blob: 8186a77b0155ab6176f4b610ade7311740eb21f3 [file] [log] [blame]
Chris Lattnerd6b65252001-10-24 01:15:12 +00001//===- Reader.cpp - Code to read bytecode files ---------------------------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner00950542001-06-06 20:29:01 +00009//
10// This library implements the functionality defined in llvm/Bytecode/Reader.h
11//
12// Note that this library should be as fast as possible, reentrant, and
13// threadsafe!!
14//
Chris Lattner00950542001-06-06 20:29:01 +000015// TODO: Allow passing in an option to ignore the symbol table
16//
Chris Lattnerd6b65252001-10-24 01:15:12 +000017//===----------------------------------------------------------------------===//
Chris Lattner00950542001-06-06 20:29:01 +000018
Reid Spencer060d25d2004-06-29 23:29:38 +000019#include "Reader.h"
20#include "llvm/Bytecode/BytecodeHandler.h"
21#include "llvm/BasicBlock.h"
22#include "llvm/Constants.h"
Reid Spencer04cde2c2004-07-04 11:33:49 +000023#include "llvm/Instructions.h"
24#include "llvm/SymbolTable.h"
Chris Lattner00950542001-06-06 20:29:01 +000025#include "llvm/Bytecode/Format.h"
Reid Spencer060d25d2004-06-29 23:29:38 +000026#include "llvm/Support/GetElementPtrTypeIterator.h"
Misha Brukman12c29d12003-09-22 23:38:23 +000027#include "Support/StringExtras.h"
Reid Spencer060d25d2004-06-29 23:29:38 +000028#include <sstream>
29
Chris Lattner29b789b2003-11-19 17:27:18 +000030using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000031
Reid Spencer46b002c2004-07-11 17:28:43 +000032namespace {
33
Reid Spencer060d25d2004-06-29 23:29:38 +000034/// @brief A class for maintaining the slot number definition
Reid Spencer46b002c2004-07-11 17:28:43 +000035/// as a placeholder for the actual definition for forward constants defs.
36class ConstantPlaceHolder : public ConstantExpr {
Reid Spencer060d25d2004-06-29 23:29:38 +000037 unsigned ID;
Reid Spencer46b002c2004-07-11 17:28:43 +000038 ConstantPlaceHolder(); // DO NOT IMPLEMENT
39 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
Reid Spencer060d25d2004-06-29 23:29:38 +000040public:
Reid Spencer46b002c2004-07-11 17:28:43 +000041 ConstantPlaceHolder(const Type *Ty, unsigned id)
42 : ConstantExpr(Instruction::UserOp1, Constant::getNullValue(Ty), Ty),
43 ID(id) {}
Reid Spencer060d25d2004-06-29 23:29:38 +000044 unsigned getID() { return ID; }
45};
Chris Lattner9e460f22003-10-04 20:00:03 +000046
Reid Spencer46b002c2004-07-11 17:28:43 +000047}
Reid Spencer060d25d2004-06-29 23:29:38 +000048
Reid Spencer24399722004-07-09 22:21:33 +000049// Provide some details on error
50inline void BytecodeReader::error(std::string err) {
51 err += " (Vers=" ;
52 err += itostr(RevisionNum) ;
53 err += ", Pos=" ;
54 err += itostr(At-MemStart);
55 err += ")";
56 throw err;
57}
58
Reid Spencer060d25d2004-06-29 23:29:38 +000059//===----------------------------------------------------------------------===//
60// Bytecode Reading Methods
61//===----------------------------------------------------------------------===//
62
Reid Spencer04cde2c2004-07-04 11:33:49 +000063/// Determine if the current block being read contains any more data.
Reid Spencer060d25d2004-06-29 23:29:38 +000064inline bool BytecodeReader::moreInBlock() {
65 return At < BlockEnd;
Chris Lattner00950542001-06-06 20:29:01 +000066}
67
Reid Spencer04cde2c2004-07-04 11:33:49 +000068/// Throw an error if we've read past the end of the current block
Reid Spencer060d25d2004-06-29 23:29:38 +000069inline void BytecodeReader::checkPastBlockEnd(const char * block_name) {
Reid Spencer46b002c2004-07-11 17:28:43 +000070 if (At > BlockEnd)
Reid Spencer24399722004-07-09 22:21:33 +000071 error(std::string("Attempt to read past the end of ") + block_name + " block.");
Reid Spencer060d25d2004-06-29 23:29:38 +000072}
Chris Lattner36392bc2003-10-08 21:18:57 +000073
Reid Spencer04cde2c2004-07-04 11:33:49 +000074/// Align the buffer position to a 32 bit boundary
Reid Spencer060d25d2004-06-29 23:29:38 +000075inline void BytecodeReader::align32() {
76 BufPtr Save = At;
77 At = (const unsigned char *)((unsigned long)(At+3) & (~3UL));
Reid Spencer46b002c2004-07-11 17:28:43 +000078 if (At > Save)
79 if (Handler) Handler->handleAlignment(At - Save);
Reid Spencer060d25d2004-06-29 23:29:38 +000080 if (At > BlockEnd)
Reid Spencer24399722004-07-09 22:21:33 +000081 error("Ran out of data while aligning!");
Reid Spencer060d25d2004-06-29 23:29:38 +000082}
83
Reid Spencer04cde2c2004-07-04 11:33:49 +000084/// Read a whole unsigned integer
Reid Spencer060d25d2004-06-29 23:29:38 +000085inline unsigned BytecodeReader::read_uint() {
86 if (At+4 > BlockEnd)
Reid Spencer24399722004-07-09 22:21:33 +000087 error("Ran out of data reading uint!");
Reid Spencer060d25d2004-06-29 23:29:38 +000088 At += 4;
89 return At[-4] | (At[-3] << 8) | (At[-2] << 16) | (At[-1] << 24);
90}
91
Reid Spencer04cde2c2004-07-04 11:33:49 +000092/// Read a variable-bit-rate encoded unsigned integer
Reid Spencer060d25d2004-06-29 23:29:38 +000093inline unsigned BytecodeReader::read_vbr_uint() {
94 unsigned Shift = 0;
95 unsigned Result = 0;
96 BufPtr Save = At;
97
98 do {
99 if (At == BlockEnd)
Reid Spencer24399722004-07-09 22:21:33 +0000100 error("Ran out of data reading vbr_uint!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000101 Result |= (unsigned)((*At++) & 0x7F) << Shift;
102 Shift += 7;
103 } while (At[-1] & 0x80);
Reid Spencer04cde2c2004-07-04 11:33:49 +0000104 if (Handler) Handler->handleVBR32(At-Save);
Reid Spencer060d25d2004-06-29 23:29:38 +0000105 return Result;
106}
107
Reid Spencer04cde2c2004-07-04 11:33:49 +0000108/// Read a variable-bit-rate encoded unsigned 64-bit integer.
Reid Spencer060d25d2004-06-29 23:29:38 +0000109inline uint64_t BytecodeReader::read_vbr_uint64() {
110 unsigned Shift = 0;
111 uint64_t Result = 0;
112 BufPtr Save = At;
113
114 do {
115 if (At == BlockEnd)
Reid Spencer24399722004-07-09 22:21:33 +0000116 error("Ran out of data reading vbr_uint64!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000117 Result |= (uint64_t)((*At++) & 0x7F) << Shift;
118 Shift += 7;
119 } while (At[-1] & 0x80);
Reid Spencer04cde2c2004-07-04 11:33:49 +0000120 if (Handler) Handler->handleVBR64(At-Save);
Reid Spencer060d25d2004-06-29 23:29:38 +0000121 return Result;
122}
123
Reid Spencer04cde2c2004-07-04 11:33:49 +0000124/// Read a variable-bit-rate encoded signed 64-bit integer.
Reid Spencer060d25d2004-06-29 23:29:38 +0000125inline int64_t BytecodeReader::read_vbr_int64() {
126 uint64_t R = read_vbr_uint64();
127 if (R & 1) {
128 if (R != 1)
129 return -(int64_t)(R >> 1);
130 else // There is no such thing as -0 with integers. "-0" really means
131 // 0x8000000000000000.
132 return 1LL << 63;
133 } else
134 return (int64_t)(R >> 1);
135}
136
Reid Spencer04cde2c2004-07-04 11:33:49 +0000137/// Read a pascal-style string (length followed by text)
Reid Spencer060d25d2004-06-29 23:29:38 +0000138inline std::string BytecodeReader::read_str() {
139 unsigned Size = read_vbr_uint();
140 const unsigned char *OldAt = At;
141 At += Size;
142 if (At > BlockEnd) // Size invalid?
Reid Spencer24399722004-07-09 22:21:33 +0000143 error("Ran out of data reading a string!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000144 return std::string((char*)OldAt, Size);
145}
146
Reid Spencer04cde2c2004-07-04 11:33:49 +0000147/// Read an arbitrary block of data
Reid Spencer060d25d2004-06-29 23:29:38 +0000148inline void BytecodeReader::read_data(void *Ptr, void *End) {
149 unsigned char *Start = (unsigned char *)Ptr;
150 unsigned Amount = (unsigned char *)End - Start;
151 if (At+Amount > BlockEnd)
Reid Spencer24399722004-07-09 22:21:33 +0000152 error("Ran out of data!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000153 std::copy(At, At+Amount, Start);
154 At += Amount;
155}
156
Reid Spencer46b002c2004-07-11 17:28:43 +0000157/// Read a float value in little-endian order
158inline void BytecodeReader::read_float(float& FloatVal) {
Reid Spencerada16182004-07-25 21:36:26 +0000159 /// FIXME: This isn't optimal, it has size problems on some platforms
160 /// where FP is not IEEE.
161 union {
162 float f;
163 uint32_t i;
164 } FloatUnion;
165 FloatUnion.i = At[0] | (At[1] << 8) | (At[2] << 16) | (At[3] << 24);
166 At+=sizeof(uint32_t);
167 FloatVal = FloatUnion.f;
Reid Spencer46b002c2004-07-11 17:28:43 +0000168}
169
170/// Read a double value in little-endian order
171inline void BytecodeReader::read_double(double& DoubleVal) {
Reid Spencerada16182004-07-25 21:36:26 +0000172 /// FIXME: This isn't optimal, it has size problems on some platforms
173 /// where FP is not IEEE.
174 union {
175 double d;
176 uint64_t i;
177 } DoubleUnion;
178 DoubleUnion.i = At[0] | (At[1] << 8) | (At[2] << 16) | (At[3] << 24) |
179 (uint64_t(At[4]) << 32) | (uint64_t(At[5]) << 40) |
180 (uint64_t(At[6]) << 48) | (uint64_t(At[7]) << 56);
181 At+=sizeof(uint64_t);
182 DoubleVal = DoubleUnion.d;
Reid Spencer46b002c2004-07-11 17:28:43 +0000183}
184
Reid Spencer04cde2c2004-07-04 11:33:49 +0000185/// Read a block header and obtain its type and size
Reid Spencer060d25d2004-06-29 23:29:38 +0000186inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) {
Reid Spencerad89bd62004-07-25 18:07:36 +0000187 if ( hasLongBlockHeaders ) {
188 Type = read_uint();
189 Size = read_uint();
190 switch (Type) {
191 case BytecodeFormat::Reserved_DoNotUse :
192 error("Reserved_DoNotUse used as Module Type?");
193 Type = BytecodeFormat::Module; break;
194 case BytecodeFormat::Module:
195 Type = BytecodeFormat::ModuleBlockID; break;
196 case BytecodeFormat::Function:
197 Type = BytecodeFormat::FunctionBlockID; break;
198 case BytecodeFormat::ConstantPool:
199 Type = BytecodeFormat::ConstantPoolBlockID; break;
200 case BytecodeFormat::SymbolTable:
201 Type = BytecodeFormat::SymbolTableBlockID; break;
202 case BytecodeFormat::ModuleGlobalInfo:
203 Type = BytecodeFormat::ModuleGlobalInfoBlockID; break;
204 case BytecodeFormat::GlobalTypePlane:
205 Type = BytecodeFormat::GlobalTypePlaneBlockID; break;
206 case BytecodeFormat::InstructionList:
207 Type = BytecodeFormat::InstructionListBlockID; break;
208 case BytecodeFormat::CompactionTable:
209 Type = BytecodeFormat::CompactionTableBlockID; break;
210 case BytecodeFormat::BasicBlock:
211 /// This block type isn't used after version 1.1. However, we have to
212 /// still allow the value in case this is an old bc format file.
213 /// We just let its value creep thru.
214 break;
215 default:
216 error("Invalid module type found: " + utostr(Type));
217 break;
218 }
219 } else {
220 Size = read_uint();
221 Type = Size & 0x1F; // mask low order five bits
222 Size >>= 5; // get rid of five low order bits, leaving high 27
223 }
Reid Spencer060d25d2004-06-29 23:29:38 +0000224 BlockStart = At;
Reid Spencer46b002c2004-07-11 17:28:43 +0000225 if (At + Size > BlockEnd)
Reid Spencer24399722004-07-09 22:21:33 +0000226 error("Attempt to size a block past end of memory");
Reid Spencer060d25d2004-06-29 23:29:38 +0000227 BlockEnd = At + Size;
Reid Spencer46b002c2004-07-11 17:28:43 +0000228 if (Handler) Handler->handleBlock(Type, BlockStart, Size);
Reid Spencer04cde2c2004-07-04 11:33:49 +0000229}
230
231
232/// In LLVM 1.2 and before, Types were derived from Value and so they were
233/// written as part of the type planes along with any other Value. In LLVM
234/// 1.3 this changed so that Type does not derive from Value. Consequently,
235/// the BytecodeReader's containers for Values can't contain Types because
236/// there's no inheritance relationship. This means that the "Type Type"
237/// plane is defunct along with the Type::TypeTyID TypeID. In LLVM 1.3
238/// whenever a bytecode construct must have both types and values together,
239/// the types are always read/written first and then the Values. Furthermore
240/// since Type::TypeTyID no longer exists, its value (12) now corresponds to
241/// Type::LabelTyID. In order to overcome this we must "sanitize" all the
242/// type TypeIDs we encounter. For LLVM 1.3 bytecode files, there's no change.
243/// For LLVM 1.2 and before, this function will decrement the type id by
244/// one to account for the missing Type::TypeTyID enumerator if the value is
245/// larger than 12 (Type::LabelTyID). If the value is exactly 12, then this
246/// function returns true, otherwise false. This helps detect situations
247/// where the pre 1.3 bytecode is indicating that what follows is a type.
248/// @returns true iff type id corresponds to pre 1.3 "type type"
Reid Spencer46b002c2004-07-11 17:28:43 +0000249inline bool BytecodeReader::sanitizeTypeId(unsigned &TypeId) {
250 if (hasTypeDerivedFromValue) { /// do nothing if 1.3 or later
251 if (TypeId == Type::LabelTyID) {
Reid Spencer04cde2c2004-07-04 11:33:49 +0000252 TypeId = Type::VoidTyID; // sanitize it
253 return true; // indicate we got TypeTyID in pre 1.3 bytecode
Reid Spencer46b002c2004-07-11 17:28:43 +0000254 } else if (TypeId > Type::LabelTyID)
Reid Spencer04cde2c2004-07-04 11:33:49 +0000255 --TypeId; // shift all planes down because type type plane is missing
256 }
257 return false;
258}
259
260/// Reads a vbr uint to read in a type id and does the necessary
261/// conversion on it by calling sanitizeTypeId.
262/// @returns true iff \p TypeId read corresponds to a pre 1.3 "type type"
263/// @see sanitizeTypeId
264inline bool BytecodeReader::read_typeid(unsigned &TypeId) {
265 TypeId = read_vbr_uint();
Reid Spencerad89bd62004-07-25 18:07:36 +0000266 if ( !has32BitTypes )
267 if ( TypeId == 0x00FFFFFF )
268 TypeId = read_vbr_uint();
Reid Spencer04cde2c2004-07-04 11:33:49 +0000269 return sanitizeTypeId(TypeId);
Reid Spencer060d25d2004-06-29 23:29:38 +0000270}
271
272//===----------------------------------------------------------------------===//
273// IR Lookup Methods
274//===----------------------------------------------------------------------===//
275
Reid Spencer04cde2c2004-07-04 11:33:49 +0000276/// Determine if a type id has an implicit null value
Reid Spencer46b002c2004-07-11 17:28:43 +0000277inline bool BytecodeReader::hasImplicitNull(unsigned TyID) {
Reid Spencer060d25d2004-06-29 23:29:38 +0000278 if (!hasExplicitPrimitiveZeros)
Reid Spencer04cde2c2004-07-04 11:33:49 +0000279 return TyID != Type::LabelTyID && TyID != Type::VoidTyID;
Reid Spencer060d25d2004-06-29 23:29:38 +0000280 return TyID >= Type::FirstDerivedTyID;
281}
282
Reid Spencer04cde2c2004-07-04 11:33:49 +0000283/// Obtain a type given a typeid and account for things like compaction tables,
284/// function level vs module level, and the offsetting for the primitive types.
