blob: 141cc9fa76d9a56ec4c65c1b98a0c290c38555b0 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000077#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000079#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000080#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000081#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000083#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000084#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000085#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000086#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000087#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000089using namespace llvm;
90
Chris Lattner3b27d682006-12-19 22:30:33 +000091STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000103 "symbolically execute a constant "
104 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000105 cl::init(100));
106
Owen Anderson2ab36d32010-10-12 19:48:12 +0000107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000113char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000114
115//===----------------------------------------------------------------------===//
116// SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000122
Chris Lattner53e677a2004-04-02 20:23:17 +0000123void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000124 print(dbgs());
125 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000126}
127
Dan Gohman4ce32db2010-11-17 22:27:42 +0000128void SCEV::print(raw_ostream &OS) const {
129 switch (getSCEVType()) {
130 case scConstant:
131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132 return;
133 case scTruncate: {
134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135 const SCEV *Op = Trunc->getOperand();
136 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137 << *Trunc->getType() << ")";
138 return;
139 }
140 case scZeroExtend: {
141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142 const SCEV *Op = ZExt->getOperand();
143 OS << "(zext " << *Op->getType() << " " << *Op << " to "
144 << *ZExt->getType() << ")";
145 return;
146 }
147 case scSignExtend: {
148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149 const SCEV *Op = SExt->getOperand();
150 OS << "(sext " << *Op->getType() << " " << *Op << " to "
151 << *SExt->getType() << ")";
152 return;
153 }
154 case scAddRecExpr: {
155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156 OS << "{" << *AR->getOperand(0);
157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158 OS << ",+," << *AR->getOperand(i);
159 OS << "}<";
160 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
161 OS << ">";
162 return;
163 }
164 case scAddExpr:
165 case scMulExpr:
166 case scUMaxExpr:
167 case scSMaxExpr: {
168 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000169 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000170 switch (NAry->getSCEVType()) {
171 case scAddExpr: OpStr = " + "; break;
172 case scMulExpr: OpStr = " * "; break;
173 case scUMaxExpr: OpStr = " umax "; break;
174 case scSMaxExpr: OpStr = " smax "; break;
175 }
176 OS << "(";
177 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
178 I != E; ++I) {
179 OS << **I;
180 if (llvm::next(I) != E)
181 OS << OpStr;
182 }
183 OS << ")";
184 return;
185 }
186 case scUDivExpr: {
187 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
188 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
189 return;
190 }
191 case scUnknown: {
192 const SCEVUnknown *U = cast<SCEVUnknown>(this);
193 const Type *AllocTy;
194 if (U->isSizeOf(AllocTy)) {
195 OS << "sizeof(" << *AllocTy << ")";
196 return;
197 }
198 if (U->isAlignOf(AllocTy)) {
199 OS << "alignof(" << *AllocTy << ")";
200 return;
201 }
202
203 const Type *CTy;
204 Constant *FieldNo;
205 if (U->isOffsetOf(CTy, FieldNo)) {
206 OS << "offsetof(" << *CTy << ", ";
207 WriteAsOperand(OS, FieldNo, false);
208 OS << ")";
209 return;
210 }
211
212 // Otherwise just print it normally.
213 WriteAsOperand(OS, U->getValue(), false);
214 return;
215 }
216 case scCouldNotCompute:
217 OS << "***COULDNOTCOMPUTE***";
218 return;
219 default: break;
220 }
221 llvm_unreachable("Unknown SCEV kind!");
222}
223
224const Type *SCEV::getType() const {
225 switch (getSCEVType()) {
226 case scConstant:
227 return cast<SCEVConstant>(this)->getType();
228 case scTruncate:
229 case scZeroExtend:
230 case scSignExtend:
231 return cast<SCEVCastExpr>(this)->getType();
232 case scAddRecExpr:
233 case scMulExpr:
234 case scUMaxExpr:
235 case scSMaxExpr:
236 return cast<SCEVNAryExpr>(this)->getType();
237 case scAddExpr:
238 return cast<SCEVAddExpr>(this)->getType();
239 case scUDivExpr:
240 return cast<SCEVUDivExpr>(this)->getType();
241 case scUnknown:
242 return cast<SCEVUnknown>(this)->getType();
243 case scCouldNotCompute:
244 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
245 return 0;
246 default: break;
247 }
248 llvm_unreachable("Unknown SCEV kind!");
249 return 0;
250}
251
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000252bool SCEV::isZero() const {
253 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
254 return SC->getValue()->isZero();
255 return false;
256}
257
Dan Gohman70a1fe72009-05-18 15:22:39 +0000258bool SCEV::isOne() const {
259 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
260 return SC->getValue()->isOne();
261 return false;
262}
Chris Lattner53e677a2004-04-02 20:23:17 +0000263
Dan Gohman4d289bf2009-06-24 00:30:26 +0000264bool SCEV::isAllOnesValue() const {
265 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
266 return SC->getValue()->isAllOnesValue();
267 return false;
268}
269
Owen Anderson753ad612009-06-22 21:57:23 +0000270SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000271 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000272
Chris Lattner53e677a2004-04-02 20:23:17 +0000273bool SCEVCouldNotCompute::classof(const SCEV *S) {
274 return S->getSCEVType() == scCouldNotCompute;
275}
276
Dan Gohman0bba49c2009-07-07 17:06:11 +0000277const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000278 FoldingSetNodeID ID;
279 ID.AddInteger(scConstant);
280 ID.AddPointer(V);
281 void *IP = 0;
282 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000283 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000284 UniqueSCEVs.InsertNode(S, IP);
285 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000286}
Chris Lattner53e677a2004-04-02 20:23:17 +0000287
Dan Gohman0bba49c2009-07-07 17:06:11 +0000288const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000289 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000290}
291
Dan Gohman0bba49c2009-07-07 17:06:11 +0000292const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000293ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000294 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
295 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000296}
297
Dan Gohman3bf63762010-06-18 19:54:20 +0000298SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000299 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000300 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000301
Dan Gohman3bf63762010-06-18 19:54:20 +0000302SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000303 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000304 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000305 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
306 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000307 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000308}
Chris Lattner53e677a2004-04-02 20:23:17 +0000309
Dan Gohman3bf63762010-06-18 19:54:20 +0000310SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000311 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000312 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000313 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
314 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000315 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000316}
317
Dan Gohman3bf63762010-06-18 19:54:20 +0000318SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000319 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000320 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000321 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
322 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000323 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000324}
325
Dan Gohmanab37f502010-08-02 23:49:30 +0000326void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000327 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000328 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000329
330 // Remove this SCEVUnknown from the uniquing map.
