blob: a505094d056742db404b6372a18d6ea043dd785c [file] [log] [blame]
Zhou Shengfd43dcf2007-02-06 03:00:16 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Sheng Zhou and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integral
11// constant values.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/APInt.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Support/MathExtras.h"
Zhou Shenga3832fd2007-02-07 06:14:53 +000018#include <cstring>
Zhou Shengfd43dcf2007-02-06 03:00:16 +000019#include <cstdlib>
20using namespace llvm;
21
Zhou Sheng353815d2007-02-06 06:04:53 +000022/// mul_1 - This function performs the multiplication operation on a
23/// large integer (represented as an integer array) and a uint64_t integer.
24/// @returns the carry of the multiplication.
25static uint64_t mul_1(uint64_t dest[], uint64_t x[],
26 unsigned len, uint64_t y) {
27 // Split y into high 32-bit part and low 32-bit part.
28 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
29 uint64_t carry = 0, lx, hx;
30 for (unsigned i = 0; i < len; ++i) {
31 lx = x[i] & 0xffffffffULL;
32 hx = x[i] >> 32;
33 // hasCarry - A flag to indicate if has carry.
34 // hasCarry == 0, no carry
35 // hasCarry == 1, has carry
36 // hasCarry == 2, no carry and the calculation result == 0.
37 uint8_t hasCarry = 0;
38 dest[i] = carry + lx * ly;
39 // Determine if the add above introduces carry.
40 hasCarry = (dest[i] < carry) ? 1 : 0;
41 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
42 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
43 // (2^32 - 1) + 2^32 = 2^64.
44 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
45
46 carry += (lx * hy) & 0xffffffffULL;
47 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
48 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
49 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
50 }
51
52 return carry;
53}
54
55/// mul - This function multiplies integer array x[] by integer array y[] and
56/// stores the result into integer array dest[].
57/// Note the array dest[]'s size should no less than xlen + ylen.
58static void mul(uint64_t dest[], uint64_t x[], unsigned xlen,
59 uint64_t y[], unsigned ylen) {
60 dest[xlen] = mul_1(dest, x, xlen, y[0]);
61
62 for (unsigned i = 1; i < ylen; ++i) {
63 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
64 uint64_t carry = 0, lx, hx;
65 for (unsigned j = 0; j < xlen; ++j) {
66 lx = x[j] & 0xffffffffULL;
67 hx = x[j] >> 32;
68 // hasCarry - A flag to indicate if has carry.
69 // hasCarry == 0, no carry
70 // hasCarry == 1, has carry
71 // hasCarry == 2, no carry and the calculation result == 0.
72 uint8_t hasCarry = 0;
73 uint64_t resul = carry + lx * ly;
74 hasCarry = (resul < carry) ? 1 : 0;
75 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
76 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
77
78 carry += (lx * hy) & 0xffffffffULL;
79 resul = (carry << 32) | (resul & 0xffffffffULL);
80 dest[i+j] += resul;
81 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
82 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
83 ((lx * hy) >> 32) + hx * hy;
84 }
85 dest[i+xlen] = carry;
86 }
87}
88
89/// add_1 - This function adds the integer array x[] by integer y and
90/// returns the carry.
91/// @returns the carry of the addition.
92static uint64_t add_1(uint64_t dest[], uint64_t x[],
93 unsigned len, uint64_t y) {
94 uint64_t carry = y;
95
96 for (unsigned i = 0; i < len; ++i) {
97 dest[i] = carry + x[i];
98 carry = (dest[i] < carry) ? 1 : 0;
99 }
100 return carry;
101}
102
103/// add - This function adds the integer array x[] by integer array
104/// y[] and returns the carry.
105static uint64_t add(uint64_t dest[], uint64_t x[],
106 uint64_t y[], unsigned len) {
107 unsigned carry = 0;
108
109 for (unsigned i = 0; i< len; ++i) {
110 carry += x[i];
111 dest[i] = carry + y[i];
112 carry = carry < x[i] ? 1 : (dest[i] < carry ? 1 : 0);
113 }
114 return carry;
115}
116
117/// sub_1 - This function subtracts the integer array x[] by
118/// integer y and returns the borrow-out carry.
119static uint64_t sub_1(uint64_t x[], unsigned len, uint64_t y) {
120 uint64_t cy = y;
121
122 for (unsigned i = 0; i < len; ++i) {
123 uint64_t X = x[i];
124 x[i] -= cy;
125 if (cy > X)
126 cy = 1;
127 else {
128 cy = 0;
129 break;
130 }
131 }
132
133 return cy;
134}
135
136/// sub - This function subtracts the integer array x[] by
137/// integer array y[], and returns the borrow-out carry.
138static uint64_t sub(uint64_t dest[], uint64_t x[],
139 uint64_t y[], unsigned len) {
140 // Carry indicator.
141 uint64_t cy = 0;
142
143 for (unsigned i = 0; i < len; ++i) {
144 uint64_t Y = y[i], X = x[i];
145 Y += cy;
146
147 cy = Y < cy ? 1 : 0;
148 Y = X - Y;
149 cy += Y > X ? 1 : 0;
150 dest[i] = Y;
151 }
152 return cy;
153}
154
155/// UnitDiv - This function divides N by D,
156/// and returns (remainder << 32) | quotient.
157/// Assumes (N >> 32) < D.
158static uint64_t unitDiv(uint64_t N, unsigned D) {
159 uint64_t q, r; // q: quotient, r: remainder.
160 uint64_t a1 = N >> 32; // a1: high 32-bit part of N.
161 uint64_t a0 = N & 0xffffffffL; // a0: low 32-bit part of N
162 if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) {
163 q = N / D;
164 r = N % D;
165 }
166 else {
167 // Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d
168 uint64_t c = N - ((uint64_t) D << 31);
169 // Divide (c1*2^32 + c0) by d
170 q = c / D;
171 r = c % D;
172 // Add 2^31 to quotient
173 q += 1 << 31;
174 }
175
176 return (r << 32) | (q & 0xFFFFFFFFl);
177}
178
179/// subMul - This function substracts x[len-1:0] * y from
180/// dest[offset+len-1:offset], and returns the most significant
181/// word of the product, minus the borrow-out from the subtraction.
