blob: 37027ee8bebae506808503a4afa55ded703ba386 [file] [log] [blame]
Misha Brukman91b5ca82004-07-26 18:45:48 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Chris Lattner847df252004-01-30 22:25:18 +000011// virtual registers into register stack instructions. This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code. In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges. Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet. The stackifier pass only works on local
27// basic blocks.
Chris Lattnera960d952003-01-13 01:01:59 +000028//
29//===----------------------------------------------------------------------===//
30
Chris Lattner95b2c7d2006-12-19 22:59:26 +000031#define DEBUG_TYPE "x86-codegen"
Chris Lattnera960d952003-01-13 01:01:59 +000032#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner84bc5422007-12-31 04:13:23 +000036#include "llvm/CodeGen/MachineRegisterInfo.h"
Alkis Evlogimenos359b65f2003-12-13 05:36:22 +000037#include "llvm/CodeGen/Passes.h"
Chris Lattner3501fea2003-01-14 22:00:31 +000038#include "llvm/Target/TargetInstrInfo.h"
Chris Lattnera960d952003-01-13 01:01:59 +000039#include "llvm/Target/TargetMachine.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000040#include "llvm/Support/Debug.h"
Chris Lattnera4f0b3a2006-08-27 12:54:02 +000041#include "llvm/Support/Compiler.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000042#include "llvm/ADT/DepthFirstIterator.h"
Owen Andersoneaa009d2008-08-14 21:01:00 +000043#include "llvm/ADT/SmallPtrSet.h"
Evan Chengddd2a452006-11-15 20:56:39 +000044#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000045#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/STLExtras.h"
Chris Lattnera960d952003-01-13 01:01:59 +000047#include <algorithm>
Chris Lattnerf2e49d42003-12-20 09:58:55 +000048using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000049
Chris Lattner95b2c7d2006-12-19 22:59:26 +000050STATISTIC(NumFXCH, "Number of fxch instructions inserted");
51STATISTIC(NumFP , "Number of floating point instructions");
Chris Lattnera960d952003-01-13 01:01:59 +000052
Chris Lattner95b2c7d2006-12-19 22:59:26 +000053namespace {
Chris Lattner2c79de82006-06-28 23:27:49 +000054 struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
Devang Patel19974732007-05-03 01:11:54 +000055 static char ID;
Dan Gohmanae73dc12008-09-04 17:05:41 +000056 FPS() : MachineFunctionPass(&ID) {}
Devang Patel794fd752007-05-01 21:15:47 +000057
Evan Chengbbeeb2a2008-09-22 20:58:04 +000058 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Evan Cheng8b56a902008-09-22 22:21:38 +000059 AU.addPreservedID(MachineLoopInfoID);
60 AU.addPreservedID(MachineDominatorsID);
Evan Chengbbeeb2a2008-09-22 20:58:04 +000061 MachineFunctionPass::getAnalysisUsage(AU);
62 }
63
Chris Lattnera960d952003-01-13 01:01:59 +000064 virtual bool runOnMachineFunction(MachineFunction &MF);
65
66 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
67
Chris Lattnera960d952003-01-13 01:01:59 +000068 private:
Evan Cheng32644ac2006-12-01 10:11:51 +000069 const TargetInstrInfo *TII; // Machine instruction info.
Evan Cheng32644ac2006-12-01 10:11:51 +000070 MachineBasicBlock *MBB; // Current basic block
71 unsigned Stack[8]; // FP<n> Registers in each stack slot...
72 unsigned RegMap[8]; // Track which stack slot contains each register
73 unsigned StackTop; // The current top of the FP stack.
Chris Lattnera960d952003-01-13 01:01:59 +000074
75 void dumpStack() const {
Bill Wendlingf5da1332006-12-07 22:21:48 +000076 cerr << "Stack contents:";
Chris Lattnera960d952003-01-13 01:01:59 +000077 for (unsigned i = 0; i != StackTop; ++i) {
Bill Wendlingf5da1332006-12-07 22:21:48 +000078 cerr << " FP" << Stack[i];
Misha Brukman0e0a7a452005-04-21 23:38:14 +000079 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
Chris Lattnera960d952003-01-13 01:01:59 +000080 }
Bill Wendlingf5da1332006-12-07 22:21:48 +000081 cerr << "\n";
Chris Lattnera960d952003-01-13 01:01:59 +000082 }
83 private:
Chris Lattner447ff682008-03-11 03:23:40 +000084 /// isStackEmpty - Return true if the FP stack is empty.
85 bool isStackEmpty() const {
86 return StackTop == 0;
87 }
88
Chris Lattnera960d952003-01-13 01:01:59 +000089 // getSlot - Return the stack slot number a particular register number is
Chris Lattner447ff682008-03-11 03:23:40 +000090 // in.
Chris Lattnera960d952003-01-13 01:01:59 +000091 unsigned getSlot(unsigned RegNo) const {
92 assert(RegNo < 8 && "Regno out of range!");
93 return RegMap[RegNo];
94 }
95
Chris Lattner447ff682008-03-11 03:23:40 +000096 // getStackEntry - Return the X86::FP<n> register in register ST(i).
Chris Lattnera960d952003-01-13 01:01:59 +000097 unsigned getStackEntry(unsigned STi) const {
98 assert(STi < StackTop && "Access past stack top!");
99 return Stack[StackTop-1-STi];
100 }
101
102 // getSTReg - Return the X86::ST(i) register which contains the specified
Chris Lattner447ff682008-03-11 03:23:40 +0000103 // FP<RegNo> register.
Chris Lattnera960d952003-01-13 01:01:59 +0000104 unsigned getSTReg(unsigned RegNo) const {
Brian Gaeked0fde302003-11-11 22:41:34 +0000105 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +0000106 }
107
Chris Lattner447ff682008-03-11 03:23:40 +0000108 // pushReg - Push the specified FP<n> register onto the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000109 void pushReg(unsigned Reg) {
110 assert(Reg < 8 && "Register number out of range!");
111 assert(StackTop < 8 && "Stack overflow!");
112 Stack[StackTop] = Reg;
113 RegMap[Reg] = StackTop++;
114 }
115
116 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattner447ff682008-03-11 03:23:40 +0000117 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000118 MachineInstr *MI = I;
119 DebugLoc dl = MI->getDebugLoc();
Chris Lattner447ff682008-03-11 03:23:40 +0000120 if (isAtTop(RegNo)) return;
121
122 unsigned STReg = getSTReg(RegNo);
123 unsigned RegOnTop = getStackEntry(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000124
Chris Lattner447ff682008-03-11 03:23:40 +0000125 // Swap the slots the regs are in.
