIDDEN ReuseInfo {
320 MachineInstr &MI;
321 std::vector<ReusedOp> Reuses;
322 BitVector PhysRegsClobbered;
323public:
324 ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
325 PhysRegsClobbered.resize(tri->getNumRegs());
326 }
327
328 bool hasReuses() const {
329 return !Reuses.empty();
330 }
331
332 /// addReuse - If we choose to reuse a virtual register that is already
333 /// available instead of reloading it, remember that we did so.
334 void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
335 unsigned PhysRegReused, unsigned AssignedPhysReg,
336 unsigned VirtReg) {
337 // If the reload is to the assigned register anyway, no undo will be
338 // required.
339 if (PhysRegReused == AssignedPhysReg) return;
340
341 // Otherwise, remember this.
342 Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
343 AssignedPhysReg, VirtReg));
344 }
345
346 void markClobbered(unsigned PhysReg) {
347 PhysRegsClobbered.set(PhysReg);
348 }
349
350 bool isClobbered(unsigned PhysReg) const {
351 return PhysRegsClobbered.test(PhysReg);
352 }
353
354 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
355 /// is some other operand that is using the specified register, either pick
356 /// a new register to use, or evict the previous reload and use this reg.
357 unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
358 AvailableSpills &Spills,
359 std::vector<MachineInstr*> &MaybeDeadStores,
360 SmallSet<unsigned, 8> &Rejected,
361 BitVector &RegKills,
362 std::vector<MachineOperand*> &KillOps,
363 VirtRegMap &VRM);
364
365 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
366 /// 'Rejected' set to remember which registers have been considered and
367 /// rejected for the reload. This avoids infinite looping in case like
368 /// this:
369 /// t1 := op t2, t3
370 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
371 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
372 /// t1 <- desires r1
373 /// sees r1 is taken by t2, tries t2's reload register r0
374 /// sees r0 is taken by t3, tries t3's reload register r1
375 /// sees r1 is taken by t2, tries t2's reload register r0 ...
376 unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
377 AvailableSpills &Spills,
378 std::vector<MachineInstr*> &MaybeDeadStores,
379 BitVector &RegKills,
380 std::vector<MachineOperand*> &KillOps,
381 VirtRegMap &VRM) {
382 SmallSet<unsigned, 8> Rejected;
383 return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
384 RegKills, KillOps, VRM);
385 }
386};
387
388
389// ****************** //
390// Utility Functions //
391// ****************** //
392
Lang Hames87e3bca2009-05-06 02:36:21 +0000393/// findSinglePredSuccessor - Return via reference a vector of machine basic
394/// blocks each of which is a successor of the specified BB and has no other
395/// predecessor.
396static void findSinglePredSuccessor(MachineBasicBlock *MBB,
397 SmallVectorImpl<MachineBasicBlock *> &Succs) {
398 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
399 SE = MBB->succ_end(); SI != SE; ++SI) {
400 MachineBasicBlock *SuccMBB = *SI;
401 if (SuccMBB->pred_size() == 1)
402 Succs.push_back(SuccMBB);
403 }
404}
405
Evan Cheng427a6b62009-05-15 06:48:19 +0000406/// InvalidateKill - Invalidate register kill information for a specific
407/// register. This also unsets the kills marker on the last kill operand.
408static void InvalidateKill(unsigned Reg,
409 const TargetRegisterInfo* TRI,
410 BitVector &RegKills,
411 std::vector<MachineOperand*> &KillOps) {
412 if (RegKills[Reg]) {
413 KillOps[Reg]->setIsKill(false);
Evan Cheng2c48fe62009-06-03 09:00:27 +0000414 // KillOps[Reg] might be a def of a super-register.
415 unsigned KReg = KillOps[Reg]->getReg();
416 KillOps[KReg] = NULL;
417 RegKills.reset(KReg);
418 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
Evan Cheng427a6b62009-05-15 06:48:19 +0000419 if (RegKills[*SR]) {
420 KillOps[*SR]->setIsKill(false);
421 KillOps[*SR] = NULL;
422 RegKills.reset(*SR);
423 }
424 }
425 }
426}
427
Lang Hames87e3bca2009-05-06 02:36:21 +0000428/// InvalidateKills - MI is going to be deleted. If any of its operands are
429/// marked kill, then invalidate the information.
Evan Cheng427a6b62009-05-15 06:48:19 +0000430static void InvalidateKills(MachineInstr &MI,
431 const TargetRegisterInfo* TRI,
432 BitVector &RegKills,
Lang Hames87e3bca2009-05-06 02:36:21 +0000433 std::vector<MachineOperand*> &KillOps,
434 SmallVector<unsigned, 2> *KillRegs = NULL) {
435 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
436 MachineOperand &MO = MI.getOperand(i);
437 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
438 continue;
439 unsigned Reg = MO.getReg();
440 if (TargetRegisterInfo::isVirtualRegister(Reg))
441 continue;
442 if (KillRegs)
443 KillRegs->push_back(Reg);
444 assert(Reg < KillOps.size());
445 if (KillOps[Reg] == &MO) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000446 KillOps[Reg] = NULL;
Evan Cheng427a6b62009-05-15 06:48:19 +0000447 RegKills.reset(Reg);
448 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
449 if (RegKills[*SR]) {
450 KillOps[*SR] = NULL;
451 RegKills.reset(*SR);
452 }
453 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000454 }
455 }
456}
457
458/// InvalidateRegDef - If the def operand of the specified def MI is now dead
459/// (since it's spill instruction is removed), mark it isDead. Also checks if
460/// the def MI has other definition operands that are not dead. Returns it by
461/// reference.
462static bool InvalidateRegDef(MachineBasicBlock::iterator I,
463 MachineInstr &NewDef, unsigned Reg,
464 bool &HasLiveDef) {
465 // Due to remat, it's possible this reg isn't being reused. That is,
466 // the def of this reg (by prev MI) is now dead.
467 MachineInstr *DefMI = I;
468 MachineOperand *DefOp = NULL;
469 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
470 MachineOperand &MO = DefMI->getOperand(i);
471 if (MO.isReg() && MO.isDef()) {
472 if (MO.getReg() == Reg)
473 DefOp = &MO;
474 else if (!MO.isDead())
475 HasLiveDef = true;
476 }
477 }
478 if (!DefOp)
479 return false;
480
481 bool FoundUse = false, Done = false;
482 MachineBasicBlock::iterator E = &NewDef;
483 ++I; ++E;
484 for (; !Done && I != E; ++I) {
485 MachineInstr *NMI = I;
486 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
487 MachineOperand &MO = NMI->getOperand(j);
488 if (!MO.isReg() || MO.getReg() != Reg)
489 continue;
490 if (MO.isUse())
491 FoundUse = true;
492 Done = true; // Stop after scanning all the operands of this MI.
493 }
494 }
495 if (!FoundUse) {
496 // Def is dead!
497 DefOp->setIsDead();
498 return true;
499 }
500 return false;
501}
502
503/// UpdateKills - Track and update kill info. If a MI reads a register that is
504/// marked kill, then it must be due to register reuse. Transfer the kill info
505/// over.
Evan Cheng427a6b62009-05-15 06:48:19 +0000506static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
507 BitVector &RegKills,
508 std::vector<MachineOperand*> &KillOps) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000509 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
510 MachineOperand &MO = MI.getOperand(i);
511 if (!MO.isReg() || !MO.isUse())
512 continue;
513 unsigned Reg = MO.getReg();
514 if (Reg == 0)
515 continue;
516
517 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
518 // That can't be right. Register is killed but not re-defined and it's
519 // being reused. Let's fix that.
520 KillOps[Reg]->setIsKill(false);
Evan Cheng2c48fe62009-06-03 09:00:27 +0000521 // KillOps[Reg] might be a def of a super-register.
522 unsigned KReg = KillOps[Reg]->getReg();
523 KillOps[KReg] = NULL;
524 RegKills.reset(KReg);
525
526 // Must be a def of a super-register. Its other sub-regsters are no
527 // longer killed as well.
528 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
529 KillOps[*SR] = NULL;
530 RegKills.reset(*SR);
531 }
532
Lang Hames87e3bca2009-05-06 02:36:21 +0000533 if (!MI.isRegTiedToDefOperand(i))
534 // Unless it's a two-address operand, this is the new kill.
535 MO.setIsKill();
536 }
537 if (MO.isKill()) {
538 RegKills.set(Reg);
539 KillOps[Reg] = &MO;
Evan Cheng427a6b62009-05-15 06:48:19 +0000540 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
541 RegKills.set(*SR);
542 KillOps[*SR] = &MO;
543 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000544 }
545 }
546
547 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
548 const MachineOperand &MO = MI.getOperand(i);
549 if (!MO.isReg() || !MO.isDef())
550 continue;
551 unsigned Reg = MO.getReg();
552 RegKills.reset(Reg);
553 KillOps[Reg] = NULL;
554 // It also defines (or partially define) aliases.