182static unsigned subMul(unsigned dest[], unsigned offset,
183 unsigned x[], unsigned len, unsigned y) {
184 uint64_t yl = (uint64_t) y & 0xffffffffL;
185 unsigned carry = 0;
186 unsigned j = 0;
187 do {
188 uint64_t prod = ((uint64_t) x[j] & 0xffffffffL) * yl;
189 unsigned prod_low = (unsigned) prod;
190 unsigned prod_high = (unsigned) (prod >> 32);
191 prod_low += carry;
192 carry = (prod_low < carry ? 1 : 0) + prod_high;
193 unsigned x_j = dest[offset+j];
194 prod_low = x_j - prod_low;
195 if (prod_low > x_j) ++carry;
196 dest[offset+j] = prod_low;
197 } while (++j < len);
198 return carry;
199}
200
201/// div - This is basically Knuth's formulation of the classical algorithm.
202/// Correspondance with Knuth's notation:
203/// Knuth's u[0:m+n] == zds[nx:0].
204/// Knuth's v[1:n] == y[ny-1:0]
205/// Knuth's n == ny.
206/// Knuth's m == nx-ny.
207/// Our nx == Knuth's m+n.
208/// Could be re-implemented using gmp's mpn_divrem:
209/// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny).
210static void div(unsigned zds[], unsigned nx, unsigned y[], unsigned ny) {
211 unsigned j = nx;
212 do { // loop over digits of quotient
213 // Knuth's j == our nx-j.
214 // Knuth's u[j:j+n] == our zds[j:j-ny].
215 unsigned qhat; // treated as unsigned
216 if (zds[j] == y[ny-1]) qhat = -1U; // 0xffffffff
217 else {
218 uint64_t w = (((uint64_t)(zds[j])) << 32) +
219 ((uint64_t)zds[j-1] & 0xffffffffL);
220 qhat = (unsigned) unitDiv(w, y[ny-1]);
221 }
222 if (qhat) {
223 unsigned borrow = subMul(zds, j - ny, y, ny, qhat);
224 unsigned save = zds[j];
225 uint64_t num = ((uint64_t)save&0xffffffffL) -
226 ((uint64_t)borrow&0xffffffffL);
227 while (num) {
228 qhat--;
229 uint64_t carry = 0;
230 for (unsigned i = 0; i < ny; i++) {
231 carry += ((uint64_t) zds[j-ny+i] & 0xffffffffL)
232 + ((uint64_t) y[i] & 0xffffffffL);
233 zds[j-ny+i] = (unsigned) carry;
234 carry >>= 32;
235 }
236 zds[j] += carry;
237 num = carry - 1;
238 }
239 }
240 zds[j] = qhat;
241 } while (--j >= ny);
242}
243
244/// lshift - This function shift x[0:len-1] left by shiftAmt bits, and
245/// store the len least significant words of the result in
246/// dest[d_offset:d_offset+len-1]. It returns the bits shifted out from
247/// the most significant digit.
248static uint64_t lshift(uint64_t dest[], unsigned d_offset,
249 uint64_t x[], unsigned len, unsigned shiftAmt) {
250 unsigned count = 64 - shiftAmt;
251 int i = len - 1;
252 uint64_t high_word = x[i], retVal = high_word >> count;
253 ++d_offset;
254 while (--i >= 0) {
255 uint64_t low_word = x[i];
256 dest[d_offset+i] = (high_word << shiftAmt) | (low_word >> count);
257 high_word = low_word;
258 }
259 dest[d_offset+i] = high_word << shiftAmt;
260 return retVal;
261}
262
Zhou Sheng0b706b12007-02-08 14:35:19 +0000263APInt::APInt(uint64_t val, unsigned numBits)
264 : BitsNum(numBits) {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000265 assert(BitsNum >= IntegerType::MIN_INT_BITS && "bitwidth too small");
266 assert(BitsNum <= IntegerType::MAX_INT_BITS && "bitwidth too large");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000267 if (isSingleWord())
Zhou Shenga3832fd2007-02-07 06:14:53 +0000268 VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitsNum));
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000269 else {
270 // Memory allocation and check if successful.
Zhou Shenga3832fd2007-02-07 06:14:53 +0000271 assert((pVal = new uint64_t[getNumWords()]) &&
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000272 "APInt memory allocation fails!");
Zhou Shenga3832fd2007-02-07 06:14:53 +0000273 memset(pVal, 0, getNumWords() * 8);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000274 pVal[0] = val;
275 }
276}
277
Zhou Sheng0b706b12007-02-08 14:35:19 +0000278APInt::APInt(unsigned numBits, uint64_t bigVal[])
279 : BitsNum(numBits) {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000280 assert(BitsNum >= IntegerType::MIN_INT_BITS && "bitwidth too small");
281 assert(BitsNum <= IntegerType::MAX_INT_BITS && "bitwidth too large");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000282 assert(bigVal && "Null pointer detected!");
283 if (isSingleWord())
Zhou Shenga3832fd2007-02-07 06:14:53 +0000284 VAL = bigVal[0] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitsNum));
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000285 else {
286 // Memory allocation and check if successful.
Zhou Shenga3832fd2007-02-07 06:14:53 +0000287 assert((pVal = new uint64_t[getNumWords()]) &&
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000288 "APInt memory allocation fails!");
289 // Calculate the actual length of bigVal[].
290 unsigned n = sizeof(*bigVal) / sizeof(bigVal[0]);
Zhou Shenga3832fd2007-02-07 06:14:53 +0000291 unsigned maxN = std::max<unsigned>(n, getNumWords());
292 unsigned minN = std::min<unsigned>(n, getNumWords());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000293 memcpy(pVal, bigVal, (minN - 1) * 8);
Zhou Shenga3832fd2007-02-07 06:14:53 +0000294 pVal[minN-1] = bigVal[minN-1] & (~uint64_t(0ULL) >> (64 - BitsNum % 64));
295 if (maxN == getNumWords())
296 memset(pVal+n, 0, (getNumWords() - n) * 8);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000297 }
298}
299
Zhou Shenga3832fd2007-02-07 06:14:53 +0000300/// @brief Create a new APInt by translating the char array represented
301/// integer value.
Zhou Sheng0b706b12007-02-08 14:35:19 +0000302APInt::APInt(const char StrStart[], unsigned slen, uint8_t radix) {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000303 StrToAPInt(StrStart, slen, radix);
304}
305
306/// @brief Create a new APInt by translating the string represented
307/// integer value.
Zhou Sheng0b706b12007-02-08 14:35:19 +0000308APInt::APInt(const std::string& Val, uint8_t radix) {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000309 assert(!Val.empty() && "String empty?");
310 StrToAPInt(Val.c_str(), Val.size(), radix);
311}
312
313/// @brief Converts a char array into an integer.