331 SE->UniqueSCEVs.RemoveNode(this);
332
333 // Release the value.
334 setValPtr(0);
335}
336
337void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000338 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000339 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000340
341 // Remove this SCEVUnknown from the uniquing map.
342 SE->UniqueSCEVs.RemoveNode(this);
343
344 // Update this SCEVUnknown to point to the new value. This is needed
345 // because there may still be outstanding SCEVs which still point to
346 // this SCEVUnknown.
347 setValPtr(New);
348}
349
Dan Gohman0f5efe52010-01-28 02:15:55 +0000350bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000351 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000352 if (VCE->getOpcode() == Instruction::PtrToInt)
353 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000354 if (CE->getOpcode() == Instruction::GetElementPtr &&
355 CE->getOperand(0)->isNullValue() &&
356 CE->getNumOperands() == 2)
357 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
358 if (CI->isOne()) {
359 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
360 ->getElementType();
361 return true;
362 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000363
364 return false;
365}
366
367bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000368 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000369 if (VCE->getOpcode() == Instruction::PtrToInt)
370 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000371 if (CE->getOpcode() == Instruction::GetElementPtr &&
372 CE->getOperand(0)->isNullValue()) {
373 const Type *Ty =
374 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
375 if (const StructType *STy = dyn_cast<StructType>(Ty))
376 if (!STy->isPacked() &&
377 CE->getNumOperands() == 3 &&
378 CE->getOperand(1)->isNullValue()) {
379 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
380 if (CI->isOne() &&
381 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000382 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000383 AllocTy = STy->getElementType(1);
384 return true;
385 }
386 }
387 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000388
389 return false;
390}
391
Dan Gohman4f8eea82010-02-01 18:27:38 +0000392bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000393 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000394 if (VCE->getOpcode() == Instruction::PtrToInt)
395 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
396 if (CE->getOpcode() == Instruction::GetElementPtr &&
397 CE->getNumOperands() == 3 &&
398 CE->getOperand(0)->isNullValue() &&
399 CE->getOperand(1)->isNullValue()) {
400 const Type *Ty =
401 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
402 // Ignore vector types here so that ScalarEvolutionExpander doesn't
403 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000404 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000405 CTy = Ty;
406 FieldNo = CE->getOperand(2);
407 return true;
408 }
409 }
410
411 return false;
412}
413
Chris Lattner8d741b82004-06-20 06:23:15 +0000414//===----------------------------------------------------------------------===//
415// SCEV Utilities
416//===----------------------------------------------------------------------===//
417
418namespace {
419 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
420 /// than the complexity of the RHS. This comparator is used to canonicalize
421 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000422 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000423 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000424 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000425 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000426
Dan Gohman67ef74e2010-08-27 15:26:01 +0000427 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000428 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000429 return compare(LHS, RHS) < 0;
430 }
431
432 // Return negative, zero, or positive, if LHS is less than, equal to, or
433 // greater than RHS, respectively. A three-way result allows recursive
434 // comparisons to be more efficient.
435 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000436 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
437 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000438 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000439
Dan Gohman72861302009-05-07 14:39:04 +0000440 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000441 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
442 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000443 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000444
Dan Gohman3bf63762010-06-18 19:54:20 +0000445 // Aside from the getSCEVType() ordering, the particular ordering
446 // isn't very important except that it's beneficial to be consistent,
447 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000448 switch (LType) {
449 case scUnknown: {
450 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000451 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000452
453 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
454 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000455 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000456
457 // Order pointer values after integer values. This helps SCEVExpander
458 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000459 bool LIsPointer = LV->getType()->isPointerTy(),
460 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000461 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000462 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000463
464 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000465 unsigned LID = LV->getValueID(),
466 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000467 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000468 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000469
470 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000471 if (const Argument *LA = dyn_cast<Argument>(LV)) {
472 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000473 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
474 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000475 }
476
Dan Gohman67ef74e2010-08-27 15:26:01 +0000477 // For instructions, compare their loop depth, and their operand
478 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000479 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
480 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000481
482 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000483 const BasicBlock *LParent = LInst->getParent(),
484 *RParent = RInst->getParent();
485 if (LParent != RParent) {
486 unsigned LDepth = LI->getLoopDepth(LParent),
487 RDepth = LI->getLoopDepth(RParent);
488 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000489 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000490 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000491
492 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000493 unsigned LNumOps = LInst->getNumOperands(),
494 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000495 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000496 }
497
Dan Gohman67ef74e2010-08-27 15:26:01 +0000498 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000499 }
500
Dan Gohman67ef74e2010-08-27 15:26:01 +0000501 case scConstant: {
502 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000503 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000504
505 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000506 const APInt &LA = LC->getValue()->getValue();
507 const APInt &RA = RC->getValue()->getValue();
508 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000509 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000510 return (int)LBitWidth - (int)RBitWidth;
511 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000512 }
513
Dan Gohman67ef74e2010-08-27 15:26:01 +0000514 case scAddRecExpr: {
515 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000516 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000517
518 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000519 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
520 if (LLoop != RLoop) {
521 unsigned LDepth = LLoop->getLoopDepth(),
522 RDepth = RLoop->getLoopDepth();
523 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000524 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000525 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000526
527 // Addrec complexity grows with operand count.