Reid Spencer060d25d2004-06-29 23:29:38 +0000285const Type *BytecodeReader::getType(unsigned ID) {
Chris Lattner89e02532004-01-18 21:08:15 +0000286 if (ID < Type::FirstDerivedTyID)
Chris Lattnerf70c22b2004-06-17 18:19:28 +0000287 if (const Type *T = Type::getPrimitiveType((Type::TypeID)ID))
Chris Lattner927b1852003-10-09 20:22:47 +0000288 return T; // Asked for a primitive type...
Chris Lattner36392bc2003-10-08 21:18:57 +0000289
290 // Otherwise, derived types need offset...
Chris Lattner89e02532004-01-18 21:08:15 +0000291 ID -= Type::FirstDerivedTyID;
292
Reid Spencer060d25d2004-06-29 23:29:38 +0000293 if (!CompactionTypes.empty()) {
294 if (ID >= CompactionTypes.size())
Reid Spencer24399722004-07-09 22:21:33 +0000295 error("Type ID out of range for compaction table!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000296 return CompactionTypes[ID];
Chris Lattner89e02532004-01-18 21:08:15 +0000297 }
Chris Lattner36392bc2003-10-08 21:18:57 +0000298
299 // Is it a module-level type?
Reid Spencer46b002c2004-07-11 17:28:43 +0000300 if (ID < ModuleTypes.size())
301 return ModuleTypes[ID].get();
Chris Lattner36392bc2003-10-08 21:18:57 +0000302
Reid Spencer46b002c2004-07-11 17:28:43 +0000303 // Nope, is it a function-level type?
304 ID -= ModuleTypes.size();
305 if (ID < FunctionTypes.size())
306 return FunctionTypes[ID].get();
Chris Lattner36392bc2003-10-08 21:18:57 +0000307
Reid Spencer46b002c2004-07-11 17:28:43 +0000308 error("Illegal type reference!");
309 return Type::VoidTy;
Chris Lattner00950542001-06-06 20:29:01 +0000310}
311
Reid Spencer04cde2c2004-07-04 11:33:49 +0000312/// Get a sanitized type id. This just makes sure that the \p ID
313/// is both sanitized and not the "type type" of pre-1.3 bytecode.
314/// @see sanitizeTypeId
315inline const Type* BytecodeReader::getSanitizedType(unsigned& ID) {
Reid Spencer46b002c2004-07-11 17:28:43 +0000316 if (sanitizeTypeId(ID))
Reid Spencer24399722004-07-09 22:21:33 +0000317 error("Invalid type id encountered");
Reid Spencer04cde2c2004-07-04 11:33:49 +0000318 return getType(ID);
319}
320
321/// This method just saves some coding. It uses read_typeid to read
Reid Spencer24399722004-07-09 22:21:33 +0000322/// in a sanitized type id, errors that its not the type type, and
Reid Spencer04cde2c2004-07-04 11:33:49 +0000323/// then calls getType to return the type value.
324inline const Type* BytecodeReader::readSanitizedType() {
325 unsigned ID;
Reid Spencer46b002c2004-07-11 17:28:43 +0000326 if (read_typeid(ID))
327 error("Invalid type id encountered");
Reid Spencer04cde2c2004-07-04 11:33:49 +0000328 return getType(ID);
329}
330
331/// Get the slot number associated with a type accounting for primitive
332/// types, compaction tables, and function level vs module level.
Reid Spencer060d25d2004-06-29 23:29:38 +0000333unsigned BytecodeReader::getTypeSlot(const Type *Ty) {
334 if (Ty->isPrimitiveType())
335 return Ty->getTypeID();
336
337 // Scan the compaction table for the type if needed.
338 if (!CompactionTypes.empty()) {
Reid Spencer46b002c2004-07-11 17:28:43 +0000339 std::vector<const Type*>::const_iterator I =
340 find(CompactionTypes.begin(), CompactionTypes.end(), Ty);
Reid Spencer060d25d2004-06-29 23:29:38 +0000341
Reid Spencer46b002c2004-07-11 17:28:43 +0000342 if (I == CompactionTypes.end())
343 error("Couldn't find type specified in compaction table!");
344 return Type::FirstDerivedTyID + (&*I - &CompactionTypes[0]);
Reid Spencer060d25d2004-06-29 23:29:38 +0000345 }
346
347 // Check the function level types first...
348 TypeListTy::iterator I = find(FunctionTypes.begin(), FunctionTypes.end(), Ty);
349
350 if (I != FunctionTypes.end())
Reid Spencer46b002c2004-07-11 17:28:43 +0000351 return Type::FirstDerivedTyID + ModuleTypes.size() +
352 (&*I - &FunctionTypes[0]);
Reid Spencer060d25d2004-06-29 23:29:38 +0000353
354 // Check the module level types now...
355 I = find(ModuleTypes.begin(), ModuleTypes.end(), Ty);
356 if (I == ModuleTypes.end())
Reid Spencer24399722004-07-09 22:21:33 +0000357 error("Didn't find type in ModuleTypes.");
Reid Spencer060d25d2004-06-29 23:29:38 +0000358 return Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]);
Chris Lattner80b97342004-01-17 23:25:43 +0000359}
360
Reid Spencer04cde2c2004-07-04 11:33:49 +0000361/// This is just like getType, but when a compaction table is in use, it is
362/// ignored. It also ignores function level types.
363/// @see getType
Reid Spencer060d25d2004-06-29 23:29:38 +0000364const Type *BytecodeReader::getGlobalTableType(unsigned Slot) {
365 if (Slot < Type::FirstDerivedTyID) {
366 const Type *Ty = Type::getPrimitiveType((Type::TypeID)Slot);
Reid Spencer46b002c2004-07-11 17:28:43 +0000367 if (!Ty)
Reid Spencer24399722004-07-09 22:21:33 +0000368 error("Not a primitive type ID?");
Reid Spencer060d25d2004-06-29 23:29:38 +0000369 return Ty;
370 }
371 Slot -= Type::FirstDerivedTyID;
372 if (Slot >= ModuleTypes.size())
Reid Spencer24399722004-07-09 22:21:33 +0000373 error("Illegal compaction table type reference!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000374 return ModuleTypes[Slot];
Chris Lattner52e20b02003-03-19 20:54:26 +0000375}
376
Reid Spencer04cde2c2004-07-04 11:33:49 +0000377/// This is just like getTypeSlot, but when a compaction table is in use, it
378/// is ignored. It also ignores function level types.
Reid Spencer060d25d2004-06-29 23:29:38 +0000379unsigned BytecodeReader::getGlobalTableTypeSlot(const Type *Ty) {
380 if (Ty->isPrimitiveType())
381 return Ty->getTypeID();
382 TypeListTy::iterator I = find(ModuleTypes.begin(),
Reid Spencer04cde2c2004-07-04 11:33:49 +0000383 ModuleTypes.end(), Ty);
Reid Spencer060d25d2004-06-29 23:29:38 +0000384 if (I == ModuleTypes.end())
Reid Spencer24399722004-07-09 22:21:33 +0000385 error("Didn't find type in ModuleTypes.");
Reid Spencer060d25d2004-06-29 23:29:38 +0000386 return Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]);
387}
388
Reid Spencer04cde2c2004-07-04 11:33:49 +0000389/// Retrieve a value of a given type and slot number, possibly creating
390/// it if it doesn't already exist.
Reid Spencer060d25d2004-06-29 23:29:38 +0000391Value * BytecodeReader::getValue(unsigned type, unsigned oNum, bool Create) {
Chris Lattner4ee8ef22003-10-08 22:52:54 +0000392 assert(type != Type::LabelTyID && "getValue() cannot get blocks!");
Chris Lattner00950542001-06-06 20:29:01 +0000393 unsigned Num = oNum;
Chris Lattner00950542001-06-06 20:29:01 +0000394
Chris Lattner89e02532004-01-18 21:08:15 +0000395 // If there is a compaction table active, it defines the low-level numbers.
396 // If not, the module values define the low-level numbers.
Reid Spencer060d25d2004-06-29 23:29:38 +0000397 if (CompactionValues.size() > type && !CompactionValues[type].empty()) {
398 if (Num < CompactionValues[type].size())
399 return CompactionValues[type][Num];
400 Num -= CompactionValues[type].size();
Chris Lattner89e02532004-01-18 21:08:15 +0000401 } else {
Reid Spencer060d25d2004-06-29 23:29:38 +0000402 // By default, the global type id is the type id passed in
Chris Lattner52f86d62004-01-20 00:54:06 +0000403 unsigned GlobalTyID = type;
Reid Spencer060d25d2004-06-29 23:29:38 +0000404
405 // If the type plane was compactified, figure out the global type ID
406 // by adding the derived type ids and the distance.
Reid Spencer04cde2c2004-07-04 11:33:49 +0000407 if (!CompactionTypes.empty() && type >= Type::FirstDerivedTyID) {
Reid Spencer060d25d2004-06-29 23:29:38 +0000408 const Type *Ty = CompactionTypes[type-Type::FirstDerivedTyID];
409 TypeListTy::iterator I =
Reid Spencer04cde2c2004-07-04 11:33:49 +0000410 find(ModuleTypes.begin(), ModuleTypes.end(), Ty);
Reid Spencer060d25d2004-06-29 23:29:38 +0000411 assert(I != ModuleTypes.end());
412 GlobalTyID = Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]);
Chris Lattner52f86d62004-01-20 00:54:06 +0000413 }
Chris Lattner00950542001-06-06 20:29:01 +0000414
Reid Spencer060d25d2004-06-29 23:29:38 +0000415 if (hasImplicitNull(GlobalTyID)) {
Chris Lattner89e02532004-01-18 21:08:15 +0000416 if (Num == 0)
Reid Spencer04cde2c2004-07-04 11:33:49 +0000417 return Constant::getNullValue(getType(type));
Chris Lattner89e02532004-01-18 21:08:15 +0000418 --Num;
419 }
420
Chris Lattner52f86d62004-01-20 00:54:06 +0000421 if (GlobalTyID < ModuleValues.size() && ModuleValues[GlobalTyID]) {
422 if (Num < ModuleValues[GlobalTyID]->size())
Reid Spencer04cde2c2004-07-04 11:33:49 +0000423 return ModuleValues[GlobalTyID]->getOperand(Num);
Chris Lattner52f86d62004-01-20 00:54:06 +0000424 Num -= ModuleValues[GlobalTyID]->size();
Chris Lattner89e02532004-01-18 21:08:15 +0000425 }
Chris Lattner52e20b02003-03-19 20:54:26 +0000426 }
427
Reid Spencer060d25d2004-06-29 23:29:38 +0000428 if (FunctionValues.size() > type &&
429 FunctionValues[type] &&
430 Num < FunctionValues[type]->size())
431 return FunctionValues[type]->getOperand(Num);
Chris Lattner00950542001-06-06 20:29:01 +0000432
Chris Lattner74734132002-08-17 22:01:27 +0000433 if (!Create) return 0; // Do not create a placeholder?
Chris Lattner00950542001-06-06 20:29:01 +0000434
Chris Lattner8eb10ce2003-10-09 06:05:40 +0000435 std::pair<unsigned,unsigned> KeyValue(type, oNum);
Reid Spencer060d25d2004-06-29 23:29:38 +0000436 ForwardReferenceMap::iterator I = ForwardReferences.lower_bound(KeyValue);
Chris Lattner8eb10ce2003-10-09 06:05:40 +0000437 if (I != ForwardReferences.end() && I->first == KeyValue)
438 return I->second; // We have already created this placeholder
439
Chris Lattnerbf43ac62003-10-09 06:14:26 +0000440 Value *Val = new Argument(getType(type));
Chris Lattner8eb10ce2003-10-09 06:05:40 +0000441 ForwardReferences.insert(I, std::make_pair(KeyValue, Val));
Chris Lattner36392bc2003-10-08 21:18:57 +0000442 return Val;
Chris Lattner00950542001-06-06 20:29:01 +0000443}
444
Reid Spencer04cde2c2004-07-04 11:33:49 +0000445/// This is just like getValue, but when a compaction table is in use, it
446/// is ignored. Also, no forward references or other fancy features are
447/// supported.
Reid Spencer060d25d2004-06-29 23:29:38 +0000448Value* BytecodeReader::getGlobalTableValue(const Type *Ty, unsigned SlotNo) {
449 // FIXME: getTypeSlot is inefficient!
450 unsigned TyID = getGlobalTableTypeSlot(Ty);
451
452 if (TyID != Type::LabelTyID) {
453 if (SlotNo == 0)
454 return Constant::getNullValue(Ty);
455 --SlotNo;
456 }
457
458 if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0 ||
459 SlotNo >= ModuleValues[TyID]->size()) {
Reid Spencer24399722004-07-09 22:21:33 +0000460 error("Corrupt compaction table entry!"
461 + utostr(TyID) + ", " + utostr(SlotNo) + ": "
Reid Spencer46b002c2004-07-11 17:28:43 +0000462 + utostr(ModuleValues.size()) + ", "
Brian Gaeke0859e522004-07-13 07:37:43 +0000463 + utohexstr(intptr_t((void*)ModuleValues[TyID])) + ", "
Reid Spencer46b002c2004-07-11 17:28:43 +0000464 + utostr(ModuleValues[TyID]->size()));
Reid Spencer060d25d2004-06-29 23:29:38 +0000465 }
466 return ModuleValues[TyID]->getOperand(SlotNo);
467}
468
Reid Spencer04cde2c2004-07-04 11:33:49 +0000469/// Just like getValue, except that it returns a null pointer
470/// only on error. It always returns a constant (meaning that if the value is
471/// defined, but is not a constant, that is an error). If the specified
472/// constant hasn't been parsed yet, a placeholder is defined and used.
473/// Later, after the real value is parsed, the placeholder is eliminated.
Reid Spencer060d25d2004-06-29 23:29:38 +0000474Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) {
475 if (Value *V = getValue(TypeSlot, Slot, false))
476 if (Constant *C = dyn_cast<Constant>(V))
477 return C; // If we already have the value parsed, just return it
Reid Spencer060d25d2004-06-29 23:29:38 +0000478 else
Reid Spencera86037e2004-07-18 00:12:03 +0000479 error("Value for slot " + utostr(Slot) +
480 " is expected to be a constant!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000481
482 const Type *Ty = getType(TypeSlot);
483 std::pair<const Type*, unsigned> Key(Ty, Slot);
484 ConstantRefsType::iterator I = ConstantFwdRefs.lower_bound(Key);
485
486 if (I != ConstantFwdRefs.end() && I->first == Key) {
487 return I->second;
488 } else {
489 // Create a placeholder for the constant reference and
490 // keep track of the fact that we have a forward ref to recycle it
Reid Spencer46b002c2004-07-11 17:28:43 +0000491 Constant *C = new ConstantPlaceHolder(Ty, Slot);
Reid Spencer060d25d2004-06-29 23:29:38 +0000492
493 // Keep track of the fact that we have a forward ref to recycle it
494 ConstantFwdRefs.insert(I, std::make_pair(Key, C));
495 return C;
496 }
497}
498
499//===----------------------------------------------------------------------===//
500// IR Construction Methods
501//===----------------------------------------------------------------------===//
502
Reid Spencer04cde2c2004-07-04 11:33:49 +0000503/// As values are created, they are inserted into the appropriate place
504/// with this method. The ValueTable argument must be one of ModuleValues
505/// or FunctionValues data members of this class.
Reid Spencer46b002c2004-07-11 17:28:43 +0000506unsigned BytecodeReader::insertValue(Value *Val, unsigned type,
507 ValueTable &ValueTab) {
Reid Spencer060d25d2004-06-29 23:29:38 +0000508 assert((!isa<Constant>(Val) || !cast<Constant>(Val)->isNullValue()) ||
Reid Spencer04cde2c2004-07-04 11:33:49 +0000509 !hasImplicitNull(type) &&
510 "Cannot read null values from bytecode!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000511
512 if (ValueTab.size() <= type)
513 ValueTab.resize(type+1);
514
515 if (!ValueTab[type]) ValueTab[type] = new ValueList();
516
517 ValueTab[type]->push_back(Val);
518
519 bool HasOffset = hasImplicitNull(type);
520 return ValueTab[type]->size()-1 + HasOffset;
521}
522
Reid Spencer04cde2c2004-07-04 11:33:49 +0000523/// Insert the arguments of a function as new values in the reader.