314void APInt::StrToAPInt(const char *StrStart, unsigned slen, uint8_t radix) {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000315 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
316 "Radix should be 2, 8, 10, or 16!");
Zhou Shenga3832fd2007-02-07 06:14:53 +0000317 assert(StrStart && "String empty?");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000318 unsigned size = 0;
319 // If the radix is a power of 2, read the input
320 // from most significant to least significant.
321 if ((radix & (radix - 1)) == 0) {
322 unsigned nextBitPos = 0, bits_per_digit = radix / 8 + 2;
323 uint64_t resDigit = 0;
Zhou Shenga3832fd2007-02-07 06:14:53 +0000324 BitsNum = slen * bits_per_digit;
325 if (getNumWords() > 1)
326 assert((pVal = new uint64_t[getNumWords()]) &&
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000327 "APInt memory allocation fails!");
328 for (int i = slen - 1; i >= 0; --i) {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000329 uint64_t digit = StrStart[i] - 48; // '0' == 48.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000330 resDigit |= digit << nextBitPos;
331 nextBitPos += bits_per_digit;
332 if (nextBitPos >= 64) {
333 if (isSingleWord()) {
334 VAL = resDigit;
335 break;
336 }
337 pVal[size++] = resDigit;
338 nextBitPos -= 64;
339 resDigit = digit >> (bits_per_digit - nextBitPos);
340 }
341 }
Zhou Shenga3832fd2007-02-07 06:14:53 +0000342 if (!isSingleWord() && size <= getNumWords())
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000343 pVal[size] = resDigit;
344 } else { // General case. The radix is not a power of 2.
345 // For 10-radix, the max value of 64-bit integer is 18446744073709551615,
346 // and its digits number is 14.
347 const unsigned chars_per_word = 20;
348 if (slen < chars_per_word ||
Zhou Shenga3832fd2007-02-07 06:14:53 +0000349 (slen == chars_per_word && // In case the value <= 2^64 - 1
350 strcmp(StrStart, "18446744073709551615") <= 0)) {
351 BitsNum = 64;
352 VAL = strtoull(StrStart, 0, 10);
353 } else { // In case the value > 2^64 - 1
354 BitsNum = (slen / chars_per_word + 1) * 64;
355 assert((pVal = new uint64_t[getNumWords()]) &&
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000356 "APInt memory allocation fails!");
Zhou Shenga3832fd2007-02-07 06:14:53 +0000357 memset(pVal, 0, getNumWords() * 8);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000358 unsigned str_pos = 0;
359 while (str_pos < slen) {
360 unsigned chunk = slen - str_pos;
361 if (chunk > chars_per_word - 1)
362 chunk = chars_per_word - 1;
Zhou Shenga3832fd2007-02-07 06:14:53 +0000363 uint64_t resDigit = StrStart[str_pos++] - 48; // 48 == '0'.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000364 uint64_t big_base = radix;
365 while (--chunk > 0) {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000366 resDigit = resDigit * radix + StrStart[str_pos++] - 48;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000367 big_base *= radix;
368 }
369
370 uint64_t carry;
371 if (!size)
372 carry = resDigit;
373 else {
374 carry = mul_1(pVal, pVal, size, big_base);
375 carry += add_1(pVal, pVal, size, resDigit);
376 }
377
378 if (carry) pVal[size++] = carry;
379 }
380 }
381 }
382}
383
384APInt::APInt(const APInt& APIVal)
Zhou Sheng0b706b12007-02-08 14:35:19 +0000385 : BitsNum(APIVal.BitsNum) {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000386 if (isSingleWord()) VAL = APIVal.VAL;
387 else {
388 // Memory allocation and check if successful.
Zhou Shenga3832fd2007-02-07 06:14:53 +0000389 assert((pVal = new uint64_t[getNumWords()]) &&
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000390 "APInt memory allocation fails!");
Zhou Shenga3832fd2007-02-07 06:14:53 +0000391 memcpy(pVal, APIVal.pVal, getNumWords() * 8);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000392 }
393}
394
395APInt::~APInt() {
396 if (!isSingleWord() && pVal) delete[] pVal;
397}
398
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000399/// @brief Copy assignment operator. Create a new object from the given
400/// APInt one by initialization.
401APInt& APInt::operator=(const APInt& RHS) {
402 if (isSingleWord()) VAL = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
403 else {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000404 unsigned minN = std::min(getNumWords(), RHS.getNumWords());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000405 memcpy(pVal, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, minN * 8);
Zhou Shenga3832fd2007-02-07 06:14:53 +0000406 if (getNumWords() != minN)
407 memset(pVal + minN, 0, (getNumWords() - minN) * 8);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000408 }
409 return *this;
410}
411
412/// @brief Assignment operator. Assigns a common case integer value to
413/// the APInt.
414APInt& APInt::operator=(uint64_t RHS) {
415 if (isSingleWord()) VAL = RHS;
416 else {
417 pVal[0] = RHS;
Zhou Shenga3832fd2007-02-07 06:14:53 +0000418 memset(pVal, 0, (getNumWords() - 1) * 8);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000419 }
Zhou Sheng0b706b12007-02-08 14:35:19 +0000420 TruncToBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000421 return *this;
422}
423
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000424/// @brief Prefix increment operator. Increments the APInt by one.
425APInt& APInt::operator++() {
426 if (isSingleWord()) ++VAL;
427 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000428 add_1(pVal, pVal, getNumWords(), 1);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000429 TruncToBits();
430 return *this;
431}
432
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000433/// @brief Prefix decrement operator. Decrements the APInt by one.
434APInt& APInt::operator--() {
435 if (isSingleWord()) --VAL;
436 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000437 sub_1(pVal, getNumWords(), 1);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000438 TruncToBits();
439 return *this;
440}
441
442/// @brief Addition assignment operator. Adds this APInt by the given APInt&
443/// RHS and assigns the result to this APInt.
444APInt& APInt::operator+=(const APInt& RHS) {
445 if (isSingleWord()) VAL += RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
446 else {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000447 if (RHS.isSingleWord()) add_1(pVal, pVal, getNumWords(), RHS.VAL);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000448 else {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000449 if (getNumWords() <= RHS.getNumWords())
450 add(pVal, pVal, RHS.pVal, getNumWords());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000451 else {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000452 uint64_t carry = add(pVal, pVal, RHS.pVal, RHS.getNumWords());
453 add_1(pVal + RHS.getNumWords(), pVal + RHS.getNumWords(),
454 getNumWords() - RHS.getNumWords(), carry);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000455 }
456 }
457 }
458 TruncToBits();
459 return *this;
460}
461
462/// @brief Subtraction assignment operator. Subtracts this APInt by the given
463/// APInt &RHS and assigns the result to this APInt.