528 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
529 if (LNumOps != RNumOps)
530 return (int)LNumOps - (int)RNumOps;
531
532 // Lexicographically compare.
533 for (unsigned i = 0; i != LNumOps; ++i) {
534 long X = compare(LA->getOperand(i), RA->getOperand(i));
535 if (X != 0)
536 return X;
537 }
538
539 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000540 }
541
Dan Gohman67ef74e2010-08-27 15:26:01 +0000542 case scAddExpr:
543 case scMulExpr:
544 case scSMaxExpr:
545 case scUMaxExpr: {
546 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000547 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000548
549 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000550 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
551 for (unsigned i = 0; i != LNumOps; ++i) {
552 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000553 return 1;
554 long X = compare(LC->getOperand(i), RC->getOperand(i));
555 if (X != 0)
556 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000557 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000558 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000559 }
560
Dan Gohman67ef74e2010-08-27 15:26:01 +0000561 case scUDivExpr: {
562 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000563 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000564
565 // Lexicographically compare udiv expressions.
566 long X = compare(LC->getLHS(), RC->getLHS());
567 if (X != 0)
568 return X;
569 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000570 }
571
Dan Gohman67ef74e2010-08-27 15:26:01 +0000572 case scTruncate:
573 case scZeroExtend:
574 case scSignExtend: {
575 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000576 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000577
578 // Compare cast expressions by operand.
579 return compare(LC->getOperand(), RC->getOperand());
580 }
581
582 default:
583 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000584 }
585
586 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000587 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000588 }
589 };
590}
591
592/// GroupByComplexity - Given a list of SCEV objects, order them by their
593/// complexity, and group objects of the same complexity together by value.
594/// When this routine is finished, we know that any duplicates in the vector are
595/// consecutive and that complexity is monotonically increasing.
596///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000597/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000598/// results from this routine. In other words, we don't want the results of
599/// this to depend on where the addresses of various SCEV objects happened to
600/// land in memory.
601///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000602static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000603 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000604 if (Ops.size() < 2) return; // Noop
605 if (Ops.size() == 2) {
606 // This is the common case, which also happens to be trivially simple.
607 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000608 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
609 if (SCEVComplexityCompare(LI)(RHS, LHS))
610 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000611 return;
612 }
613
Dan Gohman3bf63762010-06-18 19:54:20 +0000614 // Do the rough sort by complexity.
615 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
616
617 // Now that we are sorted by complexity, group elements of the same
618 // complexity. Note that this is, at worst, N^2, but the vector is likely to
619 // be extremely short in practice. Note that we take this approach because we
620 // do not want to depend on the addresses of the objects we are grouping.
621 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
622 const SCEV *S = Ops[i];
623 unsigned Complexity = S->getSCEVType();
624
625 // If there are any objects of the same complexity and same value as this
626 // one, group them.
627 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
628 if (Ops[j] == S) { // Found a duplicate.
629 // Move it to immediately after i'th element.
630 std::swap(Ops[i+1], Ops[j]);
631 ++i; // no need to rescan it.
632 if (i == e-2) return; // Done!
633 }
634 }
635 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000636}
637
Chris Lattner53e677a2004-04-02 20:23:17 +0000638
Chris Lattner53e677a2004-04-02 20:23:17 +0000639
640//===----------------------------------------------------------------------===//
641// Simple SCEV method implementations
642//===----------------------------------------------------------------------===//
643
Eli Friedmanb42a6262008-08-04 23:49:06 +0000644/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000645/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000646static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000647 ScalarEvolution &SE,
648 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000649 // Handle the simplest case efficiently.
650 if (K == 1)
651 return SE.getTruncateOrZeroExtend(It, ResultTy);
652
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000653 // We are using the following formula for BC(It, K):
654 //
655 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
656 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000657 // Suppose, W is the bitwidth of the return value. We must be prepared for
658 // overflow. Hence, we must assure that the result of our computation is
659 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
660 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000661 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000662 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000663 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000664 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
665 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000666 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000667 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000668 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000669 // This formula is trivially equivalent to the previous formula. However,
670 // this formula can be implemented much more efficiently. The trick is that
671 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
672 // arithmetic. To do exact division in modular arithmetic, all we have
673 // to do is multiply by the inverse. Therefore, this step can be done at
674 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000675 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000676 // The next issue is how to safely do the division by 2^T. The way this
677 // is done is by doing the multiplication step at a width of at least W + T
678 // bits. This way, the bottom W+T bits of the product are accurate. Then,
679 // when we perform the division by 2^T (which is equivalent to a right shift
680 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
681 // truncated out after the division by 2^T.
682 //
683 // In comparison to just directly using the first formula, this technique
684 // is much more efficient; using the first formula requires W * K bits,
685 // but this formula less than W + K bits. Also, the first formula requires
686 // a division step, whereas this formula only requires multiplies and shifts.
687 //
688 // It doesn't matter whether the subtraction step is done in the calculation
689 // width or the input iteration count's width; if the subtraction overflows,
690 // the result must be zero anyway. We prefer here to do it in the width of
691 // the induction variable because it helps a lot for certain cases; CodeGen
692 // isn't smart enough to ignore the overflow, which leads to much less
693 // efficient code if the width of the subtraction is wider than the native
694 // register width.
695 //
696 // (It's possible to not widen at all by pulling out factors of 2 before
697 // the multiplication; for example, K=2 can be calculated as
698 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
699 // extra arithmetic, so it's not an obvious win, and it gets
700 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000701
Eli Friedmanb42a6262008-08-04 23:49:06 +0000702 // Protection from insane SCEVs; this bound is conservative,
703 // but it probably doesn't matter.
