blob: fff6ef034f12dd7c565951642286738d48bb83a3 [file] [log] [blame]
Anton Korobeynikov50276522008-04-23 22:29:24 +00001//===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the writing of the LLVM IR as a set of C++ calls to the
11// LLVM IR interface. The input module is assumed to be verified.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CPPTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instruction.h"
21#include "llvm/Instructions.h"
22#include "llvm/Module.h"
23#include "llvm/Pass.h"
24#include "llvm/PassManager.h"
25#include "llvm/TypeSymbolTable.h"
26#include "llvm/Target/TargetMachineRegistry.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/Support/CommandLine.h"
Bill Wendling1a53ead2008-07-27 23:18:30 +000031#include "llvm/Support/Streams.h"
Owen Andersoncb371882008-08-21 00:14:44 +000032#include "llvm/Support/raw_ostream.h"
Anton Korobeynikov50276522008-04-23 22:29:24 +000033#include "llvm/Config/config.h"
34#include <algorithm>
Anton Korobeynikov50276522008-04-23 22:29:24 +000035#include <set>
36
37using namespace llvm;
38
39static cl::opt<std::string>
Anton Korobeynikov8d3e74e2008-04-23 22:37:03 +000040FuncName("cppfname", cl::desc("Specify the name of the generated function"),
Anton Korobeynikov50276522008-04-23 22:29:24 +000041 cl::value_desc("function name"));
42
43enum WhatToGenerate {
44 GenProgram,
45 GenModule,
46 GenContents,
47 GenFunction,
48 GenFunctions,
49 GenInline,
50 GenVariable,
51 GenType
52};
53
Anton Korobeynikov8d3e74e2008-04-23 22:37:03 +000054static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
Anton Korobeynikov50276522008-04-23 22:29:24 +000055 cl::desc("Choose what kind of output to generate"),
56 cl::init(GenProgram),
57 cl::values(
Anton Korobeynikov8d3e74e2008-04-23 22:37:03 +000058 clEnumValN(GenProgram, "program", "Generate a complete program"),
59 clEnumValN(GenModule, "module", "Generate a module definition"),
60 clEnumValN(GenContents, "contents", "Generate contents of a module"),
61 clEnumValN(GenFunction, "function", "Generate a function definition"),
62 clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
63 clEnumValN(GenInline, "inline", "Generate an inline function"),
64 clEnumValN(GenVariable, "variable", "Generate a variable definition"),
65 clEnumValN(GenType, "type", "Generate a type definition"),
Anton Korobeynikov50276522008-04-23 22:29:24 +000066 clEnumValEnd
67 )
68);
69
Anton Korobeynikov8d3e74e2008-04-23 22:37:03 +000070static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
Anton Korobeynikov50276522008-04-23 22:29:24 +000071 cl::desc("Specify the name of the thing to generate"),
72 cl::init("!bad!"));
73
Oscar Fuentes92adc192008-11-15 21:36:30 +000074/// CppBackendTargetMachineModule - Note that this is used on hosts
75/// that cannot link in a library unless there are references into the
76/// library. In particular, it seems that it is not possible to get
77/// things to work on Win32 without this. Though it is unused, do not
78/// remove it.
79extern "C" int CppBackendTargetMachineModule;
80int CppBackendTargetMachineModule = 0;
81
Dan Gohman844731a2008-05-13 00:00:25 +000082// Register the target.
Dan Gohmanb8cab922008-10-14 20:25:08 +000083static RegisterTarget<CPPTargetMachine> X("cpp", "C++ backend");
Anton Korobeynikov50276522008-04-23 22:29:24 +000084
Dan Gohman844731a2008-05-13 00:00:25 +000085namespace {
Anton Korobeynikov50276522008-04-23 22:29:24 +000086 typedef std::vector<const Type*> TypeList;
87 typedef std::map<const Type*,std::string> TypeMap;
88 typedef std::map<const Value*,std::string> ValueMap;
89 typedef std::set<std::string> NameSet;
90 typedef std::set<const Type*> TypeSet;
91 typedef std::set<const Value*> ValueSet;
92 typedef std::map<const Value*,std::string> ForwardRefMap;
93
94 /// CppWriter - This class is the main chunk of code that converts an LLVM
95 /// module to a C++ translation unit.
96 class CppWriter : public ModulePass {
97 const char* progname;
Owen Andersoncb371882008-08-21 00:14:44 +000098 raw_ostream &Out;
Anton Korobeynikov50276522008-04-23 22:29:24 +000099 const Module *TheModule;
100 uint64_t uniqueNum;
101 TypeMap TypeNames;
102 ValueMap ValueNames;
103 TypeMap UnresolvedTypes;
104 TypeList TypeStack;
105 NameSet UsedNames;
106 TypeSet DefinedTypes;
107 ValueSet DefinedValues;
108 ForwardRefMap ForwardRefs;
109 bool is_inline;
110
111 public:
112 static char ID;
Owen Andersoncb371882008-08-21 00:14:44 +0000113 explicit CppWriter(raw_ostream &o) :
Dan Gohmanae73dc12008-09-04 17:05:41 +0000114 ModulePass(&ID), Out(o), uniqueNum(0), is_inline(false) {}
Anton Korobeynikov50276522008-04-23 22:29:24 +0000115
116 virtual const char *getPassName() const { return "C++ backend"; }
117
118 bool runOnModule(Module &M);
119
Anton Korobeynikov50276522008-04-23 22:29:24 +0000120 void printProgram(const std::string& fname, const std::string& modName );
121 void printModule(const std::string& fname, const std::string& modName );
122 void printContents(const std::string& fname, const std::string& modName );
123 void printFunction(const std::string& fname, const std::string& funcName );
124 void printFunctions();
125 void printInline(const std::string& fname, const std::string& funcName );
126 void printVariable(const std::string& fname, const std::string& varName );
127 void printType(const std::string& fname, const std::string& typeName );
128
129 void error(const std::string& msg);
130
131 private:
132 void printLinkageType(GlobalValue::LinkageTypes LT);
133 void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
134 void printCallingConv(unsigned cc);
135 void printEscapedString(const std::string& str);
136 void printCFP(const ConstantFP* CFP);
137
138 std::string getCppName(const Type* val);
139 inline void printCppName(const Type* val);
140
141 std::string getCppName(const Value* val);
142 inline void printCppName(const Value* val);
143
Devang Patel05988662008-09-25 21:00:45 +0000144 void printAttributes(const AttrListPtr &PAL, const std::string &name);
Anton Korobeynikov50276522008-04-23 22:29:24 +0000145 bool printTypeInternal(const Type* Ty);
146 inline void printType(const Type* Ty);
147 void printTypes(const Module* M);
148
149 void printConstant(const Constant *CPV);
150 void printConstants(const Module* M);
151
152 void printVariableUses(const GlobalVariable *GV);
153 void printVariableHead(const GlobalVariable *GV);
154 void printVariableBody(const GlobalVariable *GV);
155
156 void printFunctionUses(const Function *F);
157 void printFunctionHead(const Function *F);
158 void printFunctionBody(const Function *F);
159 void printInstruction(const Instruction *I, const std::string& bbname);
160 std::string getOpName(Value*);
161
162 void printModuleBody();
163 };
164
165 static unsigned indent_level = 0;
Owen Andersoncb371882008-08-21 00:14:44 +0000166 inline raw_ostream& nl(raw_ostream& Out, int delta = 0) {
Anton Korobeynikov50276522008-04-23 22:29:24 +0000167 Out << "\n";
168 if (delta >= 0 || indent_level >= unsigned(-delta))
169 indent_level += delta;
170 for (unsigned i = 0; i < indent_level; ++i)
171 Out << " ";
172 return Out;
173 }
174
175 inline void in() { indent_level++; }
176 inline void out() { if (indent_level >0) indent_level--; }
177
178 inline void
179 sanitize(std::string& str) {
180 for (size_t i = 0; i < str.length(); ++i)
181 if (!isalnum(str[i]) && str[i] != '_')
182 str[i] = '_';
183 }
184
185 inline std::string
186 getTypePrefix(const Type* Ty ) {
187 switch (Ty->getTypeID()) {
188 case Type::VoidTyID: return "void_";
189 case Type::IntegerTyID:
190 return std::string("int") + utostr(cast<IntegerType>(Ty)->getBitWidth()) +
191 "_";
192 case Type::FloatTyID: return "float_";
193 case Type::DoubleTyID: return "double_";
194 case Type::LabelTyID: return "label_";
195 case Type::FunctionTyID: return "func_";
196 case Type::StructTyID: return "struct_";
197 case Type::ArrayTyID: return "array_";
198 case Type::PointerTyID: return "ptr_";
199 case Type::VectorTyID: return "packed_";
200 case Type::OpaqueTyID: return "opaque_";
201 default: return "other_";
202 }
203 return "unknown_";
204 }
205
206 // Looks up the type in the symbol table and returns a pointer to its name or
207 // a null pointer if it wasn't found. Note that this isn't the same as the
208 // Mode::getTypeName function which will return an empty string, not a null
209 // pointer if the name is not found.
210 inline const std::string*
211 findTypeName(const TypeSymbolTable& ST, const Type* Ty) {
212 TypeSymbolTable::const_iterator TI = ST.begin();
213 TypeSymbolTable::const_iterator TE = ST.end();
214 for (;TI != TE; ++TI)
215 if (TI->second == Ty)
216 return &(TI->first);
217 return 0;
218 }
219
220 void CppWriter::error(const std::string& msg) {
Bill Wendling1a53ead2008-07-27 23:18:30 +0000221 cerr << progname << ": " << msg << "\n";
Anton Korobeynikov50276522008-04-23 22:29:24 +0000222 exit(2);
223 }
224
225 // printCFP - Print a floating point constant .. very carefully :)
226 // This makes sure that conversion to/from floating yields the same binary
227 // result so that we don't lose precision.