464APInt& APInt::operator-=(const APInt& RHS) {
465 if (isSingleWord())
466 VAL -= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
467 else {
468 if (RHS.isSingleWord())
Zhou Shenga3832fd2007-02-07 06:14:53 +0000469 sub_1(pVal, getNumWords(), RHS.VAL);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000470 else {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000471 if (RHS.getNumWords() < getNumWords()) {
472 uint64_t carry = sub(pVal, pVal, RHS.pVal, RHS.getNumWords());
473 sub_1(pVal + RHS.getNumWords(), getNumWords() - RHS.getNumWords(), carry);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000474 }
475 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000476 sub(pVal, pVal, RHS.pVal, getNumWords());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000477 }
478 }
479 TruncToBits();
480 return *this;
481}
482
483/// @brief Multiplication assignment operator. Multiplies this APInt by the
484/// given APInt& RHS and assigns the result to this APInt.
485APInt& APInt::operator*=(const APInt& RHS) {
486 if (isSingleWord()) VAL *= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
487 else {
488 // one-based first non-zero bit position.
Zhou Shenga3832fd2007-02-07 06:14:53 +0000489 unsigned first = getNumWords() * APINT_BITS_PER_WORD - CountLeadingZeros();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000490 unsigned xlen = !first ? 0 : whichWord(first - 1) + 1;
491 if (!xlen)
492 return *this;
493 else if (RHS.isSingleWord())
494 mul_1(pVal, pVal, xlen, RHS.VAL);
495 else {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000496 first = RHS.getNumWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000497 unsigned ylen = !first ? 0 : whichWord(first - 1) + 1;
498 if (!ylen) {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000499 memset(pVal, 0, getNumWords() * 8);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000500 return *this;
501 }
502 uint64_t *dest = new uint64_t[xlen+ylen];
503 assert(dest && "Memory Allocation Failed!");
504 mul(dest, pVal, xlen, RHS.pVal, ylen);
Zhou Shenga3832fd2007-02-07 06:14:53 +0000505 memcpy(pVal, dest, ((xlen + ylen >= getNumWords()) ?
506 getNumWords() : xlen + ylen) * 8);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000507 delete[] dest;
508 }
509 }
510 TruncToBits();
511 return *this;
512}
513
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000514/// @brief Bitwise AND assignment operator. Performs bitwise AND operation on
515/// this APInt and the given APInt& RHS, assigns the result to this APInt.
516APInt& APInt::operator&=(const APInt& RHS) {
517 if (isSingleWord()) {
518 if (RHS.isSingleWord()) VAL &= RHS.VAL;
519 else VAL &= RHS.pVal[0];
520 } else {
521 if (RHS.isSingleWord()) {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000522 memset(pVal, 0, (getNumWords() - 1) * 8);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000523 pVal[0] &= RHS.VAL;
524 } else {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000525 unsigned minwords = getNumWords() < RHS.getNumWords() ?
526 getNumWords() : RHS.getNumWords();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000527 for (unsigned i = 0; i < minwords; ++i)
528 pVal[i] &= RHS.pVal[i];
Zhou Shenga3832fd2007-02-07 06:14:53 +0000529 if (getNumWords() > minwords)
530 memset(pVal+minwords, 0, (getNumWords() - minwords) * 8);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000531 }
532 }
533 return *this;
534}
535
536/// @brief Bitwise OR assignment operator. Performs bitwise OR operation on
537/// this APInt and the given APInt& RHS, assigns the result to this APInt.
538APInt& APInt::operator|=(const APInt& RHS) {
539 if (isSingleWord()) {
540 if (RHS.isSingleWord()) VAL |= RHS.VAL;
541 else VAL |= RHS.pVal[0];
542 } else {
543 if (RHS.isSingleWord()) {
544 pVal[0] |= RHS.VAL;
545 } else {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000546 unsigned minwords = getNumWords() < RHS.getNumWords() ?
547 getNumWords() : RHS.getNumWords();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000548 for (unsigned i = 0; i < minwords; ++i)
549 pVal[i] |= RHS.pVal[i];
550 }
551 }
552 TruncToBits();
553 return *this;
554}
555
556/// @brief Bitwise XOR assignment operator. Performs bitwise XOR operation on
557/// this APInt and the given APInt& RHS, assigns the result to this APInt.
558APInt& APInt::operator^=(const APInt& RHS) {
559 if (isSingleWord()) {
560 if (RHS.isSingleWord()) VAL ^= RHS.VAL;
561 else VAL ^= RHS.pVal[0];
562 } else {
563 if (RHS.isSingleWord()) {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000564 for (unsigned i = 0; i < getNumWords(); ++i)
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000565 pVal[i] ^= RHS.VAL;
566 } else {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000567 unsigned minwords = getNumWords() < RHS.getNumWords() ?
568 getNumWords() : RHS.getNumWords();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000569 for (unsigned i = 0; i < minwords; ++i)
570 pVal[i] ^= RHS.pVal[i];
Zhou Shenga3832fd2007-02-07 06:14:53 +0000571 if (getNumWords() > minwords)
572 for (unsigned i = minwords; i < getNumWords(); ++i)
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000573 pVal[i] ^= 0;
574 }
575 }
576 TruncToBits();
577 return *this;
578}
579
580/// @brief Bitwise AND operator. Performs bitwise AND operation on this APInt
581/// and the given APInt& RHS.
582APInt APInt::operator&(const APInt& RHS) const {
583 APInt API(RHS);
584 return API &= *this;
585}
586
587/// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt
588/// and the given APInt& RHS.
589APInt APInt::operator|(const APInt& RHS) const {
590 APInt API(RHS);
591 API |= *this;
592 API.TruncToBits();
593 return API;
594}
595
596/// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt
597/// and the given APInt& RHS.
598APInt APInt::operator^(const APInt& RHS) const {
599 APInt API(RHS);
600 API ^= *this;
601 API.TruncToBits();
602 return API;
603}
604
605/// @brief Logical AND operator. Performs logical AND operation on this APInt
606/// and the given APInt& RHS.
607bool APInt::operator&&(const APInt& RHS) const {
608 if (isSingleWord())
609 return RHS.isSingleWord() ? VAL && RHS.VAL : VAL && RHS.pVal[0];
610 else if (RHS.isSingleWord())
611 return RHS.VAL && pVal[0];
612 else {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000613 unsigned minN = std::min(getNumWords(), RHS.getNumWords());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000614 for (unsigned i = 0; i < minN; ++i)
615 if (pVal[i] && RHS.pVal[i])
616 return true;
617 }
618 return false;
619}
620
621/// @brief Logical OR operator. Performs logical OR operation on this APInt
622/// and the given APInt& RHS.