704 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000705 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000706
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000707 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000708
Eli Friedmanb42a6262008-08-04 23:49:06 +0000709 // Calculate K! / 2^T and T; we divide out the factors of two before
710 // multiplying for calculating K! / 2^T to avoid overflow.
711 // Other overflow doesn't matter because we only care about the bottom
712 // W bits of the result.
713 APInt OddFactorial(W, 1);
714 unsigned T = 1;
715 for (unsigned i = 3; i <= K; ++i) {
716 APInt Mult(W, i);
717 unsigned TwoFactors = Mult.countTrailingZeros();
718 T += TwoFactors;
719 Mult = Mult.lshr(TwoFactors);
720 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000721 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000722
Eli Friedmanb42a6262008-08-04 23:49:06 +0000723 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000724 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000725
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000726 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000727 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
728
729 // Calculate the multiplicative inverse of K! / 2^T;
730 // this multiplication factor will perform the exact division by
731 // K! / 2^T.
732 APInt Mod = APInt::getSignedMinValue(W+1);
733 APInt MultiplyFactor = OddFactorial.zext(W+1);
734 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
735 MultiplyFactor = MultiplyFactor.trunc(W);
736
737 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000738 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
739 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000740 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000741 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000742 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000743 Dividend = SE.getMulExpr(Dividend,
744 SE.getTruncateOrZeroExtend(S, CalculationTy));
745 }
746
747 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000748 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000749
750 // Truncate the result, and divide by K! / 2^T.
751
752 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
753 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000754}
755
Chris Lattner53e677a2004-04-02 20:23:17 +0000756/// evaluateAtIteration - Return the value of this chain of recurrences at
757/// the specified iteration number. We can evaluate this recurrence by
758/// multiplying each element in the chain by the binomial coefficient
759/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
760///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000761/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000762///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000763/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000764///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000765const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000766 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000767 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000768 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000769 // The computation is correct in the face of overflow provided that the
770 // multiplication is performed _after_ the evaluation of the binomial
771 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000772 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000773 if (isa<SCEVCouldNotCompute>(Coeff))
774 return Coeff;
775
776 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000777 }
778 return Result;
779}
780
Chris Lattner53e677a2004-04-02 20:23:17 +0000781//===----------------------------------------------------------------------===//
782// SCEV Expression folder implementations
783//===----------------------------------------------------------------------===//
784
Dan Gohman0bba49c2009-07-07 17:06:11 +0000785const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000786 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000787 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000788 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000789 assert(isSCEVable(Ty) &&
790 "This is not a conversion to a SCEVable type!");
791 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000792
Dan Gohmanc050fd92009-07-13 20:50:19 +0000793 FoldingSetNodeID ID;
794 ID.AddInteger(scTruncate);
795 ID.AddPointer(Op);
796 ID.AddPointer(Ty);
797 void *IP = 0;
798 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
799
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000800 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000801 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000802 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000803 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
804 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000805
Dan Gohman20900ca2009-04-22 16:20:48 +0000806 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000807 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000808 return getTruncateExpr(ST->getOperand(), Ty);
809
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000810 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000811 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000812 return getTruncateOrSignExtend(SS->getOperand(), Ty);
813
814 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000815 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000816 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
817
Dan Gohman6864db62009-06-18 16:24:47 +0000818 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000819 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000820 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000821 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000822 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
823 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000824 }
825
Dan Gohmanf53462d2010-07-15 20:02:11 +0000826 // As a special case, fold trunc(undef) to undef. We don't want to
827 // know too much about SCEVUnknowns, but this special case is handy
828 // and harmless.
829 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
830 if (isa<UndefValue>(U->getValue()))
831 return getSCEV(UndefValue::get(Ty));
832
Dan Gohman420ab912010-06-25 18:47:08 +0000833 // The cast wasn't folded; create an explicit cast node. We can reuse
834 // the existing insert position since if we get here, we won't have
835 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000836 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
837 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000838 UniqueSCEVs.InsertNode(S, IP);
839 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000840}
841
Dan Gohman0bba49c2009-07-07 17:06:11 +0000842const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000843 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000844 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000845 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000846 assert(isSCEVable(Ty) &&
847 "This is not a conversion to a SCEVable type!");
848 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000849
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000850 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000851 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
852 return getConstant(
853 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
854 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000855
Dan Gohman20900ca2009-04-22 16:20:48 +0000856 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000857 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000858 return getZeroExtendExpr(SZ->getOperand(), Ty);
859
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000860 // Before doing any expensive analysis, check to see if we've already
861 // computed a SCEV for this Op and Ty.
862 FoldingSetNodeID ID;
863 ID.AddInteger(scZeroExtend);
864 ID.AddPointer(Op);
865 ID.AddPointer(Ty);
866 void *IP = 0;
867 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
868
Dan Gohman01ecca22009-04-27 20:16:15 +0000869 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000870 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000871 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000872 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000873 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000874 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000875 const SCEV *Start = AR->getStart();
876 const SCEV *Step = AR->getStepRecurrence(*this);
877 unsigned BitWidth = getTypeSizeInBits(AR->getType());
878 const Loop *L = AR->getLoop();
879
Dan Gohmaneb490a72009-07-25 01:22:26 +0000880 // If we have special knowledge that this addrec won't overflow,
881 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000882 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000883 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
884 getZeroExtendExpr(Step, Ty),
885 L);
886
Dan Gohman01ecca22009-04-27 20:16:15 +0000887 // Check whether the backedge-taken count is SCEVCouldNotCompute.