Evan Cheng427a6b62009-05-15 06:48:19 +0000555 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
556 RegKills.reset(*SR);
557 KillOps[*SR] = NULL;
Lang Hames87e3bca2009-05-06 02:36:21 +0000558 }
559 }
560}
561
562/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
563///
564static void ReMaterialize(MachineBasicBlock &MBB,
565 MachineBasicBlock::iterator &MII,
566 unsigned DestReg, unsigned Reg,
567 const TargetInstrInfo *TII,
568 const TargetRegisterInfo *TRI,
569 VirtRegMap &VRM) {
570 TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
571 MachineInstr *NewMI = prior(MII);
572 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
573 MachineOperand &MO = NewMI->getOperand(i);
574 if (!MO.isReg() || MO.getReg() == 0)
575 continue;
576 unsigned VirtReg = MO.getReg();
577 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
578 continue;
579 assert(MO.isUse());
580 unsigned SubIdx = MO.getSubReg();
581 unsigned Phys = VRM.getPhys(VirtReg);
582 assert(Phys);
583 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
584 MO.setReg(RReg);
585 MO.setSubReg(0);
586 }
587 ++NumReMats;
588}
589
590/// findSuperReg - Find the SubReg's super-register of given register class
591/// where its SubIdx sub-register is SubReg.
592static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
593 unsigned SubIdx, const TargetRegisterInfo *TRI) {
594 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
595 I != E; ++I) {
596 unsigned Reg = *I;
597 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
598 return Reg;
599 }
600 return 0;
601}
602
603// ******************************** //
604// Available Spills Implementation //
605// ******************************** //
606
607/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
608/// stackslot register. The register is still available but is no longer
609/// allowed to be modifed.
610void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
611 std::multimap<unsigned, int>::iterator I =
612 PhysRegsAvailable.lower_bound(PhysReg);
613 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
614 int SlotOrReMat = I->second;
615 I++;
616 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
617 "Bidirectional map mismatch!");
618 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
619 DOUT << "PhysReg " << TRI->getName(PhysReg)
620 << " copied, it is available for use but can no longer be modified\n";
621 }
622}
623
624/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
625/// stackslot register and its aliases. The register and its aliases may
626/// still available but is no longer allowed to be modifed.
627void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
628 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
629 disallowClobberPhysRegOnly(*AS);
630 disallowClobberPhysRegOnly(PhysReg);
631}
632
633/// ClobberPhysRegOnly - This is called when the specified physreg changes
634/// value. We use this to invalidate any info about stuff we thing lives in it.
635void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
636 std::multimap<unsigned, int>::iterator I =
637 PhysRegsAvailable.lower_bound(PhysReg);
638 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
639 int SlotOrReMat = I->second;
640 PhysRegsAvailable.erase(I++);
641 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
642 "Bidirectional map mismatch!");
643 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
644 DOUT << "PhysReg " << TRI->getName(PhysReg)
645 << " clobbered, invalidating ";
646 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
647 DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
648 else
649 DOUT << "SS#" << SlotOrReMat << "\n";
650 }
651}
652
653/// ClobberPhysReg - This is called when the specified physreg changes
654/// value. We use this to invalidate any info about stuff we thing lives in
655/// it and any of its aliases.
656void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
657 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
658 ClobberPhysRegOnly(*AS);
659 ClobberPhysRegOnly(PhysReg);
660}
661
662/// AddAvailableRegsToLiveIn - Availability information is being kept coming
663/// into the specified MBB. Add available physical registers as potential
664/// live-in's. If they are reused in the MBB, they will be added to the
665/// live-in set to make register scavenger and post-allocation scheduler.
666void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
667 BitVector &RegKills,
668 std::vector<MachineOperand*> &KillOps) {
669 std::set<unsigned> NotAvailable;
670 for (std::multimap<unsigned, int>::iterator
671 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
672 I != E; ++I) {
673 unsigned Reg = I->first;
674 const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
675 // FIXME: A temporary workaround. We can't reuse available value if it's
676 // not safe to move the def of the virtual register's class. e.g.
677 // X86::RFP* register classes. Do not add it as a live-in.
678 if (!TII->isSafeToMoveRegClassDefs(RC))
679 // This is no longer available.
680 NotAvailable.insert(Reg);
681 else {
682 MBB.addLiveIn(Reg);
Evan Cheng427a6b62009-05-15 06:48:19 +0000683 InvalidateKill(Reg, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +0000684 }
685
686 // Skip over the same register.
687 std::multimap<unsigned, int>::iterator NI = next(I);
688 while (NI != E && NI->first == Reg) {
689 ++I;
690 ++NI;
691 }
692 }
693
694 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
695 E = NotAvailable.end(); I != E; ++I) {
696 ClobberPhysReg(*I);
697 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
698 *SubRegs; ++SubRegs)
699 ClobberPhysReg(*SubRegs);
700 }
701}
702
703/// ModifyStackSlotOrReMat - This method is called when the value in a stack
704/// slot changes. This removes information about which register the previous
705/// value for this slot lives in (as the previous value is dead now).
706void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
707 std::map<int, unsigned>::iterator It =
708 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
709 if (It == SpillSlotsOrReMatsAvailable.end()) return;
710 unsigned Reg = It->second >> 1;
711 SpillSlotsOrReMatsAvailable.erase(It);
712
713 // This register may hold the value of multiple stack slots, only remove this
714 // stack slot from the set of values the register contains.
715 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
716 for (; ; ++I) {
717 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
718 "Map inverse broken!");
719 if (I->second == SlotOrReMat) break;
720 }
721 PhysRegsAvailable.erase(I);
722}
723
724// ************************** //
725// Reuse Info Implementation //
726// ************************** //
727
728/// GetRegForReload - We are about to emit a reload into PhysReg. If there
729/// is some other operand that is using the specified register, either pick
730/// a new register to use, or evict the previous reload and use this reg.
731unsigned ReuseInfo::GetRegForReload(unsigned PhysReg, MachineInstr *MI,
732 AvailableSpills &Spills,
733 std::vector<MachineInstr*> &MaybeDeadStores,
734 SmallSet<unsigned, 8> &Rejected,
735 BitVector &RegKills,
736 std::vector<MachineOperand*> &KillOps,
737 VirtRegMap &VRM) {
738 const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
739 .getInstrInfo();
740
741 if (Reuses.empty()) return PhysReg; // This is most often empty.
742
743 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
744 ReusedOp &Op = Reuses[ro];
745 // If we find some other reuse that was supposed to use this register
746 // exactly for its reload, we can change this reload to use ITS reload
747 // register. That is, unless its reload register has already been
748 // considered and subsequently rejected because it has also been reused
749 // by another operand.
750 if (Op.PhysRegReused == PhysReg &&
751 Rejected.count(Op.AssignedPhysReg) == 0) {
752 // Yup, use the reload register that we didn't use before.
753 unsigned NewReg = Op.AssignedPhysReg;
754 Rejected.insert(PhysReg);
755 return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
756 RegKills, KillOps, VRM);
757 } else {
758 // Otherwise, we might also have a problem if a previously reused
759 // value aliases the new register. If so, codegen the previous reload
760 // and use this one.
761 unsigned PRRU = Op.PhysRegReused;
762 const TargetRegisterInfo *TRI = Spills.getRegInfo();
763 if (TRI->areAliases(PRRU, PhysReg)) {
764 // Okay, we found out that an alias of a reused register
765 // was used. This isn't good because it means we have
766 // to undo a previous reuse.
767 MachineBasicBlock *MBB = MI->getParent();
768 const TargetRegisterClass *AliasRC =
769 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
770
771 // Copy Op out of the vector and remove it, we're going to insert an
772 // explicit load for it.
773 ReusedOp NewOp = Op;
774 Reuses.erase(Reuses.begin()+ro);
775
776 // Ok, we're going to try to reload the assigned physreg into the
777 // slot that we were supposed to in the first place. However, that
778 // register could hold a reuse. Check to see if it conflicts or
779 // would prefer us to use a different register.
780 unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
781 MI, Spills, MaybeDeadStores,
782 Rejected, RegKills, KillOps, VRM);
783
784 MachineBasicBlock::iterator MII = MI;
785 if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
786 ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
787 } else {
788 TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
789 NewOp.StackSlotOrReMat, AliasRC);
790 MachineInstr *LoadMI = prior(MII);
791 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
792 // Any stores to this stack slot are not dead anymore.
793 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
794 ++NumLoads;
795 }
796 Spills.ClobberPhysReg(NewPhysReg);
797 Spills.ClobberPhysReg(NewOp.PhysRegReused);
798
799 unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
800 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
801 MI->getOperand(NewOp.Operand).setReg(RReg);
802 MI->getOperand(NewOp.Operand).setSubReg(0);
803
804 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
805 --MII;
Evan Cheng427a6b62009-05-15 06:48:19 +0000806 UpdateKills(*MII, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +0000807 DOUT << '\t' << *MII;
808
809 DOUT << "Reuse undone!\n";
810 --NumReused;
811
812 // Finally, PhysReg is now available, go ahead and use it.