Reid Spencer46b002c2004-07-11 17:28:43 +0000524void BytecodeReader::insertArguments(Function* F) {
Reid Spencer060d25d2004-06-29 23:29:38 +0000525 const FunctionType *FT = F->getFunctionType();
526 Function::aiterator AI = F->abegin();
527 for (FunctionType::param_iterator It = FT->param_begin();
528 It != FT->param_end(); ++It, ++AI)
529 insertValue(AI, getTypeSlot(AI->getType()), FunctionValues);
530}
531
532//===----------------------------------------------------------------------===//
533// Bytecode Parsing Methods
534//===----------------------------------------------------------------------===//
535
Reid Spencer04cde2c2004-07-04 11:33:49 +0000536/// This method parses a single instruction. The instruction is
537/// inserted at the end of the \p BB provided. The arguments of
538/// the instruction are provided in the \p Args vector.
Reid Spencer060d25d2004-06-29 23:29:38 +0000539void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
Reid Spencer46b002c2004-07-11 17:28:43 +0000540 BasicBlock* BB) {
Reid Spencer060d25d2004-06-29 23:29:38 +0000541 BufPtr SaveAt = At;
542
543 // Clear instruction data
544 Oprnds.clear();
545 unsigned iType = 0;
546 unsigned Opcode = 0;
547 unsigned Op = read_uint();
548
549 // bits Instruction format: Common to all formats
550 // --------------------------
551 // 01-00: Opcode type, fixed to 1.
552 // 07-02: Opcode
553 Opcode = (Op >> 2) & 63;
554 Oprnds.resize((Op >> 0) & 03);
555
556 // Extract the operands
557 switch (Oprnds.size()) {
558 case 1:
559 // bits Instruction format:
560 // --------------------------
561 // 19-08: Resulting type plane
562 // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
563 //
564 iType = (Op >> 8) & 4095;
565 Oprnds[0] = (Op >> 20) & 4095;
566 if (Oprnds[0] == 4095) // Handle special encoding for 0 operands...
567 Oprnds.resize(0);
568 break;
569 case 2:
570 // bits Instruction format:
571 // --------------------------
572 // 15-08: Resulting type plane
573 // 23-16: Operand #1
574 // 31-24: Operand #2
575 //
576 iType = (Op >> 8) & 255;
577 Oprnds[0] = (Op >> 16) & 255;
578 Oprnds[1] = (Op >> 24) & 255;
579 break;
580 case 3:
581 // bits Instruction format:
582 // --------------------------
583 // 13-08: Resulting type plane
584 // 19-14: Operand #1
585 // 25-20: Operand #2
586 // 31-26: Operand #3
587 //
588 iType = (Op >> 8) & 63;
589 Oprnds[0] = (Op >> 14) & 63;
590 Oprnds[1] = (Op >> 20) & 63;
591 Oprnds[2] = (Op >> 26) & 63;
592 break;
593 case 0:
594 At -= 4; // Hrm, try this again...
595 Opcode = read_vbr_uint();
596 Opcode >>= 2;
597 iType = read_vbr_uint();
598
599 unsigned NumOprnds = read_vbr_uint();
600 Oprnds.resize(NumOprnds);
601
602 if (NumOprnds == 0)
Reid Spencer24399722004-07-09 22:21:33 +0000603 error("Zero-argument instruction found; this is invalid.");
Reid Spencer060d25d2004-06-29 23:29:38 +0000604
605 for (unsigned i = 0; i != NumOprnds; ++i)
606 Oprnds[i] = read_vbr_uint();
607 align32();
608 break;
609 }
610
Reid Spencer04cde2c2004-07-04 11:33:49 +0000611 const Type *InstTy = getSanitizedType(iType);
Reid Spencer060d25d2004-06-29 23:29:38 +0000612
Reid Spencer46b002c2004-07-11 17:28:43 +0000613 // We have enough info to inform the handler now.
Reid Spencer04cde2c2004-07-04 11:33:49 +0000614 if (Handler) Handler->handleInstruction(Opcode, InstTy, Oprnds, At-SaveAt);
Reid Spencer060d25d2004-06-29 23:29:38 +0000615
616 // Declare the resulting instruction we'll build.
617 Instruction *Result = 0;
618
619 // Handle binary operators
620 if (Opcode >= Instruction::BinaryOpsBegin &&
621 Opcode < Instruction::BinaryOpsEnd && Oprnds.size() == 2)
622 Result = BinaryOperator::create((Instruction::BinaryOps)Opcode,
623 getValue(iType, Oprnds[0]),
624 getValue(iType, Oprnds[1]));
625
626 switch (Opcode) {
627 default:
Reid Spencer04cde2c2004-07-04 11:33:49 +0000628 if (Result == 0)
Reid Spencer24399722004-07-09 22:21:33 +0000629 error("Illegal instruction read!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000630 break;
631 case Instruction::VAArg:
Reid Spencer04cde2c2004-07-04 11:33:49 +0000632 Result = new VAArgInst(getValue(iType, Oprnds[0]),
Reid Spencer46b002c2004-07-11 17:28:43 +0000633 getSanitizedType(Oprnds[1]));
Reid Spencer060d25d2004-06-29 23:29:38 +0000634 break;
635 case Instruction::VANext:
Reid Spencer04cde2c2004-07-04 11:33:49 +0000636 Result = new VANextInst(getValue(iType, Oprnds[0]),
Reid Spencer46b002c2004-07-11 17:28:43 +0000637 getSanitizedType(Oprnds[1]));
Reid Spencer060d25d2004-06-29 23:29:38 +0000638 break;
639 case Instruction::Cast:
Reid Spencer04cde2c2004-07-04 11:33:49 +0000640 Result = new CastInst(getValue(iType, Oprnds[0]),
Reid Spencer46b002c2004-07-11 17:28:43 +0000641 getSanitizedType(Oprnds[1]));
Reid Spencer060d25d2004-06-29 23:29:38 +0000642 break;
643 case Instruction::Select:
644 Result = new SelectInst(getValue(Type::BoolTyID, Oprnds[0]),
645 getValue(iType, Oprnds[1]),
646 getValue(iType, Oprnds[2]));
647 break;
648 case Instruction::PHI: {
649 if (Oprnds.size() == 0 || (Oprnds.size() & 1))
Reid Spencer24399722004-07-09 22:21:33 +0000650 error("Invalid phi node encountered!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000651
652 PHINode *PN = new PHINode(InstTy);
653 PN->op_reserve(Oprnds.size());
654 for (unsigned i = 0, e = Oprnds.size(); i != e; i += 2)
655 PN->addIncoming(getValue(iType, Oprnds[i]), getBasicBlock(Oprnds[i+1]));
656 Result = PN;
657 break;
658 }
659
660 case Instruction::Shl:
661 case Instruction::Shr:
662 Result = new ShiftInst((Instruction::OtherOps)Opcode,
663 getValue(iType, Oprnds[0]),
664 getValue(Type::UByteTyID, Oprnds[1]));
665 break;
666 case Instruction::Ret:
667 if (Oprnds.size() == 0)
668 Result = new ReturnInst();
669 else if (Oprnds.size() == 1)
670 Result = new ReturnInst(getValue(iType, Oprnds[0]));
671 else
Reid Spencer24399722004-07-09 22:21:33 +0000672 error("Unrecognized instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000673 break;
674
675 case Instruction::Br:
676 if (Oprnds.size() == 1)
677 Result = new BranchInst(getBasicBlock(Oprnds[0]));
678 else if (Oprnds.size() == 3)
679 Result = new BranchInst(getBasicBlock(Oprnds[0]),
Reid Spencer04cde2c2004-07-04 11:33:49 +0000680 getBasicBlock(Oprnds[1]), getValue(Type::BoolTyID , Oprnds[2]));
Reid Spencer060d25d2004-06-29 23:29:38 +0000681 else
Reid Spencer24399722004-07-09 22:21:33 +0000682 error("Invalid number of operands for a 'br' instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000683 break;
684 case Instruction::Switch: {
685 if (Oprnds.size() & 1)
Reid Spencer24399722004-07-09 22:21:33 +0000686 error("Switch statement with odd number of arguments!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000687
688 SwitchInst *I = new SwitchInst(getValue(iType, Oprnds[0]),
689 getBasicBlock(Oprnds[1]));
690 for (unsigned i = 2, e = Oprnds.size(); i != e; i += 2)
691 I->addCase(cast<Constant>(getValue(iType, Oprnds[i])),
692 getBasicBlock(Oprnds[i+1]));
693 Result = I;
694 break;
695 }
696
697 case Instruction::Call: {
698 if (Oprnds.size() == 0)
Reid Spencer24399722004-07-09 22:21:33 +0000699 error("Invalid call instruction encountered!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000700
701 Value *F = getValue(iType, Oprnds[0]);
702
703 // Check to make sure we have a pointer to function type
704 const PointerType *PTy = dyn_cast<PointerType>(F->getType());
Reid Spencer24399722004-07-09 22:21:33 +0000705 if (PTy == 0) error("Call to non function pointer value!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000706 const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
Reid Spencer24399722004-07-09 22:21:33 +0000707 if (FTy == 0) error("Call to non function pointer value!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000708
709 std::vector<Value *> Params;
710 if (!FTy->isVarArg()) {
711 FunctionType::param_iterator It = FTy->param_begin();
712
713 for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
714 if (It == FTy->param_end())
Reid Spencer24399722004-07-09 22:21:33 +0000715 error("Invalid call instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000716 Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
717 }
718 if (It != FTy->param_end())
Reid Spencer24399722004-07-09 22:21:33 +0000719 error("Invalid call instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000720 } else {
721 Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
722
723 unsigned FirstVariableOperand;
724 if (Oprnds.size() < FTy->getNumParams())
Reid Spencer24399722004-07-09 22:21:33 +0000725 error("Call instruction missing operands!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000726
727 // Read all of the fixed arguments
728 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
729 Params.push_back(getValue(getTypeSlot(FTy->getParamType(i)),Oprnds[i]));
730
731 FirstVariableOperand = FTy->getNumParams();
732
733 if ((Oprnds.size()-FirstVariableOperand) & 1) // Must be pairs of type/value
Reid Spencer24399722004-07-09 22:21:33 +0000734 error("Invalid call instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000735
736 for (unsigned i = FirstVariableOperand, e = Oprnds.size();
Reid Spencer04cde2c2004-07-04 11:33:49 +0000737 i != e; i += 2)
Reid Spencer060d25d2004-06-29 23:29:38 +0000738 Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
739 }
740
741 Result = new CallInst(F, Params);
742 break;
743 }
744 case Instruction::Invoke: {
Reid Spencer04cde2c2004-07-04 11:33:49 +0000745 if (Oprnds.size() < 3)
Reid Spencer24399722004-07-09 22:21:33 +0000746 error("Invalid invoke instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000747 Value *F = getValue(iType, Oprnds[0]);
748
749 // Check to make sure we have a pointer to function type
750 const PointerType *PTy = dyn_cast<PointerType>(F->getType());
Reid Spencer04cde2c2004-07-04 11:33:49 +0000751 if (PTy == 0)
Reid Spencer24399722004-07-09 22:21:33 +0000752 error("Invoke to non function pointer value!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000753 const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
Reid Spencer04cde2c2004-07-04 11:33:49 +0000754 if (FTy == 0)
Reid Spencer24399722004-07-09 22:21:33 +0000755 error("Invoke to non function pointer value!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000756
757 std::vector<Value *> Params;
758 BasicBlock *Normal, *Except;
759
760 if (!FTy->isVarArg()) {
761 Normal = getBasicBlock(Oprnds[1]);
762 Except = getBasicBlock(Oprnds[2]);
763
764 FunctionType::param_iterator It = FTy->param_begin();
765 for (unsigned i = 3, e = Oprnds.size(); i != e; ++i) {
766 if (It == FTy->param_end())
Reid Spencer24399722004-07-09 22:21:33 +0000767 error("Invalid invoke instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000768 Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
769 }
770 if (It != FTy->param_end())
Reid Spencer24399722004-07-09 22:21:33 +0000771 error("Invalid invoke instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000772 } else {
773 Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
774
775 Normal = getBasicBlock(Oprnds[0]);
776 Except = getBasicBlock(Oprnds[1]);
777
778 unsigned FirstVariableArgument = FTy->getNumParams()+2;
779 for (unsigned i = 2; i != FirstVariableArgument; ++i)
780 Params.push_back(getValue(getTypeSlot(FTy->getParamType(i-2)),
781 Oprnds[i]));
782
783 if (Oprnds.size()-FirstVariableArgument & 1) // Must be type/value pairs
Reid Spencer24399722004-07-09 22:21:33 +0000784 error("Invalid invoke instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000785
786 for (unsigned i = FirstVariableArgument; i < Oprnds.size(); i += 2)
787 Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
788 }
789
790 Result = new InvokeInst(F, Normal, Except, Params);
791 break;
792 }
793 case Instruction::Malloc:
Reid Spencer04cde2c2004-07-04 11:33:49 +0000794 if (Oprnds.size() > 2)
Reid Spencer24399722004-07-09 22:21:33 +0000795 error("Invalid malloc instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000796 if (!isa<PointerType>(InstTy))
Reid Spencer24399722004-07-09 22:21:33 +0000797 error("Invalid malloc instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000798
799 Result = new MallocInst(cast<PointerType>(InstTy)->getElementType(),
800 Oprnds.size() ? getValue(Type::UIntTyID,
801 Oprnds[0]) : 0);
802 break;
803
804 case Instruction::Alloca:
Reid Spencer04cde2c2004-07-04 11:33:49 +0000805 if (Oprnds.size() > 2)
Reid Spencer24399722004-07-09 22:21:33 +0000806 error("Invalid alloca instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000807 if (!isa<PointerType>(InstTy))
Reid Spencer24399722004-07-09 22:21:33 +0000808 error("Invalid alloca instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000809
810 Result = new AllocaInst(cast<PointerType>(InstTy)->getElementType(),
811 Oprnds.size() ? getValue(Type::UIntTyID,
Reid Spencer04cde2c2004-07-04 11:33:49 +0000812 Oprnds[0]) :0);
Reid Spencer060d25d2004-06-29 23:29:38 +0000813 break;
814 case Instruction::Free:
815 if (!isa<PointerType>(InstTy))
Reid Spencer24399722004-07-09 22:21:33 +0000816 error("Invalid free instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000817 Result = new FreeInst(getValue(iType, Oprnds[0]));
818 break;
819 case Instruction::GetElementPtr: {
820 if (Oprnds.size() == 0 || !isa<PointerType>(InstTy))
Reid Spencer24399722004-07-09 22:21:33 +0000821 error("Invalid getelementptr instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000822
823 std::vector<Value*> Idx;
824
825 const Type *NextTy = InstTy;
826 for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
827 const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy);
Reid Spencer04cde2c2004-07-04 11:33:49 +0000828 if (!TopTy)
Reid Spencer46b002c2004-07-11 17:28:43 +0000829 error("Invalid getelementptr instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000830
831 unsigned ValIdx = Oprnds[i];
832 unsigned IdxTy = 0;
833 if (!hasRestrictedGEPTypes) {
834 // Struct indices are always uints, sequential type indices can be any
835 // of the 32 or 64-bit integer types. The actual choice of type is
836 // encoded in the low two bits of the slot number.
837 if (isa<StructType>(TopTy))
838 IdxTy = Type::UIntTyID;
839 else {
840 switch (ValIdx & 3) {
841 default:
842 case 0: IdxTy = Type::UIntTyID; break;
843 case 1: IdxTy = Type::IntTyID; break;
844 case 2: IdxTy = Type::ULongTyID; break;
845 case 3: IdxTy = Type::LongTyID; break;
846 }
847 ValIdx >>= 2;
848 }
849 } else {
850 IdxTy = isa<StructType>(TopTy) ? Type::UByteTyID : Type::LongTyID;
851 }
852
853 Idx.push_back(getValue(IdxTy, ValIdx));
854
855 // Convert ubyte struct indices into uint struct indices.