888 // Note that this serves two purposes: It filters out loops that are
889 // simply not analyzable, and it covers the case where this code is
890 // being called from within backedge-taken count analysis, such that
891 // attempting to ask for the backedge-taken count would likely result
892 // in infinite recursion. In the later case, the analysis code will
893 // cope with a conservative value, and it will take care to purge
894 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000895 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000896 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000897 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000898 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000899
900 // Check whether the backedge-taken count can be losslessly casted to
901 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000902 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000903 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000904 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000905 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
906 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000907 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000908 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000909 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000910 const SCEV *Add = getAddExpr(Start, ZMul);
911 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000912 getAddExpr(getZeroExtendExpr(Start, WideTy),
913 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
914 getZeroExtendExpr(Step, WideTy)));
915 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000916 // Return the expression with the addrec on the outside.
917 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
918 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000919 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000920
921 // Similar to above, only this time treat the step value as signed.
922 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000923 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000924 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000925 OperandExtendedAdd =
926 getAddExpr(getZeroExtendExpr(Start, WideTy),
927 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
928 getSignExtendExpr(Step, WideTy)));
929 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000930 // Return the expression with the addrec on the outside.
931 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
932 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000933 L);
934 }
935
936 // If the backedge is guarded by a comparison with the pre-inc value
937 // the addrec is safe. Also, if the entry is guarded by a comparison
938 // with the start value and the backedge is guarded by a comparison
939 // with the post-inc value, the addrec is safe.
940 if (isKnownPositive(Step)) {
941 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
942 getUnsignedRange(Step).getUnsignedMax());
943 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000944 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000945 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
946 AR->getPostIncExpr(*this), N)))
947 // Return the expression with the addrec on the outside.
948 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
949 getZeroExtendExpr(Step, Ty),
950 L);
951 } else if (isKnownNegative(Step)) {
952 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
953 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +0000954 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
955 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000956 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
957 AR->getPostIncExpr(*this), N)))
958 // Return the expression with the addrec on the outside.
959 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
960 getSignExtendExpr(Step, Ty),
961 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000962 }
963 }
964 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000965
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000966 // The cast wasn't folded; create an explicit cast node.
967 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000968 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000969 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
970 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000971 UniqueSCEVs.InsertNode(S, IP);
972 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000973}
974
Dan Gohman0bba49c2009-07-07 17:06:11 +0000975const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000976 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000977 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000978 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000979 assert(isSCEVable(Ty) &&
980 "This is not a conversion to a SCEVable type!");
981 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000982
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000983 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000984 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
985 return getConstant(
986 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
987 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +0000988
Dan Gohman20900ca2009-04-22 16:20:48 +0000989 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000990 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000991 return getSignExtendExpr(SS->getOperand(), Ty);
992
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000993 // Before doing any expensive analysis, check to see if we've already
994 // computed a SCEV for this Op and Ty.
995 FoldingSetNodeID ID;
996 ID.AddInteger(scSignExtend);
997 ID.AddPointer(Op);
998 ID.AddPointer(Ty);
999 void *IP = 0;
1000 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1001
Dan Gohman01ecca22009-04-27 20:16:15 +00001002 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001003 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001004 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001005 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001006 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001007 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001008 const SCEV *Start = AR->getStart();
1009 const SCEV *Step = AR->getStepRecurrence(*this);
1010 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1011 const Loop *L = AR->getLoop();
1012
Dan Gohmaneb490a72009-07-25 01:22:26 +00001013 // If we have special knowledge that this addrec won't overflow,
1014 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001015 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001016 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1017 getSignExtendExpr(Step, Ty),
1018 L);
1019
Dan Gohman01ecca22009-04-27 20:16:15 +00001020 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1021 // Note that this serves two purposes: It filters out loops that are
1022 // simply not analyzable, and it covers the case where this code is
1023 // being called from within backedge-taken count analysis, such that
1024 // attempting to ask for the backedge-taken count would likely result
1025 // in infinite recursion. In the later case, the analysis code will
1026 // cope with a conservative value, and it will take care to purge
1027 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001028 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001029 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001030 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001031 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001032
1033 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001034 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001035 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001036 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001037 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001038 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1039 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001040 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001041 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001042 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001043 const SCEV *Add = getAddExpr(Start, SMul);
1044 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001045 getAddExpr(getSignExtendExpr(Start, WideTy),
1046 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1047 getSignExtendExpr(Step, WideTy)));
1048 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001049 // Return the expression with the addrec on the outside.
1050 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1051 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001052 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001053
1054 // Similar to above, only this time treat the step value as unsigned.
1055 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001056 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001057 Add = getAddExpr(Start, UMul);
1058 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001059 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001060 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1061 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001062 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001063 // Return the expression with the addrec on the outside.
1064 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1065 getZeroExtendExpr(Step, Ty),
1066 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001067 }
1068
1069 // If the backedge is guarded by a comparison with the pre-inc value
1070 // the addrec is safe. Also, if the entry is guarded by a comparison
1071 // with the start value and the backedge is guarded by a comparison
1072 // with the post-inc value, the addrec is safe.
1073 if (isKnownPositive(Step)) {
1074 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1075 getSignedRange(Step).getSignedMax());
1076 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001077 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001078 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1079 AR->getPostIncExpr(*this), N)))
1080 // Return the expression with the addrec on the outside.
1081 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1082 getSignExtendExpr(Step, Ty),
1083 L);
1084 } else if (isKnownNegative(Step)) {
1085 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1086 getSignedRange(Step).getSignedMin());
1087 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001088 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001089 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1090 AR->getPostIncExpr(*this), N)))
1091 // Return the expression with the addrec on the outside.
1092 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1093 getSignExtendExpr(Step, Ty),
1094 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001095 }
1096 }
1097 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001098
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001099 // The cast wasn't folded; create an explicit cast node.
1100 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001101 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001102 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1103 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001104 UniqueSCEVs.InsertNode(S, IP);
1105 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001106}
1107
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001108/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1109/// unspecified bits out to the given type.
1110///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001111const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001112 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001113 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1114 "This is not an extending conversion!");
1115 assert(isSCEVable(Ty) &&
1116 "This is not a conversion to a SCEVable type!");
1117 Ty = getEffectiveSCEVType(Ty);
1118
1119 // Sign-extend negative constants.