623bool APInt::operator||(const APInt& RHS) const {
624 if (isSingleWord())
625 return RHS.isSingleWord() ? VAL || RHS.VAL : VAL || RHS.pVal[0];
626 else if (RHS.isSingleWord())
627 return RHS.VAL || pVal[0];
628 else {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000629 unsigned minN = std::min(getNumWords(), RHS.getNumWords());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000630 for (unsigned i = 0; i < minN; ++i)
631 if (pVal[i] || RHS.pVal[i])
632 return true;
633 }
634 return false;
635}
636
637/// @brief Logical negation operator. Performs logical negation operation on
638/// this APInt.
639bool APInt::operator !() const {
640 if (isSingleWord())
641 return !VAL;
642 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000643 for (unsigned i = 0; i < getNumWords(); ++i)
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000644 if (pVal[i])
645 return false;
646 return true;
647}
648
649/// @brief Multiplication operator. Multiplies this APInt by the given APInt&
650/// RHS.
651APInt APInt::operator*(const APInt& RHS) const {
652 APInt API(RHS);
653 API *= *this;
654 API.TruncToBits();
655 return API;
656}
657
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000658/// @brief Addition operator. Adds this APInt by the given APInt& RHS.
659APInt APInt::operator+(const APInt& RHS) const {
660 APInt API(*this);
661 API += RHS;
662 API.TruncToBits();
663 return API;
664}
665
666/// @brief Subtraction operator. Subtracts this APInt by the given APInt& RHS
667APInt APInt::operator-(const APInt& RHS) const {
668 APInt API(*this);
669 API -= RHS;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000670 return API;
671}
672
673/// @brief Array-indexing support.
674bool APInt::operator[](unsigned bitPosition) const {
Zhou Shengff4304f2007-02-09 07:48:24 +0000675 return (maskBit(bitPosition) & (isSingleWord() ?
676 VAL : pVal[whichWord(bitPosition)])) != 0;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000677}
678
679/// @brief Equality operator. Compare this APInt with the given APInt& RHS
680/// for the validity of the equality relationship.
681bool APInt::operator==(const APInt& RHS) const {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000682 unsigned n1 = getNumWords() * APINT_BITS_PER_WORD - CountLeadingZeros(),
683 n2 = RHS.getNumWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000684 if (n1 != n2) return false;
685 else if (isSingleWord())
686 return VAL == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
687 else {
688 if (n1 <= 64)
689 return pVal[0] == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
690 for (int i = whichWord(n1 - 1); i >= 0; --i)
691 if (pVal[i] != RHS.pVal[i]) return false;
692 }
693 return true;
694}
695
Zhou Shenga3832fd2007-02-07 06:14:53 +0000696/// @brief Equality operator. Compare this APInt with the given uint64_t value
697/// for the validity of the equality relationship.
698bool APInt::operator==(uint64_t Val) const {
699 if (isSingleWord())
700 return VAL == Val;
701 else {
702 unsigned n = getNumWords() * APINT_BITS_PER_WORD - CountLeadingZeros();
703 if (n <= 64)
704 return pVal[0] == Val;
705 else
706 return false;
707 }
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000708}
709
710/// @brief Less-than operator. Compare this APInt with the given APInt& RHS
711/// for the validity of the less-than relationship.
712bool APInt::operator <(const APInt& RHS) const {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000713 unsigned n1 = getNumWords() * 64 - CountLeadingZeros(),
714 n2 = RHS.getNumWords() * 64 - RHS.CountLeadingZeros();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000715 if (n1 < n2) return true;
716 else if (n1 > n2) return false;
717 else if (isSingleWord())
718 return VAL < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
719 else {
720 if (n1 <= 64)
721 return pVal[0] < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
722 for (int i = whichWord(n1 - 1); i >= 0; --i) {
723 if (pVal[i] > RHS.pVal[i]) return false;
724 else if (pVal[i] < RHS.pVal[i]) return true;
725 }
726 }
727 return false;
728}
729
730/// @brief Less-than-or-equal operator. Compare this APInt with the given
731/// APInt& RHS for the validity of the less-than-or-equal relationship.
732bool APInt::operator<=(const APInt& RHS) const {
733 return (*this) == RHS || (*this) < RHS;
734}
735
736/// @brief Greater-than operator. Compare this APInt with the given APInt& RHS
737/// for the validity of the greater-than relationship.
738bool APInt::operator >(const APInt& RHS) const {
739 return !((*this) <= RHS);
740}
741
742/// @brief Greater-than-or-equal operator. Compare this APInt with the given
743/// APInt& RHS for the validity of the greater-than-or-equal relationship.
744bool APInt::operator>=(const APInt& RHS) const {
745 return !((*this) < RHS);
746}
747
748/// Set the given bit to 1 whose poition is given as "bitPosition".
749/// @brief Set a given bit to 1.
750APInt& APInt::set(unsigned bitPosition) {
751 if (isSingleWord()) VAL |= maskBit(bitPosition);
752 else pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
753 return *this;
754}
755
756/// @brief Set every bit to 1.
757APInt& APInt::set() {
758 if (isSingleWord()) VAL = -1ULL;
759 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000760 for (unsigned i = 0; i < getNumWords(); ++i)
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000761 pVal[i] = -1ULL;
762 return *this;
763}
764
765/// Set the given bit to 0 whose position is given as "bitPosition".
766/// @brief Set a given bit to 0.
767APInt& APInt::clear(unsigned bitPosition) {
768 if (isSingleWord()) VAL &= ~maskBit(bitPosition);
769 else pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
770 return *this;
771}
772
773/// @brief Set every bit to 0.
774APInt& APInt::clear() {
775 if (isSingleWord()) VAL = 0;
Zhou Shenga3832fd2007-02-07 06:14:53 +0000776 else
777 memset(pVal, 0, getNumWords() * 8);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000778 return *this;
779}
780
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000781/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
782/// this APInt.
783APInt APInt::operator~() const {
784 APInt API(*this);
785 API.flip();
786 return API;
787}
788
789/// @brief Toggle every bit to its opposite value.