856 if (isa<StructType>(TopTy) && hasRestrictedGEPTypes)
857 if (ConstantUInt *C = dyn_cast<ConstantUInt>(Idx.back()))
858 Idx[Idx.size()-1] = ConstantExpr::getCast(C, Type::UIntTy);
859
860 NextTy = GetElementPtrInst::getIndexedType(InstTy, Idx, true);
861 }
862
863 Result = new GetElementPtrInst(getValue(iType, Oprnds[0]), Idx);
864 break;
865 }
866
867 case 62: // volatile load
868 case Instruction::Load:
869 if (Oprnds.size() != 1 || !isa<PointerType>(InstTy))
Reid Spencer24399722004-07-09 22:21:33 +0000870 error("Invalid load instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000871 Result = new LoadInst(getValue(iType, Oprnds[0]), "", Opcode == 62);
872 break;
873
874 case 63: // volatile store
875 case Instruction::Store: {
876 if (!isa<PointerType>(InstTy) || Oprnds.size() != 2)
Reid Spencer24399722004-07-09 22:21:33 +0000877 error("Invalid store instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000878
879 Value *Ptr = getValue(iType, Oprnds[1]);
880 const Type *ValTy = cast<PointerType>(Ptr->getType())->getElementType();
881 Result = new StoreInst(getValue(getTypeSlot(ValTy), Oprnds[0]), Ptr,
882 Opcode == 63);
883 break;
884 }
885 case Instruction::Unwind:
Reid Spencer04cde2c2004-07-04 11:33:49 +0000886 if (Oprnds.size() != 0)
Reid Spencer24399722004-07-09 22:21:33 +0000887 error("Invalid unwind instruction!");
Reid Spencer060d25d2004-06-29 23:29:38 +0000888 Result = new UnwindInst();
889 break;
890 } // end switch(Opcode)
891
892 unsigned TypeSlot;
893 if (Result->getType() == InstTy)
894 TypeSlot = iType;
895 else
896 TypeSlot = getTypeSlot(Result->getType());
897
898 insertValue(Result, TypeSlot, FunctionValues);
899 BB->getInstList().push_back(Result);
900}
901
Reid Spencer04cde2c2004-07-04 11:33:49 +0000902/// Get a particular numbered basic block, which might be a forward reference.
903/// This works together with ParseBasicBlock to handle these forward references
904/// in a clean manner. This function is used when constructing phi, br, switch,
905/// and other instructions that reference basic blocks. Blocks are numbered
906/// sequentially as they appear in the function.
Reid Spencer060d25d2004-06-29 23:29:38 +0000907BasicBlock *BytecodeReader::getBasicBlock(unsigned ID) {
Chris Lattner4ee8ef22003-10-08 22:52:54 +0000908 // Make sure there is room in the table...
909 if (ParsedBasicBlocks.size() <= ID) ParsedBasicBlocks.resize(ID+1);
910
911 // First check to see if this is a backwards reference, i.e., ParseBasicBlock
912 // has already created this block, or if the forward reference has already
913 // been created.
914 if (ParsedBasicBlocks[ID])
915 return ParsedBasicBlocks[ID];
916
917 // Otherwise, the basic block has not yet been created. Do so and add it to
918 // the ParsedBasicBlocks list.
919 return ParsedBasicBlocks[ID] = new BasicBlock();
920}
921
Reid Spencer04cde2c2004-07-04 11:33:49 +0000922/// In LLVM 1.0 bytecode files, we used to output one basicblock at a time.
923/// This method reads in one of the basicblock packets. This method is not used
924/// for bytecode files after LLVM 1.0
925/// @returns The basic block constructed.
Reid Spencer46b002c2004-07-11 17:28:43 +0000926BasicBlock *BytecodeReader::ParseBasicBlock(unsigned BlockNo) {
927 if (Handler) Handler->handleBasicBlockBegin(BlockNo);
Reid Spencer060d25d2004-06-29 23:29:38 +0000928
929 BasicBlock *BB = 0;
930
Chris Lattner4ee8ef22003-10-08 22:52:54 +0000931 if (ParsedBasicBlocks.size() == BlockNo)
932 ParsedBasicBlocks.push_back(BB = new BasicBlock());
933 else if (ParsedBasicBlocks[BlockNo] == 0)
934 BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
935 else
936 BB = ParsedBasicBlocks[BlockNo];
Chris Lattner00950542001-06-06 20:29:01 +0000937
Reid Spencer060d25d2004-06-29 23:29:38 +0000938 std::vector<unsigned> Operands;
Reid Spencer46b002c2004-07-11 17:28:43 +0000939 while (moreInBlock())
Reid Spencer060d25d2004-06-29 23:29:38 +0000940 ParseInstruction(Operands, BB);
Chris Lattner00950542001-06-06 20:29:01 +0000941
Reid Spencer46b002c2004-07-11 17:28:43 +0000942 if (Handler) Handler->handleBasicBlockEnd(BlockNo);
Misha Brukman12c29d12003-09-22 23:38:23 +0000943 return BB;
Chris Lattner00950542001-06-06 20:29:01 +0000944}
945
Reid Spencer04cde2c2004-07-04 11:33:49 +0000946/// Parse all of the BasicBlock's & Instruction's in the body of a function.
947/// In post 1.0 bytecode files, we no longer emit basic block individually,
948/// in order to avoid per-basic-block overhead.
949/// @returns Rhe number of basic blocks encountered.
Reid Spencer060d25d2004-06-29 23:29:38 +0000950unsigned BytecodeReader::ParseInstructionList(Function* F) {
Chris Lattner8d1dbd22003-12-01 07:05:31 +0000951 unsigned BlockNo = 0;
952 std::vector<unsigned> Args;
953
Reid Spencer46b002c2004-07-11 17:28:43 +0000954 while (moreInBlock()) {
955 if (Handler) Handler->handleBasicBlockBegin(BlockNo);
Chris Lattner8d1dbd22003-12-01 07:05:31 +0000956 BasicBlock *BB;
957 if (ParsedBasicBlocks.size() == BlockNo)
958 ParsedBasicBlocks.push_back(BB = new BasicBlock());
959 else if (ParsedBasicBlocks[BlockNo] == 0)
960 BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
961 else
962 BB = ParsedBasicBlocks[BlockNo];
963 ++BlockNo;
964 F->getBasicBlockList().push_back(BB);
965
966 // Read instructions into this basic block until we get to a terminator
Reid Spencer46b002c2004-07-11 17:28:43 +0000967 while (moreInBlock() && !BB->getTerminator())
Reid Spencer060d25d2004-06-29 23:29:38 +0000968 ParseInstruction(Args, BB);
Chris Lattner8d1dbd22003-12-01 07:05:31 +0000969
970 if (!BB->getTerminator())
Reid Spencer24399722004-07-09 22:21:33 +0000971 error("Non-terminated basic block found!");
Reid Spencer5c15fe52004-07-05 00:57:50 +0000972
Reid Spencer46b002c2004-07-11 17:28:43 +0000973 if (Handler) Handler->handleBasicBlockEnd(BlockNo-1);
Chris Lattner8d1dbd22003-12-01 07:05:31 +0000974 }
975
976 return BlockNo;
977}
978
Reid Spencer04cde2c2004-07-04 11:33:49 +0000979/// Parse a symbol table. This works for both module level and function
980/// level symbol tables. For function level symbol tables, the CurrentFunction
981/// parameter must be non-zero and the ST parameter must correspond to
982/// CurrentFunction's symbol table. For Module level symbol tables, the
983/// CurrentFunction argument must be zero.
Reid Spencer060d25d2004-06-29 23:29:38 +0000984void BytecodeReader::ParseSymbolTable(Function *CurrentFunction,
Reid Spencer04cde2c2004-07-04 11:33:49 +0000985 SymbolTable *ST) {
986 if (Handler) Handler->handleSymbolTableBegin(CurrentFunction,ST);
Reid Spencer060d25d2004-06-29 23:29:38 +0000987
Chris Lattner39cacce2003-10-10 05:43:47 +0000988 // Allow efficient basic block lookup by number.
989 std::vector<BasicBlock*> BBMap;
990 if (CurrentFunction)
991 for (Function::iterator I = CurrentFunction->begin(),
992 E = CurrentFunction->end(); I != E; ++I)
993 BBMap.push_back(I);
994
Reid Spencer04cde2c2004-07-04 11:33:49 +0000995 /// In LLVM 1.3 we write types separately from values so
996 /// The types are always first in the symbol table. This is
997 /// because Type no longer derives from Value.
Reid Spencer46b002c2004-07-11 17:28:43 +0000998 if (!hasTypeDerivedFromValue) {
Reid Spencer04cde2c2004-07-04 11:33:49 +0000999 // Symtab block header: [num entries]
1000 unsigned NumEntries = read_vbr_uint();
Reid Spencer46b002c2004-07-11 17:28:43 +00001001 for (unsigned i = 0; i < NumEntries; ++i) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001002 // Symtab entry: [def slot #][name]
1003 unsigned slot = read_vbr_uint();
1004 std::string Name = read_str();
1005 const Type* T = getType(slot);
1006 ST->insert(Name, T);
1007 }
1008 }
1009
Reid Spencer46b002c2004-07-11 17:28:43 +00001010 while (moreInBlock()) {
Chris Lattner00950542001-06-06 20:29:01 +00001011 // Symtab block header: [num entries][type id number]
Reid Spencer060d25d2004-06-29 23:29:38 +00001012 unsigned NumEntries = read_vbr_uint();
Reid Spencer04cde2c2004-07-04 11:33:49 +00001013 unsigned Typ = 0;
1014 bool isTypeType = read_typeid(Typ);
Chris Lattner00950542001-06-06 20:29:01 +00001015 const Type *Ty = getType(Typ);
Chris Lattner1d670cc2001-09-07 16:37:43 +00001016
Chris Lattner7dc3a2e2003-10-13 14:57:53 +00001017 for (unsigned i = 0; i != NumEntries; ++i) {
Chris Lattner00950542001-06-06 20:29:01 +00001018 // Symtab entry: [def slot #][name]
Reid Spencer060d25d2004-06-29 23:29:38 +00001019 unsigned slot = read_vbr_uint();
1020 std::string Name = read_str();
Chris Lattner00950542001-06-06 20:29:01 +00001021
Reid Spencer04cde2c2004-07-04 11:33:49 +00001022 // if we're reading a pre 1.3 bytecode file and the type plane
1023 // is the "type type", handle it here
Reid Spencer46b002c2004-07-11 17:28:43 +00001024 if (isTypeType) {
1025 const Type* T = getType(slot);
1026 if (T == 0)
1027 error("Failed type look-up for name '" + Name + "'");
1028 ST->insert(Name, T);
1029 continue; // code below must be short circuited
Chris Lattner39cacce2003-10-10 05:43:47 +00001030 } else {
Reid Spencer46b002c2004-07-11 17:28:43 +00001031 Value *V = 0;
1032 if (Typ == Type::LabelTyID) {
1033 if (slot < BBMap.size())
1034 V = BBMap[slot];
1035 } else {
1036 V = getValue(Typ, slot, false); // Find mapping...
1037 }
1038 if (V == 0)
1039 error("Failed value look-up for name '" + Name + "'");
1040 V->setName(Name, ST);
Chris Lattner39cacce2003-10-10 05:43:47 +00001041 }
Chris Lattner00950542001-06-06 20:29:01 +00001042 }
1043 }
Reid Spencer060d25d2004-06-29 23:29:38 +00001044 checkPastBlockEnd("Symbol Table");
Reid Spencer04cde2c2004-07-04 11:33:49 +00001045 if (Handler) Handler->handleSymbolTableEnd();
Chris Lattner00950542001-06-06 20:29:01 +00001046}
1047
Reid Spencer04cde2c2004-07-04 11:33:49 +00001048/// Read in the types portion of a compaction table.
Reid Spencer46b002c2004-07-11 17:28:43 +00001049void BytecodeReader::ParseCompactionTypes(unsigned NumEntries) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001050 for (unsigned i = 0; i != NumEntries; ++i) {
1051 unsigned TypeSlot = 0;
Reid Spencer46b002c2004-07-11 17:28:43 +00001052 if (read_typeid(TypeSlot))
Reid Spencer24399722004-07-09 22:21:33 +00001053 error("Invalid type in compaction table: type type");
Reid Spencer04cde2c2004-07-04 11:33:49 +00001054 const Type *Typ = getGlobalTableType(TypeSlot);
1055 CompactionTypes.push_back(Typ);
Reid Spencer46b002c2004-07-11 17:28:43 +00001056 if (Handler) Handler->handleCompactionTableType(i, TypeSlot, Typ);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001057 }
1058}
1059
1060/// Parse a compaction table.
Reid Spencer060d25d2004-06-29 23:29:38 +00001061void BytecodeReader::ParseCompactionTable() {
1062
Reid Spencer46b002c2004-07-11 17:28:43 +00001063 // Notify handler that we're beginning a compaction table.
Reid Spencer04cde2c2004-07-04 11:33:49 +00001064 if (Handler) Handler->handleCompactionTableBegin();
1065
Reid Spencer46b002c2004-07-11 17:28:43 +00001066 // In LLVM 1.3 Type no longer derives from Value. So,
1067 // we always write them first in the compaction table
1068 // because they can't occupy a "type plane" where the
1069 // Values reside.
1070 if (! hasTypeDerivedFromValue) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001071 unsigned NumEntries = read_vbr_uint();
Reid Spencer46b002c2004-07-11 17:28:43 +00001072 ParseCompactionTypes(NumEntries);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001073 }
Reid Spencer060d25d2004-06-29 23:29:38 +00001074
Reid Spencer46b002c2004-07-11 17:28:43 +00001075 // Compaction tables live in separate blocks so we have to loop
1076 // until we've read the whole thing.
1077 while (moreInBlock()) {
1078 // Read the number of Value* entries in the compaction table
Reid Spencer060d25d2004-06-29 23:29:38 +00001079 unsigned NumEntries = read_vbr_uint();
Reid Spencer04cde2c2004-07-04 11:33:49 +00001080 unsigned Ty = 0;
1081 unsigned isTypeType = false;
Reid Spencer060d25d2004-06-29 23:29:38 +00001082
Reid Spencer46b002c2004-07-11 17:28:43 +00001083 // Decode the type from value read in. Most compaction table
1084 // planes will have one or two entries in them. If that's the
1085 // case then the length is encoded in the bottom two bits and
1086 // the higher bits encode the type. This saves another VBR value.
Reid Spencer060d25d2004-06-29 23:29:38 +00001087 if ((NumEntries & 3) == 3) {
Reid Spencer46b002c2004-07-11 17:28:43 +00001088 // In this case, both low-order bits are set (value 3). This
1089 // is a signal that the typeid follows.
Reid Spencer060d25d2004-06-29 23:29:38 +00001090 NumEntries >>= 2;
Reid Spencer04cde2c2004-07-04 11:33:49 +00001091 isTypeType = read_typeid(Ty);
Reid Spencer060d25d2004-06-29 23:29:38 +00001092 } else {
Reid Spencer46b002c2004-07-11 17:28:43 +00001093 // In this case, the low-order bits specify the number of entries
1094 // and the high order bits specify the type.
Reid Spencer060d25d2004-06-29 23:29:38 +00001095 Ty = NumEntries >> 2;
Reid Spencer04cde2c2004-07-04 11:33:49 +00001096 isTypeType = sanitizeTypeId(Ty);
Reid Spencer060d25d2004-06-29 23:29:38 +00001097 NumEntries &= 3;
1098 }
1099
Reid Spencer04cde2c2004-07-04 11:33:49 +00001100 // if we're reading a pre 1.3 bytecode file and the type plane
1101 // is the "type type", handle it here
Reid Spencer46b002c2004-07-11 17:28:43 +00001102 if (isTypeType) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001103 ParseCompactionTypes(NumEntries);
Reid Spencer060d25d2004-06-29 23:29:38 +00001104 } else {
Reid Spencer46b002c2004-07-11 17:28:43 +00001105 // Make sure we have enough room for the plane
Reid Spencer04cde2c2004-07-04 11:33:49 +00001106 if (Ty >= CompactionValues.size())
Reid Spencer46b002c2004-07-11 17:28:43 +00001107 CompactionValues.resize(Ty+1);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001108
Reid Spencer46b002c2004-07-11 17:28:43 +00001109 // Make sure the plane is empty or we have some kind of error
Reid Spencer04cde2c2004-07-04 11:33:49 +00001110 if (!CompactionValues[Ty].empty())
Reid Spencer46b002c2004-07-11 17:28:43 +00001111 error("Compaction table plane contains multiple entries!");
Reid Spencer04cde2c2004-07-04 11:33:49 +00001112
Reid Spencer46b002c2004-07-11 17:28:43 +00001113 // Notify handler about the plane
1114 if (Handler) Handler->handleCompactionTablePlane(Ty, NumEntries);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001115
Reid Spencer46b002c2004-07-11 17:28:43 +00001116 // Convert the type slot to a type
Reid Spencer060d25d2004-06-29 23:29:38 +00001117 const Type *Typ = getType(Ty);
Reid Spencer46b002c2004-07-11 17:28:43 +00001118
Reid Spencer060d25d2004-06-29 23:29:38 +00001119 // Push the implicit zero
1120 CompactionValues[Ty].push_back(Constant::getNullValue(Typ));
Reid Spencer46b002c2004-07-11 17:28:43 +00001121
1122 // Read in each of the entries, put them in the compaction table
1123 // and notify the handler that we have a new compaction table value.