1120 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1121 if (SC->getValue()->getValue().isNegative())
1122 return getSignExtendExpr(Op, Ty);
1123
1124 // Peel off a truncate cast.
1125 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001126 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001127 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1128 return getAnyExtendExpr(NewOp, Ty);
1129 return getTruncateOrNoop(NewOp, Ty);
1130 }
1131
1132 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001133 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001134 if (!isa<SCEVZeroExtendExpr>(ZExt))
1135 return ZExt;
1136
1137 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001138 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001139 if (!isa<SCEVSignExtendExpr>(SExt))
1140 return SExt;
1141
Dan Gohmana10756e2010-01-21 02:09:26 +00001142 // Force the cast to be folded into the operands of an addrec.
1143 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1144 SmallVector<const SCEV *, 4> Ops;
1145 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1146 I != E; ++I)
1147 Ops.push_back(getAnyExtendExpr(*I, Ty));
1148 return getAddRecExpr(Ops, AR->getLoop());
1149 }
1150
Dan Gohmanf53462d2010-07-15 20:02:11 +00001151 // As a special case, fold anyext(undef) to undef. We don't want to
1152 // know too much about SCEVUnknowns, but this special case is handy
1153 // and harmless.
1154 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1155 if (isa<UndefValue>(U->getValue()))
1156 return getSCEV(UndefValue::get(Ty));
1157
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001158 // If the expression is obviously signed, use the sext cast value.
1159 if (isa<SCEVSMaxExpr>(Op))
1160 return SExt;
1161
1162 // Absent any other information, use the zext cast value.
1163 return ZExt;
1164}
1165
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001166/// CollectAddOperandsWithScales - Process the given Ops list, which is
1167/// a list of operands to be added under the given scale, update the given
1168/// map. This is a helper function for getAddRecExpr. As an example of
1169/// what it does, given a sequence of operands that would form an add
1170/// expression like this:
1171///
1172/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1173///
1174/// where A and B are constants, update the map with these values:
1175///
1176/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1177///
1178/// and add 13 + A*B*29 to AccumulatedConstant.
1179/// This will allow getAddRecExpr to produce this:
1180///
1181/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1182///
1183/// This form often exposes folding opportunities that are hidden in
1184/// the original operand list.
1185///
1186/// Return true iff it appears that any interesting folding opportunities
1187/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1188/// the common case where no interesting opportunities are present, and
1189/// is also used as a check to avoid infinite recursion.
1190///
1191static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001192CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1193 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001194 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001195 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001196 const APInt &Scale,
1197 ScalarEvolution &SE) {
1198 bool Interesting = false;
1199
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001200 // Iterate over the add operands. They are sorted, with constants first.
1201 unsigned i = 0;
1202 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1203 ++i;
1204 // Pull a buried constant out to the outside.
1205 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1206 Interesting = true;
1207 AccumulatedConstant += Scale * C->getValue()->getValue();
1208 }
1209
1210 // Next comes everything else. We're especially interested in multiplies
1211 // here, but they're in the middle, so just visit the rest with one loop.
1212 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001213 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1214 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1215 APInt NewScale =
1216 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1217 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1218 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001219 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001220 Interesting |=
1221 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001222 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001223 NewScale, SE);
1224 } else {
1225 // A multiplication of a constant with some other value. Update
1226 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001227 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1228 const SCEV *Key = SE.getMulExpr(MulOps);
1229 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001230 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001231 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001232 NewOps.push_back(Pair.first->first);
1233 } else {
1234 Pair.first->second += NewScale;
1235 // The map already had an entry for this value, which may indicate
1236 // a folding opportunity.
1237 Interesting = true;
1238 }
1239 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001240 } else {
1241 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001242 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001243 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001244 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001245 NewOps.push_back(Pair.first->first);
1246 } else {
1247 Pair.first->second += Scale;
1248 // The map already had an entry for this value, which may indicate
1249 // a folding opportunity.
1250 Interesting = true;
1251 }
1252 }
1253 }
1254
1255 return Interesting;
1256}
1257
1258namespace {
1259 struct APIntCompare {
1260 bool operator()(const APInt &LHS, const APInt &RHS) const {
1261 return LHS.ult(RHS);
1262 }
1263 };
1264}
1265
Dan Gohman6c0866c2009-05-24 23:45:28 +00001266/// getAddExpr - Get a canonical add expression, or something simpler if
1267/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001268const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1269 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001270 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001271 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001272#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001273 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001274 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001275 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001276 "SCEVAddExpr operand types don't match!");
1277#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001278
Dan Gohmana10756e2010-01-21 02:09:26 +00001279 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1280 if (!HasNUW && HasNSW) {
1281 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001282 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1283 E = Ops.end(); I != E; ++I)
1284 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001285 All = false;
1286 break;
1287 }
1288 if (All) HasNUW = true;
1289 }
1290
Chris Lattner53e677a2004-04-02 20:23:17 +00001291 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001292 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001293
1294 // If there are any constants, fold them together.
1295 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001296 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001297 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001298 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001299 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001300 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001301 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1302 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001303 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001304 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001305 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001306 }
1307
1308 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001309 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001310 Ops.erase(Ops.begin());
1311 --Idx;
1312 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001313
Dan Gohmanbca091d2010-04-12 23:08:18 +00001314 if (Ops.size() == 1) return Ops[0];
1315 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001316
Dan Gohman68ff7762010-08-27 21:39:59 +00001317 // Okay, check to see if the same value occurs in the operand list more than
1318 // once. If so, merge them together into an multiply expression. Since we
1319 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001320 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001321 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001322 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001323 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001324 // Scan ahead to count how many equal operands there are.
1325 unsigned Count = 2;
1326 while (i+Count != e && Ops[i+Count] == Ops[i])
1327 ++Count;
1328 // Merge the values into a multiply.