228 void CppWriter::printCFP(const ConstantFP *CFP) {
Dale Johannesen23a98552008-10-09 23:00:39 +0000229 bool ignored;
Anton Korobeynikov50276522008-04-23 22:29:24 +0000230 APFloat APF = APFloat(CFP->getValueAPF()); // copy
231 if (CFP->getType() == Type::FloatTy)
Dale Johannesen23a98552008-10-09 23:00:39 +0000232 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
Anton Korobeynikov50276522008-04-23 22:29:24 +0000233 Out << "ConstantFP::get(";
Anton Korobeynikov50276522008-04-23 22:29:24 +0000234 Out << "APFloat(";
235#if HAVE_PRINTF_A
236 char Buffer[100];
237 sprintf(Buffer, "%A", APF.convertToDouble());
238 if ((!strncmp(Buffer, "0x", 2) ||
239 !strncmp(Buffer, "-0x", 3) ||
240 !strncmp(Buffer, "+0x", 3)) &&
241 APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
242 if (CFP->getType() == Type::DoubleTy)
243 Out << "BitsToDouble(" << Buffer << ")";
244 else
245 Out << "BitsToFloat((float)" << Buffer << ")";
246 Out << ")";
247 } else {
248#endif
249 std::string StrVal = ftostr(CFP->getValueAPF());
250
251 while (StrVal[0] == ' ')
252 StrVal.erase(StrVal.begin());
253
254 // Check to make sure that the stringized number is not some string like
255 // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex.
256 if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
257 ((StrVal[0] == '-' || StrVal[0] == '+') &&
258 (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
259 (CFP->isExactlyValue(atof(StrVal.c_str())))) {
260 if (CFP->getType() == Type::DoubleTy)
261 Out << StrVal;
262 else
263 Out << StrVal << "f";
264 } else if (CFP->getType() == Type::DoubleTy)
Owen Andersoncb371882008-08-21 00:14:44 +0000265 Out << "BitsToDouble(0x"
Dale Johannesen7111b022008-10-09 18:53:47 +0000266 << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
Owen Andersoncb371882008-08-21 00:14:44 +0000267 << "ULL) /* " << StrVal << " */";
Anton Korobeynikov50276522008-04-23 22:29:24 +0000268 else
Owen Andersoncb371882008-08-21 00:14:44 +0000269 Out << "BitsToFloat(0x"
Dale Johannesen7111b022008-10-09 18:53:47 +0000270 << utohexstr((uint32_t)CFP->getValueAPF().
271 bitcastToAPInt().getZExtValue())
Owen Andersoncb371882008-08-21 00:14:44 +0000272 << "U) /* " << StrVal << " */";
Anton Korobeynikov50276522008-04-23 22:29:24 +0000273 Out << ")";
274#if HAVE_PRINTF_A
275 }
276#endif
277 Out << ")";
278 }
279
280 void CppWriter::printCallingConv(unsigned cc){
281 // Print the calling convention.
282 switch (cc) {
283 case CallingConv::C: Out << "CallingConv::C"; break;
284 case CallingConv::Fast: Out << "CallingConv::Fast"; break;
285 case CallingConv::Cold: Out << "CallingConv::Cold"; break;
286 case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
287 default: Out << cc; break;
288 }
289 }
290
291 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
292 switch (LT) {
293 case GlobalValue::InternalLinkage:
294 Out << "GlobalValue::InternalLinkage"; break;
295 case GlobalValue::LinkOnceLinkage:
296 Out << "GlobalValue::LinkOnceLinkage "; break;
297 case GlobalValue::WeakLinkage:
298 Out << "GlobalValue::WeakLinkage"; break;
299 case GlobalValue::AppendingLinkage:
300 Out << "GlobalValue::AppendingLinkage"; break;
301 case GlobalValue::ExternalLinkage:
302 Out << "GlobalValue::ExternalLinkage"; break;
303 case GlobalValue::DLLImportLinkage:
304 Out << "GlobalValue::DLLImportLinkage"; break;
305 case GlobalValue::DLLExportLinkage:
306 Out << "GlobalValue::DLLExportLinkage"; break;
307 case GlobalValue::ExternalWeakLinkage:
308 Out << "GlobalValue::ExternalWeakLinkage"; break;
309 case GlobalValue::GhostLinkage:
310 Out << "GlobalValue::GhostLinkage"; break;
Dale Johannesenaafce772008-05-14 20:12:51 +0000311 case GlobalValue::CommonLinkage:
312 Out << "GlobalValue::CommonLinkage"; break;
Anton Korobeynikov50276522008-04-23 22:29:24 +0000313 }
314 }
315
316 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
317 switch (VisType) {
318 default: assert(0 && "Unknown GVar visibility");
319 case GlobalValue::DefaultVisibility:
320 Out << "GlobalValue::DefaultVisibility";
321 break;
322 case GlobalValue::HiddenVisibility:
323 Out << "GlobalValue::HiddenVisibility";
324 break;
325 case GlobalValue::ProtectedVisibility:
326 Out << "GlobalValue::ProtectedVisibility";
327 break;
328 }
329 }
330
331 // printEscapedString - Print each character of the specified string, escaping
332 // it if it is not printable or if it is an escape char.
333 void CppWriter::printEscapedString(const std::string &Str) {
334 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
335 unsigned char C = Str[i];
336 if (isprint(C) && C != '"' && C != '\\') {
337 Out << C;
338 } else {
339 Out << "\\x"
340 << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
341 << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
342 }
343 }
344 }
345
346 std::string CppWriter::getCppName(const Type* Ty) {
347 // First, handle the primitive types .. easy
348 if (Ty->isPrimitiveType() || Ty->isInteger()) {
349 switch (Ty->getTypeID()) {
350 case Type::VoidTyID: return "Type::VoidTy";
351 case Type::IntegerTyID: {
352 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
353 return "IntegerType::get(" + utostr(BitWidth) + ")";
354 }
355 case Type::FloatTyID: return "Type::FloatTy";
356 case Type::DoubleTyID: return "Type::DoubleTy";
357 case Type::LabelTyID: return "Type::LabelTy";
358 default:
359 error("Invalid primitive type");
360 break;
361 }
362 return "Type::VoidTy"; // shouldn't be returned, but make it sensible
363 }
364
365 // Now, see if we've seen the type before and return that
366 TypeMap::iterator I = TypeNames.find(Ty);
367 if (I != TypeNames.end())
368 return I->second;
369
370 // Okay, let's build a new name for this type. Start with a prefix
371 const char* prefix = 0;
372 switch (Ty->getTypeID()) {
373 case Type::FunctionTyID: prefix = "FuncTy_"; break;
374 case Type::StructTyID: prefix = "StructTy_"; break;
375 case Type::ArrayTyID: prefix = "ArrayTy_"; break;
376 case Type::PointerTyID: prefix = "PointerTy_"; break;
377 case Type::OpaqueTyID: prefix = "OpaqueTy_"; break;
378 case Type::VectorTyID: prefix = "VectorTy_"; break;
379 default: prefix = "OtherTy_"; break; // prevent breakage
380 }
381
382 // See if the type has a name in the symboltable and build accordingly
383 const std::string* tName = findTypeName(TheModule->getTypeSymbolTable(), Ty);
384 std::string name;
385 if (tName)
386 name = std::string(prefix) + *tName;
387 else
388 name = std::string(prefix) + utostr(uniqueNum++);
389 sanitize(name);
390
391 // Save the name
392 return TypeNames[Ty] = name;
393 }
394
395 void CppWriter::printCppName(const Type* Ty) {
396 printEscapedString(getCppName(Ty));
397 }
398
399 std::string CppWriter::getCppName(const Value* val) {
400 std::string name;
401 ValueMap::iterator I = ValueNames.find(val);
402 if (I != ValueNames.end() && I->first == val)
403 return I->second;
404
405 if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
406 name = std::string("gvar_") +
407 getTypePrefix(GV->getType()->getElementType());
408 } else if (isa<Function>(val)) {
409 name = std::string("func_");
410 } else if (const Constant* C = dyn_cast<Constant>(val)) {
411 name = std::string("const_") + getTypePrefix(C->getType());
412 } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
413 if (is_inline) {
414 unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
415 Function::const_arg_iterator(Arg)) + 1;
416 name = std::string("arg_") + utostr(argNum);
417 NameSet::iterator NI = UsedNames.find(name);
418 if (NI != UsedNames.end())
419 name += std::string("_") + utostr(uniqueNum++);
420 UsedNames.insert(name);
421 return ValueNames[val] = name;
422 } else {
423 name = getTypePrefix(val->getType());
424 }
425 } else {
426 name = getTypePrefix(val->getType());
427 }
428 name += (val->hasName() ? val->getName() : utostr(uniqueNum++));
429 sanitize(name);
430 NameSet::iterator NI = UsedNames.find(name);
431 if (NI != UsedNames.end())
432 name += std::string("_") + utostr(uniqueNum++);
433 UsedNames.insert(name);
434 return ValueNames[val] = name;
435 }
436
437 void CppWriter::printCppName(const Value* val) {
438 printEscapedString(getCppName(val));
439 }
440
Devang Patel05988662008-09-25 21:00:45 +0000441 void CppWriter::printAttributes(const AttrListPtr &PAL,
Anton Korobeynikov50276522008-04-23 22:29:24 +0000442 const std::string &name) {
Devang Patel05988662008-09-25 21:00:45 +0000443 Out << "AttrListPtr " << name << "_PAL;";
Anton Korobeynikov50276522008-04-23 22:29:24 +0000444 nl(Out);
445 if (!PAL.isEmpty()) {
446 Out << '{'; in(); nl(Out);
Devang Patel05988662008-09-25 21:00:45 +0000447 Out << "SmallVector<AttributeWithIndex, 4> Attrs;"; nl(Out);
448 Out << "AttributeWithIndex PAWI;"; nl(Out);
Anton Korobeynikov50276522008-04-23 22:29:24 +0000449 for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
Nicolas Geoffrayd9afb4d2008-11-08 15:36:01 +0000450 unsigned index = PAL.getSlot(i).Index;
Devang Pateleaf42ab2008-09-23 23:03:40 +0000451 Attributes attrs = PAL.getSlot(i).Attrs;
Nicolas Geoffrayd9afb4d2008-11-08 15:36:01 +0000452 Out << "PAWI.Index = " << index << "U; PAWI.Attrs = 0 ";
Chris Lattneracca9552009-01-13 07:22:22 +0000453#define HANDLE_ATTR(X) \
454 if (attrs & Attribute::X) \
455 Out << " | Attribute::" #X; \
456 attrs &= ~Attribute::X;
457
458 HANDLE_ATTR(SExt);
459 HANDLE_ATTR(ZExt);
460 HANDLE_ATTR(StructRet);
461 HANDLE_ATTR(InReg);
462 HANDLE_ATTR(NoReturn);
463 HANDLE_ATTR(NoUnwind);
464 HANDLE_ATTR(ByVal);
465 HANDLE_ATTR(NoAlias);
466 HANDLE_ATTR(Nest);
467 HANDLE_ATTR(ReadNone);
468 HANDLE_ATTR(ReadOnly);
469 HANDLE_ATTR(NoCapture);
470#undef HANDLE_ATTR
471 assert(attrs == 0 && "Unhandled attribute!");
Anton Korobeynikov50276522008-04-23 22:29:24 +0000472 Out << ";";
473 nl(Out);
474 Out << "Attrs.push_back(PAWI);";
475 nl(Out);
476 }
Devang Patel05988662008-09-25 21:00:45 +0000477 Out << name << "_PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());";
Anton Korobeynikov50276522008-04-23 22:29:24 +0000478 nl(Out);
479 out(); nl(Out);
480 Out << '}'; nl(Out);
481 }
482 }
483
484 bool CppWriter::printTypeInternal(const Type* Ty) {
485 // We don't print definitions for primitive types
486 if (Ty->isPrimitiveType() || Ty->isInteger())
487 return false;
488
489 // If we already defined this type, we don't need to define it again.