Reid Spencer060d25d2004-06-29 23:29:38 +00001124 for (unsigned i = 0; i != NumEntries; ++i) {
Reid Spencer46b002c2004-07-11 17:28:43 +00001125 unsigned ValSlot = read_vbr_uint();
1126 Value *V = getGlobalTableValue(Typ, ValSlot);
1127 CompactionValues[Ty].push_back(V);
1128 if (Handler) Handler->handleCompactionTableValue(i, Ty, ValSlot, Typ);
Reid Spencer060d25d2004-06-29 23:29:38 +00001129 }
1130 }
1131 }
Reid Spencer46b002c2004-07-11 17:28:43 +00001132 // Notify handler that the compaction table is done.
Reid Spencer04cde2c2004-07-04 11:33:49 +00001133 if (Handler) Handler->handleCompactionTableEnd();
Reid Spencer060d25d2004-06-29 23:29:38 +00001134}
1135
Reid Spencer46b002c2004-07-11 17:28:43 +00001136// Parse a single type. The typeid is read in first. If its a primitive type
1137// then nothing else needs to be read, we know how to instantiate it. If its
1138// a derived type, then additional data is read to fill out the type
1139// definition.
1140const Type *BytecodeReader::ParseType() {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001141 unsigned PrimType = 0;
Reid Spencer46b002c2004-07-11 17:28:43 +00001142 if (read_typeid(PrimType))
Reid Spencer24399722004-07-09 22:21:33 +00001143 error("Invalid type (type type) in type constants!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001144
1145 const Type *Result = 0;
1146 if ((Result = Type::getPrimitiveType((Type::TypeID)PrimType)))
1147 return Result;
1148
1149 switch (PrimType) {
1150 case Type::FunctionTyID: {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001151 const Type *RetType = readSanitizedType();
Reid Spencer060d25d2004-06-29 23:29:38 +00001152
1153 unsigned NumParams = read_vbr_uint();
1154
1155 std::vector<const Type*> Params;
Reid Spencer04cde2c2004-07-04 11:33:49 +00001156 while (NumParams--)
1157 Params.push_back(readSanitizedType());
Reid Spencer060d25d2004-06-29 23:29:38 +00001158
1159 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1160 if (isVarArg) Params.pop_back();
1161
1162 Result = FunctionType::get(RetType, Params, isVarArg);
1163 break;
1164 }
1165 case Type::ArrayTyID: {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001166 const Type *ElementType = readSanitizedType();
Reid Spencer060d25d2004-06-29 23:29:38 +00001167 unsigned NumElements = read_vbr_uint();
Reid Spencer060d25d2004-06-29 23:29:38 +00001168 Result = ArrayType::get(ElementType, NumElements);
1169 break;
1170 }
1171 case Type::StructTyID: {
1172 std::vector<const Type*> Elements;
Reid Spencer04cde2c2004-07-04 11:33:49 +00001173 unsigned Typ = 0;
Reid Spencer46b002c2004-07-11 17:28:43 +00001174 if (read_typeid(Typ))
Reid Spencer24399722004-07-09 22:21:33 +00001175 error("Invalid element type (type type) for structure!");
1176
Reid Spencer060d25d2004-06-29 23:29:38 +00001177 while (Typ) { // List is terminated by void/0 typeid
1178 Elements.push_back(getType(Typ));
Reid Spencer46b002c2004-07-11 17:28:43 +00001179 if (read_typeid(Typ))
1180 error("Invalid element type (type type) for structure!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001181 }
1182
1183 Result = StructType::get(Elements);
1184 break;
1185 }
1186 case Type::PointerTyID: {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001187 Result = PointerType::get(readSanitizedType());
Reid Spencer060d25d2004-06-29 23:29:38 +00001188 break;
1189 }
1190
1191 case Type::OpaqueTyID: {
1192 Result = OpaqueType::get();
1193 break;
1194 }
1195
1196 default:
Reid Spencer24399722004-07-09 22:21:33 +00001197 error("Don't know how to deserialize primitive type " + utostr(PrimType));
Reid Spencer060d25d2004-06-29 23:29:38 +00001198 break;
1199 }
Reid Spencer46b002c2004-07-11 17:28:43 +00001200 if (Handler) Handler->handleType(Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001201 return Result;
1202}
1203
Reid Spencer46b002c2004-07-11 17:28:43 +00001204// ParseType - We have to use this weird code to handle recursive
Reid Spencer060d25d2004-06-29 23:29:38 +00001205// types. We know that recursive types will only reference the current slab of
1206// values in the type plane, but they can forward reference types before they
1207// have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might
1208// be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix
1209// this ugly problem, we pessimistically insert an opaque type for each type we
1210// are about to read. This means that forward references will resolve to
1211// something and when we reread the type later, we can replace the opaque type
1212// with a new resolved concrete type.
1213//
Reid Spencer46b002c2004-07-11 17:28:43 +00001214void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){
Reid Spencer060d25d2004-06-29 23:29:38 +00001215 assert(Tab.size() == 0 && "should not have read type constants in before!");
1216
1217 // Insert a bunch of opaque types to be resolved later...
1218 Tab.reserve(NumEntries);
1219 for (unsigned i = 0; i != NumEntries; ++i)
1220 Tab.push_back(OpaqueType::get());
1221
1222 // Loop through reading all of the types. Forward types will make use of the
1223 // opaque types just inserted.
1224 //
1225 for (unsigned i = 0; i != NumEntries; ++i) {
Reid Spencer46b002c2004-07-11 17:28:43 +00001226 const Type* NewTy = ParseType();
Reid Spencer04cde2c2004-07-04 11:33:49 +00001227 const Type* OldTy = Tab[i].get();
1228 if (NewTy == 0)
Reid Spencer24399722004-07-09 22:21:33 +00001229 error("Couldn't parse type!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001230
1231 // Don't directly push the new type on the Tab. Instead we want to replace
1232 // the opaque type we previously inserted with the new concrete value. This
1233 // approach helps with forward references to types. The refinement from the
1234 // abstract (opaque) type to the new type causes all uses of the abstract
1235 // type to use the concrete type (NewTy). This will also cause the opaque
1236 // type to be deleted.
1237 cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy);
1238
1239 // This should have replaced the old opaque type with the new type in the
1240 // value table... or with a preexisting type that was already in the system.
1241 // Let's just make sure it did.
1242 assert(Tab[i] != OldTy && "refineAbstractType didn't work!");
1243 }
1244}
1245
Reid Spencer04cde2c2004-07-04 11:33:49 +00001246/// Parse a single constant value
Reid Spencer46b002c2004-07-11 17:28:43 +00001247Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) {
Reid Spencer060d25d2004-06-29 23:29:38 +00001248 // We must check for a ConstantExpr before switching by type because
1249 // a ConstantExpr can be of any type, and has no explicit value.
1250 //
1251 // 0 if not expr; numArgs if is expr
1252 unsigned isExprNumArgs = read_vbr_uint();
1253
1254 if (isExprNumArgs) {
1255 // FIXME: Encoding of constant exprs could be much more compact!
1256 std::vector<Constant*> ArgVec;
1257 ArgVec.reserve(isExprNumArgs);
1258 unsigned Opcode = read_vbr_uint();
1259
1260 // Read the slot number and types of each of the arguments
1261 for (unsigned i = 0; i != isExprNumArgs; ++i) {
1262 unsigned ArgValSlot = read_vbr_uint();
Reid Spencer04cde2c2004-07-04 11:33:49 +00001263 unsigned ArgTypeSlot = 0;
Reid Spencer46b002c2004-07-11 17:28:43 +00001264 if (read_typeid(ArgTypeSlot))
1265 error("Invalid argument type (type type) for constant value");
Reid Spencer060d25d2004-06-29 23:29:38 +00001266
1267 // Get the arg value from its slot if it exists, otherwise a placeholder
1268 ArgVec.push_back(getConstantValue(ArgTypeSlot, ArgValSlot));
1269 }
1270
1271 // Construct a ConstantExpr of the appropriate kind
1272 if (isExprNumArgs == 1) { // All one-operand expressions
Reid Spencer46b002c2004-07-11 17:28:43 +00001273 if (Opcode != Instruction::Cast)
1274 error("Only Cast instruction has one argument for ConstantExpr");
1275
Reid Spencer060d25d2004-06-29 23:29:38 +00001276 Constant* Result = ConstantExpr::getCast(ArgVec[0], getType(TypeID));
Reid Spencer04cde2c2004-07-04 11:33:49 +00001277 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001278 return Result;
1279 } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr
1280 std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end());
1281
1282 if (hasRestrictedGEPTypes) {
1283 const Type *BaseTy = ArgVec[0]->getType();
1284 generic_gep_type_iterator<std::vector<Constant*>::iterator>
1285 GTI = gep_type_begin(BaseTy, IdxList.begin(), IdxList.end()),
1286 E = gep_type_end(BaseTy, IdxList.begin(), IdxList.end());
1287 for (unsigned i = 0; GTI != E; ++GTI, ++i)
1288 if (isa<StructType>(*GTI)) {
1289 if (IdxList[i]->getType() != Type::UByteTy)
Reid Spencer24399722004-07-09 22:21:33 +00001290 error("Invalid index for getelementptr!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001291 IdxList[i] = ConstantExpr::getCast(IdxList[i], Type::UIntTy);
1292 }
1293 }
1294
1295 Constant* Result = ConstantExpr::getGetElementPtr(ArgVec[0], IdxList);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001296 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001297 return Result;
1298 } else if (Opcode == Instruction::Select) {
Reid Spencer46b002c2004-07-11 17:28:43 +00001299 if (ArgVec.size() != 3)
1300 error("Select instruction must have three arguments.");
Reid Spencer060d25d2004-06-29 23:29:38 +00001301 Constant* Result = ConstantExpr::getSelect(ArgVec[0], ArgVec[1],
Reid Spencer04cde2c2004-07-04 11:33:49 +00001302 ArgVec[2]);
1303 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001304 return Result;
1305 } else { // All other 2-operand expressions
1306 Constant* Result = ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001307 if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001308 return Result;
1309 }
1310 }
1311
1312 // Ok, not an ConstantExpr. We now know how to read the given type...
1313 const Type *Ty = getType(TypeID);
1314 switch (Ty->getTypeID()) {
1315 case Type::BoolTyID: {
1316 unsigned Val = read_vbr_uint();
1317 if (Val != 0 && Val != 1)
Reid Spencer24399722004-07-09 22:21:33 +00001318 error("Invalid boolean value read.");
Reid Spencer060d25d2004-06-29 23:29:38 +00001319 Constant* Result = ConstantBool::get(Val == 1);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001320 if (Handler) Handler->handleConstantValue(Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001321 return Result;
1322 }
1323
1324 case Type::UByteTyID: // Unsigned integer types...
1325 case Type::UShortTyID:
1326 case Type::UIntTyID: {
1327 unsigned Val = read_vbr_uint();
1328 if (!ConstantUInt::isValueValidForType(Ty, Val))
Reid Spencer24399722004-07-09 22:21:33 +00001329 error("Invalid unsigned byte/short/int read.");
Reid Spencer060d25d2004-06-29 23:29:38 +00001330 Constant* Result = ConstantUInt::get(Ty, Val);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001331 if (Handler) Handler->handleConstantValue(Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001332 return Result;
1333 }
1334
1335 case Type::ULongTyID: {
1336 Constant* Result = ConstantUInt::get(Ty, read_vbr_uint64());
Reid Spencer04cde2c2004-07-04 11:33:49 +00001337 if (Handler) Handler->handleConstantValue(Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001338 return Result;
1339 }
1340
1341 case Type::SByteTyID: // Signed integer types...
1342 case Type::ShortTyID:
1343 case Type::IntTyID: {
1344 case Type::LongTyID:
1345 int64_t Val = read_vbr_int64();
1346 if (!ConstantSInt::isValueValidForType(Ty, Val))
Reid Spencer24399722004-07-09 22:21:33 +00001347 error("Invalid signed byte/short/int/long read.");
Reid Spencer060d25d2004-06-29 23:29:38 +00001348 Constant* Result = ConstantSInt::get(Ty, Val);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001349 if (Handler) Handler->handleConstantValue(Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001350 return Result;
1351 }
1352
1353 case Type::FloatTyID: {
Reid Spencer46b002c2004-07-11 17:28:43 +00001354 float Val;
1355 read_float(Val);
1356 Constant* Result = ConstantFP::get(Ty, Val);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001357 if (Handler) Handler->handleConstantValue(Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001358 return Result;
1359 }
1360
1361 case Type::DoubleTyID: {
1362 double Val;
Reid Spencer46b002c2004-07-11 17:28:43 +00001363 read_double(Val);
Reid Spencer060d25d2004-06-29 23:29:38 +00001364 Constant* Result = ConstantFP::get(Ty, Val);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001365 if (Handler) Handler->handleConstantValue(Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001366 return Result;
1367 }
1368
Reid Spencer060d25d2004-06-29 23:29:38 +00001369 case Type::ArrayTyID: {
1370 const ArrayType *AT = cast<ArrayType>(Ty);
1371 unsigned NumElements = AT->getNumElements();
1372 unsigned TypeSlot = getTypeSlot(AT->getElementType());
1373 std::vector<Constant*> Elements;
1374 Elements.reserve(NumElements);
1375 while (NumElements--) // Read all of the elements of the constant.
1376 Elements.push_back(getConstantValue(TypeSlot,
1377 read_vbr_uint()));
1378 Constant* Result = ConstantArray::get(AT, Elements);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001379 if (Handler) Handler->handleConstantArray(AT, Elements, TypeSlot, Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001380 return Result;
1381 }
1382
1383 case Type::StructTyID: {
1384 const StructType *ST = cast<StructType>(Ty);
1385
1386 std::vector<Constant *> Elements;
1387 Elements.reserve(ST->getNumElements());
1388 for (unsigned i = 0; i != ST->getNumElements(); ++i)
1389 Elements.push_back(getConstantValue(ST->getElementType(i),
1390 read_vbr_uint()));
1391
1392 Constant* Result = ConstantStruct::get(ST, Elements);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001393 if (Handler) Handler->handleConstantStruct(ST, Elements, Result);
Reid Spencer060d25d2004-06-29 23:29:38 +00001394 return Result;
1395 }
1396
1397 case Type::PointerTyID: { // ConstantPointerRef value...
1398 const PointerType *PT = cast<PointerType>(Ty);
1399 unsigned Slot = read_vbr_uint();
1400
1401 // Check to see if we have already read this global variable...
1402 Value *Val = getValue(TypeID, Slot, false);
1403 GlobalValue *GV;
1404 if (Val) {
1405 if (!(GV = dyn_cast<GlobalValue>(Val)))
Reid Spencera86037e2004-07-18 00:12:03 +00001406 error("GlobalValue not in ValueTable!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001407 } else {
Reid Spencer24399722004-07-09 22:21:33 +00001408 error("Forward references are not allowed here.");
Reid Spencer060d25d2004-06-29 23:29:38 +00001409 }
1410
Reid Spencera86037e2004-07-18 00:12:03 +00001411 if (Handler) Handler->handleConstantPointer(PT, Slot, GV );
1412 return GV;
Reid Spencer060d25d2004-06-29 23:29:38 +00001413 }
1414
1415 default:
Reid Spencer24399722004-07-09 22:21:33 +00001416 error("Don't know how to deserialize constant value of type '" +
Reid Spencer060d25d2004-06-29 23:29:38 +00001417 Ty->getDescription());
1418 break;
1419 }
Reid Spencer24399722004-07-09 22:21:33 +00001420 return 0;
Reid Spencer060d25d2004-06-29 23:29:38 +00001421}
1422
Reid Spencer04cde2c2004-07-04 11:33:49 +00001423/// Resolve references for constants. This function resolves the forward
1424/// referenced constants in the ConstantFwdRefs map. It uses the
1425/// replaceAllUsesWith method of Value class to substitute the placeholder
1426/// instance with the actual instance.