813 return PhysReg;
814 }
815 }
816 }
817 return PhysReg;
818}
819
820// ************************************************************************ //
821
822/// FoldsStackSlotModRef - Return true if the specified MI folds the specified
823/// stack slot mod/ref. It also checks if it's possible to unfold the
824/// instruction by having it define a specified physical register instead.
825static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
826 const TargetInstrInfo *TII,
827 const TargetRegisterInfo *TRI,
828 VirtRegMap &VRM) {
829 if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
830 return false;
831
832 bool Found = false;
833 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
834 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
835 unsigned VirtReg = I->second.first;
836 VirtRegMap::ModRef MR = I->second.second;
837 if (MR & VirtRegMap::isModRef)
838 if (VRM.getStackSlot(VirtReg) == SS) {
839 Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
840 break;
841 }
842 }
843 if (!Found)
844 return false;
845
846 // Does the instruction uses a register that overlaps the scratch register?
847 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
848 MachineOperand &MO = MI.getOperand(i);
849 if (!MO.isReg() || MO.getReg() == 0)
850 continue;
851 unsigned Reg = MO.getReg();
852 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
853 if (!VRM.hasPhys(Reg))
854 continue;
855 Reg = VRM.getPhys(Reg);
856 }
857 if (TRI->regsOverlap(PhysReg, Reg))
858 return false;
859 }
860 return true;
861}
862
863/// FindFreeRegister - Find a free register of a given register class by looking
864/// at (at most) the last two machine instructions.
865static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
866 MachineBasicBlock &MBB,
867 const TargetRegisterClass *RC,
868 const TargetRegisterInfo *TRI,
869 BitVector &AllocatableRegs) {
870 BitVector Defs(TRI->getNumRegs());
871 BitVector Uses(TRI->getNumRegs());
872 SmallVector<unsigned, 4> LocalUses;
873 SmallVector<unsigned, 4> Kills;
874
875 // Take a look at 2 instructions at most.
876 for (unsigned Count = 0; Count < 2; ++Count) {
877 if (MII == MBB.begin())
878 break;
879 MachineInstr *PrevMI = prior(MII);
880 for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
881 MachineOperand &MO = PrevMI->getOperand(i);
882 if (!MO.isReg() || MO.getReg() == 0)
883 continue;
884 unsigned Reg = MO.getReg();
885 if (MO.isDef()) {
886 Defs.set(Reg);
887 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
888 Defs.set(*AS);
889 } else {
890 LocalUses.push_back(Reg);
891 if (MO.isKill() && AllocatableRegs[Reg])
892 Kills.push_back(Reg);
893 }
894 }
895
896 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
897 unsigned Kill = Kills[i];
898 if (!Defs[Kill] && !Uses[Kill] &&
899 TRI->getPhysicalRegisterRegClass(Kill) == RC)
900 return Kill;
901 }
902 for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
903 unsigned Reg = LocalUses[i];
904 Uses.set(Reg);
905 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
906 Uses.set(*AS);
907 }
908
909 MII = PrevMI;
910 }
911
912 return 0;
913}
914
915static
916void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) {
917 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
918 MachineOperand &MO = MI->getOperand(i);
919 if (MO.isReg() && MO.getReg() == VirtReg)
920 MO.setReg(PhysReg);
921 }
922}
923
Evan Chengeca24fb2009-05-12 23:07:00 +0000924namespace {
925 struct RefSorter {
926 bool operator()(const std::pair<MachineInstr*, int> &A,
927 const std::pair<MachineInstr*, int> &B) {
928 return A.second < B.second;
929 }
930 };
931}
Lang Hames87e3bca2009-05-06 02:36:21 +0000932
933// ***************************** //
934// Local Spiller Implementation //
935// ***************************** //
936
937class VISIBILITY_HIDDEN LocalRewriter : public VirtRegRewriter {
938 MachineRegisterInfo *RegInfo;
939 const TargetRegisterInfo *TRI;
940 const TargetInstrInfo *TII;
941 BitVector AllocatableRegs;
942 DenseMap<MachineInstr*, unsigned> DistanceMap;
943public:
944
945 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
946 LiveIntervals* LIs) {
947 RegInfo = &MF.getRegInfo();
948 TRI = MF.getTarget().getRegisterInfo();
949 TII = MF.getTarget().getInstrInfo();
950 AllocatableRegs = TRI->getAllocatableSet(MF);
951 DOUT << "\n**** Local spiller rewriting function '"
952 << MF.getFunction()->getName() << "':\n";
953 DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
954 " ****\n";
955 DEBUG(MF.dump());
956
957 // Spills - Keep track of which spilled values are available in physregs
958 // so that we can choose to reuse the physregs instead of emitting
959 // reloads. This is usually refreshed per basic block.
960 AvailableSpills Spills(TRI, TII);
961
962 // Keep track of kill information.
963 BitVector RegKills(TRI->getNumRegs());
964 std::vector<MachineOperand*> KillOps;
965 KillOps.resize(TRI->getNumRegs(), NULL);
966
967 // SingleEntrySuccs - Successor blocks which have a single predecessor.
968 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
969 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
970
971 // Traverse the basic blocks depth first.
972 MachineBasicBlock *Entry = MF.begin();
973 SmallPtrSet<MachineBasicBlock*,16> Visited;
974 for (df_ext_iterator<MachineBasicBlock*,
975 SmallPtrSet<MachineBasicBlock*,16> >
976 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
977 DFI != E; ++DFI) {
978 MachineBasicBlock *MBB = *DFI;
979 if (!EarlyVisited.count(MBB))
980 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
981
982 // If this MBB is the only predecessor of a successor. Keep the
983 // availability information and visit it next.
984 do {
985 // Keep visiting single predecessor successor as long as possible.
986 SinglePredSuccs.clear();
987 findSinglePredSuccessor(MBB, SinglePredSuccs);
988 if (SinglePredSuccs.empty())
989 MBB = 0;
990 else {
991 // FIXME: More than one successors, each of which has MBB has
992 // the only predecessor.
993 MBB = SinglePredSuccs[0];
994 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
995 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
996 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
997 }
998 }
999 } while (MBB);
1000
1001 // Clear the availability info.
1002 Spills.clear();
1003 }
1004
1005 DOUT << "**** Post Machine Instrs ****\n";
1006 DEBUG(MF.dump());
1007
1008 // Mark unused spill slots.
1009 MachineFrameInfo *MFI = MF.getFrameInfo();
1010 int SS = VRM.getLowSpillSlot();
1011 if (SS != VirtRegMap::NO_STACK_SLOT)
1012 for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
1013 if (!VRM.isSpillSlotUsed(SS)) {
1014 MFI->RemoveStackObject(SS);
1015 ++NumDSS;
1016 }
1017
1018 return true;
1019 }
1020
1021private:
1022
1023 /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
1024 /// a scratch register is available.
1025 /// xorq %r12<kill>, %r13
1026 /// addq %rax, -184(%rbp)
1027 /// addq %r13, -184(%rbp)
1028 /// ==>
1029 /// xorq %r12<kill>, %r13
1030 /// movq -184(%rbp), %r12
1031 /// addq %rax, %r12
1032 /// addq %r13, %r12
1033 /// movq %r12, -184(%rbp)
1034 bool OptimizeByUnfold2(unsigned VirtReg, int SS,
1035 MachineBasicBlock &MBB,
1036 MachineBasicBlock::iterator &MII,
1037 std::vector<MachineInstr*> &MaybeDeadStores,
1038 AvailableSpills &Spills,
1039 BitVector &RegKills,
1040 std::vector<MachineOperand*> &KillOps,
1041 VirtRegMap &VRM) {
1042
1043 MachineBasicBlock::iterator NextMII = next(MII);
1044 if (NextMII == MBB.end())
1045 return false;
1046
1047 if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
1048 return false;
1049
1050 // Now let's see if the last couple of instructions happens to have freed up
1051 // a register.
1052 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1053 unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs);
1054 if (!PhysReg)
1055 return false;
1056
1057 MachineFunction &MF = *MBB.getParent();
1058 TRI = MF.getTarget().getRegisterInfo();
1059 MachineInstr &MI = *MII;
1060 if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM))
1061 return false;
1062
1063 // If the next instruction also folds the same SS modref and can be unfoled,
1064 // then it's worthwhile to issue a load from SS into the free register and
1065 // then unfold these instructions.
1066 if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM))
1067 return false;
1068
1069 // Load from SS to the spare physical register.
1070 TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC);
1071 // This invalidates Phys.
1072 Spills.ClobberPhysReg(PhysReg);
1073 // Remember it's available.
1074 Spills.addAvailable(SS, PhysReg);
1075 MaybeDeadStores[SS] = NULL;
1076
1077 // Unfold current MI.
1078 SmallVector<MachineInstr*, 4> NewMIs;
1079 if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
1080 assert(0 && "Unable unfold the load / store folding instruction!");
1081 assert(NewMIs.size() == 1);
1082 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1083 VRM.transferRestorePts(&MI, NewMIs[0]);
1084 MII = MBB.insert(MII, NewMIs[0]);
Evan Cheng427a6b62009-05-15 06:48:19 +00001085 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001086 VRM.RemoveMachineInstrFromMaps(&MI);
1087 MBB.erase(&MI);
1088 ++NumModRefUnfold;
1089
1090 // Unfold next instructions that fold the same SS.