126 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Chris Lattnera960d952003-01-13 01:01:59 +0000127
Chris Lattner447ff682008-03-11 03:23:40 +0000128 // Swap stack slot contents.
129 assert(RegMap[RegOnTop] < StackTop);
130 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Chris Lattnera960d952003-01-13 01:01:59 +0000131
Chris Lattner447ff682008-03-11 03:23:40 +0000132 // Emit an fxch to update the runtime processors version of the state.
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000133 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
Chris Lattner447ff682008-03-11 03:23:40 +0000134 NumFXCH++;
Chris Lattnera960d952003-01-13 01:01:59 +0000135 }
136
Chris Lattner0526f012004-04-01 04:06:09 +0000137 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000138 DebugLoc dl = I->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000139 unsigned STReg = getSTReg(RegNo);
140 pushReg(AsReg); // New register on top of stack
141
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000142 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
Chris Lattnera960d952003-01-13 01:01:59 +0000143 }
144
145 // popStackAfter - Pop the current value off of the top of the FP stack
146 // after the specified instruction.
147 void popStackAfter(MachineBasicBlock::iterator &I);
148
Chris Lattner0526f012004-04-01 04:06:09 +0000149 // freeStackSlotAfter - Free the specified register from the register stack,
150 // so that it is no longer in a register. If the register is currently at
151 // the top of the stack, we just pop the current instruction, otherwise we
152 // store the current top-of-stack into the specified slot, then pop the top
153 // of stack.
154 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
155
Chris Lattnera960d952003-01-13 01:01:59 +0000156 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
157
158 void handleZeroArgFP(MachineBasicBlock::iterator &I);
159 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner4a06f352004-02-02 19:23:15 +0000160 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000161 void handleTwoArgFP(MachineBasicBlock::iterator &I);
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000162 void handleCompareFP(MachineBasicBlock::iterator &I);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000163 void handleCondMovFP(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000164 void handleSpecialFP(MachineBasicBlock::iterator &I);
165 };
Devang Patel19974732007-05-03 01:11:54 +0000166 char FPS::ID = 0;
Chris Lattnera960d952003-01-13 01:01:59 +0000167}
168
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000169FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000170
Chris Lattner3cc83842008-01-14 06:41:29 +0000171/// getFPReg - Return the X86::FPx register number for the specified operand.
172/// For example, this returns 3 for X86::FP3.
173static unsigned getFPReg(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000174 assert(MO.isReg() && "Expected an FP register!");
Chris Lattner3cc83842008-01-14 06:41:29 +0000175 unsigned Reg = MO.getReg();
176 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
177 return Reg - X86::FP0;
178}
179
180
Chris Lattnera960d952003-01-13 01:01:59 +0000181/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
182/// register references into FP stack references.
183///
184bool FPS::runOnMachineFunction(MachineFunction &MF) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000185 // We only need to run this pass if there are any FP registers used in this
186 // function. If it is all integer, there is nothing for us to do!
Chris Lattner42e25b32005-01-23 23:13:59 +0000187 bool FPIsUsed = false;
188
189 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
190 for (unsigned i = 0; i <= 6; ++i)
Chris Lattner84bc5422007-12-31 04:13:23 +0000191 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000192 FPIsUsed = true;
193 break;
194 }
195
196 // Early exit.
197 if (!FPIsUsed) return false;
198
Evan Cheng32644ac2006-12-01 10:11:51 +0000199 TII = MF.getTarget().getInstrInfo();
Chris Lattnera960d952003-01-13 01:01:59 +0000200 StackTop = 0;
201
Chris Lattner847df252004-01-30 22:25:18 +0000202 // Process the function in depth first order so that we process at least one
203 // of the predecessors for every reachable block in the function.
Owen Andersoneaa009d2008-08-14 21:01:00 +0000204 SmallPtrSet<MachineBasicBlock*, 8> Processed;
Chris Lattner22686842004-05-01 21:27:53 +0000205 MachineBasicBlock *Entry = MF.begin();
Chris Lattner847df252004-01-30 22:25:18 +0000206
207 bool Changed = false;
Owen Andersoneaa009d2008-08-14 21:01:00 +0000208 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
Chris Lattner847df252004-01-30 22:25:18 +0000209 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
210 I != E; ++I)
Chris Lattner22686842004-05-01 21:27:53 +0000211 Changed |= processBasicBlock(MF, **I);
Chris Lattner847df252004-01-30 22:25:18 +0000212
Chris Lattnera960d952003-01-13 01:01:59 +0000213 return Changed;
214}
215
216/// processBasicBlock - Loop over all of the instructions in the basic block,
217/// transforming FP instructions into their stack form.
218///
219bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
Chris Lattnera960d952003-01-13 01:01:59 +0000220 bool Changed = false;
221 MBB = &BB;
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000222
Chris Lattnera960d952003-01-13 01:01:59 +0000223 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000224 MachineInstr *MI = I;
Chris Lattner749c6f62008-01-07 07:27:27 +0000225 unsigned Flags = MI->getDesc().TSFlags;
Chris Lattnere12ecf22008-03-11 19:50:13 +0000226
227 unsigned FPInstClass = Flags & X86II::FPTypeMask;
228 if (MI->getOpcode() == TargetInstrInfo::INLINEASM)
229 FPInstClass = X86II::SpecialFP;
230
231 if (FPInstClass == X86II::NotFP)
Chris Lattner847df252004-01-30 22:25:18 +0000232 continue; // Efficiently ignore non-fp insts!
Chris Lattnera960d952003-01-13 01:01:59 +0000233
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000234 MachineInstr *PrevMI = 0;
Alkis Evlogimenosf81af212004-02-14 01:18:34 +0000235 if (I != BB.begin())
Chris Lattner6fa2f9c2008-03-09 07:05:32 +0000236 PrevMI = prior(I);
Chris Lattnera960d952003-01-13 01:01:59 +0000237
238 ++NumFP; // Keep track of # of pseudo instrs
Chris Lattnerc5f8e4f2006-12-08 05:41:26 +0000239 DOUT << "\nFPInst:\t" << *MI;
Chris Lattnera960d952003-01-13 01:01:59 +0000240
241 // Get dead variables list now because the MI pointer may be deleted as part
242 // of processing!