790APInt& APInt::flip() {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000791 if (isSingleWord()) VAL = (~(VAL << (64 - BitsNum))) >> (64 - BitsNum);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000792 else {
793 unsigned i = 0;
Zhou Shenga3832fd2007-02-07 06:14:53 +0000794 for (; i < getNumWords() - 1; ++i)
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000795 pVal[i] = ~pVal[i];
Zhou Shenga3832fd2007-02-07 06:14:53 +0000796 unsigned offset = 64 - (BitsNum - 64 * (i - 1));
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000797 pVal[i] = (~(pVal[i] << offset)) >> offset;
798 }
799 return *this;
800}
801
802/// Toggle a given bit to its opposite value whose position is given
803/// as "bitPosition".
804/// @brief Toggles a given bit to its opposite value.
805APInt& APInt::flip(unsigned bitPosition) {
Zhou Shenga3832fd2007-02-07 06:14:53 +0000806 assert(bitPosition < BitsNum && "Out of the bit-width range!");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000807 if ((*this)[bitPosition]) clear(bitPosition);
808 else set(bitPosition);
809 return *this;
810}
811
812/// to_string - This function translates the APInt into a string.
813std::string APInt::to_string(uint8_t radix) const {
814 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
815 "Radix should be 2, 8, 10, or 16!");
Reid Spencer879dfe12007-02-14 02:52:25 +0000816 static const char *digits[] = {
817 "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
818 };
819 std::string result;
820 unsigned bits_used = getNumWords() * 64 - CountLeadingZeros();
821 if (isSingleWord()) {
822 char buf[65];
823 const char *format = (radix == 10 ? "%llu" :
824 (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
825 if (format) {
826 sprintf(buf, format, VAL);
827 } else {
828 memset(buf, 0, 65);
829 uint64_t v = VAL;
830 while (bits_used) {
831 unsigned bit = v & 1;
832 bits_used--;
833 buf[bits_used] = digits[bit][0];
834 v >>=1;
835 }
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000836 }
Reid Spencer879dfe12007-02-14 02:52:25 +0000837 result = buf;
838 return result;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000839 }
Reid Spencer879dfe12007-02-14 02:52:25 +0000840
841 APInt tmp(*this);
842 APInt divisor(radix,64);
843 if (tmp == 0)
844 result = "0";
845 else while (tmp != 0) {
846 APInt APdigit = APIntOps::URem(tmp,divisor);
847 unsigned digit = APdigit.getValue();
848 assert(digit < radix && "URem failed");
849 result.insert(0,digits[digit]);
850 tmp = APIntOps::UDiv(tmp, divisor);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000851 }
Reid Spencer879dfe12007-02-14 02:52:25 +0000852
853 return result;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000854}
855
856/// getMaxValue - This function returns the largest value
857/// for an APInt of the specified bit-width and if isSign == true,
858/// it should be largest signed value, otherwise unsigned value.
859APInt APInt::getMaxValue(unsigned numBits, bool isSign) {
860 APInt APIVal(numBits, 1);
861 APIVal.set();
862 return isSign ? APIVal.clear(numBits) : APIVal;
863}
864
865/// getMinValue - This function returns the smallest value for
866/// an APInt of the given bit-width and if isSign == true,
867/// it should be smallest signed value, otherwise zero.
868APInt APInt::getMinValue(unsigned numBits, bool isSign) {
869 APInt APIVal(0, numBits);
870 return isSign ? APIVal : APIVal.set(numBits);
871}
872
873/// getAllOnesValue - This function returns an all-ones value for
874/// an APInt of the specified bit-width.
875APInt APInt::getAllOnesValue(unsigned numBits) {
876 return getMaxValue(numBits, false);
877}
878
879/// getNullValue - This function creates an '0' value for an
880/// APInt of the specified bit-width.
881APInt APInt::getNullValue(unsigned numBits) {
882 return getMinValue(numBits, true);
883}
884
885/// HiBits - This function returns the high "numBits" bits of this APInt.
886APInt APInt::HiBits(unsigned numBits) const {
Reid Spencerdb3faa62007-02-13 22:41:58 +0000887 return APIntOps::LShr(*this, BitsNum - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000888}
889
890/// LoBits - This function returns the low "numBits" bits of this APInt.
891APInt APInt::LoBits(unsigned numBits) const {
Reid Spencerdb3faa62007-02-13 22:41:58 +0000892 return APIntOps::LShr(APIntOps::Shl(*this, BitsNum - numBits),
Zhou Sheng0b706b12007-02-08 14:35:19 +0000893 BitsNum - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000894}
895
896/// CountLeadingZeros - This function is a APInt version corresponding to
897/// llvm/include/llvm/Support/MathExtras.h's function
898/// CountLeadingZeros_{32, 64}. It performs platform optimal form of counting
899/// the number of zeros from the most significant bit to the first one bit.
900/// @returns numWord() * 64 if the value is zero.
901unsigned APInt::CountLeadingZeros() const {
902 if (isSingleWord())
903 return CountLeadingZeros_64(VAL);
904 unsigned Count = 0;
Zhou Shenga3832fd2007-02-07 06:14:53 +0000905 for (int i = getNumWords() - 1; i >= 0; --i) {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000906 unsigned tmp = CountLeadingZeros_64(pVal[i]);
907 Count += tmp;
908 if (tmp != 64)
909 break;
910 }
911 return Count;
912}
913
914/// CountTrailingZero - This function is a APInt version corresponding to
915/// llvm/include/llvm/Support/MathExtras.h's function
916/// CountTrailingZeros_{32, 64}. It performs platform optimal form of counting
917/// the number of zeros from the least significant bit to the first one bit.
918/// @returns numWord() * 64 if the value is zero.
919unsigned APInt::CountTrailingZeros() const {
920 if (isSingleWord())
921 return CountTrailingZeros_64(~VAL & (VAL - 1));
922 APInt Tmp = ~(*this) & ((*this) - 1);
Zhou Shenga3832fd2007-02-07 06:14:53 +0000923 return getNumWords() * 64 - Tmp.CountLeadingZeros();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000924}
925
926/// CountPopulation - This function is a APInt version corresponding to
927/// llvm/include/llvm/Support/MathExtras.h's function
928/// CountPopulation_{32, 64}. It counts the number of set bits in a value.
929/// @returns 0 if the value is zero.
930unsigned APInt::CountPopulation() const {
931 if (isSingleWord())
932 return CountPopulation_64(VAL);
933 unsigned Count = 0;
Zhou Shenga3832fd2007-02-07 06:14:53 +0000934 for (unsigned i = 0; i < getNumWords(); ++i)
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000935 Count += CountPopulation_64(pVal[i]);
936 return Count;
937}
938
939
940/// ByteSwap - This function returns a byte-swapped representation of the
Zhou Shengff4304f2007-02-09 07:48:24 +0000941/// this APInt.