1091 do {
1092 MachineInstr &NextMI = *NextMII;
1093 NextMII = next(NextMII);
1094 NewMIs.clear();
1095 if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
1096 assert(0 && "Unable unfold the load / store folding instruction!");
1097 assert(NewMIs.size() == 1);
1098 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1099 VRM.transferRestorePts(&NextMI, NewMIs[0]);
1100 MBB.insert(NextMII, NewMIs[0]);
Evan Cheng427a6b62009-05-15 06:48:19 +00001101 InvalidateKills(NextMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001102 VRM.RemoveMachineInstrFromMaps(&NextMI);
1103 MBB.erase(&NextMI);
1104 ++NumModRefUnfold;
Evan Cheng2c48fe62009-06-03 09:00:27 +00001105 if (NextMII == MBB.end())
1106 break;
Lang Hames87e3bca2009-05-06 02:36:21 +00001107 } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM));
1108
1109 // Store the value back into SS.
1110 TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC);
1111 MachineInstr *StoreMI = prior(NextMII);
1112 VRM.addSpillSlotUse(SS, StoreMI);
1113 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1114
1115 return true;
1116 }
1117
1118 /// OptimizeByUnfold - Turn a store folding instruction into a load folding
1119 /// instruction. e.g.
1120 /// xorl %edi, %eax
1121 /// movl %eax, -32(%ebp)
1122 /// movl -36(%ebp), %eax
1123 /// orl %eax, -32(%ebp)
1124 /// ==>
1125 /// xorl %edi, %eax
1126 /// orl -36(%ebp), %eax
1127 /// mov %eax, -32(%ebp)
1128 /// This enables unfolding optimization for a subsequent instruction which will
1129 /// also eliminate the newly introduced store instruction.
1130 bool OptimizeByUnfold(MachineBasicBlock &MBB,
1131 MachineBasicBlock::iterator &MII,
1132 std::vector<MachineInstr*> &MaybeDeadStores,
1133 AvailableSpills &Spills,
1134 BitVector &RegKills,
1135 std::vector<MachineOperand*> &KillOps,
1136 VirtRegMap &VRM) {
1137 MachineFunction &MF = *MBB.getParent();
1138 MachineInstr &MI = *MII;
1139 unsigned UnfoldedOpc = 0;
1140 unsigned UnfoldPR = 0;
1141 unsigned UnfoldVR = 0;
1142 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
1143 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1144 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1145 // Only transform a MI that folds a single register.
1146 if (UnfoldedOpc)
1147 return false;
1148 UnfoldVR = I->second.first;
1149 VirtRegMap::ModRef MR = I->second.second;
1150 // MI2VirtMap be can updated which invalidate the iterator.
1151 // Increment the iterator first.
1152 ++I;
1153 if (VRM.isAssignedReg(UnfoldVR))
1154 continue;
1155 // If this reference is not a use, any previous store is now dead.
1156 // Otherwise, the store to this stack slot is not dead anymore.
1157 FoldedSS = VRM.getStackSlot(UnfoldVR);
1158 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
1159 if (DeadStore && (MR & VirtRegMap::isModRef)) {
1160 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
1161 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
1162 continue;
1163 UnfoldPR = PhysReg;
1164 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1165 false, true);
1166 }
1167 }
1168
1169 if (!UnfoldedOpc) {
1170 if (!UnfoldVR)
1171 return false;
1172
1173 // Look for other unfolding opportunities.
1174 return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII,
1175 MaybeDeadStores, Spills, RegKills, KillOps, VRM);
1176 }
1177
1178 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1179 MachineOperand &MO = MI.getOperand(i);
1180 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
1181 continue;
1182 unsigned VirtReg = MO.getReg();
1183 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
1184 continue;
1185 if (VRM.isAssignedReg(VirtReg)) {
1186 unsigned PhysReg = VRM.getPhys(VirtReg);
1187 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
1188 return false;
1189 } else if (VRM.isReMaterialized(VirtReg))
1190 continue;
1191 int SS = VRM.getStackSlot(VirtReg);
1192 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1193 if (PhysReg) {
1194 if (TRI->regsOverlap(PhysReg, UnfoldPR))
1195 return false;
1196 continue;
1197 }
1198 if (VRM.hasPhys(VirtReg)) {
1199 PhysReg = VRM.getPhys(VirtReg);
1200 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
1201 continue;
1202 }
1203
1204 // Ok, we'll need to reload the value into a register which makes
1205 // it impossible to perform the store unfolding optimization later.
1206 // Let's see if it is possible to fold the load if the store is
1207 // unfolded. This allows us to perform the store unfolding
1208 // optimization.
1209 SmallVector<MachineInstr*, 4> NewMIs;
1210 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
1211 assert(NewMIs.size() == 1);
1212 MachineInstr *NewMI = NewMIs.back();
1213 NewMIs.clear();
1214 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
1215 assert(Idx != -1);
1216 SmallVector<unsigned, 1> Ops;
1217 Ops.push_back(Idx);
1218 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
1219 if (FoldedMI) {
1220 VRM.addSpillSlotUse(SS, FoldedMI);
1221 if (!VRM.hasPhys(UnfoldVR))
1222 VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
1223 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1224 MII = MBB.insert(MII, FoldedMI);
Evan Cheng427a6b62009-05-15 06:48:19 +00001225 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001226 VRM.RemoveMachineInstrFromMaps(&MI);
1227 MBB.erase(&MI);
1228 MF.DeleteMachineInstr(NewMI);
1229 return true;
1230 }
1231 MF.DeleteMachineInstr(NewMI);
1232 }
1233 }
1234
1235 return false;
1236 }
1237
1238 /// CommuteToFoldReload -
1239 /// Look for
1240 /// r1 = load fi#1
1241 /// r1 = op r1, r2<kill>
1242 /// store r1, fi#1
1243 ///
1244 /// If op is commutable and r2 is killed, then we can xform these to
1245 /// r2 = op r2, fi#1
1246 /// store r2, fi#1
1247 bool CommuteToFoldReload(MachineBasicBlock &MBB,
1248 MachineBasicBlock::iterator &MII,
1249 unsigned VirtReg, unsigned SrcReg, int SS,
1250 AvailableSpills &Spills,
1251 BitVector &RegKills,
1252 std::vector<MachineOperand*> &KillOps,
1253 const TargetRegisterInfo *TRI,
1254 VirtRegMap &VRM) {
1255 if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
1256 return false;
1257
1258 MachineFunction &MF = *MBB.getParent();
1259 MachineInstr &MI = *MII;
1260 MachineBasicBlock::iterator DefMII = prior(MII);
1261 MachineInstr *DefMI = DefMII;
1262 const TargetInstrDesc &TID = DefMI->getDesc();
1263 unsigned NewDstIdx;
1264 if (DefMII != MBB.begin() &&
1265 TID.isCommutable() &&
1266 TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
1267 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1268 unsigned NewReg = NewDstMO.getReg();
1269 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1270 return false;
1271 MachineInstr *ReloadMI = prior(DefMII);
1272 int FrameIdx;
1273 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1274 if (DestReg != SrcReg || FrameIdx != SS)
1275 return false;
1276 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1277 if (UseIdx == -1)
1278 return false;
1279 unsigned DefIdx;
1280 if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
1281 return false;
1282 assert(DefMI->getOperand(DefIdx).isReg() &&
1283 DefMI->getOperand(DefIdx).getReg() == SrcReg);
1284
1285 // Now commute def instruction.
1286 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1287 if (!CommutedMI)
1288 return false;
1289 SmallVector<unsigned, 1> Ops;
1290 Ops.push_back(NewDstIdx);
1291 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1292 // Not needed since foldMemoryOperand returns new MI.
1293 MF.DeleteMachineInstr(CommutedMI);
1294 if (!FoldedMI)
1295 return false;
1296
1297 VRM.addSpillSlotUse(SS, FoldedMI);
1298 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1299 // Insert new def MI and spill MI.
1300 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1301 TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
1302 MII = prior(MII);
1303 MachineInstr *StoreMI = MII;
1304 VRM.addSpillSlotUse(SS, StoreMI);
1305 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1306 MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack.
1307
1308 // Delete all 3 old instructions.
Evan Cheng427a6b62009-05-15 06:48:19 +00001309 InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001310 VRM.RemoveMachineInstrFromMaps(ReloadMI);
1311 MBB.erase(ReloadMI);
Evan Cheng427a6b62009-05-15 06:48:19 +00001312 InvalidateKills(*DefMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001313 VRM.RemoveMachineInstrFromMaps(DefMI);
1314 MBB.erase(DefMI);
Evan Cheng427a6b62009-05-15 06:48:19 +00001315 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001316 VRM.RemoveMachineInstrFromMaps(&MI);
1317 MBB.erase(&MI);
1318
1319 // If NewReg was previously holding value of some SS, it's now clobbered.
1320 // This has to be done now because it's a physical register. When this
1321 // instruction is re-visited, it's ignored.