Evan Chengddd2a452006-11-15 20:56:39 +0000243 SmallVector<unsigned, 8> DeadRegs;
244 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
245 const MachineOperand &MO = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +0000246 if (MO.isReg() && MO.isDead())
Evan Chengddd2a452006-11-15 20:56:39 +0000247 DeadRegs.push_back(MO.getReg());
248 }
Chris Lattnera960d952003-01-13 01:01:59 +0000249
Chris Lattnere12ecf22008-03-11 19:50:13 +0000250 switch (FPInstClass) {
Chris Lattner4a06f352004-02-02 19:23:15 +0000251 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000252 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
Chris Lattner4a06f352004-02-02 19:23:15 +0000253 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
Evan Cheng5cd3e9f2006-11-11 10:21:44 +0000254 case X86II::TwoArgFP: handleTwoArgFP(I); break;
Chris Lattnerab8decc2004-06-11 04:41:24 +0000255 case X86II::CompareFP: handleCompareFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000256 case X86II::CondMovFP: handleCondMovFP(I); break;
Chris Lattner4a06f352004-02-02 19:23:15 +0000257 case X86II::SpecialFP: handleSpecialFP(I); break;
Chris Lattnera960d952003-01-13 01:01:59 +0000258 default: assert(0 && "Unknown FP Type!");
259 }
260
261 // Check to see if any of the values defined by this instruction are dead
262 // after definition. If so, pop them.
Evan Chengddd2a452006-11-15 20:56:39 +0000263 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
264 unsigned Reg = DeadRegs[i];
Chris Lattnera960d952003-01-13 01:01:59 +0000265 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
Bill Wendlingf5da1332006-12-07 22:21:48 +0000266 DOUT << "Register FP#" << Reg-X86::FP0 << " is dead!\n";
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000267 freeStackSlotAfter(I, Reg-X86::FP0);
Chris Lattnera960d952003-01-13 01:01:59 +0000268 }
269 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000270
Chris Lattnera960d952003-01-13 01:01:59 +0000271 // Print out all of the instructions expanded to if -debug
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000272 DEBUG(
273 MachineBasicBlock::iterator PrevI(PrevMI);
274 if (I == PrevI) {
Bill Wendlingf5da1332006-12-07 22:21:48 +0000275 cerr << "Just deleted pseudo instruction\n";
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000276 } else {
277 MachineBasicBlock::iterator Start = I;
278 // Rewind to first instruction newly inserted.
279 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
Bill Wendlingf5da1332006-12-07 22:21:48 +0000280 cerr << "Inserted instructions:\n\t";
281 Start->print(*cerr.stream(), &MF.getTarget());
Duncan Sands49c23932007-09-11 12:30:25 +0000282 while (++Start != next(I)) {}
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000283 }
284 dumpStack();
285 );
Chris Lattnera960d952003-01-13 01:01:59 +0000286
287 Changed = true;
288 }
289
Chris Lattner447ff682008-03-11 03:23:40 +0000290 assert(isStackEmpty() && "Stack not empty at end of basic block?");
Chris Lattnera960d952003-01-13 01:01:59 +0000291 return Changed;
292}
293
294//===----------------------------------------------------------------------===//
295// Efficient Lookup Table Support
296//===----------------------------------------------------------------------===//
297
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000298namespace {
299 struct TableEntry {
300 unsigned from;
301 unsigned to;
302 bool operator<(const TableEntry &TE) const { return from < TE.from; }
Jeff Cohen9471c8a2006-01-26 20:41:32 +0000303 friend bool operator<(const TableEntry &TE, unsigned V) {
304 return TE.from < V;
305 }
306 friend bool operator<(unsigned V, const TableEntry &TE) {
307 return V < TE.from;
308 }
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000309 };
310}
Chris Lattnera960d952003-01-13 01:01:59 +0000311
Evan Chenga022bdf2008-07-21 20:02:45 +0000312#ifndef NDEBUG
Chris Lattnera960d952003-01-13 01:01:59 +0000313static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
314 for (unsigned i = 0; i != NumEntries-1; ++i)
315 if (!(Table[i] < Table[i+1])) return false;
316 return true;
317}
Evan Chenga022bdf2008-07-21 20:02:45 +0000318#endif
Chris Lattnera960d952003-01-13 01:01:59 +0000319
320static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
321 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
322 if (I != Table+N && I->from == Opcode)
323 return I->to;
324 return -1;
325}
326
Chris Lattnera960d952003-01-13 01:01:59 +0000327#ifdef NDEBUG
328#define ASSERT_SORTED(TABLE)
329#else
330#define ASSERT_SORTED(TABLE) \
331 { static bool TABLE##Checked = false; \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000332 if (!TABLE##Checked) { \
Owen Anderson718cb662007-09-07 04:06:50 +0000333 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Chris Lattnera960d952003-01-13 01:01:59 +0000334 "All lookup tables must be sorted for efficient access!"); \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000335 TABLE##Checked = true; \
336 } \
Chris Lattnera960d952003-01-13 01:01:59 +0000337 }
338#endif
339
Chris Lattner58fe4592005-12-21 07:47:04 +0000340//===----------------------------------------------------------------------===//
341// Register File -> Register Stack Mapping Methods
342//===----------------------------------------------------------------------===//
343
344// OpcodeTable - Sorted map of register instructions to their stack version.
345// The first element is an register file pseudo instruction, the second is the
346// concrete X86 instruction which uses the register stack.