942APInt APInt::ByteSwap() const {
943 if (BitsNum <= 32)
944 return APInt(BitsNum, ByteSwap_32(unsigned(VAL)));
945 else if (BitsNum <= 64)
946 return APInt(BitsNum, ByteSwap_64(VAL));
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000947 else
Zhou Shengff4304f2007-02-09 07:48:24 +0000948 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000949}
950
951/// GreatestCommonDivisor - This function returns the greatest common
952/// divisor of the two APInt values using Enclid's algorithm.
Zhou Sheng0b706b12007-02-08 14:35:19 +0000953APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
954 const APInt& API2) {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000955 APInt A = API1, B = API2;
956 while (!!B) {
957 APInt T = B;
Reid Spencerdb3faa62007-02-13 22:41:58 +0000958 B = APIntOps::URem(A, B);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000959 A = T;
960 }
961 return A;
962}
Chris Lattner6ad4c142007-02-06 05:38:37 +0000963
Zhou Shengd93f00c2007-02-12 20:02:55 +0000964/// DoubleRoundToAPInt - This function convert a double value to
965/// a APInt value.
966APInt llvm::APIntOps::DoubleRoundToAPInt(double Double) {
967 union {
968 double D;
969 uint64_t I;
970 } T;
971 T.D = Double;
972 bool isNeg = T.I >> 63;
973 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
974 if (exp < 0)
975 return APInt(0);
976 uint64_t mantissa = ((T.I << 12) >> 12) | (1ULL << 52);
977 if (exp < 52)
978 return isNeg ? -APInt(mantissa >> (52 - exp)) :
979 APInt(mantissa >> (52 - exp));
980 APInt Tmp(mantissa, exp + 1);
Reid Spencerdb3faa62007-02-13 22:41:58 +0000981 Tmp = Tmp.Shl(exp - 52);
Zhou Shengd93f00c2007-02-12 20:02:55 +0000982 return isNeg ? -Tmp : Tmp;
983}
984
Reid Spencerdb3faa62007-02-13 22:41:58 +0000985/// RoundToDouble - This function convert this APInt to a double.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000986/// The layout for double is as following (IEEE Standard 754):
987/// --------------------------------------
988/// | Sign Exponent Fraction Bias |
989/// |-------------------------------------- |
990/// | 1[63] 11[62-52] 52[51-00] 1023 |
991/// --------------------------------------
Reid Spencerdb3faa62007-02-13 22:41:58 +0000992double APInt::RoundToDouble(bool isSigned) const {
Zhou Shengd93f00c2007-02-12 20:02:55 +0000993 bool isNeg = isSigned ? (*this)[BitsNum-1] : false;
994 APInt Tmp(isNeg ? -(*this) : (*this));
995 if (Tmp.isSingleWord())
996 return isSigned ? double(int64_t(Tmp.VAL)) : double(Tmp.VAL);
997 unsigned n = Tmp.getNumWords() * 64 - Tmp.CountLeadingZeros();
998 if (n <= 64)
999 return isSigned ? double(int64_t(Tmp.pVal[0])) : double(Tmp.pVal[0]);
1000 // Exponent when normalized to have decimal point directly after
1001 // leading one. This is stored excess 1023 in the exponent bit field.
1002 uint64_t exp = n - 1;
1003
1004 // Gross overflow.
1005 assert(exp <= 1023 && "Infinity value!");
1006
1007 // Number of bits in mantissa including the leading one
1008 // equals to 53.
1009 uint64_t mantissa;
1010 if (n % 64 >= 53)
1011 mantissa = Tmp.pVal[whichWord(n - 1)] >> (n % 64 - 53);
1012 else
1013 mantissa = (Tmp.pVal[whichWord(n - 1)] << (53 - n % 64)) |
1014 (Tmp.pVal[whichWord(n - 1) - 1] >> (11 + n % 64));
1015 // The leading bit of mantissa is implicit, so get rid of it.
1016 mantissa &= ~(1ULL << 52);
1017 uint64_t sign = isNeg ? (1ULL << 63) : 0;
1018 exp += 1023;
1019 union {
1020 double D;
1021 uint64_t I;
1022 } T;
1023 T.I = sign | (exp << 52) | mantissa;
1024 return T.D;
1025}
1026
Zhou Shengff4304f2007-02-09 07:48:24 +00001027/// Arithmetic right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001028/// @brief Arithmetic right-shift function.
Reid Spencerdb3faa62007-02-13 22:41:58 +00001029APInt APInt::AShr(unsigned shiftAmt) const {
Zhou Shengff4304f2007-02-09 07:48:24 +00001030 APInt API(*this);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001031 if (API.isSingleWord())
1032 API.VAL = (((int64_t(API.VAL) << (64 - API.BitsNum)) >> (64 - API.BitsNum))
1033 >> shiftAmt) & (~uint64_t(0UL) >> (64 - API.BitsNum));
1034 else {
1035 if (shiftAmt >= API.BitsNum) {
1036 memset(API.pVal, API[API.BitsNum-1] ? 1 : 0, (API.getNumWords()-1) * 8);
1037 API.pVal[API.getNumWords() - 1] = ~uint64_t(0UL) >>
1038 (64 - API.BitsNum % 64);
1039 } else {
1040 unsigned i = 0;
1041 for (; i < API.BitsNum - shiftAmt; ++i)
1042 if (API[i+shiftAmt])
1043 API.set(i);
1044 else
1045 API.clear(i);
1046 for (; i < API.BitsNum; ++i)
1047 API[API.BitsNum-1] ? API.set(i) : API.clear(i);
1048 }
1049 }
1050 return API;
1051}
1052
Zhou Shengff4304f2007-02-09 07:48:24 +00001053/// Logical right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001054/// @brief Logical right-shift function.
Reid Spencerdb3faa62007-02-13 22:41:58 +00001055APInt APInt::LShr(unsigned shiftAmt) const {
Zhou Shengff4304f2007-02-09 07:48:24 +00001056 APInt API(*this);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001057 if (API.isSingleWord())
1058 API.VAL >>= shiftAmt;
1059 else {
1060 if (shiftAmt >= API.BitsNum)
1061 memset(API.pVal, 0, API.getNumWords() * 8);
1062 unsigned i = 0;
1063 for (i = 0; i < API.BitsNum - shiftAmt; ++i)
1064 if (API[i+shiftAmt]) API.set(i);
1065 else API.clear(i);
1066 for (; i < API.BitsNum; ++i)
1067 API.clear(i);
1068 }
1069 return API;
1070}
1071
Zhou Shengff4304f2007-02-09 07:48:24 +00001072/// Left-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001073/// @brief Left-shift function.