1322 Spills.ClobberPhysReg(NewReg);
1323
1324 ++NumCommutes;
1325 return true;
1326 }
1327
1328 return false;
1329 }
1330
1331 /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1332 /// the last store to the same slot is now dead. If so, remove the last store.
1333 void SpillRegToStackSlot(MachineBasicBlock &MBB,
1334 MachineBasicBlock::iterator &MII,
1335 int Idx, unsigned PhysReg, int StackSlot,
1336 const TargetRegisterClass *RC,
1337 bool isAvailable, MachineInstr *&LastStore,
1338 AvailableSpills &Spills,
1339 SmallSet<MachineInstr*, 4> &ReMatDefs,
1340 BitVector &RegKills,
1341 std::vector<MachineOperand*> &KillOps,
1342 VirtRegMap &VRM) {
1343
1344 TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
1345 MachineInstr *StoreMI = next(MII);
1346 VRM.addSpillSlotUse(StackSlot, StoreMI);
1347 DOUT << "Store:\t" << *StoreMI;
1348
1349 // If there is a dead store to this stack slot, nuke it now.
1350 if (LastStore) {
1351 DOUT << "Removed dead store:\t" << *LastStore;
1352 ++NumDSE;
1353 SmallVector<unsigned, 2> KillRegs;
Evan Cheng427a6b62009-05-15 06:48:19 +00001354 InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
Lang Hames87e3bca2009-05-06 02:36:21 +00001355 MachineBasicBlock::iterator PrevMII = LastStore;
1356 bool CheckDef = PrevMII != MBB.begin();
1357 if (CheckDef)
1358 --PrevMII;
1359 VRM.RemoveMachineInstrFromMaps(LastStore);
1360 MBB.erase(LastStore);
1361 if (CheckDef) {
1362 // Look at defs of killed registers on the store. Mark the defs
1363 // as dead since the store has been deleted and they aren't
1364 // being reused.
1365 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1366 bool HasOtherDef = false;
1367 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1368 MachineInstr *DeadDef = PrevMII;
1369 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1370 // FIXME: This assumes a remat def does not have side
1371 // effects.
1372 VRM.RemoveMachineInstrFromMaps(DeadDef);
1373 MBB.erase(DeadDef);
1374 ++NumDRM;
1375 }
1376 }
1377 }
1378 }
1379 }
1380
1381 LastStore = next(MII);
1382
1383 // If the stack slot value was previously available in some other
1384 // register, change it now. Otherwise, make the register available,
1385 // in PhysReg.
1386 Spills.ModifyStackSlotOrReMat(StackSlot);
1387 Spills.ClobberPhysReg(PhysReg);
1388 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1389 ++NumStores;
1390 }
1391
1392 /// TransferDeadness - A identity copy definition is dead and it's being
1393 /// removed. Find the last def or use and mark it as dead / kill.
1394 void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1395 unsigned Reg, BitVector &RegKills,
Evan Chengeca24fb2009-05-12 23:07:00 +00001396 std::vector<MachineOperand*> &KillOps,
1397 VirtRegMap &VRM) {
1398 SmallPtrSet<MachineInstr*, 4> Seens;
1399 SmallVector<std::pair<MachineInstr*, int>,8> Refs;
Lang Hames87e3bca2009-05-06 02:36:21 +00001400 for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1401 RE = RegInfo->reg_end(); RI != RE; ++RI) {
1402 MachineInstr *UDMI = &*RI;
1403 if (UDMI->getParent() != MBB)
1404 continue;
1405 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1406 if (DI == DistanceMap.end() || DI->second > CurDist)
1407 continue;
Evan Chengeca24fb2009-05-12 23:07:00 +00001408 if (Seens.insert(UDMI))
1409 Refs.push_back(std::make_pair(UDMI, DI->second));
Lang Hames87e3bca2009-05-06 02:36:21 +00001410 }
1411
Evan Chengeca24fb2009-05-12 23:07:00 +00001412 if (Refs.empty())
1413 return;
1414 std::sort(Refs.begin(), Refs.end(), RefSorter());
1415
1416 while (!Refs.empty()) {
1417 MachineInstr *LastUDMI = Refs.back().first;
1418 Refs.pop_back();
1419
Lang Hames87e3bca2009-05-06 02:36:21 +00001420 MachineOperand *LastUD = NULL;
1421 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1422 MachineOperand &MO = LastUDMI->getOperand(i);
1423 if (!MO.isReg() || MO.getReg() != Reg)
1424 continue;
1425 if (!LastUD || (LastUD->isUse() && MO.isDef()))
1426 LastUD = &MO;
1427 if (LastUDMI->isRegTiedToDefOperand(i))
Evan Chengeca24fb2009-05-12 23:07:00 +00001428 break;
Lang Hames87e3bca2009-05-06 02:36:21 +00001429 }
Evan Chengeca24fb2009-05-12 23:07:00 +00001430 if (LastUD->isDef()) {
1431 // If the instruction has no side effect, delete it and propagate
1432 // backward further. Otherwise, mark is dead and we are done.
1433 const TargetInstrDesc &TID = LastUDMI->getDesc();
1434 if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
1435 TID.hasUnmodeledSideEffects()) {
1436 LastUD->setIsDead();
1437 break;
1438 }
1439 VRM.RemoveMachineInstrFromMaps(LastUDMI);
1440 MBB->erase(LastUDMI);
1441 } else {
Lang Hames87e3bca2009-05-06 02:36:21 +00001442 LastUD->setIsKill();
1443 RegKills.set(Reg);
1444 KillOps[Reg] = LastUD;
Evan Chengeca24fb2009-05-12 23:07:00 +00001445 break;
Lang Hames87e3bca2009-05-06 02:36:21 +00001446 }
1447 }
1448 }
1449
1450 /// rewriteMBB - Keep track of which spills are available even after the
1451 /// register allocator is done with them. If possible, avid reloading vregs.
1452 void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
1453 LiveIntervals *LIs,
1454 AvailableSpills &Spills, BitVector &RegKills,
1455 std::vector<MachineOperand*> &KillOps) {
1456
1457 DOUT << "\n**** Local spiller rewriting MBB '"
1458 << MBB.getBasicBlock()->getName() << "':\n";
1459
1460 MachineFunction &MF = *MBB.getParent();
1461
1462 // MaybeDeadStores - When we need to write a value back into a stack slot,
1463 // keep track of the inserted store. If the stack slot value is never read
1464 // (because the value was used from some available register, for example), and
1465 // subsequently stored to, the original store is dead. This map keeps track
1466 // of inserted stores that are not used. If we see a subsequent store to the
1467 // same stack slot, the original store is deleted.
1468 std::vector<MachineInstr*> MaybeDeadStores;
1469 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1470
1471 // ReMatDefs - These are rematerializable def MIs which are not deleted.
1472 SmallSet<MachineInstr*, 4> ReMatDefs;
1473
1474 // Clear kill info.
1475 SmallSet<unsigned, 2> KilledMIRegs;
1476 RegKills.reset();
1477 KillOps.clear();
1478 KillOps.resize(TRI->getNumRegs(), NULL);
1479
1480 unsigned Dist = 0;
1481 DistanceMap.clear();
1482 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1483 MII != E; ) {
1484 MachineBasicBlock::iterator NextMII = next(MII);
1485
1486 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1487 bool Erased = false;
1488 bool BackTracked = false;
1489 if (OptimizeByUnfold(MBB, MII,
1490 MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1491 NextMII = next(MII);
1492
1493 MachineInstr &MI = *MII;
1494
1495 if (VRM.hasEmergencySpills(&MI)) {
1496 // Spill physical register(s) in the rare case the allocator has run out
1497 // of registers to allocate.
1498 SmallSet<int, 4> UsedSS;
1499 std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1500 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1501 unsigned PhysReg = EmSpills[i];
1502 const TargetRegisterClass *RC =
1503 TRI->getPhysicalRegisterRegClass(PhysReg);
1504 assert(RC && "Unable to determine register class!");
1505 int SS = VRM.getEmergencySpillSlot(RC);
1506 if (UsedSS.count(SS))
1507 assert(0 && "Need to spill more than one physical registers!");
1508 UsedSS.insert(SS);
1509 TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1510 MachineInstr *StoreMI = prior(MII);
1511 VRM.addSpillSlotUse(SS, StoreMI);
1512 TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
1513 MachineInstr *LoadMI = next(MII);
1514 VRM.addSpillSlotUse(SS, LoadMI);
1515 ++NumPSpills;
1516 }
1517 NextMII = next(MII);
1518 }
1519
1520 // Insert restores here if asked to.
1521 if (VRM.isRestorePt(&MI)) {
1522 std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1523 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1524 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
1525 if (!VRM.getPreSplitReg(VirtReg))
1526 continue; // Split interval spilled again.
1527 unsigned Phys = VRM.getPhys(VirtReg);
1528 RegInfo->setPhysRegUsed(Phys);
1529
1530 // Check if the value being restored if available. If so, it must be
1531 // from a predecessor BB that fallthrough into this BB. We do not
1532 // expect:
1533 // BB1:
1534 // r1 = load fi#1
1535 // ...