347//
348static const TableEntry OpcodeTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000349 { X86::ABS_Fp32 , X86::ABS_F },
350 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000351 { X86::ABS_Fp80 , X86::ABS_F },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000352 { X86::ADD_Fp32m , X86::ADD_F32m },
353 { X86::ADD_Fp64m , X86::ADD_F64m },
354 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000355 { X86::ADD_Fp80m32 , X86::ADD_F32m },
356 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000357 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
358 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000359 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000360 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
361 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000362 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000363 { X86::CHS_Fp32 , X86::CHS_F },
364 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000365 { X86::CHS_Fp80 , X86::CHS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000366 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
367 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000368 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000369 { X86::CMOVB_Fp32 , X86::CMOVB_F },
370 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000371 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000372 { X86::CMOVE_Fp32 , X86::CMOVE_F },
373 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000374 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000375 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
376 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000377 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000378 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
379 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000380 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000381 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
382 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000383 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000384 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
385 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000386 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000387 { X86::CMOVP_Fp32 , X86::CMOVP_F },
388 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000389 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000390 { X86::COS_Fp32 , X86::COS_F },
391 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000392 { X86::COS_Fp80 , X86::COS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000393 { X86::DIVR_Fp32m , X86::DIVR_F32m },
394 { X86::DIVR_Fp64m , X86::DIVR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000395 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000396 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
397 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000398 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
399 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000400 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000401 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
402 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000403 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000404 { X86::DIV_Fp32m , X86::DIV_F32m },
405 { X86::DIV_Fp64m , X86::DIV_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000406 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000407 { X86::DIV_Fp80m32 , X86::DIV_F32m },
408 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000409 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
410 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000411 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000412 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
413 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000414 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000415 { X86::ILD_Fp16m32 , X86::ILD_F16m },
416 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000417 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000418 { X86::ILD_Fp32m32 , X86::ILD_F32m },
419 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000420 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000421 { X86::ILD_Fp64m32 , X86::ILD_F64m },
422 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000423 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000424 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
425 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesena996d522007-08-07 01:17:37 +0000426 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000427 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
428 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesena996d522007-08-07 01:17:37 +0000429 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000430 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
431 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesena996d522007-08-07 01:17:37 +0000432 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000433 { X86::IST_Fp16m32 , X86::IST_F16m },
434 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000435 { X86::IST_Fp16m80 , X86::IST_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000436 { X86::IST_Fp32m32 , X86::IST_F32m },
437 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000438 { X86::IST_Fp32m80 , X86::IST_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000439 { X86::IST_Fp64m32 , X86::IST_FP64m },
440 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000441 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000442 { X86::LD_Fp032 , X86::LD_F0 },
443 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000444 { X86::LD_Fp080 , X86::LD_F0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000445 { X86::LD_Fp132 , X86::LD_F1 },
446 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000447 { X86::LD_Fp180 , X86::LD_F1 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000448 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000449 { X86::LD_Fp32m64 , X86::LD_F32m },
450 { X86::LD_Fp32m80 , X86::LD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000451 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000452 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000453 { X86::LD_Fp80m , X86::LD_F80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000454 { X86::MUL_Fp32m , X86::MUL_F32m },
455 { X86::MUL_Fp64m , X86::MUL_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000456 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000457 { X86::MUL_Fp80m32 , X86::MUL_F32m },
458 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000459 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
460 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000461 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000462 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
463 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000464 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000465 { X86::SIN_Fp32 , X86::SIN_F },
466 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000467 { X86::SIN_Fp80 , X86::SIN_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000468 { X86::SQRT_Fp32 , X86::SQRT_F },
469 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000470 { X86::SQRT_Fp80 , X86::SQRT_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000471 { X86::ST_Fp32m , X86::ST_F32m },
472 { X86::ST_Fp64m , X86::ST_F64m },
473 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000474 { X86::ST_Fp80m32 , X86::ST_F32m },
475 { X86::ST_Fp80m64 , X86::ST_F64m },
476 { X86::ST_FpP80m , X86::ST_FP80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000477 { X86::SUBR_Fp32m , X86::SUBR_F32m },
478 { X86::SUBR_Fp64m , X86::SUBR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000479 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000480 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
481 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000482 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
483 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000484 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000485 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
486 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000487 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000488 { X86::SUB_Fp32m , X86::SUB_F32m },
489 { X86::SUB_Fp64m , X86::SUB_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000490 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000491 { X86::SUB_Fp80m32 , X86::SUB_F32m },
492 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000493 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
494 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000495 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000496 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
497 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000498 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000499 { X86::TST_Fp32 , X86::TST_F },
500 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000501 { X86::TST_Fp80 , X86::TST_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000502 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
503 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000504 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000505 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
506 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000507 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Chris Lattner58fe4592005-12-21 07:47:04 +0000508};
509
510static unsigned getConcreteOpcode(unsigned Opcode) {
511 ASSERT_SORTED(OpcodeTable);
Owen Anderson718cb662007-09-07 04:06:50 +0000512 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Chris Lattner58fe4592005-12-21 07:47:04 +0000513 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
514 return Opc;
515}
Chris Lattnera960d952003-01-13 01:01:59 +0000516
517//===----------------------------------------------------------------------===//
518// Helper Methods
519//===----------------------------------------------------------------------===//
520
521// PopTable - Sorted map of instructions to their popping version. The first
522// element is an instruction, the second is the version which pops.
523//
524static const TableEntry PopTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000525 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000526
Dale Johannesene377d4d2007-07-04 21:07:47 +0000527 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
528 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000529
Dale Johannesene377d4d2007-07-04 21:07:47 +0000530 { X86::IST_F16m , X86::IST_FP16m },
531 { X86::IST_F32m , X86::IST_FP32m },
Chris Lattnera960d952003-01-13 01:01:59 +0000532
Dale Johannesene377d4d2007-07-04 21:07:47 +0000533 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000534
Dale Johannesene377d4d2007-07-04 21:07:47 +0000535 { X86::ST_F32m , X86::ST_FP32m },
536 { X86::ST_F64m , X86::ST_FP64m },
537 { X86::ST_Frr , X86::ST_FPrr },
Chris Lattner113455b2003-08-03 21:56:36 +0000538
Dale Johannesene377d4d2007-07-04 21:07:47 +0000539 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
540 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000541
Dale Johannesene377d4d2007-07-04 21:07:47 +0000542 { X86::UCOM_FIr , X86::UCOM_FIPr },
Chris Lattnerc040bca2004-04-12 01:39:15 +0000543
Dale Johannesene377d4d2007-07-04 21:07:47 +0000544 { X86::UCOM_FPr , X86::UCOM_FPPr },
545 { X86::UCOM_Fr , X86::UCOM_FPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000546};
547
548/// popStackAfter - Pop the current value off of the top of the FP stack after
549/// the specified instruction. This attempts to be sneaky and combine the pop
550/// into the instruction itself if possible. The iterator is left pointing to
551/// the last instruction, be it a new pop instruction inserted, or the old
552/// instruction if it was modified in place.
553///
554void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000555 MachineInstr* MI = I;
556 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000557 ASSERT_SORTED(PopTable);
558 assert(StackTop > 0 && "Cannot pop empty stack!");
559 RegMap[Stack[--StackTop]] = ~0; // Update state
560
561 // Check to see if there is a popping version of this instruction...
Owen Anderson718cb662007-09-07 04:06:50 +0000562 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000563 if (Opcode != -1) {
Chris Lattner5080f4d2008-01-11 18:10:50 +0000564 I->setDesc(TII->get(Opcode));
Dale Johannesene377d4d2007-07-04 21:07:47 +0000565 if (Opcode == X86::UCOM_FPPr)
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000566 I->RemoveOperand(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000567 } else { // Insert an explicit pop
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000568 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
Chris Lattnera960d952003-01-13 01:01:59 +0000569 }
570}
571
Chris Lattner0526f012004-04-01 04:06:09 +0000572/// freeStackSlotAfter - Free the specified register from the register stack, so
573/// that it is no longer in a register. If the register is currently at the top
574/// of the stack, we just pop the current instruction, otherwise we store the
575/// current top-of-stack into the specified slot, then pop the top of stack.
576void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
577 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
578 popStackAfter(I);
579 return;
580 }
581
582 // Otherwise, store the top of stack into the dead slot, killing the operand
583 // without having to add in an explicit xchg then pop.