490 if (DefinedTypes.find(Ty) != DefinedTypes.end())
491 return false;
492
493 // Everything below needs the name for the type so get it now.
494 std::string typeName(getCppName(Ty));
495
496 // Search the type stack for recursion. If we find it, then generate this
497 // as an OpaqueType, but make sure not to do this multiple times because
498 // the type could appear in multiple places on the stack. Once the opaque
499 // definition is issued, it must not be re-issued. Consequently we have to
500 // check the UnresolvedTypes list as well.
501 TypeList::const_iterator TI = std::find(TypeStack.begin(), TypeStack.end(),
502 Ty);
503 if (TI != TypeStack.end()) {
504 TypeMap::const_iterator I = UnresolvedTypes.find(Ty);
505 if (I == UnresolvedTypes.end()) {
506 Out << "PATypeHolder " << typeName << "_fwd = OpaqueType::get();";
507 nl(Out);
508 UnresolvedTypes[Ty] = typeName;
509 }
510 return true;
511 }
512
513 // We're going to print a derived type which, by definition, contains other
514 // types. So, push this one we're printing onto the type stack to assist with
515 // recursive definitions.
516 TypeStack.push_back(Ty);
517
518 // Print the type definition
519 switch (Ty->getTypeID()) {
520 case Type::FunctionTyID: {
521 const FunctionType* FT = cast<FunctionType>(Ty);
522 Out << "std::vector<const Type*>" << typeName << "_args;";
523 nl(Out);
524 FunctionType::param_iterator PI = FT->param_begin();
525 FunctionType::param_iterator PE = FT->param_end();
526 for (; PI != PE; ++PI) {
527 const Type* argTy = static_cast<const Type*>(*PI);
528 bool isForward = printTypeInternal(argTy);
529 std::string argName(getCppName(argTy));
530 Out << typeName << "_args.push_back(" << argName;
531 if (isForward)
532 Out << "_fwd";
533 Out << ");";
534 nl(Out);
535 }
536 bool isForward = printTypeInternal(FT->getReturnType());
537 std::string retTypeName(getCppName(FT->getReturnType()));
538 Out << "FunctionType* " << typeName << " = FunctionType::get(";
539 in(); nl(Out) << "/*Result=*/" << retTypeName;
540 if (isForward)
541 Out << "_fwd";
542 Out << ",";
543 nl(Out) << "/*Params=*/" << typeName << "_args,";
544 nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
545 out();
546 nl(Out);
547 break;
548 }
549 case Type::StructTyID: {
550 const StructType* ST = cast<StructType>(Ty);
551 Out << "std::vector<const Type*>" << typeName << "_fields;";
552 nl(Out);
553 StructType::element_iterator EI = ST->element_begin();
554 StructType::element_iterator EE = ST->element_end();
555 for (; EI != EE; ++EI) {
556 const Type* fieldTy = static_cast<const Type*>(*EI);
557 bool isForward = printTypeInternal(fieldTy);
558 std::string fieldName(getCppName(fieldTy));
559 Out << typeName << "_fields.push_back(" << fieldName;
560 if (isForward)
561 Out << "_fwd";
562 Out << ");";
563 nl(Out);
564 }
565 Out << "StructType* " << typeName << " = StructType::get("
566 << typeName << "_fields, /*isPacked=*/"
567 << (ST->isPacked() ? "true" : "false") << ");";
568 nl(Out);
569 break;
570 }
571 case Type::ArrayTyID: {
572 const ArrayType* AT = cast<ArrayType>(Ty);
573 const Type* ET = AT->getElementType();
574 bool isForward = printTypeInternal(ET);
575 std::string elemName(getCppName(ET));
576 Out << "ArrayType* " << typeName << " = ArrayType::get("
577 << elemName << (isForward ? "_fwd" : "")
578 << ", " << utostr(AT->getNumElements()) << ");";
579 nl(Out);
580 break;
581 }
582 case Type::PointerTyID: {
583 const PointerType* PT = cast<PointerType>(Ty);
584 const Type* ET = PT->getElementType();
585 bool isForward = printTypeInternal(ET);
586 std::string elemName(getCppName(ET));
587 Out << "PointerType* " << typeName << " = PointerType::get("
588 << elemName << (isForward ? "_fwd" : "")
589 << ", " << utostr(PT->getAddressSpace()) << ");";
590 nl(Out);
591 break;
592 }
593 case Type::VectorTyID: {
594 const VectorType* PT = cast<VectorType>(Ty);
595 const Type* ET = PT->getElementType();
596 bool isForward = printTypeInternal(ET);
597 std::string elemName(getCppName(ET));
598 Out << "VectorType* " << typeName << " = VectorType::get("
599 << elemName << (isForward ? "_fwd" : "")
600 << ", " << utostr(PT->getNumElements()) << ");";
601 nl(Out);
602 break;
603 }
604 case Type::OpaqueTyID: {
605 Out << "OpaqueType* " << typeName << " = OpaqueType::get();";
606 nl(Out);
607 break;
608 }
609 default:
610 error("Invalid TypeID");
611 }
612
613 // If the type had a name, make sure we recreate it.
614 const std::string* progTypeName =
615 findTypeName(TheModule->getTypeSymbolTable(),Ty);
616 if (progTypeName) {
617 Out << "mod->addTypeName(\"" << *progTypeName << "\", "
618 << typeName << ");";
619 nl(Out);
620 }
621
622 // Pop us off the type stack
623 TypeStack.pop_back();
624
625 // Indicate that this type is now defined.
626 DefinedTypes.insert(Ty);
627
628 // Early resolve as many unresolved types as possible. Search the unresolved
629 // types map for the type we just printed. Now that its definition is complete
630 // we can resolve any previous references to it. This prevents a cascade of
631 // unresolved types.
632 TypeMap::iterator I = UnresolvedTypes.find(Ty);
633 if (I != UnresolvedTypes.end()) {
634 Out << "cast<OpaqueType>(" << I->second
635 << "_fwd.get())->refineAbstractTypeTo(" << I->second << ");";
636 nl(Out);
637 Out << I->second << " = cast<";
638 switch (Ty->getTypeID()) {
639 case Type::FunctionTyID: Out << "FunctionType"; break;
640 case Type::ArrayTyID: Out << "ArrayType"; break;
641 case Type::StructTyID: Out << "StructType"; break;
642 case Type::VectorTyID: Out << "VectorType"; break;
643 case Type::PointerTyID: Out << "PointerType"; break;
644 case Type::OpaqueTyID: Out << "OpaqueType"; break;
645 default: Out << "NoSuchDerivedType"; break;
646 }
647 Out << ">(" << I->second << "_fwd.get());";
648 nl(Out); nl(Out);
649 UnresolvedTypes.erase(I);
650 }
651
652 // Finally, separate the type definition from other with a newline.
653 nl(Out);
654
655 // We weren't a recursive type
656 return false;
657 }
658
659 // Prints a type definition. Returns true if it could not resolve all the
660 // types in the definition but had to use a forward reference.
661 void CppWriter::printType(const Type* Ty) {
662 assert(TypeStack.empty());
663 TypeStack.clear();
664 printTypeInternal(Ty);
665 assert(TypeStack.empty());
666 }
667
668 void CppWriter::printTypes(const Module* M) {
669 // Walk the symbol table and print out all its types
670 const TypeSymbolTable& symtab = M->getTypeSymbolTable();
671 for (TypeSymbolTable::const_iterator TI = symtab.begin(), TE = symtab.end();
672 TI != TE; ++TI) {
673
674 // For primitive types and types already defined, just add a name
675 TypeMap::const_iterator TNI = TypeNames.find(TI->second);
676 if (TI->second->isInteger() || TI->second->isPrimitiveType() ||
677 TNI != TypeNames.end()) {
678 Out << "mod->addTypeName(\"";
679 printEscapedString(TI->first);
680 Out << "\", " << getCppName(TI->second) << ");";
681 nl(Out);
682 // For everything else, define the type
683 } else {
684 printType(TI->second);
685 }
686 }
687
688 // Add all of the global variables to the value table...
689 for (Module::const_global_iterator I = TheModule->global_begin(),
690 E = TheModule->global_end(); I != E; ++I) {
691 if (I->hasInitializer())
692 printType(I->getInitializer()->getType());
693 printType(I->getType());
694 }
695
696 // Add all the functions to the table
697 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
698 FI != FE; ++FI) {
699 printType(FI->getReturnType());
700 printType(FI->getFunctionType());
701 // Add all the function arguments
702 for (Function::const_arg_iterator AI = FI->arg_begin(),
703 AE = FI->arg_end(); AI != AE; ++AI) {
704 printType(AI->getType());
705 }
706
707 // Add all of the basic blocks and instructions
708 for (Function::const_iterator BB = FI->begin(),
709 E = FI->end(); BB != E; ++BB) {
710 printType(BB->getType());
711 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
712 ++I) {
713 printType(I->getType());
714 for (unsigned i = 0; i < I->getNumOperands(); ++i)
715 printType(I->getOperand(i)->getType());
716 }
717 }
718 }
719 }
720
721
722 // printConstant - Print out a constant pool entry...
723 void CppWriter::printConstant(const Constant *CV) {
724 // First, if the constant is actually a GlobalValue (variable or function)
725 // or its already in the constant list then we've printed it already and we
726 // can just return.