1536 // = r1<kill>
1537 // ... # r1 not clobbered
1538 // ...
1539 // = load fi#1
1540 bool DoReMat = VRM.isReMaterialized(VirtReg);
1541 int SSorRMId = DoReMat
1542 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1543 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1544 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1545 if (InReg == Phys) {
1546 // If the value is already available in the expected register, save
1547 // a reload / remat.
1548 if (SSorRMId)
1549 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1550 else
1551 DOUT << "Reusing SS#" << SSorRMId;
1552 DOUT << " from physreg "
1553 << TRI->getName(InReg) << " for vreg"
1554 << VirtReg <<" instead of reloading into physreg "
1555 << TRI->getName(Phys) << "\n";
1556 ++NumOmitted;
1557 continue;
1558 } else if (InReg && InReg != Phys) {
1559 if (SSorRMId)
1560 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1561 else
1562 DOUT << "Reusing SS#" << SSorRMId;
1563 DOUT << " from physreg "
1564 << TRI->getName(InReg) << " for vreg"
1565 << VirtReg <<" by copying it into physreg "
1566 << TRI->getName(Phys) << "\n";
1567
1568 // If the reloaded / remat value is available in another register,
1569 // copy it to the desired register.
1570 TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC);
1571
1572 // This invalidates Phys.
1573 Spills.ClobberPhysReg(Phys);
1574 // Remember it's available.
1575 Spills.addAvailable(SSorRMId, Phys);
1576
1577 // Mark is killed.
1578 MachineInstr *CopyMI = prior(MII);
1579 MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1580 KillOpnd->setIsKill();
Evan Cheng427a6b62009-05-15 06:48:19 +00001581 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001582
1583 DOUT << '\t' << *CopyMI;
1584 ++NumCopified;
1585 continue;
1586 }
1587
1588 if (VRM.isReMaterialized(VirtReg)) {
1589 ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
1590 } else {
1591 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1592 TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC);
1593 MachineInstr *LoadMI = prior(MII);
1594 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1595 ++NumLoads;
1596 }
1597
1598 // This invalidates Phys.
1599 Spills.ClobberPhysReg(Phys);
1600 // Remember it's available.
1601 Spills.addAvailable(SSorRMId, Phys);
1602
Evan Cheng427a6b62009-05-15 06:48:19 +00001603 UpdateKills(*prior(MII), TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001604 DOUT << '\t' << *prior(MII);
1605 }
1606 }
1607
1608 // Insert spills here if asked to.
1609 if (VRM.isSpillPt(&MI)) {
1610 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1611 VRM.getSpillPtSpills(&MI);
1612 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1613 unsigned VirtReg = SpillRegs[i].first;
1614 bool isKill = SpillRegs[i].second;
1615 if (!VRM.getPreSplitReg(VirtReg))
1616 continue; // Split interval spilled again.
1617 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1618 unsigned Phys = VRM.getPhys(VirtReg);
1619 int StackSlot = VRM.getStackSlot(VirtReg);
1620 TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1621 MachineInstr *StoreMI = next(MII);
1622 VRM.addSpillSlotUse(StackSlot, StoreMI);
1623 DOUT << "Store:\t" << *StoreMI;
1624 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1625 }
1626 NextMII = next(MII);
1627 }
1628
1629 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1630 /// reuse.
1631 ReuseInfo ReusedOperands(MI, TRI);
1632 SmallVector<unsigned, 4> VirtUseOps;
1633 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1634 MachineOperand &MO = MI.getOperand(i);
1635 if (!MO.isReg() || MO.getReg() == 0)
1636 continue; // Ignore non-register operands.
1637
1638 unsigned VirtReg = MO.getReg();
1639 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1640 // Ignore physregs for spilling, but remember that it is used by this
1641 // function.
1642 RegInfo->setPhysRegUsed(VirtReg);
1643 continue;
1644 }
1645
1646 // We want to process implicit virtual register uses first.
1647 if (MO.isImplicit())
1648 // If the virtual register is implicitly defined, emit a implicit_def
1649 // before so scavenger knows it's "defined".
1650 VirtUseOps.insert(VirtUseOps.begin(), i);
1651 else
1652 VirtUseOps.push_back(i);
1653 }
1654
1655 // Process all of the spilled uses and all non spilled reg references.
1656 SmallVector<int, 2> PotentialDeadStoreSlots;
1657 KilledMIRegs.clear();
1658 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1659 unsigned i = VirtUseOps[j];
1660 MachineOperand &MO = MI.getOperand(i);
1661 unsigned VirtReg = MO.getReg();
1662 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1663 "Not a virtual register?");
1664
1665 unsigned SubIdx = MO.getSubReg();
1666 if (VRM.isAssignedReg(VirtReg)) {
1667 // This virtual register was assigned a physreg!
1668 unsigned Phys = VRM.getPhys(VirtReg);
1669 RegInfo->setPhysRegUsed(Phys);
1670 if (MO.isDef())
1671 ReusedOperands.markClobbered(Phys);
1672 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1673 MI.getOperand(i).setReg(RReg);
1674 MI.getOperand(i).setSubReg(0);
1675 if (VRM.isImplicitlyDefined(VirtReg))
1676 BuildMI(MBB, &MI, MI.getDebugLoc(),
1677 TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1678 continue;
1679 }
1680
1681 // This virtual register is now known to be a spilled value.
1682 if (!MO.isUse())
1683 continue; // Handle defs in the loop below (handle use&def here though)
1684
1685 bool AvoidReload = false;
1686 if (LIs->hasInterval(VirtReg)) {
1687 LiveInterval &LI = LIs->getInterval(VirtReg);
1688 if (!LI.liveAt(LIs->getUseIndex(LI.beginNumber())))
1689 // Must be defined by an implicit def. It should not be spilled. Note,
1690 // this is for correctness reason. e.g.
1691 // 8 %reg1024<def> = IMPLICIT_DEF
1692 // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
1693 // The live range [12, 14) are not part of the r1024 live interval since
1694 // it's defined by an implicit def. It will not conflicts with live
1695 // interval of r1025. Now suppose both registers are spilled, you can
1696 // easily see a situation where both registers are reloaded before
1697 // the INSERT_SUBREG and both target registers that would overlap.
1698 AvoidReload = true;
1699 }
1700
1701 bool DoReMat = VRM.isReMaterialized(VirtReg);
1702 int SSorRMId = DoReMat
1703 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1704 int ReuseSlot = SSorRMId;
1705
1706 // Check to see if this stack slot is available.
1707 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1708
1709 // If this is a sub-register use, make sure the reuse register is in the
1710 // right register class. For example, for x86 not all of the 32-bit
1711 // registers have accessible sub-registers.
1712 // Similarly so for EXTRACT_SUBREG. Consider this:
1713 // EDI = op
1714 // MOV32_mr fi#1, EDI
1715 // ...
1716 // = EXTRACT_SUBREG fi#1
1717 // fi#1 is available in EDI, but it cannot be reused because it's not in
1718 // the right register file.
1719 if (PhysReg && !AvoidReload &&
1720 (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1721 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1722 if (!RC->contains(PhysReg))
1723 PhysReg = 0;
1724 }
1725
1726 if (PhysReg && !AvoidReload) {
1727 // This spilled operand might be part of a two-address operand. If this
1728 // is the case, then changing it will necessarily require changing the
1729 // def part of the instruction as well. However, in some cases, we
1730 // aren't allowed to modify the reused register. If none of these cases
1731 // apply, reuse it.
1732 bool CanReuse = true;
1733 bool isTied = MI.isRegTiedToDefOperand(i);
1734 if (isTied) {
1735 // Okay, we have a two address operand. We can reuse this physreg as
1736 // long as we are allowed to clobber the value and there isn't an
1737 // earlier def that has already clobbered the physreg.
1738 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
1739 Spills.canClobberPhysReg(PhysReg);
1740 }
1741
1742 if (CanReuse) {
1743 // If this stack slot value is already available, reuse it!
1744 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1745 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1746 else
1747 DOUT << "Reusing SS#" << ReuseSlot;
1748 DOUT << " from physreg "
1749 << TRI->getName(PhysReg) << " for vreg"
1750 << VirtReg <<" instead of reloading into physreg "
1751 << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1752 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1753 MI.getOperand(i).setReg(RReg);
1754 MI.getOperand(i).setSubReg(0);
1755
1756 // The only technical detail we have is that we don't know that
1757 // PhysReg won't be clobbered by a reloaded stack slot that occurs
1758 // later in the instruction. In particular, consider 'op V1, V2'.
1759 // If V1 is available in physreg R0, we would choose to reuse it
1760 // here, instead of reloading it into the register the allocator
1761 // indicated (say R1). However, V2 might have to be reloaded
1762 // later, and it might indicate that it needs to live in R0. When
1763 // this occurs, we need to have information available that
1764 // indicates it is safe to use R1 for the reload instead of R0.
1765 //
1766 // To further complicate matters, we might conflict with an alias,
1767 // or R0 and R1 might not be compatible with each other. In this
1768 // case, we actually insert a reload for V1 in R1, ensuring that
1769 // we can get at R0 or its alias.