Reid Spencer060d25d2004-06-29 23:29:38 +00001427void BytecodeReader::ResolveReferencesToConstant(Constant *NewV, unsigned Slot){
Chris Lattner29b789b2003-11-19 17:27:18 +00001428 ConstantRefsType::iterator I =
1429 ConstantFwdRefs.find(std::make_pair(NewV->getType(), Slot));
1430 if (I == ConstantFwdRefs.end()) return; // Never forward referenced?
Chris Lattner00950542001-06-06 20:29:01 +00001431
Chris Lattner29b789b2003-11-19 17:27:18 +00001432 Value *PH = I->second; // Get the placeholder...
1433 PH->replaceAllUsesWith(NewV);
1434 delete PH; // Delete the old placeholder
1435 ConstantFwdRefs.erase(I); // Remove the map entry for it
Vikram S. Advec1e4a812002-07-14 23:04:18 +00001436}
1437
Reid Spencer04cde2c2004-07-04 11:33:49 +00001438/// Parse the constant strings section.
Reid Spencer060d25d2004-06-29 23:29:38 +00001439void BytecodeReader::ParseStringConstants(unsigned NumEntries, ValueTable &Tab){
1440 for (; NumEntries; --NumEntries) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001441 unsigned Typ = 0;
Reid Spencer46b002c2004-07-11 17:28:43 +00001442 if (read_typeid(Typ))
Reid Spencer24399722004-07-09 22:21:33 +00001443 error("Invalid type (type type) for string constant");
Reid Spencer060d25d2004-06-29 23:29:38 +00001444 const Type *Ty = getType(Typ);
1445 if (!isa<ArrayType>(Ty))
Reid Spencer24399722004-07-09 22:21:33 +00001446 error("String constant data invalid!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001447
1448 const ArrayType *ATy = cast<ArrayType>(Ty);
1449 if (ATy->getElementType() != Type::SByteTy &&
1450 ATy->getElementType() != Type::UByteTy)
Reid Spencer24399722004-07-09 22:21:33 +00001451 error("String constant data invalid!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001452
1453 // Read character data. The type tells us how long the string is.
1454 char Data[ATy->getNumElements()];
1455 read_data(Data, Data+ATy->getNumElements());
Chris Lattner52e20b02003-03-19 20:54:26 +00001456
Reid Spencer060d25d2004-06-29 23:29:38 +00001457 std::vector<Constant*> Elements(ATy->getNumElements());
1458 if (ATy->getElementType() == Type::SByteTy)
1459 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
1460 Elements[i] = ConstantSInt::get(Type::SByteTy, (signed char)Data[i]);
1461 else
1462 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
1463 Elements[i] = ConstantUInt::get(Type::UByteTy, (unsigned char)Data[i]);
Misha Brukman12c29d12003-09-22 23:38:23 +00001464
Reid Spencer060d25d2004-06-29 23:29:38 +00001465 // Create the constant, inserting it as needed.
1466 Constant *C = ConstantArray::get(ATy, Elements);
1467 unsigned Slot = insertValue(C, Typ, Tab);
1468 ResolveReferencesToConstant(C, Slot);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001469 if (Handler) Handler->handleConstantString(cast<ConstantArray>(C));
Reid Spencer060d25d2004-06-29 23:29:38 +00001470 }
Misha Brukman12c29d12003-09-22 23:38:23 +00001471}
1472
Reid Spencer04cde2c2004-07-04 11:33:49 +00001473/// Parse the constant pool.
Reid Spencer060d25d2004-06-29 23:29:38 +00001474void BytecodeReader::ParseConstantPool(ValueTable &Tab,
Reid Spencer04cde2c2004-07-04 11:33:49 +00001475 TypeListTy &TypeTab,
Reid Spencer46b002c2004-07-11 17:28:43 +00001476 bool isFunction) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001477 if (Handler) Handler->handleGlobalConstantsBegin();
1478
1479 /// In LLVM 1.3 Type does not derive from Value so the types
1480 /// do not occupy a plane. Consequently, we read the types
1481 /// first in the constant pool.
Reid Spencer46b002c2004-07-11 17:28:43 +00001482 if (isFunction && !hasTypeDerivedFromValue) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001483 unsigned NumEntries = read_vbr_uint();
Reid Spencer46b002c2004-07-11 17:28:43 +00001484 ParseTypes(TypeTab, NumEntries);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001485 }
1486
Reid Spencer46b002c2004-07-11 17:28:43 +00001487 while (moreInBlock()) {
Reid Spencer060d25d2004-06-29 23:29:38 +00001488 unsigned NumEntries = read_vbr_uint();
Reid Spencer04cde2c2004-07-04 11:33:49 +00001489 unsigned Typ = 0;
1490 bool isTypeType = read_typeid(Typ);
1491
1492 /// In LLVM 1.2 and before, Types were written to the
1493 /// bytecode file in the "Type Type" plane (#12).
1494 /// In 1.3 plane 12 is now the label plane. Handle this here.
Reid Spencer46b002c2004-07-11 17:28:43 +00001495 if (isTypeType) {
1496 ParseTypes(TypeTab, NumEntries);
Reid Spencer060d25d2004-06-29 23:29:38 +00001497 } else if (Typ == Type::VoidTyID) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001498 /// Use of Type::VoidTyID is a misnomer. It actually means
1499 /// that the following plane is constant strings
Reid Spencer060d25d2004-06-29 23:29:38 +00001500 assert(&Tab == &ModuleValues && "Cannot read strings in functions!");
1501 ParseStringConstants(NumEntries, Tab);
1502 } else {
1503 for (unsigned i = 0; i < NumEntries; ++i) {
1504 Constant *C = ParseConstantValue(Typ);
1505 assert(C && "ParseConstantValue returned NULL!");
1506 unsigned Slot = insertValue(C, Typ, Tab);
Chris Lattner29b789b2003-11-19 17:27:18 +00001507
Reid Spencer060d25d2004-06-29 23:29:38 +00001508 // If we are reading a function constant table, make sure that we adjust
1509 // the slot number to be the real global constant number.
1510 //
1511 if (&Tab != &ModuleValues && Typ < ModuleValues.size() &&
1512 ModuleValues[Typ])
1513 Slot += ModuleValues[Typ]->size();
1514 ResolveReferencesToConstant(C, Slot);
1515 }
1516 }
1517 }
1518 checkPastBlockEnd("Constant Pool");
Reid Spencer04cde2c2004-07-04 11:33:49 +00001519 if (Handler) Handler->handleGlobalConstantsEnd();
Reid Spencer060d25d2004-06-29 23:29:38 +00001520}
Chris Lattner00950542001-06-06 20:29:01 +00001521
Reid Spencer04cde2c2004-07-04 11:33:49 +00001522/// Parse the contents of a function. Note that this function can be
1523/// called lazily by materializeFunction
1524/// @see materializeFunction
Reid Spencer46b002c2004-07-11 17:28:43 +00001525void BytecodeReader::ParseFunctionBody(Function* F) {
Reid Spencer060d25d2004-06-29 23:29:38 +00001526
1527 unsigned FuncSize = BlockEnd - At;
Chris Lattnere3869c82003-04-16 21:16:05 +00001528 GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;
1529
Reid Spencer060d25d2004-06-29 23:29:38 +00001530 unsigned LinkageType = read_vbr_uint();
Chris Lattnerc08912f2004-01-14 16:44:44 +00001531 switch (LinkageType) {
1532 case 0: Linkage = GlobalValue::ExternalLinkage; break;
1533 case 1: Linkage = GlobalValue::WeakLinkage; break;
1534 case 2: Linkage = GlobalValue::AppendingLinkage; break;
1535 case 3: Linkage = GlobalValue::InternalLinkage; break;
1536 case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
Reid Spencer060d25d2004-06-29 23:29:38 +00001537 default:
Reid Spencer24399722004-07-09 22:21:33 +00001538 error("Invalid linkage type for Function.");
Reid Spencer060d25d2004-06-29 23:29:38 +00001539 Linkage = GlobalValue::InternalLinkage;
1540 break;
Chris Lattnere3869c82003-04-16 21:16:05 +00001541 }
Chris Lattnerd23b1d32001-11-26 18:56:10 +00001542
Reid Spencer46b002c2004-07-11 17:28:43 +00001543 F->setLinkage(Linkage);
Reid Spencer04cde2c2004-07-04 11:33:49 +00001544 if (Handler) Handler->handleFunctionBegin(F,FuncSize);
Chris Lattner00950542001-06-06 20:29:01 +00001545
Chris Lattner4ee8ef22003-10-08 22:52:54 +00001546 // Keep track of how many basic blocks we have read in...
1547 unsigned BlockNum = 0;
Chris Lattner89e02532004-01-18 21:08:15 +00001548 bool InsertedArguments = false;
Chris Lattner4ee8ef22003-10-08 22:52:54 +00001549
Reid Spencer060d25d2004-06-29 23:29:38 +00001550 BufPtr MyEnd = BlockEnd;
Reid Spencer46b002c2004-07-11 17:28:43 +00001551 while (At < MyEnd) {
Chris Lattner00950542001-06-06 20:29:01 +00001552 unsigned Type, Size;
Reid Spencer060d25d2004-06-29 23:29:38 +00001553 BufPtr OldAt = At;
1554 read_block(Type, Size);
Chris Lattner00950542001-06-06 20:29:01 +00001555
1556 switch (Type) {
Reid Spencerad89bd62004-07-25 18:07:36 +00001557 case BytecodeFormat::ConstantPoolBlockID:
Chris Lattner89e02532004-01-18 21:08:15 +00001558 if (!InsertedArguments) {
1559 // Insert arguments into the value table before we parse the first basic
1560 // block in the function, but after we potentially read in the
1561 // compaction table.
Reid Spencer04cde2c2004-07-04 11:33:49 +00001562 insertArguments(F);
Chris Lattner89e02532004-01-18 21:08:15 +00001563 InsertedArguments = true;
1564 }
1565
Reid Spencer04cde2c2004-07-04 11:33:49 +00001566 ParseConstantPool(FunctionValues, FunctionTypes, true);
Chris Lattner00950542001-06-06 20:29:01 +00001567 break;
1568
Reid Spencerad89bd62004-07-25 18:07:36 +00001569 case BytecodeFormat::CompactionTableBlockID:
Reid Spencer060d25d2004-06-29 23:29:38 +00001570 ParseCompactionTable();
Chris Lattner89e02532004-01-18 21:08:15 +00001571 break;
1572
Chris Lattner00950542001-06-06 20:29:01 +00001573 case BytecodeFormat::BasicBlock: {
Chris Lattner89e02532004-01-18 21:08:15 +00001574 if (!InsertedArguments) {
1575 // Insert arguments into the value table before we parse the first basic
1576 // block in the function, but after we potentially read in the
1577 // compaction table.
Reid Spencer04cde2c2004-07-04 11:33:49 +00001578 insertArguments(F);
Chris Lattner89e02532004-01-18 21:08:15 +00001579 InsertedArguments = true;
1580 }
1581
Reid Spencer060d25d2004-06-29 23:29:38 +00001582 BasicBlock *BB = ParseBasicBlock(BlockNum++);
Chris Lattner4ee8ef22003-10-08 22:52:54 +00001583 F->getBasicBlockList().push_back(BB);
Chris Lattner00950542001-06-06 20:29:01 +00001584 break;
1585 }
1586
Reid Spencerad89bd62004-07-25 18:07:36 +00001587 case BytecodeFormat::InstructionListBlockID: {
Chris Lattner89e02532004-01-18 21:08:15 +00001588 // Insert arguments into the value table before we parse the instruction
1589 // list for the function, but after we potentially read in the compaction
1590 // table.
1591 if (!InsertedArguments) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001592 insertArguments(F);
Chris Lattner89e02532004-01-18 21:08:15 +00001593 InsertedArguments = true;
1594 }
1595
Reid Spencer060d25d2004-06-29 23:29:38 +00001596 if (BlockNum)
Reid Spencer24399722004-07-09 22:21:33 +00001597 error("Already parsed basic blocks!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001598 BlockNum = ParseInstructionList(F);
Chris Lattner8d1dbd22003-12-01 07:05:31 +00001599 break;
1600 }
1601
Reid Spencerad89bd62004-07-25 18:07:36 +00001602 case BytecodeFormat::SymbolTableBlockID:
Reid Spencer060d25d2004-06-29 23:29:38 +00001603 ParseSymbolTable(F, &F->getSymbolTable());
Chris Lattner00950542001-06-06 20:29:01 +00001604 break;
1605
1606 default:
Reid Spencer060d25d2004-06-29 23:29:38 +00001607 At += Size;
1608 if (OldAt > At)
Reid Spencer24399722004-07-09 22:21:33 +00001609 error("Wrapped around reading bytecode.");
Chris Lattner00950542001-06-06 20:29:01 +00001610 break;
1611 }
Reid Spencer060d25d2004-06-29 23:29:38 +00001612 BlockEnd = MyEnd;
Chris Lattner1d670cc2001-09-07 16:37:43 +00001613
Misha Brukman12c29d12003-09-22 23:38:23 +00001614 // Malformed bc file if read past end of block.
Reid Spencer060d25d2004-06-29 23:29:38 +00001615 align32();
Chris Lattner00950542001-06-06 20:29:01 +00001616 }
1617
Chris Lattner4ee8ef22003-10-08 22:52:54 +00001618 // Make sure there were no references to non-existant basic blocks.
1619 if (BlockNum != ParsedBasicBlocks.size())
Reid Spencer24399722004-07-09 22:21:33 +00001620 error("Illegal basic block operand reference");
Reid Spencer060d25d2004-06-29 23:29:38 +00001621
Chris Lattner4ee8ef22003-10-08 22:52:54 +00001622 ParsedBasicBlocks.clear();
1623
Chris Lattner97330cf2003-10-09 23:10:14 +00001624 // Resolve forward references. Replace any uses of a forward reference value
1625 // with the real value.
Chris Lattner4ee8ef22003-10-08 22:52:54 +00001626
Chris Lattner97330cf2003-10-09 23:10:14 +00001627 // replaceAllUsesWith is very inefficient for instructions which have a LARGE
1628 // number of operands. PHI nodes often have forward references, and can also
1629 // often have a very large number of operands.
Chris Lattner89e02532004-01-18 21:08:15 +00001630 //
1631 // FIXME: REEVALUATE. replaceAllUsesWith is _much_ faster now, and this code
1632 // should be simplified back to using it!
1633 //
Chris Lattner97330cf2003-10-09 23:10:14 +00001634 std::map<Value*, Value*> ForwardRefMapping;
1635 for (std::map<std::pair<unsigned,unsigned>, Value*>::iterator
1636 I = ForwardReferences.begin(), E = ForwardReferences.end();
1637 I != E; ++I)
1638 ForwardRefMapping[I->second] = getValue(I->first.first, I->first.second,
1639 false);
1640
1641 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1642 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1643 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1644 if (Argument *A = dyn_cast<Argument>(I->getOperand(i))) {
1645 std::map<Value*, Value*>::iterator It = ForwardRefMapping.find(A);
1646 if (It != ForwardRefMapping.end()) I->setOperand(i, It->second);
1647 }
1648
Chris Lattner8eb10ce2003-10-09 06:05:40 +00001649 while (!ForwardReferences.empty()) {
Chris Lattner35d2ca62003-10-09 22:39:30 +00001650 std::map<std::pair<unsigned,unsigned>, Value*>::iterator I =
1651 ForwardReferences.begin();
Chris Lattner8eb10ce2003-10-09 06:05:40 +00001652 Value *PlaceHolder = I->second;
1653 ForwardReferences.erase(I);
Chris Lattner00950542001-06-06 20:29:01 +00001654
Chris Lattner8eb10ce2003-10-09 06:05:40 +00001655 // Now that all the uses are gone, delete the placeholder...
1656 // If we couldn't find a def (error case), then leak a little
1657 // memory, because otherwise we can't remove all uses!
1658 delete PlaceHolder;
Chris Lattner6e448022003-10-08 21:51:46 +00001659 }
Chris Lattner00950542001-06-06 20:29:01 +00001660
Misha Brukman12c29d12003-09-22 23:38:23 +00001661 // Clear out function-level types...