727 if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
728 return;
729
730 std::string constName(getCppName(CV));
731 std::string typeName(getCppName(CV->getType()));
Anton Korobeynikovff4ca2e2008-10-05 15:07:06 +0000732
Anton Korobeynikov50276522008-04-23 22:29:24 +0000733 if (isa<GlobalValue>(CV)) {
734 // Skip variables and functions, we emit them elsewhere
735 return;
736 }
Anton Korobeynikovff4ca2e2008-10-05 15:07:06 +0000737
Anton Korobeynikov50276522008-04-23 22:29:24 +0000738 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
Anton Korobeynikov70053c32008-08-18 20:03:45 +0000739 std::string constValue = CI->getValue().toString(10, true);
Anton Korobeynikov50276522008-04-23 22:29:24 +0000740 Out << "ConstantInt* " << constName << " = ConstantInt::get(APInt("
Chris Lattnerfad86b02008-08-17 07:19:36 +0000741 << cast<IntegerType>(CI->getType())->getBitWidth() << ", \""
Anton Korobeynikov70053c32008-08-18 20:03:45 +0000742 << constValue << "\", " << constValue.length() << ", 10));";
Anton Korobeynikov50276522008-04-23 22:29:24 +0000743 } else if (isa<ConstantAggregateZero>(CV)) {
744 Out << "ConstantAggregateZero* " << constName
745 << " = ConstantAggregateZero::get(" << typeName << ");";
746 } else if (isa<ConstantPointerNull>(CV)) {
747 Out << "ConstantPointerNull* " << constName
Anton Korobeynikovff4ca2e2008-10-05 15:07:06 +0000748 << " = ConstantPointerNull::get(" << typeName << ");";
Anton Korobeynikov50276522008-04-23 22:29:24 +0000749 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
750 Out << "ConstantFP* " << constName << " = ";
751 printCFP(CFP);
752 Out << ";";
753 } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
754 if (CA->isString() && CA->getType()->getElementType() == Type::Int8Ty) {
755 Out << "Constant* " << constName << " = ConstantArray::get(\"";
756 std::string tmp = CA->getAsString();
757 bool nullTerminate = false;
758 if (tmp[tmp.length()-1] == 0) {
759 tmp.erase(tmp.length()-1);
760 nullTerminate = true;
761 }
762 printEscapedString(tmp);
763 // Determine if we want null termination or not.
764 if (nullTerminate)
765 Out << "\", true"; // Indicate that the null terminator should be
766 // added.
767 else
768 Out << "\", false";// No null terminator
769 Out << ");";
770 } else {
771 Out << "std::vector<Constant*> " << constName << "_elems;";
772 nl(Out);
773 unsigned N = CA->getNumOperands();
774 for (unsigned i = 0; i < N; ++i) {
775 printConstant(CA->getOperand(i)); // recurse to print operands
776 Out << constName << "_elems.push_back("
777 << getCppName(CA->getOperand(i)) << ");";
778 nl(Out);
779 }
780 Out << "Constant* " << constName << " = ConstantArray::get("
781 << typeName << ", " << constName << "_elems);";
782 }
783 } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
784 Out << "std::vector<Constant*> " << constName << "_fields;";
785 nl(Out);
786 unsigned N = CS->getNumOperands();
787 for (unsigned i = 0; i < N; i++) {
788 printConstant(CS->getOperand(i));
789 Out << constName << "_fields.push_back("
790 << getCppName(CS->getOperand(i)) << ");";
791 nl(Out);
792 }
793 Out << "Constant* " << constName << " = ConstantStruct::get("
794 << typeName << ", " << constName << "_fields);";
795 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
796 Out << "std::vector<Constant*> " << constName << "_elems;";
797 nl(Out);
798 unsigned N = CP->getNumOperands();
799 for (unsigned i = 0; i < N; ++i) {
800 printConstant(CP->getOperand(i));
801 Out << constName << "_elems.push_back("
802 << getCppName(CP->getOperand(i)) << ");";
803 nl(Out);
804 }
805 Out << "Constant* " << constName << " = ConstantVector::get("
806 << typeName << ", " << constName << "_elems);";
807 } else if (isa<UndefValue>(CV)) {
808 Out << "UndefValue* " << constName << " = UndefValue::get("
809 << typeName << ");";
810 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
811 if (CE->getOpcode() == Instruction::GetElementPtr) {
812 Out << "std::vector<Constant*> " << constName << "_indices;";
813 nl(Out);
814 printConstant(CE->getOperand(0));
815 for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
816 printConstant(CE->getOperand(i));
817 Out << constName << "_indices.push_back("
818 << getCppName(CE->getOperand(i)) << ");";
819 nl(Out);
820 }
821 Out << "Constant* " << constName
822 << " = ConstantExpr::getGetElementPtr("
823 << getCppName(CE->getOperand(0)) << ", "
824 << "&" << constName << "_indices[0], "
825 << constName << "_indices.size()"
826 << " );";
827 } else if (CE->isCast()) {
828 printConstant(CE->getOperand(0));
829 Out << "Constant* " << constName << " = ConstantExpr::getCast(";
830 switch (CE->getOpcode()) {
831 default: assert(0 && "Invalid cast opcode");
832 case Instruction::Trunc: Out << "Instruction::Trunc"; break;
833 case Instruction::ZExt: Out << "Instruction::ZExt"; break;
834 case Instruction::SExt: Out << "Instruction::SExt"; break;
835 case Instruction::FPTrunc: Out << "Instruction::FPTrunc"; break;
836 case Instruction::FPExt: Out << "Instruction::FPExt"; break;
837 case Instruction::FPToUI: Out << "Instruction::FPToUI"; break;
838 case Instruction::FPToSI: Out << "Instruction::FPToSI"; break;
839 case Instruction::UIToFP: Out << "Instruction::UIToFP"; break;
840 case Instruction::SIToFP: Out << "Instruction::SIToFP"; break;
841 case Instruction::PtrToInt: Out << "Instruction::PtrToInt"; break;
842 case Instruction::IntToPtr: Out << "Instruction::IntToPtr"; break;
843 case Instruction::BitCast: Out << "Instruction::BitCast"; break;
844 }
845 Out << ", " << getCppName(CE->getOperand(0)) << ", "
846 << getCppName(CE->getType()) << ");";
847 } else {
848 unsigned N = CE->getNumOperands();
849 for (unsigned i = 0; i < N; ++i ) {
850 printConstant(CE->getOperand(i));
851 }
852 Out << "Constant* " << constName << " = ConstantExpr::";
853 switch (CE->getOpcode()) {
854 case Instruction::Add: Out << "getAdd("; break;
855 case Instruction::Sub: Out << "getSub("; break;
856 case Instruction::Mul: Out << "getMul("; break;
857 case Instruction::UDiv: Out << "getUDiv("; break;
858 case Instruction::SDiv: Out << "getSDiv("; break;
859 case Instruction::FDiv: Out << "getFDiv("; break;
860 case Instruction::URem: Out << "getURem("; break;
861 case Instruction::SRem: Out << "getSRem("; break;
862 case Instruction::FRem: Out << "getFRem("; break;
863 case Instruction::And: Out << "getAnd("; break;
864 case Instruction::Or: Out << "getOr("; break;
865 case Instruction::Xor: Out << "getXor("; break;
866 case Instruction::ICmp:
867 Out << "getICmp(ICmpInst::ICMP_";
868 switch (CE->getPredicate()) {
869 case ICmpInst::ICMP_EQ: Out << "EQ"; break;
870 case ICmpInst::ICMP_NE: Out << "NE"; break;
871 case ICmpInst::ICMP_SLT: Out << "SLT"; break;
872 case ICmpInst::ICMP_ULT: Out << "ULT"; break;
873 case ICmpInst::ICMP_SGT: Out << "SGT"; break;
874 case ICmpInst::ICMP_UGT: Out << "UGT"; break;
875 case ICmpInst::ICMP_SLE: Out << "SLE"; break;
876 case ICmpInst::ICMP_ULE: Out << "ULE"; break;
877 case ICmpInst::ICMP_SGE: Out << "SGE"; break;
878 case ICmpInst::ICMP_UGE: Out << "UGE"; break;
879 default: error("Invalid ICmp Predicate");
880 }
881 break;
882 case Instruction::FCmp:
883 Out << "getFCmp(FCmpInst::FCMP_";
884 switch (CE->getPredicate()) {
885 case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
886 case FCmpInst::FCMP_ORD: Out << "ORD"; break;
887 case FCmpInst::FCMP_UNO: Out << "UNO"; break;
888 case FCmpInst::FCMP_OEQ: Out << "OEQ"; break;
889 case FCmpInst::FCMP_UEQ: Out << "UEQ"; break;
890 case FCmpInst::FCMP_ONE: Out << "ONE"; break;
891 case FCmpInst::FCMP_UNE: Out << "UNE"; break;
892 case FCmpInst::FCMP_OLT: Out << "OLT"; break;
893 case FCmpInst::FCMP_ULT: Out << "ULT"; break;
894 case FCmpInst::FCMP_OGT: Out << "OGT"; break;
895 case FCmpInst::FCMP_UGT: Out << "UGT"; break;
896 case FCmpInst::FCMP_OLE: Out << "OLE"; break;
897 case FCmpInst::FCMP_ULE: Out << "ULE"; break;
898 case FCmpInst::FCMP_OGE: Out << "OGE"; break;
899 case FCmpInst::FCMP_UGE: Out << "UGE"; break;
900 case FCmpInst::FCMP_TRUE: Out << "TRUE"; break;
901 default: error("Invalid FCmp Predicate");
902 }
903 break;
904 case Instruction::Shl: Out << "getShl("; break;
905 case Instruction::LShr: Out << "getLShr("; break;
906 case Instruction::AShr: Out << "getAShr("; break;
907 case Instruction::Select: Out << "getSelect("; break;
908 case Instruction::ExtractElement: Out << "getExtractElement("; break;
909 case Instruction::InsertElement: Out << "getInsertElement("; break;
910 case Instruction::ShuffleVector: Out << "getShuffleVector("; break;
911 default:
912 error("Invalid constant expression");
913 break;
914 }
915 Out << getCppName(CE->getOperand(0));
916 for (unsigned i = 1; i < CE->getNumOperands(); ++i)
917 Out << ", " << getCppName(CE->getOperand(i));
918 Out << ");";
919 }
920 } else {
921 error("Bad Constant");
922 Out << "Constant* " << constName << " = 0; ";
923 }
924 nl(Out);
925 }
926
927 void CppWriter::printConstants(const Module* M) {
928 // Traverse all the global variables looking for constant initializers