584 //
585 unsigned STReg = getSTReg(FPRegNo);
586 unsigned OldSlot = getSlot(FPRegNo);
587 unsigned TopReg = Stack[StackTop-1];
588 Stack[OldSlot] = TopReg;
589 RegMap[TopReg] = OldSlot;
590 RegMap[FPRegNo] = ~0;
591 Stack[--StackTop] = ~0;
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000592 MachineInstr *MI = I;
593 DebugLoc dl = MI->getDebugLoc();
594 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(STReg);
Chris Lattner0526f012004-04-01 04:06:09 +0000595}
596
597
Chris Lattnera960d952003-01-13 01:01:59 +0000598//===----------------------------------------------------------------------===//
599// Instruction transformation implementation
600//===----------------------------------------------------------------------===//
601
602/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner4a06f352004-02-02 19:23:15 +0000603///
Chris Lattnera960d952003-01-13 01:01:59 +0000604void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000605 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000606 unsigned DestReg = getFPReg(MI->getOperand(0));
Chris Lattnera960d952003-01-13 01:01:59 +0000607
Chris Lattner58fe4592005-12-21 07:47:04 +0000608 // Change from the pseudo instruction to the concrete instruction.
609 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000610 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +0000611
612 // Result gets pushed on the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000613 pushReg(DestReg);
614}
615
Chris Lattner4a06f352004-02-02 19:23:15 +0000616/// handleOneArgFP - fst <mem>, ST(0)
617///
Chris Lattnera960d952003-01-13 01:01:59 +0000618void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000619 MachineInstr *MI = I;
Chris Lattner749c6f62008-01-07 07:27:27 +0000620 unsigned NumOps = MI->getDesc().getNumOperands();
Rafael Espindolab449a682009-03-28 17:03:24 +0000621 assert((NumOps == X86AddrNumOperands + 1 || NumOps == 1) &&
Chris Lattnerb97046a2004-02-03 07:27:34 +0000622 "Can only handle fst* & ftst instructions!");
Chris Lattnera960d952003-01-13 01:01:59 +0000623
Chris Lattner4a06f352004-02-02 19:23:15 +0000624 // Is this the last use of the source register?
Evan Cheng171d09e2006-11-10 01:28:43 +0000625 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000626 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattnera960d952003-01-13 01:01:59 +0000627
Evan Cheng2b152712006-02-18 02:36:28 +0000628 // FISTP64m is strange because there isn't a non-popping versions.
Chris Lattnera960d952003-01-13 01:01:59 +0000629 // If we have one _and_ we don't want to pop the operand, duplicate the value
630 // on the stack instead of moving it. This ensure that popping the value is
631 // always ok.
Dale Johannesenca8035e2007-09-17 20:15:38 +0000632 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Chris Lattnera960d952003-01-13 01:01:59 +0000633 //
Evan Cheng2b152712006-02-18 02:36:28 +0000634 if (!KillsSrc &&
Dale Johannesene377d4d2007-07-04 21:07:47 +0000635 (MI->getOpcode() == X86::IST_Fp64m32 ||
636 MI->getOpcode() == X86::ISTT_Fp16m32 ||
637 MI->getOpcode() == X86::ISTT_Fp32m32 ||
638 MI->getOpcode() == X86::ISTT_Fp64m32 ||
639 MI->getOpcode() == X86::IST_Fp64m64 ||
640 MI->getOpcode() == X86::ISTT_Fp16m64 ||
641 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen59a58732007-08-05 18:49:15 +0000642 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen41de4362007-09-20 01:27:54 +0000643 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesena996d522007-08-07 01:17:37 +0000644 MI->getOpcode() == X86::ISTT_Fp16m80 ||
645 MI->getOpcode() == X86::ISTT_Fp32m80 ||
646 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen59a58732007-08-05 18:49:15 +0000647 MI->getOpcode() == X86::ST_FpP80m)) {
Chris Lattnera960d952003-01-13 01:01:59 +0000648 duplicateToTop(Reg, 7 /*temp register*/, I);
649 } else {
650 moveToTop(Reg, I); // Move to the top of the stack...
651 }
Chris Lattner58fe4592005-12-21 07:47:04 +0000652
653 // Convert from the pseudo instruction to the concrete instruction.
Evan Cheng171d09e2006-11-10 01:28:43 +0000654 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000655 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000656
Dale Johannesene377d4d2007-07-04 21:07:47 +0000657 if (MI->getOpcode() == X86::IST_FP64m ||
658 MI->getOpcode() == X86::ISTT_FP16m ||
659 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesen88835732007-08-06 19:50:32 +0000660 MI->getOpcode() == X86::ISTT_FP64m ||
661 MI->getOpcode() == X86::ST_FP80m) {
Chris Lattnera960d952003-01-13 01:01:59 +0000662 assert(StackTop > 0 && "Stack empty??");
663 --StackTop;
664 } else if (KillsSrc) { // Last use of operand?
665 popStackAfter(I);
666 }
667}
668
Chris Lattner4a06f352004-02-02 19:23:15 +0000669
Chris Lattner4cf15e72004-04-11 20:21:06 +0000670/// handleOneArgFPRW: Handle instructions that read from the top of stack and
671/// replace the value with a newly computed value. These instructions may have
672/// non-fp operands after their FP operands.
673///
674/// Examples:
675/// R1 = fchs R2
676/// R1 = fadd R2, [mem]
Chris Lattner4a06f352004-02-02 19:23:15 +0000677///
678void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000679 MachineInstr *MI = I;
Evan Chenga022bdf2008-07-21 20:02:45 +0000680#ifndef NDEBUG
Chris Lattner749c6f62008-01-07 07:27:27 +0000681 unsigned NumOps = MI->getDesc().getNumOperands();
Evan Cheng171d09e2006-11-10 01:28:43 +0000682 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
Evan Chenga022bdf2008-07-21 20:02:45 +0000683#endif
Chris Lattner4a06f352004-02-02 19:23:15 +0000684
685 // Is this the last use of the source register?
686 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Cheng6130f662008-03-05 00:59:57 +0000687 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattner4a06f352004-02-02 19:23:15 +0000688
689 if (KillsSrc) {
690 // If this is the last use of the source register, just make sure it's on
691 // the top of the stack.
692 moveToTop(Reg, I);
693 assert(StackTop > 0 && "Stack cannot be empty!");
694 --StackTop;
695 pushReg(getFPReg(MI->getOperand(0)));
696 } else {
697 // If this is not the last use of the source register, _copy_ it to the top
698 // of the stack.
699 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
700 }
701
Chris Lattner58fe4592005-12-21 07:47:04 +0000702 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner4a06f352004-02-02 19:23:15 +0000703 MI->RemoveOperand(1); // Drop the source operand.