1770 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1771 VRM.getPhys(VirtReg), VirtReg);
1772 if (isTied)
1773 // Only mark it clobbered if this is a use&def operand.
1774 ReusedOperands.markClobbered(PhysReg);
1775 ++NumReused;
1776
1777 if (MI.getOperand(i).isKill() &&
1778 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1779
1780 // The store of this spilled value is potentially dead, but we
1781 // won't know for certain until we've confirmed that the re-use
1782 // above is valid, which means waiting until the other operands
1783 // are processed. For now we just track the spill slot, we'll
1784 // remove it after the other operands are processed if valid.
1785
1786 PotentialDeadStoreSlots.push_back(ReuseSlot);
1787 }
1788
1789 // Mark is isKill if it's there no other uses of the same virtual
1790 // register and it's not a two-address operand. IsKill will be
1791 // unset if reg is reused.
1792 if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
1793 MI.getOperand(i).setIsKill();
1794 KilledMIRegs.insert(VirtReg);
1795 }
1796
1797 continue;
1798 } // CanReuse
1799
1800 // Otherwise we have a situation where we have a two-address instruction
1801 // whose mod/ref operand needs to be reloaded. This reload is already
1802 // available in some register "PhysReg", but if we used PhysReg as the
1803 // operand to our 2-addr instruction, the instruction would modify
1804 // PhysReg. This isn't cool if something later uses PhysReg and expects
1805 // to get its initial value.
1806 //
1807 // To avoid this problem, and to avoid doing a load right after a store,
1808 // we emit a copy from PhysReg into the designated register for this
1809 // operand.
1810 unsigned DesignatedReg = VRM.getPhys(VirtReg);
1811 assert(DesignatedReg && "Must map virtreg to physreg!");
1812
1813 // Note that, if we reused a register for a previous operand, the
1814 // register we want to reload into might not actually be
1815 // available. If this occurs, use the register indicated by the
1816 // reuser.
1817 if (ReusedOperands.hasReuses())
1818 DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1819 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1820
1821 // If the mapped designated register is actually the physreg we have
1822 // incoming, we don't need to inserted a dead copy.
1823 if (DesignatedReg == PhysReg) {
1824 // If this stack slot value is already available, reuse it!
1825 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1826 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1827 else
1828 DOUT << "Reusing SS#" << ReuseSlot;
1829 DOUT << " from physreg " << TRI->getName(PhysReg)
1830 << " for vreg" << VirtReg
1831 << " instead of reloading into same physreg.\n";
1832 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1833 MI.getOperand(i).setReg(RReg);
1834 MI.getOperand(i).setSubReg(0);
1835 ReusedOperands.markClobbered(RReg);
1836 ++NumReused;
1837 continue;
1838 }
1839
1840 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1841 RegInfo->setPhysRegUsed(DesignatedReg);
1842 ReusedOperands.markClobbered(DesignatedReg);
1843 TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1844
1845 MachineInstr *CopyMI = prior(MII);
Evan Cheng427a6b62009-05-15 06:48:19 +00001846 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001847
1848 // This invalidates DesignatedReg.
1849 Spills.ClobberPhysReg(DesignatedReg);
1850
1851 Spills.addAvailable(ReuseSlot, DesignatedReg);
1852 unsigned RReg =
1853 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1854 MI.getOperand(i).setReg(RReg);
1855 MI.getOperand(i).setSubReg(0);
1856 DOUT << '\t' << *prior(MII);
1857 ++NumReused;
1858 continue;
1859 } // if (PhysReg)
1860
1861 // Otherwise, reload it and remember that we have it.
1862 PhysReg = VRM.getPhys(VirtReg);
1863 assert(PhysReg && "Must map virtreg to physreg!");
1864
1865 // Note that, if we reused a register for a previous operand, the
1866 // register we want to reload into might not actually be
1867 // available. If this occurs, use the register indicated by the
1868 // reuser.
1869 if (ReusedOperands.hasReuses())
1870 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1871 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1872
1873 RegInfo->setPhysRegUsed(PhysReg);
1874 ReusedOperands.markClobbered(PhysReg);
1875 if (AvoidReload)
1876 ++NumAvoided;
1877 else {
1878 if (DoReMat) {
1879 ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
1880 } else {
1881 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1882 TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1883 MachineInstr *LoadMI = prior(MII);
1884 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1885 ++NumLoads;
1886 }
1887 // This invalidates PhysReg.
1888 Spills.ClobberPhysReg(PhysReg);
1889
1890 // Any stores to this stack slot are not dead anymore.
1891 if (!DoReMat)
1892 MaybeDeadStores[SSorRMId] = NULL;
1893 Spills.addAvailable(SSorRMId, PhysReg);
1894 // Assumes this is the last use. IsKill will be unset if reg is reused
1895 // unless it's a two-address operand.
1896 if (!MI.isRegTiedToDefOperand(i) &&
1897 KilledMIRegs.count(VirtReg) == 0) {
1898 MI.getOperand(i).setIsKill();
1899 KilledMIRegs.insert(VirtReg);
1900 }
1901
Evan Cheng427a6b62009-05-15 06:48:19 +00001902 UpdateKills(*prior(MII), TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001903 DOUT << '\t' << *prior(MII);
1904 }
1905 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1906 MI.getOperand(i).setReg(RReg);
1907 MI.getOperand(i).setSubReg(0);
1908 }
1909
1910 // Ok - now we can remove stores that have been confirmed dead.
1911 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
1912 // This was the last use and the spilled value is still available
1913 // for reuse. That means the spill was unnecessary!
1914 int PDSSlot = PotentialDeadStoreSlots[j];
1915 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
1916 if (DeadStore) {
1917 DOUT << "Removed dead store:\t" << *DeadStore;
Evan Cheng427a6b62009-05-15 06:48:19 +00001918 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001919 VRM.RemoveMachineInstrFromMaps(DeadStore);
1920 MBB.erase(DeadStore);
1921 MaybeDeadStores[PDSSlot] = NULL;
1922 ++NumDSE;
1923 }
1924 }
1925
1926
1927 DOUT << '\t' << MI;
1928
1929
1930 // If we have folded references to memory operands, make sure we clear all
1931 // physical registers that may contain the value of the spilled virtual
1932 // register
1933 SmallSet<int, 2> FoldedSS;
1934 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1935 unsigned VirtReg = I->second.first;
1936 VirtRegMap::ModRef MR = I->second.second;
1937 DOUT << "Folded vreg: " << VirtReg << " MR: " << MR;
1938
1939 // MI2VirtMap be can updated which invalidate the iterator.
1940 // Increment the iterator first.
1941 ++I;
1942 int SS = VRM.getStackSlot(VirtReg);
1943 if (SS == VirtRegMap::NO_STACK_SLOT)
1944 continue;
1945 FoldedSS.insert(SS);
1946 DOUT << " - StackSlot: " << SS << "\n";
1947
1948 // If this folded instruction is just a use, check to see if it's a
1949 // straight load from the virt reg slot.
1950 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1951 int FrameIdx;
1952 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1953 if (DestReg && FrameIdx == SS) {
1954 // If this spill slot is available, turn it into a copy (or nothing)
1955 // instead of leaving it as a load!
1956 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1957 DOUT << "Promoted Load To Copy: " << MI;
1958 if (DestReg != InReg) {
1959 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1960 TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1961 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
1962 unsigned SubIdx = DefMO->getSubReg();
1963 // Revisit the copy so we make sure to notice the effects of the
1964 // operation on the destreg (either needing to RA it if it's
1965 // virtual or needing to clobber any values if it's physical).
1966 NextMII = &MI;
1967 --NextMII; // backtrack to the copy.
1968 // Propagate the sub-register index over.
1969 if (SubIdx) {
1970 DefMO = NextMII->findRegisterDefOperand(DestReg);
1971 DefMO->setSubReg(SubIdx);
1972 }
1973
1974 // Mark is killed.
1975 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
1976 KillOpnd->setIsKill();
1977
1978 BackTracked = true;
1979 } else {
1980 DOUT << "Removing now-noop copy: " << MI;
1981 // Unset last kill since it's being reused.
Evan Cheng427a6b62009-05-15 06:48:19 +00001982 InvalidateKill(InReg, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001983 Spills.disallowClobberPhysReg(InReg);
1984 }
1985
Evan Cheng427a6b62009-05-15 06:48:19 +00001986 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001987 VRM.RemoveMachineInstrFromMaps(&MI);
1988 MBB.erase(&MI);
1989 Erased = true;
1990 goto ProcessNextInst;
1991 }
1992 } else {
1993 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1994 SmallVector<MachineInstr*, 4> NewMIs;
1995 if (PhysReg &&
1996 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1997 MBB.insert(MII, NewMIs[0]);
Evan Cheng427a6b62009-05-15 06:48:19 +00001998 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001999 VRM.RemoveMachineInstrFromMaps(&MI);
2000 MBB.erase(&MI);
2001 Erased = true;
2002 --NextMII; // backtrack to the unfolded instruction.