1329 const SCEV *Scale = getConstant(Ty, Count);
1330 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1331 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001332 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001333 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001334 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001335 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001336 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001337 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001338 if (FoundMatch)
1339 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001340
Dan Gohman728c7f32009-05-08 21:03:19 +00001341 // Check for truncates. If all the operands are truncated from the same
1342 // type, see if factoring out the truncate would permit the result to be
1343 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1344 // if the contents of the resulting outer trunc fold to something simple.
1345 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1346 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1347 const Type *DstType = Trunc->getType();
1348 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001349 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001350 bool Ok = true;
1351 // Check all the operands to see if they can be represented in the
1352 // source type of the truncate.
1353 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1354 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1355 if (T->getOperand()->getType() != SrcType) {
1356 Ok = false;
1357 break;
1358 }
1359 LargeOps.push_back(T->getOperand());
1360 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001361 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001362 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001363 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001364 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1365 if (const SCEVTruncateExpr *T =
1366 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1367 if (T->getOperand()->getType() != SrcType) {
1368 Ok = false;
1369 break;
1370 }
1371 LargeMulOps.push_back(T->getOperand());
1372 } else if (const SCEVConstant *C =
1373 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001374 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001375 } else {
1376 Ok = false;
1377 break;
1378 }
1379 }
1380 if (Ok)
1381 LargeOps.push_back(getMulExpr(LargeMulOps));
1382 } else {
1383 Ok = false;
1384 break;
1385 }
1386 }
1387 if (Ok) {
1388 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001389 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001390 // If it folds to something simple, use it. Otherwise, don't.
1391 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1392 return getTruncateExpr(Fold, DstType);
1393 }
1394 }
1395
1396 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001397 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1398 ++Idx;
1399
1400 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001401 if (Idx < Ops.size()) {
1402 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001403 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001404 // If we have an add, expand the add operands onto the end of the operands
1405 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001406 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001407 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001408 DeletedAdd = true;
1409 }
1410
1411 // If we deleted at least one add, we added operands to the end of the list,
1412 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001413 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001414 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001415 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001416 }
1417
1418 // Skip over the add expression until we get to a multiply.
1419 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1420 ++Idx;
1421
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001422 // Check to see if there are any folding opportunities present with
1423 // operands multiplied by constant values.
1424 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1425 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001426 DenseMap<const SCEV *, APInt> M;
1427 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001428 APInt AccumulatedConstant(BitWidth, 0);
1429 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001430 Ops.data(), Ops.size(),
1431 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001432 // Some interesting folding opportunity is present, so its worthwhile to
1433 // re-generate the operands list. Group the operands by constant scale,
1434 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001435 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001436 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001437 E = NewOps.end(); I != E; ++I)
1438 MulOpLists[M.find(*I)->second].push_back(*I);
1439 // Re-generate the operands list.
1440 Ops.clear();
1441 if (AccumulatedConstant != 0)
1442 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001443 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1444 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001445 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001446 Ops.push_back(getMulExpr(getConstant(I->first),
1447 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001448 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001449 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001450 if (Ops.size() == 1)
1451 return Ops[0];
1452 return getAddExpr(Ops);
1453 }
1454 }
1455
Chris Lattner53e677a2004-04-02 20:23:17 +00001456 // If we are adding something to a multiply expression, make sure the
1457 // something is not already an operand of the multiply. If so, merge it into
1458 // the multiply.
1459 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001460 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001461 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001462 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001463 if (isa<SCEVConstant>(MulOpSCEV))
1464 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001465 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001466 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001467 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001468 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001469 if (Mul->getNumOperands() != 2) {
1470 // If the multiply has more than two operands, we must get the
1471 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001472 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1473 Mul->op_begin()+MulOp);
1474 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001475 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001476 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001477 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001478 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001479 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001480 if (Ops.size() == 2) return OuterMul;
1481 if (AddOp < Idx) {
1482 Ops.erase(Ops.begin()+AddOp);
1483 Ops.erase(Ops.begin()+Idx-1);
1484 } else {
1485 Ops.erase(Ops.begin()+Idx);
1486 Ops.erase(Ops.begin()+AddOp-1);
1487 }
1488 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001489 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001490 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001491
Chris Lattner53e677a2004-04-02 20:23:17 +00001492 // Check this multiply against other multiplies being added together.
1493 for (unsigned OtherMulIdx = Idx+1;
1494 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1495 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001496 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001497 // If MulOp occurs in OtherMul, we can fold the two multiplies
1498 // together.
1499 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1500 OMulOp != e; ++OMulOp)
1501 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1502 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001503 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001504 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001505 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001506 Mul->op_begin()+MulOp);
1507 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001508 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001509 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001510 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001511 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001512 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001513 OtherMul->op_begin()+OMulOp);
1514 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001515 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001516 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001517 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1518 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001519 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001520 Ops.erase(Ops.begin()+Idx);
1521 Ops.erase(Ops.begin()+OtherMulIdx-1);
1522 Ops.push_back(OuterMul);
1523 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001524 }
1525 }
1526 }
1527 }
1528
1529 // If there are any add recurrences in the operands list, see if any other
1530 // added values are loop invariant. If so, we can fold them into the
1531 // recurrence.
1532 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1533 ++Idx;
1534
1535 // Scan over all recurrences, trying to fold loop invariants into them.
1536 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1537 // Scan all of the other operands to this add and add them to the vector if
1538 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001539 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001540 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001541 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001542 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001543 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001544 LIOps.push_back(Ops[i]);
1545 Ops.erase(Ops.begin()+i);
1546 --i; --e;
1547 }
1548
1549 // If we found some loop invariants, fold them into the recurrence.