704 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner5080f4d2008-01-11 18:10:50 +0000705 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner4a06f352004-02-02 19:23:15 +0000706}
707
708
Chris Lattnera960d952003-01-13 01:01:59 +0000709//===----------------------------------------------------------------------===//
710// Define tables of various ways to map pseudo instructions
711//
712
713// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
714static const TableEntry ForwardST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000715 { X86::ADD_Fp32 , X86::ADD_FST0r },
716 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000717 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000718 { X86::DIV_Fp32 , X86::DIV_FST0r },
719 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000720 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000721 { X86::MUL_Fp32 , X86::MUL_FST0r },
722 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000723 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000724 { X86::SUB_Fp32 , X86::SUB_FST0r },
725 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000726 { X86::SUB_Fp80 , X86::SUB_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000727};
728
729// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
730static const TableEntry ReverseST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000731 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
732 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +0000733 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +0000734 { X86::DIV_Fp32 , X86::DIVR_FST0r },
735 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000736 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000737 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
738 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +0000739 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +0000740 { X86::SUB_Fp32 , X86::SUBR_FST0r },
741 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000742 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000743};
744
745// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
746static const TableEntry ForwardSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000747 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
748 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +0000749 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +0000750 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
751 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000752 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000753 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
754 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +0000755 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +0000756 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
757 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000758 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000759};
760
761// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
762static const TableEntry ReverseSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000763 { X86::ADD_Fp32 , X86::ADD_FrST0 },
764 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000765 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000766 { X86::DIV_Fp32 , X86::DIV_FrST0 },
767 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000768 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000769 { X86::MUL_Fp32 , X86::MUL_FrST0 },
770 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000771 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000772 { X86::SUB_Fp32 , X86::SUB_FrST0 },
773 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000774 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000775};
776
777
778/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
779/// instructions which need to be simplified and possibly transformed.
780///
781/// Result: ST(0) = fsub ST(0), ST(i)
782/// ST(i) = fsub ST(0), ST(i)
783/// ST(0) = fsubr ST(0), ST(i)
784/// ST(i) = fsubr ST(0), ST(i)
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000785///
Chris Lattnera960d952003-01-13 01:01:59 +0000786void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
787 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
788 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000789 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000790
Chris Lattner749c6f62008-01-07 07:27:27 +0000791 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000792 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
Chris Lattnera960d952003-01-13 01:01:59 +0000793 unsigned Dest = getFPReg(MI->getOperand(0));
794 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
795 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000796 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
797 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000798 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000799
Chris Lattnera960d952003-01-13 01:01:59 +0000800 unsigned TOS = getStackEntry(0);
801
802 // One of our operands must be on the top of the stack. If neither is yet, we
803 // need to move one.
804 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
805 // We can choose to move either operand to the top of the stack. If one of
806 // the operands is killed by this instruction, we want that one so that we
807 // can update right on top of the old version.
808 if (KillsOp0) {
809 moveToTop(Op0, I); // Move dead operand to TOS.
810 TOS = Op0;
811 } else if (KillsOp1) {
812 moveToTop(Op1, I);
813 TOS = Op1;
814 } else {
815 // All of the operands are live after this instruction executes, so we
816 // cannot update on top of any operand. Because of this, we must
817 // duplicate one of the stack elements to the top. It doesn't matter
818 // which one we pick.
819 //
820 duplicateToTop(Op0, Dest, I);
821 Op0 = TOS = Dest;
822 KillsOp0 = true;
823 }
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000824 } else if (!KillsOp0 && !KillsOp1) {
Chris Lattnera960d952003-01-13 01:01:59 +0000825 // If we DO have one of our operands at the top of the stack, but we don't
826 // have a dead operand, we must duplicate one of the operands to a new slot
827 // on the stack.
828 duplicateToTop(Op0, Dest, I);
829 Op0 = TOS = Dest;
830 KillsOp0 = true;
831 }
832
833 // Now we know that one of our operands is on the top of the stack, and at
834 // least one of our operands is killed by this instruction.
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000835 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
836 "Stack conditions not set up right!");
Chris Lattnera960d952003-01-13 01:01:59 +0000837
838 // We decide which form to use based on what is on the top of the stack, and
839 // which operand is killed by this instruction.
840 const TableEntry *InstTable;
841 bool isForward = TOS == Op0;
842 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
843 if (updateST0) {
844 if (isForward)
845 InstTable = ForwardST0Table;
846 else
847 InstTable = ReverseST0Table;
848 } else {
849 if (isForward)
850 InstTable = ForwardSTiTable;
851 else
852 InstTable = ReverseSTiTable;
853 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000854
Owen Anderson718cb662007-09-07 04:06:50 +0000855 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
856 MI->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000857 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
858
859 // NotTOS - The register which is not on the top of stack...
860 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
861
862 // Replace the old instruction with a new instruction
Chris Lattnerc1bab322004-03-31 22:02:36 +0000863 MBB->remove(I++);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000864 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
Chris Lattnera960d952003-01-13 01:01:59 +0000865
866 // If both operands are killed, pop one off of the stack in addition to
867 // overwriting the other one.
868 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
869 assert(!updateST0 && "Should have updated other operand!");
870 popStackAfter(I); // Pop the top of stack
871 }
872
Chris Lattnera960d952003-01-13 01:01:59 +0000873 // Update stack information so that we know the destination register is now on
874 // the stack.
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000875 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
876 assert(UpdatedSlot < StackTop && Dest < 7);
877 Stack[UpdatedSlot] = Dest;
878 RegMap[Dest] = UpdatedSlot;
Dan Gohman8e5f2c62008-07-07 23:14:23 +0000879 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000880}
881
Chris Lattner0ca2c8e2004-06-11 04:49:02 +0000882/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000883/// register arguments and no explicit destinations.
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000884///
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000885void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
886 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
887 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
888 MachineInstr *MI = I;
889
Chris Lattner749c6f62008-01-07 07:27:27 +0000890 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattner0ca2c8e2004-06-11 04:49:02 +0000891 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000892 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
893 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000894 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
895 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000896
897 // Make sure the first operand is on the top of stack, the other one can be
898 // anywhere.
899 moveToTop(Op0, I);
900
Chris Lattner58fe4592005-12-21 07:47:04 +0000901 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner57790422004-06-11 05:22:44 +0000902 MI->getOperand(0).setReg(getSTReg(Op1));
903 MI->RemoveOperand(1);
Chris Lattner5080f4d2008-01-11 18:10:50 +0000904 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner57790422004-06-11 05:22:44 +0000905
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000906 // If any of the operands are killed by this instruction, free them.