2003 BackTracked = true;
2004 goto ProcessNextInst;
2005 }
2006 }
2007 }
2008
2009 // If this reference is not a use, any previous store is now dead.
2010 // Otherwise, the store to this stack slot is not dead anymore.
2011 MachineInstr* DeadStore = MaybeDeadStores[SS];
2012 if (DeadStore) {
2013 bool isDead = !(MR & VirtRegMap::isRef);
2014 MachineInstr *NewStore = NULL;
2015 if (MR & VirtRegMap::isModRef) {
2016 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2017 SmallVector<MachineInstr*, 4> NewMIs;
2018 // We can reuse this physreg as long as we are allowed to clobber
2019 // the value and there isn't an earlier def that has already clobbered
2020 // the physreg.
2021 if (PhysReg &&
2022 !ReusedOperands.isClobbered(PhysReg) &&
2023 Spills.canClobberPhysReg(PhysReg) &&
2024 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
2025 MachineOperand *KillOpnd =
2026 DeadStore->findRegisterUseOperand(PhysReg, true);
2027 // Note, if the store is storing a sub-register, it's possible the
2028 // super-register is needed below.
2029 if (KillOpnd && !KillOpnd->getSubReg() &&
2030 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
2031 MBB.insert(MII, NewMIs[0]);
2032 NewStore = NewMIs[1];
2033 MBB.insert(MII, NewStore);
2034 VRM.addSpillSlotUse(SS, NewStore);
Evan Cheng427a6b62009-05-15 06:48:19 +00002035 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002036 VRM.RemoveMachineInstrFromMaps(&MI);
2037 MBB.erase(&MI);
2038 Erased = true;
2039 --NextMII;
2040 --NextMII; // backtrack to the unfolded instruction.
2041 BackTracked = true;
2042 isDead = true;
2043 ++NumSUnfold;
2044 }
2045 }
2046 }
2047
2048 if (isDead) { // Previous store is dead.
2049 // If we get here, the store is dead, nuke it now.
2050 DOUT << "Removed dead store:\t" << *DeadStore;
Evan Cheng427a6b62009-05-15 06:48:19 +00002051 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002052 VRM.RemoveMachineInstrFromMaps(DeadStore);
2053 MBB.erase(DeadStore);
2054 if (!NewStore)
2055 ++NumDSE;
2056 }
2057
2058 MaybeDeadStores[SS] = NULL;
2059 if (NewStore) {
2060 // Treat this store as a spill merged into a copy. That makes the
2061 // stack slot value available.
2062 VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
2063 goto ProcessNextInst;
2064 }
2065 }
2066
2067 // If the spill slot value is available, and this is a new definition of
2068 // the value, the value is not available anymore.
2069 if (MR & VirtRegMap::isMod) {
2070 // Notice that the value in this stack slot has been modified.
2071 Spills.ModifyStackSlotOrReMat(SS);
2072
2073 // If this is *just* a mod of the value, check to see if this is just a
2074 // store to the spill slot (i.e. the spill got merged into the copy). If
2075 // so, realize that the vreg is available now, and add the store to the
2076 // MaybeDeadStore info.
2077 int StackSlot;
2078 if (!(MR & VirtRegMap::isRef)) {
2079 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
2080 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
2081 "Src hasn't been allocated yet?");
2082
2083 if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
2084 Spills, RegKills, KillOps, TRI, VRM)) {
2085 NextMII = next(MII);
2086 BackTracked = true;
2087 goto ProcessNextInst;
2088 }
2089
2090 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
2091 // this as a potentially dead store in case there is a subsequent
2092 // store into the stack slot without a read from it.
2093 MaybeDeadStores[StackSlot] = &MI;
2094
2095 // If the stack slot value was previously available in some other
2096 // register, change it now. Otherwise, make the register
2097 // available in PhysReg.
2098 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
2099 }
2100 }
2101 }
2102 }
2103
2104 // Process all of the spilled defs.
2105 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2106 MachineOperand &MO = MI.getOperand(i);
2107 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
2108 continue;
2109
2110 unsigned VirtReg = MO.getReg();
2111 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
2112 // Check to see if this is a noop copy. If so, eliminate the
2113 // instruction before considering the dest reg to be changed.
2114 unsigned Src, Dst, SrcSR, DstSR;
2115 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
2116 ++NumDCE;
2117 DOUT << "Removing now-noop copy: " << MI;
2118 SmallVector<unsigned, 2> KillRegs;
Evan Cheng427a6b62009-05-15 06:48:19 +00002119 InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
Lang Hames87e3bca2009-05-06 02:36:21 +00002120 if (MO.isDead() && !KillRegs.empty()) {
2121 // Source register or an implicit super/sub-register use is killed.
2122 assert(KillRegs[0] == Dst ||
2123 TRI->isSubRegister(KillRegs[0], Dst) ||
2124 TRI->isSuperRegister(KillRegs[0], Dst));
2125 // Last def is now dead.
Evan Chengeca24fb2009-05-12 23:07:00 +00002126 TransferDeadness(&MBB, Dist, Src, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +00002127 }
2128 VRM.RemoveMachineInstrFromMaps(&MI);
2129 MBB.erase(&MI);
2130 Erased = true;
2131 Spills.disallowClobberPhysReg(VirtReg);
2132 goto ProcessNextInst;
2133 }
2134
2135 // If it's not a no-op copy, it clobbers the value in the destreg.
2136 Spills.ClobberPhysReg(VirtReg);
2137 ReusedOperands.markClobbered(VirtReg);
2138
2139 // Check to see if this instruction is a load from a stack slot into
2140 // a register. If so, this provides the stack slot value in the reg.
2141 int FrameIdx;
2142 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
2143 assert(DestReg == VirtReg && "Unknown load situation!");
2144
2145 // If it is a folded reference, then it's not safe to clobber.
2146 bool Folded = FoldedSS.count(FrameIdx);
2147 // Otherwise, if it wasn't available, remember that it is now!
2148 Spills.addAvailable(FrameIdx, DestReg, !Folded);
2149 goto ProcessNextInst;
2150 }
2151
2152 continue;
2153 }
2154
2155 unsigned SubIdx = MO.getSubReg();
2156 bool DoReMat = VRM.isReMaterialized(VirtReg);
2157 if (DoReMat)
2158 ReMatDefs.insert(&MI);
2159
2160 // The only vregs left are stack slot definitions.
2161 int StackSlot = VRM.getStackSlot(VirtReg);
2162 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
2163
2164 // If this def is part of a two-address operand, make sure to execute
2165 // the store from the correct physical register.
2166 unsigned PhysReg;
2167 unsigned TiedOp;
2168 if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
2169 PhysReg = MI.getOperand(TiedOp).getReg();
2170 if (SubIdx) {
2171 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
2172 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
2173 "Can't find corresponding super-register!");
2174 PhysReg = SuperReg;
2175 }
2176 } else {
2177 PhysReg = VRM.getPhys(VirtReg);
2178 if (ReusedOperands.isClobbered(PhysReg)) {
2179 // Another def has taken the assigned physreg. It must have been a
2180 // use&def which got it due to reuse. Undo the reuse!
2181 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
2182 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
2183 }
2184 }
2185
2186 assert(PhysReg && "VR not assigned a physical register?");
2187 RegInfo->setPhysRegUsed(PhysReg);
2188 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2189 ReusedOperands.markClobbered(RReg);
2190 MI.getOperand(i).setReg(RReg);
2191 MI.getOperand(i).setSubReg(0);
2192
2193 if (!MO.isDead()) {
2194 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
2195 SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
2196 LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
2197 NextMII = next(MII);
2198
2199 // Check to see if this is a noop copy. If so, eliminate the
2200 // instruction before considering the dest reg to be changed.
2201 {
2202 unsigned Src, Dst, SrcSR, DstSR;
2203 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
2204 ++NumDCE;
2205 DOUT << "Removing now-noop copy: " << MI;
Evan Cheng427a6b62009-05-15 06:48:19 +00002206 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002207 VRM.RemoveMachineInstrFromMaps(&MI);
2208 MBB.erase(&MI);
2209 Erased = true;
Evan Cheng427a6b62009-05-15 06:48:19 +00002210 UpdateKills(*LastStore, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002211 goto ProcessNextInst;
2212 }
2213 }
2214 }
2215 }
2216 ProcessNextInst:
2217 DistanceMap.insert(std::make_pair(&MI, Dist++));
2218 if (!Erased && !BackTracked) {
2219 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
Evan Cheng427a6b62009-05-15 06:48:19 +00002220 UpdateKills(*II, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002221 }
2222 MII = NextMII;
2223 }
2224
2225 }
2226
2227};
2228
2229llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
2230 switch (RewriterOpt) {
2231 default: assert(0 && "Unreachable!");
2232 case local:
2233 return new LocalRewriter();
2234 case simple:
2235 return new SimpleRewriter();
Lang Hamesf41538d2009-06-02 16:53:25 +00002236 case trivial:
2237 return new TrivialRewriter();
Lang Hames87e3bca2009-05-06 02:36:21 +00002238 }
2239}