Reid Spencer060d25d2004-06-29 23:29:38 +00001662 FunctionTypes.clear();
1663 CompactionTypes.clear();
1664 CompactionValues.clear();
1665 freeTable(FunctionValues);
1666
Reid Spencer04cde2c2004-07-04 11:33:49 +00001667 if (Handler) Handler->handleFunctionEnd(F);
Chris Lattner00950542001-06-06 20:29:01 +00001668}
1669
Reid Spencer04cde2c2004-07-04 11:33:49 +00001670/// This function parses LLVM functions lazily. It obtains the type of the
1671/// function and records where the body of the function is in the bytecode
1672/// buffer. The caller can then use the ParseNextFunction and
1673/// ParseAllFunctionBodies to get handler events for the functions.
Reid Spencer060d25d2004-06-29 23:29:38 +00001674void BytecodeReader::ParseFunctionLazily() {
1675 if (FunctionSignatureList.empty())
Reid Spencer24399722004-07-09 22:21:33 +00001676 error("FunctionSignatureList empty!");
Chris Lattner89e02532004-01-18 21:08:15 +00001677
Reid Spencer060d25d2004-06-29 23:29:38 +00001678 Function *Func = FunctionSignatureList.back();
1679 FunctionSignatureList.pop_back();
Chris Lattner24102432004-01-18 22:35:34 +00001680
Reid Spencer060d25d2004-06-29 23:29:38 +00001681 // Save the information for future reading of the function
1682 LazyFunctionLoadMap[Func] = LazyFunctionInfo(BlockStart, BlockEnd);
Chris Lattner89e02532004-01-18 21:08:15 +00001683
Reid Spencer060d25d2004-06-29 23:29:38 +00001684 // Pretend we've `parsed' this function
1685 At = BlockEnd;
1686}
Chris Lattner89e02532004-01-18 21:08:15 +00001687
Reid Spencer04cde2c2004-07-04 11:33:49 +00001688/// The ParserFunction method lazily parses one function. Use this method to
1689/// casue the parser to parse a specific function in the module. Note that
1690/// this will remove the function from what is to be included by
1691/// ParseAllFunctionBodies.
1692/// @see ParseAllFunctionBodies
1693/// @see ParseBytecode
Reid Spencer060d25d2004-06-29 23:29:38 +00001694void BytecodeReader::ParseFunction(Function* Func) {
1695 // Find {start, end} pointers and slot in the map. If not there, we're done.
1696 LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(Func);
Chris Lattner89e02532004-01-18 21:08:15 +00001697
Reid Spencer060d25d2004-06-29 23:29:38 +00001698 // Make sure we found it
Reid Spencer46b002c2004-07-11 17:28:43 +00001699 if (Fi == LazyFunctionLoadMap.end()) {
Reid Spencer24399722004-07-09 22:21:33 +00001700 error("Unrecognized function of type " + Func->getType()->getDescription());
Reid Spencer060d25d2004-06-29 23:29:38 +00001701 return;
Chris Lattner89e02532004-01-18 21:08:15 +00001702 }
1703
Reid Spencer060d25d2004-06-29 23:29:38 +00001704 BlockStart = At = Fi->second.Buf;
1705 BlockEnd = Fi->second.EndBuf;
Reid Spencer24399722004-07-09 22:21:33 +00001706 assert(Fi->first == Func && "Found wrong function?");
Reid Spencer060d25d2004-06-29 23:29:38 +00001707
1708 LazyFunctionLoadMap.erase(Fi);
1709
Reid Spencer46b002c2004-07-11 17:28:43 +00001710 this->ParseFunctionBody(Func);
Chris Lattner89e02532004-01-18 21:08:15 +00001711}
1712
Reid Spencer04cde2c2004-07-04 11:33:49 +00001713/// The ParseAllFunctionBodies method parses through all the previously
1714/// unparsed functions in the bytecode file. If you want to completely parse
1715/// a bytecode file, this method should be called after Parsebytecode because
1716/// Parsebytecode only records the locations in the bytecode file of where
1717/// the function definitions are located. This function uses that information
1718/// to materialize the functions.
1719/// @see ParseBytecode
Reid Spencer060d25d2004-06-29 23:29:38 +00001720void BytecodeReader::ParseAllFunctionBodies() {
1721 LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin();
1722 LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end();
Chris Lattner89e02532004-01-18 21:08:15 +00001723
Reid Spencer46b002c2004-07-11 17:28:43 +00001724 while (Fi != Fe) {
Reid Spencer060d25d2004-06-29 23:29:38 +00001725 Function* Func = Fi->first;
1726 BlockStart = At = Fi->second.Buf;
1727 BlockEnd = Fi->second.EndBuf;
1728 this->ParseFunctionBody(Func);
1729 ++Fi;
1730 }
1731}
Chris Lattner89e02532004-01-18 21:08:15 +00001732
Reid Spencer04cde2c2004-07-04 11:33:49 +00001733/// Parse the global type list
Reid Spencer060d25d2004-06-29 23:29:38 +00001734void BytecodeReader::ParseGlobalTypes() {
Reid Spencer04cde2c2004-07-04 11:33:49 +00001735 // Read the number of types
1736 unsigned NumEntries = read_vbr_uint();
Reid Spencer011bed52004-07-09 21:13:53 +00001737
1738 // Ignore the type plane identifier for types if the bc file is pre 1.3
1739 if (hasTypeDerivedFromValue)
1740 read_vbr_uint();
1741
Reid Spencer46b002c2004-07-11 17:28:43 +00001742 ParseTypes(ModuleTypes, NumEntries);
Reid Spencer060d25d2004-06-29 23:29:38 +00001743}
1744
Reid Spencer04cde2c2004-07-04 11:33:49 +00001745/// Parse the Global info (types, global vars, constants)
Reid Spencer060d25d2004-06-29 23:29:38 +00001746void BytecodeReader::ParseModuleGlobalInfo() {
1747
Reid Spencer04cde2c2004-07-04 11:33:49 +00001748 if (Handler) Handler->handleModuleGlobalsBegin();
Chris Lattner00950542001-06-06 20:29:01 +00001749
Chris Lattner70cc3392001-09-10 07:58:01 +00001750 // Read global variables...
Reid Spencer060d25d2004-06-29 23:29:38 +00001751 unsigned VarType = read_vbr_uint();
Chris Lattner70cc3392001-09-10 07:58:01 +00001752 while (VarType != Type::VoidTyID) { // List is terminated by Void
Chris Lattner9dd87702004-04-03 23:43:42 +00001753 // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 =
1754 // Linkage, bit4+ = slot#
1755 unsigned SlotNo = VarType >> 5;
Reid Spencer46b002c2004-07-11 17:28:43 +00001756 if (sanitizeTypeId(SlotNo))
Reid Spencer24399722004-07-09 22:21:33 +00001757 error("Invalid type (type type) for global var!");
Chris Lattner9dd87702004-04-03 23:43:42 +00001758 unsigned LinkageID = (VarType >> 2) & 7;
Reid Spencer060d25d2004-06-29 23:29:38 +00001759 bool isConstant = VarType & 1;
1760 bool hasInitializer = VarType & 2;
Chris Lattnere3869c82003-04-16 21:16:05 +00001761 GlobalValue::LinkageTypes Linkage;
1762
Chris Lattnerc08912f2004-01-14 16:44:44 +00001763 switch (LinkageID) {
Chris Lattnerc08912f2004-01-14 16:44:44 +00001764 case 0: Linkage = GlobalValue::ExternalLinkage; break;
1765 case 1: Linkage = GlobalValue::WeakLinkage; break;
1766 case 2: Linkage = GlobalValue::AppendingLinkage; break;
1767 case 3: Linkage = GlobalValue::InternalLinkage; break;
1768 case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
Reid Spencer060d25d2004-06-29 23:29:38 +00001769 default:
Reid Spencer24399722004-07-09 22:21:33 +00001770 error("Unknown linkage type: " + utostr(LinkageID));
Reid Spencer060d25d2004-06-29 23:29:38 +00001771 Linkage = GlobalValue::InternalLinkage;
1772 break;
Chris Lattnere3869c82003-04-16 21:16:05 +00001773 }
1774
1775 const Type *Ty = getType(SlotNo);
Reid Spencer46b002c2004-07-11 17:28:43 +00001776 if (!Ty) {
Reid Spencer24399722004-07-09 22:21:33 +00001777 error("Global has no type! SlotNo=" + utostr(SlotNo));
Reid Spencer060d25d2004-06-29 23:29:38 +00001778 }
1779
Reid Spencer46b002c2004-07-11 17:28:43 +00001780 if (!isa<PointerType>(Ty)) {
Reid Spencer24399722004-07-09 22:21:33 +00001781 error("Global not a pointer type! Ty= " + Ty->getDescription());
Reid Spencer060d25d2004-06-29 23:29:38 +00001782 }
Chris Lattner70cc3392001-09-10 07:58:01 +00001783
Chris Lattner52e20b02003-03-19 20:54:26 +00001784 const Type *ElTy = cast<PointerType>(Ty)->getElementType();
Chris Lattnerd70684f2001-09-18 04:01:05 +00001785
Chris Lattner70cc3392001-09-10 07:58:01 +00001786 // Create the global variable...
Reid Spencer060d25d2004-06-29 23:29:38 +00001787 GlobalVariable *GV = new GlobalVariable(ElTy, isConstant, Linkage,
Chris Lattner52e20b02003-03-19 20:54:26 +00001788 0, "", TheModule);
Chris Lattner29b789b2003-11-19 17:27:18 +00001789 insertValue(GV, SlotNo, ModuleValues);
Chris Lattner05950c32001-10-13 06:47:01 +00001790
Reid Spencer060d25d2004-06-29 23:29:38 +00001791 unsigned initSlot = 0;
1792 if (hasInitializer) {
1793 initSlot = read_vbr_uint();
1794 GlobalInits.push_back(std::make_pair(GV, initSlot));
1795 }
1796
1797 // Notify handler about the global value.
Reid Spencer46b002c2004-07-11 17:28:43 +00001798 if (Handler) Handler->handleGlobalVariable(ElTy, isConstant, Linkage, SlotNo, initSlot);
Reid Spencer060d25d2004-06-29 23:29:38 +00001799
1800 // Get next item
1801 VarType = read_vbr_uint();
Chris Lattner70cc3392001-09-10 07:58:01 +00001802 }
1803
Chris Lattner52e20b02003-03-19 20:54:26 +00001804 // Read the function objects for all of the functions that are coming
Reid Spencer04cde2c2004-07-04 11:33:49 +00001805 unsigned FnSignature = 0;
Reid Spencer46b002c2004-07-11 17:28:43 +00001806 if (read_typeid(FnSignature))
Reid Spencer24399722004-07-09 22:21:33 +00001807 error("Invalid function type (type type) found");
1808
Chris Lattner74734132002-08-17 22:01:27 +00001809 while (FnSignature != Type::VoidTyID) { // List is terminated by Void
1810 const Type *Ty = getType(FnSignature);
Chris Lattner927b1852003-10-09 20:22:47 +00001811 if (!isa<PointerType>(Ty) ||
Reid Spencer060d25d2004-06-29 23:29:38 +00001812 !isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) {
Reid Spencer24399722004-07-09 22:21:33 +00001813 error("Function not a pointer to function type! Ty = " +
Reid Spencer46b002c2004-07-11 17:28:43 +00001814 Ty->getDescription());
Reid Spencer060d25d2004-06-29 23:29:38 +00001815 // FIXME: what should Ty be if handler continues?
1816 }
Chris Lattner8cdc6b72002-10-23 00:51:54 +00001817
Chris Lattner2a7b6ba2003-03-06 17:15:19 +00001818 // We create functions by passing the underlying FunctionType to create...
Reid Spencer060d25d2004-06-29 23:29:38 +00001819 const FunctionType* FTy =
1820 cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
Chris Lattner00950542001-06-06 20:29:01 +00001821
Reid Spencer060d25d2004-06-29 23:29:38 +00001822 // Insert the place hodler
1823 Function* Func = new Function(FTy, GlobalValue::InternalLinkage,
Reid Spencer04cde2c2004-07-04 11:33:49 +00001824 "", TheModule);
Chris Lattner29b789b2003-11-19 17:27:18 +00001825 insertValue(Func, FnSignature, ModuleValues);
Chris Lattner00950542001-06-06 20:29:01 +00001826
Reid Spencer060d25d2004-06-29 23:29:38 +00001827 // Save this for later so we know type of lazily instantiated functions
Chris Lattner29b789b2003-11-19 17:27:18 +00001828 FunctionSignatureList.push_back(Func);
Chris Lattner52e20b02003-03-19 20:54:26 +00001829
Reid Spencer04cde2c2004-07-04 11:33:49 +00001830 if (Handler) Handler->handleFunctionDeclaration(Func);
Reid Spencer060d25d2004-06-29 23:29:38 +00001831
1832 // Get Next function signature
Reid Spencer46b002c2004-07-11 17:28:43 +00001833 if (read_typeid(FnSignature))
Reid Spencer24399722004-07-09 22:21:33 +00001834 error("Invalid function type (type type) found");
Chris Lattner00950542001-06-06 20:29:01 +00001835 }
1836
Chris Lattner74734132002-08-17 22:01:27 +00001837 // Now that the function signature list is set up, reverse it so that we can
1838 // remove elements efficiently from the back of the vector.
1839 std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end());
Chris Lattner00950542001-06-06 20:29:01 +00001840
Reid Spencerad89bd62004-07-25 18:07:36 +00001841 // If this bytecode format has dependent library information in it ..
1842 if (!hasNoDependentLibraries) {
1843 // Read in the number of dependent library items that follow
1844 unsigned num_dep_libs = read_vbr_uint();
1845 std::string dep_lib;
1846 while( num_dep_libs-- ) {
1847 dep_lib = read_str();
Reid Spencerada16182004-07-25 21:36:26 +00001848 TheModule->addLibrary(dep_lib);
Reid Spencerad89bd62004-07-25 18:07:36 +00001849 }
1850
1851 // Read target triple and place into the module
1852 std::string triple = read_str();
1853 TheModule->setTargetTriple(triple);
1854 }
1855
1856 if (hasInconsistentModuleGlobalInfo)
1857 align32();
1858
Chris Lattner00950542001-06-06 20:29:01 +00001859 // This is for future proofing... in the future extra fields may be added that
1860 // we don't understand, so we transparently ignore them.
1861 //
Reid Spencer060d25d2004-06-29 23:29:38 +00001862 At = BlockEnd;
1863
Reid Spencer04cde2c2004-07-04 11:33:49 +00001864 if (Handler) Handler->handleModuleGlobalsEnd();
Chris Lattner00950542001-06-06 20:29:01 +00001865}
1866
Reid Spencer04cde2c2004-07-04 11:33:49 +00001867/// Parse the version information and decode it by setting flags on the
1868/// Reader that enable backward compatibility of the reader.
Reid Spencer060d25d2004-06-29 23:29:38 +00001869void BytecodeReader::ParseVersionInfo() {
1870 unsigned Version = read_vbr_uint();
Chris Lattner036b8aa2003-03-06 17:55:45 +00001871
1872 // Unpack version number: low four bits are for flags, top bits = version
Chris Lattnerd445c6b2003-08-24 13:47:36 +00001873 Module::Endianness Endianness;
1874 Module::PointerSize PointerSize;
1875 Endianness = (Version & 1) ? Module::BigEndian : Module::LittleEndian;
1876 PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32;
1877
1878 bool hasNoEndianness = Version & 4;
1879 bool hasNoPointerSize = Version & 8;
1880
1881 RevisionNum = Version >> 4;
Chris Lattnere3869c82003-04-16 21:16:05 +00001882
1883 // Default values for the current bytecode version
Chris Lattner44d0eeb2004-01-15 17:55:01 +00001884 hasInconsistentModuleGlobalInfo = false;
Chris Lattner80b97342004-01-17 23:25:43 +00001885 hasExplicitPrimitiveZeros = false;
Chris Lattner5fa428f2004-04-05 01:27:26 +00001886 hasRestrictedGEPTypes = false;
Reid Spencer04cde2c2004-07-04 11:33:49 +00001887 hasTypeDerivedFromValue = false;
Reid Spencerad89bd62004-07-25 18:07:36 +00001888 hasLongBlockHeaders = false;
Reid Spencerad89bd62004-07-25 18:07:36 +00001889 has32BitTypes = false;
1890 hasNoDependentLibraries = false;
Chris Lattner036b8aa2003-03-06 17:55:45 +00001891
1892 switch (RevisionNum) {
Chris Lattnerc08912f2004-01-14 16:44:44 +00001893 case 0: // LLVM 1.0, 1.1 release version
Chris Lattner9e893e82004-01-14 23:35:21 +00001894 // Base LLVM 1.0 bytecode format.