907 if (KillsOp0) freeStackSlotAfter(I, Op0);
908 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
Chris Lattnera960d952003-01-13 01:01:59 +0000909}
910
Chris Lattnerc1bab322004-03-31 22:02:36 +0000911/// handleCondMovFP - Handle two address conditional move instructions. These
912/// instructions move a st(i) register to st(0) iff a condition is true. These
913/// instructions require that the first operand is at the top of the stack, but
914/// otherwise don't modify the stack at all.
915void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
916 MachineInstr *MI = I;
917
918 unsigned Op0 = getFPReg(MI->getOperand(0));
Chris Lattner6cdb1ea2006-09-05 20:27:32 +0000919 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Cheng6130f662008-03-05 00:59:57 +0000920 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000921
922 // The first operand *must* be on the top of the stack.
923 moveToTop(Op0, I);
924
925 // Change the second operand to the stack register that the operand is in.
Chris Lattner58fe4592005-12-21 07:47:04 +0000926 // Change from the pseudo instruction to the concrete instruction.
Chris Lattnerc1bab322004-03-31 22:02:36 +0000927 MI->RemoveOperand(0);
Chris Lattner6cdb1ea2006-09-05 20:27:32 +0000928 MI->RemoveOperand(1);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000929 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner5080f4d2008-01-11 18:10:50 +0000930 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +0000931
Chris Lattnerc1bab322004-03-31 22:02:36 +0000932 // If we kill the second operand, make sure to pop it from the stack.
Evan Chengddd2a452006-11-15 20:56:39 +0000933 if (Op0 != Op1 && KillsOp1) {
Chris Lattner76eb08b2005-08-23 22:49:55 +0000934 // Get this value off of the register stack.
935 freeStackSlotAfter(I, Op1);
936 }
Chris Lattnerc1bab322004-03-31 22:02:36 +0000937}
938
Chris Lattnera960d952003-01-13 01:01:59 +0000939
940/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +0000941/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +0000942/// instructions.
943///
944void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000945 MachineInstr *MI = I;
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000946 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000947 switch (MI->getOpcode()) {
948 default: assert(0 && "Unknown SpecialFP instruction!");
Chris Lattner6fa2f9c2008-03-09 07:05:32 +0000949 case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
950 case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
951 case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
Chris Lattnera960d952003-01-13 01:01:59 +0000952 assert(StackTop == 0 && "Stack should be empty after a call!");
953 pushReg(getFPReg(MI->getOperand(0)));
954 break;
Chris Lattner24e0a542008-03-21 06:38:26 +0000955 case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
956 case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
957 case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
958 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
959 // The pattern we expect is:
960 // CALL
961 // FP1 = FpGET_ST0
962 // FP4 = FpGET_ST1
963 //
964 // At this point, we've pushed FP1 on the top of stack, so it should be
965 // present if it isn't dead. If it was dead, we already emitted a pop to
966 // remove it from the stack and StackTop = 0.
967
968 // Push FP4 as top of stack next.
969 pushReg(getFPReg(MI->getOperand(0)));
970
971 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
972 // dead. In this case, the ST(1) value is the only thing that is live, so
973 // it should be on the TOS (after the pop that was emitted) and is. Just
974 // continue in this case.
975 if (StackTop == 1)
976 break;
977
978 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
979 // elements so that our accounting is correct.
980 unsigned RegOnTop = getStackEntry(0);
981 unsigned RegNo = getStackEntry(1);
982
983 // Swap the slots the regs are in.
984 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
985
986 // Swap stack slot contents.
987 assert(RegMap[RegOnTop] < StackTop);
988 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
989 break;
990 }
Chris Lattnerafb23f42008-03-09 07:08:44 +0000991 case X86::FpSET_ST0_32:
992 case X86::FpSET_ST0_64:
Rafael Espindolaf55715c2009-06-30 12:18:16 +0000993 case X86::FpSET_ST0_80: {
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +0000994 unsigned Op0 = getFPReg(MI->getOperand(0));
995
Rafael Espindola1c3329f2009-06-21 12:02:51 +0000996 // FpSET_ST0_80 is generated by copyRegToReg for both function return
997 // and inline assembly with the "st" constrain. In the latter case,
Rafael Espindolaf55715c2009-06-30 12:18:16 +0000998 // it is possible for ST(0) to be alive after this instruction.
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +0000999 if (!MI->killsRegister(X86::FP0 + Op0)) {
1000 // Duplicate Op0
Rafael Espindola63de5c32009-06-29 20:29:59 +00001001 duplicateToTop(0, 7 /*temp register*/, I);
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001002 } else {
1003 moveToTop(Op0, I);
Rafael Espindola1c3329f2009-06-21 12:02:51 +00001004 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001005 --StackTop; // "Forget" we have something on the top of stack!
1006 break;
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001007 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001008 case X86::FpSET_ST1_32:
1009 case X86::FpSET_ST1_64:
1010 case X86::FpSET_ST1_80:
1011 // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1012 if (StackTop == 1) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001013 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
Evan Chenga0eedac2009-02-09 23:32:07 +00001014 NumFXCH++;
1015 StackTop = 0;
1016 break;
1017 }
1018 assert(StackTop == 2 && "Stack should have two element on it to return!");
Chris Lattnera960d952003-01-13 01:01:59 +00001019 --StackTop; // "Forget" we have something on the top of stack!
1020 break;
Dale Johannesene377d4d2007-07-04 21:07:47 +00001021 case X86::MOV_Fp3232:
1022 case X86::MOV_Fp3264:
1023 case X86::MOV_Fp6432:
Dale Johannesen59a58732007-08-05 18:49:15 +00001024 case X86::MOV_Fp6464:
1025 case X86::MOV_Fp3280:
1026 case X86::MOV_Fp6480:
1027 case X86::MOV_Fp8032:
1028 case X86::MOV_Fp8064:
1029 case X86::MOV_Fp8080: {
Evan Chengfb112882009-03-23 08:01:15 +00001030 const MachineOperand &MO1 = MI->getOperand(1);
1031 unsigned SrcReg = getFPReg(MO1);
Chris Lattnera960d952003-01-13 01:01:59 +00001032
Evan Chengfb112882009-03-23 08:01:15 +00001033 const MachineOperand &MO0 = MI->getOperand(0);
1034 // These can be created due to inline asm. Two address pass can introduce
1035 // copies from RFP registers to virtual registers.
1036 if (MO0.getReg() == X86::ST0 && SrcReg == 0) {
1037 assert(MO1.isKill());
1038 // Treat %ST0<def> = MOV_Fp8080 %FP0<kill>
1039 // like FpSET_ST0_80 %FP0<kill>, %ST0<imp-def>
1040 assert((StackTop == 1 || StackTop == 2)
1041 && "Stack should have one or two element on it to return!");
1042 --StackTop; // "Forget" we have something on the top of stack!