929 for (Module::const_global_iterator I = TheModule->global_begin(),
930 E = TheModule->global_end(); I != E; ++I)
931 if (I->hasInitializer())
932 printConstant(I->getInitializer());
933
934 // Traverse the LLVM functions looking for constants
935 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
936 FI != FE; ++FI) {
937 // Add all of the basic blocks and instructions
938 for (Function::const_iterator BB = FI->begin(),
939 E = FI->end(); BB != E; ++BB) {
940 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
941 ++I) {
942 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
943 if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
944 printConstant(C);
945 }
946 }
947 }
948 }
949 }
950 }
951
952 void CppWriter::printVariableUses(const GlobalVariable *GV) {
953 nl(Out) << "// Type Definitions";
954 nl(Out);
955 printType(GV->getType());
956 if (GV->hasInitializer()) {
957 Constant* Init = GV->getInitializer();
958 printType(Init->getType());
959 if (Function* F = dyn_cast<Function>(Init)) {
960 nl(Out)<< "/ Function Declarations"; nl(Out);
961 printFunctionHead(F);
962 } else if (GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
963 nl(Out) << "// Global Variable Declarations"; nl(Out);
964 printVariableHead(gv);
965 } else {
966 nl(Out) << "// Constant Definitions"; nl(Out);
967 printConstant(gv);
968 }
969 if (GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
970 nl(Out) << "// Global Variable Definitions"; nl(Out);
971 printVariableBody(gv);
972 }
973 }
974 }
975
976 void CppWriter::printVariableHead(const GlobalVariable *GV) {
977 nl(Out) << "GlobalVariable* " << getCppName(GV);
978 if (is_inline) {
979 Out << " = mod->getGlobalVariable(";
980 printEscapedString(GV->getName());
981 Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
982 nl(Out) << "if (!" << getCppName(GV) << ") {";
983 in(); nl(Out) << getCppName(GV);
984 }
985 Out << " = new GlobalVariable(";
986 nl(Out) << "/*Type=*/";
987 printCppName(GV->getType()->getElementType());
988 Out << ",";
989 nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
990 Out << ",";
991 nl(Out) << "/*Linkage=*/";
992 printLinkageType(GV->getLinkage());
993 Out << ",";
994 nl(Out) << "/*Initializer=*/0, ";
995 if (GV->hasInitializer()) {
996 Out << "// has initializer, specified below";
997 }
998 nl(Out) << "/*Name=*/\"";
999 printEscapedString(GV->getName());
1000 Out << "\",";
1001 nl(Out) << "mod);";
1002 nl(Out);
1003
1004 if (GV->hasSection()) {
1005 printCppName(GV);
1006 Out << "->setSection(\"";
1007 printEscapedString(GV->getSection());
1008 Out << "\");";
1009 nl(Out);
1010 }
1011 if (GV->getAlignment()) {
1012 printCppName(GV);
1013 Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
1014 nl(Out);
1015 }
1016 if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
1017 printCppName(GV);
1018 Out << "->setVisibility(";
1019 printVisibilityType(GV->getVisibility());
1020 Out << ");";
1021 nl(Out);
1022 }
1023 if (is_inline) {
1024 out(); Out << "}"; nl(Out);
1025 }
1026 }
1027
1028 void CppWriter::printVariableBody(const GlobalVariable *GV) {
1029 if (GV->hasInitializer()) {
1030 printCppName(GV);
1031 Out << "->setInitializer(";
1032 Out << getCppName(GV->getInitializer()) << ");";
1033 nl(Out);
1034 }
1035 }
1036
1037 std::string CppWriter::getOpName(Value* V) {
1038 if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
1039 return getCppName(V);
1040
1041 // See if its alread in the map of forward references, if so just return the
1042 // name we already set up for it
1043 ForwardRefMap::const_iterator I = ForwardRefs.find(V);
1044 if (I != ForwardRefs.end())
1045 return I->second;
1046
1047 // This is a new forward reference. Generate a unique name for it
1048 std::string result(std::string("fwdref_") + utostr(uniqueNum++));
1049
1050 // Yes, this is a hack. An Argument is the smallest instantiable value that
1051 // we can make as a placeholder for the real value. We'll replace these
1052 // Argument instances later.
1053 Out << "Argument* " << result << " = new Argument("
1054 << getCppName(V->getType()) << ");";
1055 nl(Out);
1056 ForwardRefs[V] = result;
1057 return result;
1058 }
1059
1060 // printInstruction - This member is called for each Instruction in a function.
1061 void CppWriter::printInstruction(const Instruction *I,
1062 const std::string& bbname) {
1063 std::string iName(getCppName(I));
1064
1065 // Before we emit this instruction, we need to take care of generating any
1066 // forward references. So, we get the names of all the operands in advance
1067 std::string* opNames = new std::string[I->getNumOperands()];
1068 for (unsigned i = 0; i < I->getNumOperands(); i++) {
1069 opNames[i] = getOpName(I->getOperand(i));
1070 }
1071
1072 switch (I->getOpcode()) {
Dan Gohman26825a82008-06-09 14:09:13 +00001073 default:
1074 error("Invalid instruction");
1075 break;
1076
Anton Korobeynikov50276522008-04-23 22:29:24 +00001077 case Instruction::Ret: {
1078 const ReturnInst* ret = cast<ReturnInst>(I);
1079 Out << "ReturnInst::Create("
1080 << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
1081 break;
1082 }
1083 case Instruction::Br: {
1084 const BranchInst* br = cast<BranchInst>(I);
1085 Out << "BranchInst::Create(" ;
1086 if (br->getNumOperands() == 3 ) {
1087 Out << opNames[0] << ", "
1088 << opNames[1] << ", "
1089 << opNames[2] << ", ";
1090
1091 } else if (br->getNumOperands() == 1) {
1092 Out << opNames[0] << ", ";
1093 } else {
1094 error("Branch with 2 operands?");
1095 }
1096 Out << bbname << ");";
1097 break;
1098 }
1099 case Instruction::Switch: {
1100 const SwitchInst* sw = cast<SwitchInst>(I);
1101 Out << "SwitchInst* " << iName << " = SwitchInst::Create("
1102 << opNames[0] << ", "
1103 << opNames[1] << ", "
1104 << sw->getNumCases() << ", " << bbname << ");";
1105 nl(Out);
1106 for (unsigned i = 2; i < sw->getNumOperands(); i += 2 ) {
1107 Out << iName << "->addCase("
1108 << opNames[i] << ", "
1109 << opNames[i+1] << ");";
1110 nl(Out);
1111 }
1112 break;
1113 }
1114 case Instruction::Invoke: {
1115 const InvokeInst* inv = cast<InvokeInst>(I);
1116 Out << "std::vector<Value*> " << iName << "_params;";
1117 nl(Out);
1118 for (unsigned i = 3; i < inv->getNumOperands(); ++i) {
1119 Out << iName << "_params.push_back("
1120 << opNames[i] << ");";
1121 nl(Out);
1122 }
1123 Out << "InvokeInst *" << iName << " = InvokeInst::Create("
1124 << opNames[0] << ", "
1125 << opNames[1] << ", "
1126 << opNames[2] << ", "
1127 << iName << "_params.begin(), " << iName << "_params.end(), \"";
1128 printEscapedString(inv->getName());
1129 Out << "\", " << bbname << ");";
1130 nl(Out) << iName << "->setCallingConv(";
1131 printCallingConv(inv->getCallingConv());
1132 Out << ");";
Devang Patel05988662008-09-25 21:00:45 +00001133 printAttributes(inv->getAttributes(), iName);
1134 Out << iName << "->setAttributes(" << iName << "_PAL);";
Anton Korobeynikov50276522008-04-23 22:29:24 +00001135 nl(Out);
1136 break;
1137 }
1138 case Instruction::Unwind: {
1139 Out << "new UnwindInst("
1140 << bbname << ");";
1141 break;
1142 }
1143 case Instruction::Unreachable:{
1144 Out << "new UnreachableInst("
1145 << bbname << ");";
1146 break;
1147 }
1148 case Instruction::Add:
1149 case Instruction::Sub:
1150 case Instruction::Mul:
1151 case Instruction::UDiv:
1152 case Instruction::SDiv:
1153 case Instruction::FDiv:
1154 case Instruction::URem:
1155 case Instruction::SRem:
1156 case Instruction::FRem:
1157 case Instruction::And:
1158 case Instruction::Or:
1159 case Instruction::Xor:
1160 case Instruction::Shl:
1161 case Instruction::LShr:
1162 case Instruction::AShr:{
Gabor Greif7cbd8a32008-05-16 19:29:10 +00001163 Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
Anton Korobeynikov50276522008-04-23 22:29:24 +00001164 switch (I->getOpcode()) {
1165 case Instruction::Add: Out << "Instruction::Add"; break;
1166 case Instruction::Sub: Out << "Instruction::Sub"; break;
1167 case Instruction::Mul: Out << "Instruction::Mul"; break;
1168 case Instruction::UDiv:Out << "Instruction::UDiv"; break;
1169 case Instruction::SDiv:Out << "Instruction::SDiv"; break;
1170 case Instruction::FDiv:Out << "Instruction::FDiv"; break;
1171 case Instruction::URem:Out << "Instruction::URem"; break;
1172 case Instruction::SRem:Out << "Instruction::SRem"; break;
1173 case Instruction::FRem:Out << "Instruction::FRem"; break;
1174 case Instruction::And: Out << "Instruction::And"; break;
1175 case Instruction::Or: Out << "Instruction::Or"; break;
1176 case Instruction::Xor: Out << "Instruction::Xor"; break;
1177 case Instruction::Shl: Out << "Instruction::Shl"; break;
1178 case Instruction::LShr:Out << "Instruction::LShr"; break;
1179 case Instruction::AShr:Out << "Instruction::AShr"; break;
1180 default: Out << "Instruction::BadOpCode"; break;
1181 }
1182 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1183 printEscapedString(I->getName());
1184 Out << "\", " << bbname << ");";
1185 break;
1186 }
1187 case Instruction::FCmp: {
1188 Out << "FCmpInst* " << iName << " = new FCmpInst(";
1189 switch (cast<FCmpInst>(I)->getPredicate()) {