Chris Lattner44d0eeb2004-01-15 17:55:01 +00001895 hasInconsistentModuleGlobalInfo = true;
Chris Lattner80b97342004-01-17 23:25:43 +00001896 hasExplicitPrimitiveZeros = true;
Reid Spencer04cde2c2004-07-04 11:33:49 +00001897
Reid Spencerad89bd62004-07-25 18:07:36 +00001898
Chris Lattner80b97342004-01-17 23:25:43 +00001899 // FALL THROUGH
Chris Lattnerc08912f2004-01-14 16:44:44 +00001900 case 1: // LLVM 1.2 release version
Chris Lattner9e893e82004-01-14 23:35:21 +00001901 // LLVM 1.2 added explicit support for emitting strings efficiently.
Chris Lattner44d0eeb2004-01-15 17:55:01 +00001902
1903 // Also, it fixed the problem where the size of the ModuleGlobalInfo block
1904 // included the size for the alignment at the end, where the rest of the
1905 // blocks did not.
Chris Lattner5fa428f2004-04-05 01:27:26 +00001906
1907 // LLVM 1.2 and before required that GEP indices be ubyte constants for
1908 // structures and longs for sequential types.
1909 hasRestrictedGEPTypes = true;
1910
Reid Spencer04cde2c2004-07-04 11:33:49 +00001911 // LLVM 1.2 and before had the Type class derive from Value class. This
1912 // changed in release 1.3 and consequently LLVM 1.3 bytecode files are
1913 // written differently because Types can no longer be part of the
1914 // type planes for Values.
1915 hasTypeDerivedFromValue = true;
1916
Chris Lattner5fa428f2004-04-05 01:27:26 +00001917 // FALL THROUGH
Reid Spencerad89bd62004-07-25 18:07:36 +00001918
1919 case 2: /// 1.2.5 (mid-release) version
1920
1921 /// LLVM 1.2 and earlier had two-word block headers. This is a bit wasteful,
1922 /// especially for small files where the 8 bytes per block is a large fraction
1923 /// of the total block size. In LLVM 1.3, the block type and length are
1924 /// compressed into a single 32-bit unsigned integer. 27 bits for length, 5
1925 /// bits for block type.
1926 hasLongBlockHeaders = true;
1927
Reid Spencerad89bd62004-07-25 18:07:36 +00001928 /// LLVM 1.2 and earlier wrote type slot numbers as vbr_uint32. In LLVM 1.3
1929 /// this has been reduced to vbr_uint24. It shouldn't make much difference
1930 /// since we haven't run into a module with > 24 million types, but for safety
1931 /// the 24-bit restriction has been enforced in 1.3 to free some bits in
1932 /// various places and to ensure consistency.
1933 has32BitTypes = true;
1934
1935 /// LLVM 1.2 and earlier did not provide a target triple nor a list of
1936 /// libraries on which the bytecode is dependent. LLVM 1.3 provides these
1937 /// features, for use in future versions of LLVM.
1938 hasNoDependentLibraries = true;
1939
1940 // FALL THROUGH
1941 case 3: // LLVM 1.3 release version
Chris Lattnerc08912f2004-01-14 16:44:44 +00001942 break;
1943
Chris Lattner036b8aa2003-03-06 17:55:45 +00001944 default:
Reid Spencer24399722004-07-09 22:21:33 +00001945 error("Unknown bytecode version number: " + itostr(RevisionNum));
Chris Lattner036b8aa2003-03-06 17:55:45 +00001946 }
1947
Chris Lattnerd445c6b2003-08-24 13:47:36 +00001948 if (hasNoEndianness) Endianness = Module::AnyEndianness;
1949 if (hasNoPointerSize) PointerSize = Module::AnyPointerSize;
Chris Lattner76e38962003-04-22 18:15:10 +00001950
Brian Gaekefe2102b2004-07-14 20:33:13 +00001951 TheModule->setEndianness(Endianness);
1952 TheModule->setPointerSize(PointerSize);
1953
Reid Spencer46b002c2004-07-11 17:28:43 +00001954 if (Handler) Handler->handleVersionInfo(RevisionNum, Endianness, PointerSize);
Chris Lattner036b8aa2003-03-06 17:55:45 +00001955}
1956
Reid Spencer04cde2c2004-07-04 11:33:49 +00001957/// Parse a whole module.
Reid Spencer060d25d2004-06-29 23:29:38 +00001958void BytecodeReader::ParseModule() {
Chris Lattner00950542001-06-06 20:29:01 +00001959 unsigned Type, Size;
Chris Lattner00950542001-06-06 20:29:01 +00001960
Reid Spencer060d25d2004-06-29 23:29:38 +00001961 FunctionSignatureList.clear(); // Just in case...
Chris Lattner00950542001-06-06 20:29:01 +00001962
1963 // Read into instance variables...
Reid Spencer060d25d2004-06-29 23:29:38 +00001964 ParseVersionInfo();
Reid Spencerad89bd62004-07-25 18:07:36 +00001965 align32();
Chris Lattner00950542001-06-06 20:29:01 +00001966
Reid Spencer060d25d2004-06-29 23:29:38 +00001967 bool SeenModuleGlobalInfo = false;
1968 bool SeenGlobalTypePlane = false;
1969 BufPtr MyEnd = BlockEnd;
1970 while (At < MyEnd) {
1971 BufPtr OldAt = At;
1972 read_block(Type, Size);
1973
Chris Lattner00950542001-06-06 20:29:01 +00001974 switch (Type) {
Reid Spencer060d25d2004-06-29 23:29:38 +00001975
Reid Spencerad89bd62004-07-25 18:07:36 +00001976 case BytecodeFormat::GlobalTypePlaneBlockID:
Reid Spencer46b002c2004-07-11 17:28:43 +00001977 if (SeenGlobalTypePlane)
Reid Spencer24399722004-07-09 22:21:33 +00001978 error("Two GlobalTypePlane Blocks Encountered!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001979
1980 ParseGlobalTypes();
1981 SeenGlobalTypePlane = true;
Chris Lattner52e20b02003-03-19 20:54:26 +00001982 break;
1983
Reid Spencerad89bd62004-07-25 18:07:36 +00001984 case BytecodeFormat::ModuleGlobalInfoBlockID:
Reid Spencer46b002c2004-07-11 17:28:43 +00001985 if (SeenModuleGlobalInfo)
Reid Spencer24399722004-07-09 22:21:33 +00001986 error("Two ModuleGlobalInfo Blocks Encountered!");
Reid Spencer060d25d2004-06-29 23:29:38 +00001987 ParseModuleGlobalInfo();
1988 SeenModuleGlobalInfo = true;
Chris Lattner52e20b02003-03-19 20:54:26 +00001989 break;
1990
Reid Spencerad89bd62004-07-25 18:07:36 +00001991 case BytecodeFormat::ConstantPoolBlockID:
Reid Spencer04cde2c2004-07-04 11:33:49 +00001992 ParseConstantPool(ModuleValues, ModuleTypes,false);
Chris Lattner00950542001-06-06 20:29:01 +00001993 break;
1994
Reid Spencerad89bd62004-07-25 18:07:36 +00001995 case BytecodeFormat::FunctionBlockID:
Reid Spencer060d25d2004-06-29 23:29:38 +00001996 ParseFunctionLazily();
Chris Lattner00950542001-06-06 20:29:01 +00001997 break;
Chris Lattner00950542001-06-06 20:29:01 +00001998
Reid Spencerad89bd62004-07-25 18:07:36 +00001999 case BytecodeFormat::SymbolTableBlockID:
Reid Spencer060d25d2004-06-29 23:29:38 +00002000 ParseSymbolTable(0, &TheModule->getSymbolTable());
Chris Lattner00950542001-06-06 20:29:01 +00002001 break;
Reid Spencer060d25d2004-06-29 23:29:38 +00002002
Chris Lattner00950542001-06-06 20:29:01 +00002003 default:
Reid Spencer060d25d2004-06-29 23:29:38 +00002004 At += Size;
2005 if (OldAt > At) {
Reid Spencer46b002c2004-07-11 17:28:43 +00002006 error("Unexpected Block of Type #" + utostr(Type) + " encountered!");
Reid Spencer060d25d2004-06-29 23:29:38 +00002007 }
Chris Lattner00950542001-06-06 20:29:01 +00002008 break;
2009 }
Reid Spencer060d25d2004-06-29 23:29:38 +00002010 BlockEnd = MyEnd;
2011 align32();
Chris Lattner00950542001-06-06 20:29:01 +00002012 }
2013
Chris Lattner52e20b02003-03-19 20:54:26 +00002014 // After the module constant pool has been read, we can safely initialize
2015 // global variables...
2016 while (!GlobalInits.empty()) {
2017 GlobalVariable *GV = GlobalInits.back().first;
2018 unsigned Slot = GlobalInits.back().second;
2019 GlobalInits.pop_back();
2020
2021 // Look up the initializer value...
Chris Lattner29b789b2003-11-19 17:27:18 +00002022 // FIXME: Preserve this type ID!
Reid Spencer060d25d2004-06-29 23:29:38 +00002023
2024 const llvm::PointerType* GVType = GV->getType();
2025 unsigned TypeSlot = getTypeSlot(GVType->getElementType());
Chris Lattner93361992004-01-15 18:45:25 +00002026 if (Constant *CV = getConstantValue(TypeSlot, Slot)) {
Misha Brukman12c29d12003-09-22 23:38:23 +00002027 if (GV->hasInitializer())
Reid Spencer24399722004-07-09 22:21:33 +00002028 error("Global *already* has an initializer?!");
Reid Spencer04cde2c2004-07-04 11:33:49 +00002029 if (Handler) Handler->handleGlobalInitializer(GV,CV);
Chris Lattner93361992004-01-15 18:45:25 +00002030 GV->setInitializer(CV);
Chris Lattner52e20b02003-03-19 20:54:26 +00002031 } else
Reid Spencer24399722004-07-09 22:21:33 +00002032 error("Cannot find initializer value.");
Chris Lattner52e20b02003-03-19 20:54:26 +00002033 }
2034
Reid Spencer060d25d2004-06-29 23:29:38 +00002035 /// Make sure we pulled them all out. If we didn't then there's a declaration
2036 /// but a missing body. That's not allowed.
Misha Brukman12c29d12003-09-22 23:38:23 +00002037 if (!FunctionSignatureList.empty())
Reid Spencer24399722004-07-09 22:21:33 +00002038 error("Function declared, but bytecode stream ended before definition");
Chris Lattner00950542001-06-06 20:29:01 +00002039}
2040
Reid Spencer04cde2c2004-07-04 11:33:49 +00002041/// This function completely parses a bytecode buffer given by the \p Buf
2042/// and \p Length parameters.
Reid Spencer46b002c2004-07-11 17:28:43 +00002043void BytecodeReader::ParseBytecode(BufPtr Buf, unsigned Length,
2044 const std::string &ModuleID,
2045 bool processFunctions) {
Misha Brukmane0dd0d42003-09-23 16:15:29 +00002046
Reid Spencer060d25d2004-06-29 23:29:38 +00002047 try {
2048 At = MemStart = BlockStart = Buf;
2049 MemEnd = BlockEnd = Buf + Length;
Misha Brukmane0dd0d42003-09-23 16:15:29 +00002050
Reid Spencer060d25d2004-06-29 23:29:38 +00002051 // Create the module
2052 TheModule = new Module(ModuleID);
Chris Lattner00950542001-06-06 20:29:01 +00002053
Reid Spencer04cde2c2004-07-04 11:33:49 +00002054 if (Handler) Handler->handleStart(TheModule, Length);
Reid Spencer060d25d2004-06-29 23:29:38 +00002055
2056 // Read and check signature...
2057 unsigned Sig = read_uint();
2058 if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) {
Reid Spencer24399722004-07-09 22:21:33 +00002059 error("Invalid bytecode signature: " + utostr(Sig));
Reid Spencer060d25d2004-06-29 23:29:38 +00002060 }
2061
Reid Spencer060d25d2004-06-29 23:29:38 +00002062 // Tell the handler we're starting a module
Reid Spencer04cde2c2004-07-04 11:33:49 +00002063 if (Handler) Handler->handleModuleBegin(ModuleID);
Reid Spencer060d25d2004-06-29 23:29:38 +00002064
Reid Spencerad89bd62004-07-25 18:07:36 +00002065 // Get the module block and size and verify. This is handled specially
2066 // because the module block/size is always written in long format. Other
2067 // blocks are written in short format so the read_block method is used.
Reid Spencer060d25d2004-06-29 23:29:38 +00002068 unsigned Type, Size;
Reid Spencerad89bd62004-07-25 18:07:36 +00002069 Type = read_uint();
2070 Size = read_uint();
2071 if (Type != BytecodeFormat::ModuleBlockID) {
Reid Spencer24399722004-07-09 22:21:33 +00002072 error("Expected Module Block! Type:" + utostr(Type) + ", Size:"
Reid Spencer46b002c2004-07-11 17:28:43 +00002073 + utostr(Size));
Reid Spencer060d25d2004-06-29 23:29:38 +00002074 }
Reid Spencer46b002c2004-07-11 17:28:43 +00002075 if (At + Size != MemEnd) {
Reid Spencer24399722004-07-09 22:21:33 +00002076 error("Invalid Top Level Block Length! Type:" + utostr(Type)
Reid Spencer46b002c2004-07-11 17:28:43 +00002077 + ", Size:" + utostr(Size));
Reid Spencer060d25d2004-06-29 23:29:38 +00002078 }
2079
2080 // Parse the module contents
2081 this->ParseModule();
2082
Reid Spencer060d25d2004-06-29 23:29:38 +00002083 // Check for missing functions
Reid Spencer46b002c2004-07-11 17:28:43 +00002084 if (hasFunctions())
Reid Spencer24399722004-07-09 22:21:33 +00002085 error("Function expected, but bytecode stream ended!");
Reid Spencer060d25d2004-06-29 23:29:38 +00002086
Reid Spencer5c15fe52004-07-05 00:57:50 +00002087 // Process all the function bodies now, if requested
Reid Spencer46b002c2004-07-11 17:28:43 +00002088 if (processFunctions)
Reid Spencer5c15fe52004-07-05 00:57:50 +00002089 ParseAllFunctionBodies();
2090
2091 // Tell the handler we're done with the module
2092 if (Handler)
2093 Handler->handleModuleEnd(ModuleID);
2094
2095 // Tell the handler we're finished the parse
Reid Spencer04cde2c2004-07-04 11:33:49 +00002096 if (Handler) Handler->handleFinish();
Reid Spencer060d25d2004-06-29 23:29:38 +00002097
Reid Spencer46b002c2004-07-11 17:28:43 +00002098 } catch (std::string& errstr) {
Reid Spencer04cde2c2004-07-04 11:33:49 +00002099 if (Handler) Handler->handleError(errstr);
Reid Spencer060d25d2004-06-29 23:29:38 +00002100 freeState();
Chris Lattner2a7b6ba2003-03-06 17:15:19 +00002101 delete TheModule;
2102 TheModule = 0;
Chris Lattnerb0b7c0d2003-09-26 14:44:52 +00002103 throw;
Reid Spencer060d25d2004-06-29 23:29:38 +00002104 } catch (...) {
2105 std::string msg("Unknown Exception Occurred");
Reid Spencer04cde2c2004-07-04 11:33:49 +00002106 if (Handler) Handler->handleError(msg);
Reid Spencer060d25d2004-06-29 23:29:38 +00002107 freeState();
2108 delete TheModule;
2109 TheModule = 0;
2110 throw msg;
Chris Lattner2a7b6ba2003-03-06 17:15:19 +00002111 }
Chris Lattner00950542001-06-06 20:29:01 +00002112}
Reid Spencer060d25d2004-06-29 23:29:38 +00002113
2114//===----------------------------------------------------------------------===//
2115//=== Default Implementations of Handler Methods
2116//===----------------------------------------------------------------------===//
2117
2118BytecodeHandler::~BytecodeHandler() {}
Reid Spencer060d25d2004-06-29 23:29:38 +00002119
2120// vim: sw=2