Reid Spencerdb3faa62007-02-13 22:41:58 +00001074APInt APInt::Shl(unsigned shiftAmt) const {
Zhou Shengff4304f2007-02-09 07:48:24 +00001075 APInt API(*this);
Zhou Shengd93f00c2007-02-12 20:02:55 +00001076 if (API.isSingleWord())
1077 API.VAL <<= shiftAmt;
1078 else if (shiftAmt >= API.BitsNum)
1079 memset(API.pVal, 0, API.getNumWords() * 8);
1080 else {
1081 if (unsigned offset = shiftAmt / 64) {
1082 for (unsigned i = API.getNumWords() - 1; i > offset - 1; --i)
1083 API.pVal[i] = API.pVal[i-offset];
1084 memset(API.pVal, 0, offset * 8);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001085 }
Zhou Shengd93f00c2007-02-12 20:02:55 +00001086 shiftAmt %= 64;
1087 unsigned i;
1088 for (i = API.getNumWords() - 1; i > 0; --i)
1089 API.pVal[i] = (API.pVal[i] << shiftAmt) |
1090 (API.pVal[i-1] >> (64-shiftAmt));
1091 API.pVal[i] <<= shiftAmt;
Zhou Sheng0b706b12007-02-08 14:35:19 +00001092 }
1093 return API;
1094}
1095
Zhou Shengff4304f2007-02-09 07:48:24 +00001096/// Unsigned divide this APInt by APInt RHS.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001097/// @brief Unsigned division function for APInt.
Reid Spencerdb3faa62007-02-13 22:41:58 +00001098APInt APInt::UDiv(const APInt& RHS) const {
Zhou Shengff4304f2007-02-09 07:48:24 +00001099 APInt API(*this);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001100 unsigned first = RHS.getNumWords() * APInt::APINT_BITS_PER_WORD -
1101 RHS.CountLeadingZeros();
1102 unsigned ylen = !first ? 0 : APInt::whichWord(first - 1) + 1;
1103 assert(ylen && "Divided by zero???");
1104 if (API.isSingleWord()) {
1105 API.VAL = RHS.isSingleWord() ? (API.VAL / RHS.VAL) :
1106 (ylen > 1 ? 0 : API.VAL / RHS.pVal[0]);
1107 } else {
1108 unsigned first2 = API.getNumWords() * APInt::APINT_BITS_PER_WORD -
1109 API.CountLeadingZeros();
1110 unsigned xlen = !first2 ? 0 : APInt::whichWord(first2 - 1) + 1;
1111 if (!xlen)
1112 return API;
1113 else if (API < RHS)
1114 memset(API.pVal, 0, API.getNumWords() * 8);
1115 else if (API == RHS) {
1116 memset(API.pVal, 0, API.getNumWords() * 8);
1117 API.pVal[0] = 1;
1118 } else if (xlen == 1)
1119 API.pVal[0] /= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1120 else {
1121 uint64_t *xwords = new uint64_t[xlen+1], *ywords = new uint64_t[ylen];
1122 assert(xwords && ywords && "Memory Allocation Failed!");
1123 memcpy(xwords, API.pVal, xlen * 8);
1124 xwords[xlen] = 0;
1125 memcpy(ywords, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, ylen * 8);
1126 if (unsigned nshift = 63 - (first - 1) % 64) {
1127 lshift(ywords, 0, ywords, ylen, nshift);
1128 unsigned xlentmp = xlen;
1129 xwords[xlen++] = lshift(xwords, 0, xwords, xlentmp, nshift);
1130 }
1131 div((unsigned*)xwords, xlen*2-1, (unsigned*)ywords, ylen*2);
1132 memset(API.pVal, 0, API.getNumWords() * 8);
1133 memcpy(API.pVal, xwords + ylen, (xlen - ylen) * 8);
1134 delete[] xwords;
1135 delete[] ywords;
1136 }
1137 }
1138 return API;
1139}
1140
1141/// Unsigned remainder operation on APInt.
1142/// @brief Function for unsigned remainder operation.
Reid Spencerdb3faa62007-02-13 22:41:58 +00001143APInt APInt::URem(const APInt& RHS) const {
Zhou Shengff4304f2007-02-09 07:48:24 +00001144 APInt API(*this);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001145 unsigned first = RHS.getNumWords() * APInt::APINT_BITS_PER_WORD -
1146 RHS.CountLeadingZeros();
1147 unsigned ylen = !first ? 0 : APInt::whichWord(first - 1) + 1;
1148 assert(ylen && "Performing remainder operation by zero ???");
1149 if (API.isSingleWord()) {
1150 API.VAL = RHS.isSingleWord() ? (API.VAL % RHS.VAL) :
1151 (ylen > 1 ? API.VAL : API.VAL % RHS.pVal[0]);
1152 } else {
1153 unsigned first2 = API.getNumWords() * APInt::APINT_BITS_PER_WORD -
1154 API.CountLeadingZeros();
1155 unsigned xlen = !first2 ? 0 : API.whichWord(first2 - 1) + 1;
1156 if (!xlen || API < RHS)
1157 return API;
1158 else if (API == RHS)
1159 memset(API.pVal, 0, API.getNumWords() * 8);
1160 else if (xlen == 1)
1161 API.pVal[0] %= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1162 else {
1163 uint64_t *xwords = new uint64_t[xlen+1], *ywords = new uint64_t[ylen];
1164 assert(xwords && ywords && "Memory Allocation Failed!");
1165 memcpy(xwords, API.pVal, xlen * 8);
1166 xwords[xlen] = 0;
1167 memcpy(ywords, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, ylen * 8);
1168 unsigned nshift = 63 - (first - 1) % 64;
1169 if (nshift) {
1170 lshift(ywords, 0, ywords, ylen, nshift);
1171 unsigned xlentmp = xlen;
1172 xwords[xlen++] = lshift(xwords, 0, xwords, xlentmp, nshift);
1173 }
1174 div((unsigned*)xwords, xlen*2-1, (unsigned*)ywords, ylen*2);
1175 memset(API.pVal, 0, API.getNumWords() * 8);
1176 for (unsigned i = 0; i < ylen-1; ++i)
1177 API.pVal[i] = (xwords[i] >> nshift) | (xwords[i+1] << (64 - nshift));
1178 API.pVal[ylen-1] = xwords[ylen-1] >> nshift;
1179 delete[] xwords;
1180 delete[] ywords;
1181 }
1182 }
1183 return API;
1184}