1190 case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
1191 case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break;
1192 case FCmpInst::FCMP_OGT : Out << "FCmpInst::FCMP_OGT"; break;
1193 case FCmpInst::FCMP_OGE : Out << "FCmpInst::FCMP_OGE"; break;
1194 case FCmpInst::FCMP_OLT : Out << "FCmpInst::FCMP_OLT"; break;
1195 case FCmpInst::FCMP_OLE : Out << "FCmpInst::FCMP_OLE"; break;
1196 case FCmpInst::FCMP_ONE : Out << "FCmpInst::FCMP_ONE"; break;
1197 case FCmpInst::FCMP_ORD : Out << "FCmpInst::FCMP_ORD"; break;
1198 case FCmpInst::FCMP_UNO : Out << "FCmpInst::FCMP_UNO"; break;
1199 case FCmpInst::FCMP_UEQ : Out << "FCmpInst::FCMP_UEQ"; break;
1200 case FCmpInst::FCMP_UGT : Out << "FCmpInst::FCMP_UGT"; break;
1201 case FCmpInst::FCMP_UGE : Out << "FCmpInst::FCMP_UGE"; break;
1202 case FCmpInst::FCMP_ULT : Out << "FCmpInst::FCMP_ULT"; break;
1203 case FCmpInst::FCMP_ULE : Out << "FCmpInst::FCMP_ULE"; break;
1204 case FCmpInst::FCMP_UNE : Out << "FCmpInst::FCMP_UNE"; break;
1205 case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
1206 default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
1207 }
1208 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1209 printEscapedString(I->getName());
1210 Out << "\", " << bbname << ");";
1211 break;
1212 }
1213 case Instruction::ICmp: {
1214 Out << "ICmpInst* " << iName << " = new ICmpInst(";
1215 switch (cast<ICmpInst>(I)->getPredicate()) {
1216 case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break;
1217 case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break;
1218 case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
1219 case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
1220 case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
1221 case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
1222 case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
1223 case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
1224 case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
1225 case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
1226 default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
1227 }
1228 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1229 printEscapedString(I->getName());
1230 Out << "\", " << bbname << ");";
1231 break;
1232 }
1233 case Instruction::Malloc: {
1234 const MallocInst* mallocI = cast<MallocInst>(I);
1235 Out << "MallocInst* " << iName << " = new MallocInst("
1236 << getCppName(mallocI->getAllocatedType()) << ", ";
1237 if (mallocI->isArrayAllocation())
1238 Out << opNames[0] << ", " ;
1239 Out << "\"";
1240 printEscapedString(mallocI->getName());
1241 Out << "\", " << bbname << ");";
1242 if (mallocI->getAlignment())
1243 nl(Out) << iName << "->setAlignment("
1244 << mallocI->getAlignment() << ");";
1245 break;
1246 }
1247 case Instruction::Free: {
1248 Out << "FreeInst* " << iName << " = new FreeInst("
1249 << getCppName(I->getOperand(0)) << ", " << bbname << ");";
1250 break;
1251 }
1252 case Instruction::Alloca: {
1253 const AllocaInst* allocaI = cast<AllocaInst>(I);
1254 Out << "AllocaInst* " << iName << " = new AllocaInst("
1255 << getCppName(allocaI->getAllocatedType()) << ", ";
1256 if (allocaI->isArrayAllocation())
1257 Out << opNames[0] << ", ";
1258 Out << "\"";
1259 printEscapedString(allocaI->getName());
1260 Out << "\", " << bbname << ");";
1261 if (allocaI->getAlignment())
1262 nl(Out) << iName << "->setAlignment("
1263 << allocaI->getAlignment() << ");";
1264 break;
1265 }
1266 case Instruction::Load:{
1267 const LoadInst* load = cast<LoadInst>(I);
1268 Out << "LoadInst* " << iName << " = new LoadInst("
1269 << opNames[0] << ", \"";
1270 printEscapedString(load->getName());
1271 Out << "\", " << (load->isVolatile() ? "true" : "false" )
1272 << ", " << bbname << ");";
1273 break;
1274 }
1275 case Instruction::Store: {
1276 const StoreInst* store = cast<StoreInst>(I);
Anton Korobeynikovb0714db2008-11-09 02:54:13 +00001277 Out << " new StoreInst("
Anton Korobeynikov50276522008-04-23 22:29:24 +00001278 << opNames[0] << ", "
1279 << opNames[1] << ", "
1280 << (store->isVolatile() ? "true" : "false")
1281 << ", " << bbname << ");";
1282 break;
1283 }
1284 case Instruction::GetElementPtr: {
1285 const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
1286 if (gep->getNumOperands() <= 2) {
1287 Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
1288 << opNames[0];
1289 if (gep->getNumOperands() == 2)
1290 Out << ", " << opNames[1];
1291 } else {
1292 Out << "std::vector<Value*> " << iName << "_indices;";
1293 nl(Out);
1294 for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
1295 Out << iName << "_indices.push_back("
1296 << opNames[i] << ");";
1297 nl(Out);
1298 }
1299 Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
1300 << opNames[0] << ", " << iName << "_indices.begin(), "
1301 << iName << "_indices.end()";
1302 }
1303 Out << ", \"";
1304 printEscapedString(gep->getName());
1305 Out << "\", " << bbname << ");";
1306 break;
1307 }
1308 case Instruction::PHI: {
1309 const PHINode* phi = cast<PHINode>(I);
1310
1311 Out << "PHINode* " << iName << " = PHINode::Create("
1312 << getCppName(phi->getType()) << ", \"";
1313 printEscapedString(phi->getName());
1314 Out << "\", " << bbname << ");";
1315 nl(Out) << iName << "->reserveOperandSpace("
1316 << phi->getNumIncomingValues()
1317 << ");";
1318 nl(Out);
1319 for (unsigned i = 0; i < phi->getNumOperands(); i+=2) {
1320 Out << iName << "->addIncoming("
1321 << opNames[i] << ", " << opNames[i+1] << ");";
1322 nl(Out);
1323 }
1324 break;
1325 }
1326 case Instruction::Trunc:
1327 case Instruction::ZExt:
1328 case Instruction::SExt:
1329 case Instruction::FPTrunc:
1330 case Instruction::FPExt:
1331 case Instruction::FPToUI:
1332 case Instruction::FPToSI:
1333 case Instruction::UIToFP:
1334 case Instruction::SIToFP:
1335 case Instruction::PtrToInt:
1336 case Instruction::IntToPtr:
1337 case Instruction::BitCast: {
1338 const CastInst* cst = cast<CastInst>(I);
1339 Out << "CastInst* " << iName << " = new ";
1340 switch (I->getOpcode()) {
1341 case Instruction::Trunc: Out << "TruncInst"; break;
1342 case Instruction::ZExt: Out << "ZExtInst"; break;
1343 case Instruction::SExt: Out << "SExtInst"; break;
1344 case Instruction::FPTrunc: Out << "FPTruncInst"; break;
1345 case Instruction::FPExt: Out << "FPExtInst"; break;
1346 case Instruction::FPToUI: Out << "FPToUIInst"; break;
1347 case Instruction::FPToSI: Out << "FPToSIInst"; break;
1348 case Instruction::UIToFP: Out << "UIToFPInst"; break;
1349 case Instruction::SIToFP: Out << "SIToFPInst"; break;
1350 case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
1351 case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
1352 case Instruction::BitCast: Out << "BitCastInst"; break;
1353 default: assert(!"Unreachable"); break;
1354 }
1355 Out << "(" << opNames[0] << ", "
1356 << getCppName(cst->getType()) << ", \"";
1357 printEscapedString(cst->getName());
1358 Out << "\", " << bbname << ");";
1359 break;
1360 }
1361 case Instruction::Call:{
1362 const CallInst* call = cast<CallInst>(I);
1363 if (InlineAsm* ila = dyn_cast<InlineAsm>(call->getOperand(0))) {
1364 Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
1365 << getCppName(ila->getFunctionType()) << ", \""
1366 << ila->getAsmString() << "\", \""
1367 << ila->getConstraintString() << "\","
1368 << (ila->hasSideEffects() ? "true" : "false") << ");";
1369 nl(Out);
1370 }
1371 if (call->getNumOperands() > 2) {
1372 Out << "std::vector<Value*> " << iName << "_params;";
1373 nl(Out);
1374 for (unsigned i = 1; i < call->getNumOperands(); ++i) {
1375 Out << iName << "_params.push_back(" << opNames[i] << ");";
1376 nl(Out);
1377 }
1378 Out << "CallInst* " << iName << " = CallInst::Create("
1379 << opNames[0] << ", " << iName << "_params.begin(), "
1380 << iName << "_params.end(), \"";
1381 } else if (call->getNumOperands() == 2) {
1382 Out << "CallInst* " << iName << " = CallInst::Create("
1383 << opNames[0] << ", " << opNames[1] << ", \"";
1384 } else {
1385 Out << "CallInst* " << iName << " = CallInst::Create(" << opNames[0]
1386 << ", \"";
1387 }
1388 printEscapedString(call->getName());
1389 Out << "\", " << bbname << ");";
1390 nl(Out) << iName << "->setCallingConv(";
1391 printCallingConv(call->getCallingConv());
1392 Out << ");";
1393 nl(Out) << iName << "->setTailCall("
1394 << (call->isTailCall() ? "true":"false");
1395 Out << ");";
Devang Patel05988662008-09-25 21:00:45 +00001396 printAttributes(call->getAttributes(), iName);
1397 Out << iName << "->setAttributes(" << iName << "_PAL);";
Anton Korobeynikov50276522008-04-23 22:29:24 +00001398 nl(Out);
1399 break;
1400 }
1401 case Instruction::Select: {
1402 const SelectInst* sel = cast<SelectInst>(I);
1403 Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
1404 Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1405 printEscapedString(sel->getName());
1406 Out << "\", " << bbname << ");";
1407 break;
1408 }
1409 case Instruction::UserOp1:
1410 /// FALL THROUGH
1411 case Instruction::UserOp2: {
1412 /// FIXME: What should be done here?