1043 break;
1044 } else if (MO0.getReg() == X86::ST1 && SrcReg == 1) {
1045 assert(MO1.isKill());
1046 // Treat %ST1<def> = MOV_Fp8080 %FP1<kill>
1047 // like FpSET_ST1_80 %FP0<kill>, %ST1<imp-def>
1048 // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1049 if (StackTop == 1) {
1050 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
1051 NumFXCH++;
1052 StackTop = 0;
1053 break;
1054 }
1055 assert(StackTop == 2 && "Stack should have two element on it to return!");
1056 --StackTop; // "Forget" we have something on the top of stack!
1057 break;
1058 }
1059
1060 unsigned DestReg = getFPReg(MO0);
Evan Cheng6130f662008-03-05 00:59:57 +00001061 if (MI->killsRegister(X86::FP0+SrcReg)) {
Chris Lattnera960d952003-01-13 01:01:59 +00001062 // If the input operand is killed, we can just change the owner of the
1063 // incoming stack slot into the result.
1064 unsigned Slot = getSlot(SrcReg);
1065 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1066 Stack[Slot] = DestReg;
1067 RegMap[DestReg] = Slot;
1068
1069 } else {
1070 // For FMOV we just duplicate the specified value to a new stack slot.
1071 // This could be made better, but would require substantial changes.
1072 duplicateToTop(SrcReg, DestReg, I);
1073 }
Nick Lewycky3c786972008-03-11 05:56:09 +00001074 }
Chris Lattnera960d952003-01-13 01:01:59 +00001075 break;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001076 case TargetInstrInfo::INLINEASM: {
1077 // The inline asm MachineInstr currently only *uses* FP registers for the
1078 // 'f' constraint. These should be turned into the current ST(x) register
1079 // in the machine instr. Also, any kills should be explicitly popped after
1080 // the inline asm.
1081 unsigned Kills[7];
1082 unsigned NumKills = 0;
1083 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1084 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001085 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattnere12ecf22008-03-11 19:50:13 +00001086 continue;
1087 assert(Op.isUse() && "Only handle inline asm uses right now");
1088
1089 unsigned FPReg = getFPReg(Op);
1090 Op.setReg(getSTReg(FPReg));
1091
1092 // If we kill this operand, make sure to pop it from the stack after the
1093 // asm. We just remember it for now, and pop them all off at the end in
1094 // a batch.
1095 if (Op.isKill())
1096 Kills[NumKills++] = FPReg;
1097 }
1098
1099 // If this asm kills any FP registers (is the last use of them) we must
1100 // explicitly emit pop instructions for them. Do this now after the asm has
1101 // executed so that the ST(x) numbers are not off (which would happen if we
1102 // did this inline with operand rewriting).
1103 //
1104 // Note: this might be a non-optimal pop sequence. We might be able to do
1105 // better by trying to pop in stack order or something.
1106 MachineBasicBlock::iterator InsertPt = MI;
1107 while (NumKills)
1108 freeStackSlotAfter(InsertPt, Kills[--NumKills]);
1109
1110 // Don't delete the inline asm!
1111 return;
1112 }
1113
Chris Lattner447ff682008-03-11 03:23:40 +00001114 case X86::RET:
1115 case X86::RETI:
1116 // If RET has an FP register use operand, pass the first one in ST(0) and
1117 // the second one in ST(1).
1118 if (isStackEmpty()) return; // Quick check to see if any are possible.
1119
1120 // Find the register operands.
1121 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1122
1123 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1124 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001125 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattner447ff682008-03-11 03:23:40 +00001126 continue;
Chris Lattner35831d02008-03-21 20:41:27 +00001127 // FP Register uses must be kills unless there are two uses of the same
1128 // register, in which case only one will be a kill.
1129 assert(Op.isUse() &&
1130 (Op.isKill() || // Marked kill.
1131 getFPReg(Op) == FirstFPRegOp || // Second instance.
1132 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1133 "Ret only defs operands, and values aren't live beyond it");
Chris Lattner447ff682008-03-11 03:23:40 +00001134
1135 if (FirstFPRegOp == ~0U)
1136 FirstFPRegOp = getFPReg(Op);
1137 else {
1138 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1139 SecondFPRegOp = getFPReg(Op);
1140 }
1141
1142 // Remove the operand so that later passes don't see it.
1143 MI->RemoveOperand(i);
1144 --i, --e;
1145 }
1146
1147 // There are only four possibilities here:
1148 // 1) we are returning a single FP value. In this case, it has to be in
1149 // ST(0) already, so just declare success by removing the value from the
1150 // FP Stack.
1151 if (SecondFPRegOp == ~0U) {
1152 // Assert that the top of stack contains the right FP register.
1153 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1154 "Top of stack not the right register for RET!");
1155
1156 // Ok, everything is good, mark the value as not being on the stack
1157 // anymore so that our assertion about the stack being empty at end of
1158 // block doesn't fire.
1159 StackTop = 0;
1160 return;
1161 }
1162
Chris Lattner447ff682008-03-11 03:23:40 +00001163 // Otherwise, we are returning two values:
1164 // 2) If returning the same value for both, we only have one thing in the FP
1165 // stack. Consider: RET FP1, FP1
1166 if (StackTop == 1) {
1167 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1168 "Stack misconfiguration for RET!");
1169
1170 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1171 // register to hold it.
1172 unsigned NewReg = (FirstFPRegOp+1)%7;
1173 duplicateToTop(FirstFPRegOp, NewReg, MI);
1174 FirstFPRegOp = NewReg;
1175 }
1176
1177 /// Okay we know we have two different FPx operands now:
1178 assert(StackTop == 2 && "Must have two values live!");
1179
1180 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1181 /// in ST(1). In this case, emit an fxch.
1182 if (getStackEntry(0) == SecondFPRegOp) {
1183 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1184 moveToTop(FirstFPRegOp, MI);
1185 }
1186
1187 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1188 /// ST(1). Just remove both from our understanding of the stack and return.
1189 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
Chris Lattner03535262008-03-21 05:57:20 +00001190 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
Chris Lattner447ff682008-03-11 03:23:40 +00001191 StackTop = 0;
1192 return;
Chris Lattnera960d952003-01-13 01:01:59 +00001193 }
Chris Lattnera960d952003-01-13 01:01:59 +00001194
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001195 I = MBB->erase(I); // Remove the pseudo instruction
1196 --I;
Chris Lattnera960d952003-01-13 01:01:59 +00001197}