1413 break;
1414 }
1415 case Instruction::VAArg: {
1416 const VAArgInst* va = cast<VAArgInst>(I);
1417 Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
1418 << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
1419 printEscapedString(va->getName());
1420 Out << "\", " << bbname << ");";
1421 break;
1422 }
1423 case Instruction::ExtractElement: {
1424 const ExtractElementInst* eei = cast<ExtractElementInst>(I);
1425 Out << "ExtractElementInst* " << getCppName(eei)
1426 << " = new ExtractElementInst(" << opNames[0]
1427 << ", " << opNames[1] << ", \"";
1428 printEscapedString(eei->getName());
1429 Out << "\", " << bbname << ");";
1430 break;
1431 }
1432 case Instruction::InsertElement: {
1433 const InsertElementInst* iei = cast<InsertElementInst>(I);
1434 Out << "InsertElementInst* " << getCppName(iei)
1435 << " = InsertElementInst::Create(" << opNames[0]
1436 << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1437 printEscapedString(iei->getName());
1438 Out << "\", " << bbname << ");";
1439 break;
1440 }
1441 case Instruction::ShuffleVector: {
1442 const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
1443 Out << "ShuffleVectorInst* " << getCppName(svi)
1444 << " = new ShuffleVectorInst(" << opNames[0]
1445 << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1446 printEscapedString(svi->getName());
1447 Out << "\", " << bbname << ");";
1448 break;
1449 }
Dan Gohman75146a62008-06-09 14:12:10 +00001450 case Instruction::ExtractValue: {
1451 const ExtractValueInst *evi = cast<ExtractValueInst>(I);
1452 Out << "std::vector<unsigned> " << iName << "_indices;";
1453 nl(Out);
1454 for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
1455 Out << iName << "_indices.push_back("
1456 << evi->idx_begin()[i] << ");";
1457 nl(Out);
1458 }
1459 Out << "ExtractValueInst* " << getCppName(evi)
1460 << " = ExtractValueInst::Create(" << opNames[0]
1461 << ", "
1462 << iName << "_indices.begin(), " << iName << "_indices.end(), \"";
1463 printEscapedString(evi->getName());
1464 Out << "\", " << bbname << ");";
1465 break;
1466 }
1467 case Instruction::InsertValue: {
1468 const InsertValueInst *ivi = cast<InsertValueInst>(I);
1469 Out << "std::vector<unsigned> " << iName << "_indices;";
1470 nl(Out);
1471 for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
1472 Out << iName << "_indices.push_back("
1473 << ivi->idx_begin()[i] << ");";
1474 nl(Out);
1475 }
1476 Out << "InsertValueInst* " << getCppName(ivi)
1477 << " = InsertValueInst::Create(" << opNames[0]
1478 << ", " << opNames[1] << ", "
1479 << iName << "_indices.begin(), " << iName << "_indices.end(), \"";
1480 printEscapedString(ivi->getName());
1481 Out << "\", " << bbname << ");";
1482 break;
1483 }
Anton Korobeynikov50276522008-04-23 22:29:24 +00001484 }
1485 DefinedValues.insert(I);
1486 nl(Out);
1487 delete [] opNames;
1488}
1489
1490 // Print out the types, constants and declarations needed by one function
1491 void CppWriter::printFunctionUses(const Function* F) {
1492 nl(Out) << "// Type Definitions"; nl(Out);
1493 if (!is_inline) {
1494 // Print the function's return type
1495 printType(F->getReturnType());
1496
1497 // Print the function's function type
1498 printType(F->getFunctionType());
1499
1500 // Print the types of each of the function's arguments
1501 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1502 AI != AE; ++AI) {
1503 printType(AI->getType());
1504 }
1505 }
1506
1507 // Print type definitions for every type referenced by an instruction and
1508 // make a note of any global values or constants that are referenced
1509 SmallPtrSet<GlobalValue*,64> gvs;
1510 SmallPtrSet<Constant*,64> consts;
1511 for (Function::const_iterator BB = F->begin(), BE = F->end();
1512 BB != BE; ++BB){
1513 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1514 I != E; ++I) {
1515 // Print the type of the instruction itself
1516 printType(I->getType());
1517
1518 // Print the type of each of the instruction's operands
1519 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1520 Value* operand = I->getOperand(i);
1521 printType(operand->getType());
1522
1523 // If the operand references a GVal or Constant, make a note of it
1524 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1525 gvs.insert(GV);
1526 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1527 if (GVar->hasInitializer())
1528 consts.insert(GVar->getInitializer());
1529 } else if (Constant* C = dyn_cast<Constant>(operand))
1530 consts.insert(C);
1531 }
1532 }
1533 }
1534
1535 // Print the function declarations for any functions encountered
1536 nl(Out) << "// Function Declarations"; nl(Out);
1537 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1538 I != E; ++I) {
1539 if (Function* Fun = dyn_cast<Function>(*I)) {
1540 if (!is_inline || Fun != F)
1541 printFunctionHead(Fun);
1542 }
1543 }
1544
1545 // Print the global variable declarations for any variables encountered
1546 nl(Out) << "// Global Variable Declarations"; nl(Out);
1547 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1548 I != E; ++I) {
1549 if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I))
1550 printVariableHead(F);
1551 }
1552
1553 // Print the constants found
1554 nl(Out) << "// Constant Definitions"; nl(Out);
1555 for (SmallPtrSet<Constant*,64>::iterator I = consts.begin(),
1556 E = consts.end(); I != E; ++I) {
1557 printConstant(*I);
1558 }
1559
1560 // Process the global variables definitions now that all the constants have
1561 // been emitted. These definitions just couple the gvars with their constant
1562 // initializers.
1563 nl(Out) << "// Global Variable Definitions"; nl(Out);
1564 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1565 I != E; ++I) {
1566 if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I))
1567 printVariableBody(GV);
1568 }
1569 }
1570
1571 void CppWriter::printFunctionHead(const Function* F) {
1572 nl(Out) << "Function* " << getCppName(F);
1573 if (is_inline) {
1574 Out << " = mod->getFunction(\"";
1575 printEscapedString(F->getName());
1576 Out << "\", " << getCppName(F->getFunctionType()) << ");";
1577 nl(Out) << "if (!" << getCppName(F) << ") {";
1578 nl(Out) << getCppName(F);
1579 }
1580 Out<< " = Function::Create(";
1581 nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
1582 nl(Out) << "/*Linkage=*/";
1583 printLinkageType(F->getLinkage());
1584 Out << ",";
1585 nl(Out) << "/*Name=*/\"";
1586 printEscapedString(F->getName());
1587 Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
1588 nl(Out,-1);
1589 printCppName(F);
1590 Out << "->setCallingConv(";
1591 printCallingConv(F->getCallingConv());
1592 Out << ");";
1593 nl(Out);
1594 if (F->hasSection()) {
1595 printCppName(F);
1596 Out << "->setSection(\"" << F->getSection() << "\");";
1597 nl(Out);
1598 }
1599 if (F->getAlignment()) {
1600 printCppName(F);
1601 Out << "->setAlignment(" << F->getAlignment() << ");";
1602 nl(Out);
1603 }
1604 if (F->getVisibility() != GlobalValue::DefaultVisibility) {
1605 printCppName(F);
1606 Out << "->setVisibility(";
1607 printVisibilityType(F->getVisibility());
1608 Out << ");";
1609 nl(Out);
1610 }
Gordon Henriksen5eca0752008-08-17 18:44:35 +00001611 if (F->hasGC()) {
Anton Korobeynikov50276522008-04-23 22:29:24 +00001612 printCppName(F);
Gordon Henriksen5eca0752008-08-17 18:44:35 +00001613 Out << "->setGC(\"" << F->getGC() << "\");";
Anton Korobeynikov50276522008-04-23 22:29:24 +00001614 nl(Out);
1615 }
1616 if (is_inline) {
1617 Out << "}";
1618 nl(Out);
1619 }
Devang Patel05988662008-09-25 21:00:45 +00001620 printAttributes(F->getAttributes(), getCppName(F));
Anton Korobeynikov50276522008-04-23 22:29:24 +00001621 printCppName(F);
Devang Patel05988662008-09-25 21:00:45 +00001622 Out << "->setAttributes(" << getCppName(F) << "_PAL);";
Anton Korobeynikov50276522008-04-23 22:29:24 +00001623 nl(Out);
1624 }
1625
1626 void CppWriter::printFunctionBody(const Function *F) {
1627 if (F->isDeclaration())
1628 return; // external functions have no bodies.
1629
1630 // Clear the DefinedValues and ForwardRefs maps because we can't have
1631 // cross-function forward refs
1632 ForwardRefs.clear();
1633 DefinedValues.clear();
1634
1635 // Create all the argument values
1636 if (!is_inline) {
1637 if (!F->arg_empty()) {
1638 Out << "Function::arg_iterator args = " << getCppName(F)
1639 << "->arg_begin();";
1640 nl(Out);
1641 }
1642 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1643 AI != AE; ++AI) {
1644 Out << "Value* " << getCppName(AI) << " = args++;";
1645 nl(Out);
1646 if (AI->hasName()) {
1647 Out << getCppName(AI) << "->setName(\"" << AI->getName() << "\");";
1648 nl(Out);
1649 }
1650 }
1651 }
1652
1653 // Create all the basic blocks
1654 nl(Out);
1655 for (Function::const_iterator BI = F->begin(), BE = F->end();
1656 BI != BE; ++BI) {
1657 std::string bbname(getCppName(BI));
1658 Out << "BasicBlock* " << bbname << " = BasicBlock::Create(\"";
1659 if (BI->hasName())
1660 printEscapedString(BI->getName());
1661 Out << "\"," << getCppName(BI->getParent()) << ",0);";
1662 nl(Out);
1663 }
1664
1665 // Output all of its basic blocks... for the function
1666 for (Function::const_iterator BI = F->begin(), BE = F->end();
1667 BI != BE; ++BI) {
1668 std::string bbname(getCppName(BI));
1669 nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
1670 nl(Out);
1671
1672 // Output all of the instructions in the basic block...
1673 for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
1674 I != E; ++I) {
1675 printInstruction(I,bbname);
1676 }
1677 }
1678
1679 // Loop over the ForwardRefs and resolve them now that all instructions
1680 // are generated.
1681 if (!ForwardRefs.empty()) {
1682 nl(Out) << "// Resolve Forward References";
1683 nl(Out);
1684 }
1685
1686 while (!ForwardRefs.empty()) {
1687 ForwardRefMap::iterator I = ForwardRefs.begin();
1688 Out << I->second << "->replaceAllUsesWith("
1689 << getCppName(I->first) << "); delete " << I->second << ";";
1690 nl(Out);
1691 ForwardRefs.erase(I);
1692 }
1693 }
1694
1695 void CppWriter::printInline(const std::string& fname,
1696 const std::string& func) {
1697 const Function* F = TheModule->getFunction(func);
1698 if (!F) {
1699 error(std::string("Function '") + func + "' not found in input module");
1700 return;
1701 }
1702 if (F->isDeclaration()) {
1703 error(std::string("Function '") + func + "' is external!");
1704 return;
1705 }
1706 nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
1707 << getCppName(F);
1708 unsigned arg_count = 1;
1709 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1710 AI != AE; ++AI) {
1711 Out << ", Value* arg_" << arg_count;
1712 }
1713 Out << ") {";
1714 nl(Out);
1715 is_inline = true;
1716 printFunctionUses(F);
1717 printFunctionBody(F);
1718 is_inline = false;
1719 Out << "return " << getCppName(F->begin()) << ";";
1720 nl(Out) << "}";
1721 nl(Out);
1722 }
1723
1724 void CppWriter::printModuleBody() {
1725 // Print out all the type definitions
1726 nl(Out) << "// Type Definitions"; nl(Out);
1727 printTypes(TheModule);
1728
1729 // Functions can call each other and global variables can reference them so
1730 // define all the functions first before emitting their function bodies.
1731 nl(Out) << "// Function Declarations"; nl(Out);
1732 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1733 I != E; ++I)
1734 printFunctionHead(I);
1735
1736 // Process the global variables declarations. We can't initialze them until
1737 // after the constants are printed so just print a header for each global
1738 nl(Out) << "// Global Variable Declarations\n"; nl(Out);
1739 for (Module::const_global_iterator I = TheModule->global_begin(),
1740 E = TheModule->global_end(); I != E; ++I) {
1741 printVariableHead(I);
1742 }
1743
1744 // Print out all the constants definitions. Constants don't recurse except
1745 // through GlobalValues. All GlobalValues have been declared at this point
1746 // so we can proceed to generate the constants.
1747 nl(Out) << "// Constant Definitions"; nl(Out);
1748 printConstants(TheModule);
1749
1750 // Process the global variables definitions now that all the constants have
1751 // been emitted. These definitions just couple the gvars with their constant
1752 // initializers.
1753 nl(Out) << "// Global Variable Definitions"; nl(Out);
1754 for (Module::const_global_iterator I = TheModule->global_begin(),
1755 E = TheModule->global_end(); I != E; ++I) {
1756 printVariableBody(I);
1757 }
1758
1759 // Finally, we can safely put out all of the function bodies.
1760 nl(Out) << "// Function Definitions"; nl(Out);
1761 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1762 I != E; ++I) {
1763 if (!I->isDeclaration()) {
1764 nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
1765 << ")";
1766 nl(Out) << "{";
1767 nl(Out,1);
1768 printFunctionBody(I);
1769 nl(Out,-1) << "}";
1770 nl(Out);
1771 }
1772 }
1773 }
1774
1775 void CppWriter::printProgram(const std::string& fname,
1776 const std::string& mName) {
1777 Out << "#include <llvm/Module.h>\n";
1778 Out << "#include <llvm/DerivedTypes.h>\n";
1779 Out << "#include <llvm/Constants.h>\n";
1780 Out << "#include <llvm/GlobalVariable.h>\n";
1781 Out << "#include <llvm/Function.h>\n";
1782 Out << "#include <llvm/CallingConv.h>\n";
1783 Out << "#include <llvm/BasicBlock.h>\n";
1784 Out << "#include <llvm/Instructions.h>\n";
1785 Out << "#include <llvm/InlineAsm.h>\n";
1786 Out << "#include <llvm/Support/MathExtras.h>\n";
Dan Gohmanf9231292008-12-08 07:07:24 +00001787 Out << "#include <llvm/Support/raw_ostream.h>\n";
Anton Korobeynikov50276522008-04-23 22:29:24 +00001788 Out << "#include <llvm/Pass.h>\n";
1789 Out << "#include <llvm/PassManager.h>\n";
Nicolas Geoffray9474ede2008-05-14 07:52:03 +00001790 Out << "#include <llvm/ADT/SmallVector.h>\n";
Anton Korobeynikov50276522008-04-23 22:29:24 +00001791 Out << "#include <llvm/Analysis/Verifier.h>\n";
1792 Out << "#include <llvm/Assembly/PrintModulePass.h>\n";
1793 Out << "#include <algorithm>\n";
Anton Korobeynikov50276522008-04-23 22:29:24 +00001794 Out << "using namespace llvm;\n\n";
1795 Out << "Module* " << fname << "();\n\n";
1796 Out << "int main(int argc, char**argv) {\n";
1797 Out << " Module* Mod = " << fname << "();\n";
1798 Out << " verifyModule(*Mod, PrintMessageAction);\n";
Dan Gohmanf9231292008-12-08 07:07:24 +00001799 Out << " errs().flush();\n";
1800 Out << " outs().flush();\n";
Anton Korobeynikov50276522008-04-23 22:29:24 +00001801 Out << " PassManager PM;\n";
Dan Gohmanf9231292008-12-08 07:07:24 +00001802 Out << " PM.add(createPrintModulePass(&outs()));\n";
Anton Korobeynikov50276522008-04-23 22:29:24 +00001803 Out << " PM.run(*Mod);\n";
1804 Out << " return 0;\n";
1805 Out << "}\n\n";
1806 printModule(fname,mName);
1807 }
1808
1809 void CppWriter::printModule(const std::string& fname,
1810 const std::string& mName) {
1811 nl(Out) << "Module* " << fname << "() {";
1812 nl(Out,1) << "// Module Construction";
1813 nl(Out) << "Module* mod = new Module(\"" << mName << "\");";
1814 if (!TheModule->getTargetTriple().empty()) {
1815 nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
1816 }
1817 if (!TheModule->getTargetTriple().empty()) {
1818 nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
1819 << "\");";
1820 }
1821
1822 if (!TheModule->getModuleInlineAsm().empty()) {
1823 nl(Out) << "mod->setModuleInlineAsm(\"";
1824 printEscapedString(TheModule->getModuleInlineAsm());
1825 Out << "\");";
1826 }
1827 nl(Out);
1828
1829 // Loop over the dependent libraries and emit them.
1830 Module::lib_iterator LI = TheModule->lib_begin();
1831 Module::lib_iterator LE = TheModule->lib_end();
1832 while (LI != LE) {
1833 Out << "mod->addLibrary(\"" << *LI << "\");";
1834 nl(Out);
1835 ++LI;
1836 }
1837 printModuleBody();
1838 nl(Out) << "return mod;";
1839 nl(Out,-1) << "}";
1840 nl(Out);
1841 }
1842
1843 void CppWriter::printContents(const std::string& fname,
1844 const std::string& mName) {
1845 Out << "\nModule* " << fname << "(Module *mod) {\n";
1846 Out << "\nmod->setModuleIdentifier(\"" << mName << "\");\n";
1847 printModuleBody();
1848 Out << "\nreturn mod;\n";
1849 Out << "\n}\n";
1850 }
1851
1852 void CppWriter::printFunction(const std::string& fname,
1853 const std::string& funcName) {
1854 const Function* F = TheModule->getFunction(funcName);
1855 if (!F) {
1856 error(std::string("Function '") + funcName + "' not found in input module");
1857 return;
1858 }
1859 Out << "\nFunction* " << fname << "(Module *mod) {\n";
1860 printFunctionUses(F);
1861 printFunctionHead(F);
1862 printFunctionBody(F);
1863 Out << "return " << getCppName(F) << ";\n";
1864 Out << "}\n";
1865 }
1866
1867 void CppWriter::printFunctions() {
1868 const Module::FunctionListType &funcs = TheModule->getFunctionList();
1869 Module::const_iterator I = funcs.begin();
1870 Module::const_iterator IE = funcs.end();
1871
1872 for (; I != IE; ++I) {
1873 const Function &func = *I;
1874 if (!func.isDeclaration()) {
1875 std::string name("define_");
1876 name += func.getName();
1877 printFunction(name, func.getName());
1878 }
1879 }
1880 }
1881
1882 void CppWriter::printVariable(const std::string& fname,
1883 const std::string& varName) {
1884 const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
1885
1886 if (!GV) {
1887 error(std::string("Variable '") + varName + "' not found in input module");
1888 return;
1889 }
1890 Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
1891 printVariableUses(GV);
1892 printVariableHead(GV);
1893 printVariableBody(GV);
1894 Out << "return " << getCppName(GV) << ";\n";
1895 Out << "}\n";
1896 }
1897
1898 void CppWriter::printType(const std::string& fname,
1899 const std::string& typeName) {
1900 const Type* Ty = TheModule->getTypeByName(typeName);
1901 if (!Ty) {
1902 error(std::string("Type '") + typeName + "' not found in input module");
1903 return;
1904 }
1905 Out << "\nType* " << fname << "(Module *mod) {\n";
1906 printType(Ty);
1907 Out << "return " << getCppName(Ty) << ";\n";
1908 Out << "}\n";
1909 }
1910
1911 bool CppWriter::runOnModule(Module &M) {
1912 TheModule = &M;
1913
1914 // Emit a header
1915 Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
1916
1917 // Get the name of the function we're supposed to generate
1918 std::string fname = FuncName.getValue();
1919
1920 // Get the name of the thing we are to generate
1921 std::string tgtname = NameToGenerate.getValue();
1922 if (GenerationType == GenModule ||
1923 GenerationType == GenContents ||
1924 GenerationType == GenProgram ||
1925 GenerationType == GenFunctions) {
1926 if (tgtname == "!bad!") {
1927 if (M.getModuleIdentifier() == "-")
1928 tgtname = "<stdin>";
1929 else
1930 tgtname = M.getModuleIdentifier();
1931 }
1932 } else if (tgtname == "!bad!")
1933 error("You must use the -for option with -gen-{function,variable,type}");
1934
1935 switch (WhatToGenerate(GenerationType)) {
1936 case GenProgram:
1937 if (fname.empty())
1938 fname = "makeLLVMModule";
1939 printProgram(fname,tgtname);
1940 break;
1941 case GenModule:
1942 if (fname.empty())
1943 fname = "makeLLVMModule";
1944 printModule(fname,tgtname);
1945 break;
1946 case GenContents:
1947 if (fname.empty())
1948 fname = "makeLLVMModuleContents";
1949 printContents(fname,tgtname);
1950 break;
1951 case GenFunction:
1952 if (fname.empty())
1953 fname = "makeLLVMFunction";
1954 printFunction(fname,tgtname);
1955 break;
1956 case GenFunctions:
1957 printFunctions();
1958 break;
1959 case GenInline:
1960 if (fname.empty())
1961 fname = "makeLLVMInline";
1962 printInline(fname,tgtname);
1963 break;
1964 case GenVariable:
1965 if (fname.empty())
1966 fname = "makeLLVMVariable";
1967 printVariable(fname,tgtname);
1968 break;
1969 case GenType:
1970 if (fname.empty())
1971 fname = "makeLLVMType";
1972 printType(fname,tgtname);
1973 break;
1974 default:
1975 error("Invalid generation option");
1976 }
1977
1978 return false;
1979 }
1980}
1981
1982char CppWriter::ID = 0;
1983
1984//===----------------------------------------------------------------------===//
1985// External Interface declaration
1986//===----------------------------------------------------------------------===//
1987
1988bool CPPTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
Owen Andersoncb371882008-08-21 00:14:44 +00001989 raw_ostream &o,
Anton Korobeynikov50276522008-04-23 22:29:24 +00001990 CodeGenFileType FileType,
1991 bool Fast) {
1992 if (FileType != TargetMachine::AssemblyFile) return true;
1993 PM.add(new CppWriter(o));
1994 return false;
1995}