1550 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001551 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001552 LIOps.push_back(AddRec->getStart());
1553
Dan Gohman0bba49c2009-07-07 17:06:11 +00001554 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001555 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001556 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001557
Dan Gohmanb9f96512010-06-30 07:16:37 +00001558 // Build the new addrec. Propagate the NUW and NSW flags if both the
1559 // outer add and the inner addrec are guaranteed to have no overflow.
1560 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1561 HasNUW && AddRec->hasNoUnsignedWrap(),
1562 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001563
Chris Lattner53e677a2004-04-02 20:23:17 +00001564 // If all of the other operands were loop invariant, we are done.
1565 if (Ops.size() == 1) return NewRec;
1566
1567 // Otherwise, add the folded AddRec by the non-liv parts.
1568 for (unsigned i = 0;; ++i)
1569 if (Ops[i] == AddRec) {
1570 Ops[i] = NewRec;
1571 break;
1572 }
Dan Gohman246b2562007-10-22 18:31:58 +00001573 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001574 }
1575
1576 // Okay, if there weren't any loop invariants to be folded, check to see if
1577 // there are multiple AddRec's with the same loop induction variable being
1578 // added together. If so, we can fold them.
1579 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001580 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1581 ++OtherIdx)
1582 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1583 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1584 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1585 AddRec->op_end());
1586 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1587 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001588 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001589 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001590 if (OtherAddRec->getLoop() == AddRecLoop) {
1591 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1592 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001593 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001594 AddRecOps.append(OtherAddRec->op_begin()+i,
1595 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001596 break;
1597 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001598 AddRecOps[i] = getAddExpr(AddRecOps[i],
1599 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001600 }
1601 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001602 }
Dan Gohman32527152010-08-27 20:45:56 +00001603 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1604 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001605 }
1606
1607 // Otherwise couldn't fold anything into this recurrence. Move onto the
1608 // next one.
1609 }
1610
1611 // Okay, it looks like we really DO need an add expr. Check to see if we
1612 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001613 FoldingSetNodeID ID;
1614 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001615 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1616 ID.AddPointer(Ops[i]);
1617 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001618 SCEVAddExpr *S =
1619 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1620 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001621 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1622 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001623 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1624 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001625 UniqueSCEVs.InsertNode(S, IP);
1626 }
Dan Gohman3645b012009-10-09 00:10:36 +00001627 if (HasNUW) S->setHasNoUnsignedWrap(true);
1628 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001629 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001630}
1631
Dan Gohman6c0866c2009-05-24 23:45:28 +00001632/// getMulExpr - Get a canonical multiply expression, or something simpler if
1633/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001634const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1635 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001636 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001637 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001638#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001639 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001640 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001641 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001642 "SCEVMulExpr operand types don't match!");
1643#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001644
Dan Gohmana10756e2010-01-21 02:09:26 +00001645 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1646 if (!HasNUW && HasNSW) {
1647 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001648 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1649 E = Ops.end(); I != E; ++I)
1650 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001651 All = false;
1652 break;
1653 }
1654 if (All) HasNUW = true;
1655 }
1656
Chris Lattner53e677a2004-04-02 20:23:17 +00001657 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001658 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001659
1660 // If there are any constants, fold them together.
1661 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001662 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001663
1664 // C1*(C2+V) -> C1*C2 + C1*V
1665 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001666 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001667 if (Add->getNumOperands() == 2 &&
1668 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001669 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1670 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001671
Chris Lattner53e677a2004-04-02 20:23:17 +00001672 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001673 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001674 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001675 ConstantInt *Fold = ConstantInt::get(getContext(),
1676 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001677 RHSC->getValue()->getValue());
1678 Ops[0] = getConstant(Fold);
1679 Ops.erase(Ops.begin()+1); // Erase the folded element
1680 if (Ops.size() == 1) return Ops[0];
1681 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001682 }
1683
1684 // If we are left with a constant one being multiplied, strip it off.
1685 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1686 Ops.erase(Ops.begin());
1687 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001688 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001689 // If we have a multiply of zero, it will always be zero.
1690 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001691 } else if (Ops[0]->isAllOnesValue()) {
1692 // If we have a mul by -1 of an add, try distributing the -1 among the
1693 // add operands.
1694 if (Ops.size() == 2)
1695 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1696 SmallVector<const SCEV *, 4> NewOps;
1697 bool AnyFolded = false;
1698 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1699 I != E; ++I) {
1700 const SCEV *Mul = getMulExpr(Ops[0], *I);
1701 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1702 NewOps.push_back(Mul);
1703 }
1704 if (AnyFolded)
1705 return getAddExpr(NewOps);
1706 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001707 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001708
1709 if (Ops.size() == 1)
1710 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001711 }
1712
1713 // Skip over the add expression until we get to a multiply.
1714 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1715 ++Idx;
1716
Chris Lattner53e677a2004-04-02 20:23:17 +00001717 // If there are mul operands inline them all into this expression.
1718 if (Idx < Ops.size()) {
1719 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001720 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001721 // If we have an mul, expand the mul operands onto the end of the operands
1722 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001723 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001724 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001725 DeletedMul = true;
1726 }
1727
1728 // If we deleted at least one mul, we added operands to the end of the list,
1729 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001730 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001731 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001732 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001733 }
1734
1735 // If there are any add recurrences in the operands list, see if any other
1736 // added values are loop invariant. If so, we can fold them into the
1737 // recurrence.
1738 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1739 ++Idx;
1740
1741 // Scan over all recurrences, trying to fold loop invariants into them.
1742 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1743 // Scan all of the other operands to this mul and add them to the vector if
1744 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001745 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001746 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001747 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001748 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001749 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001750 LIOps.push_back(Ops[i]);
1751 Ops.erase(Ops.begin()+i);
1752 --i; --e;
1753 }
1754
1755 // If we found some loop invariants, fold them into the recurrence.
1756 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001757 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001758 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001759 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001760 const SCEV *Scale = getMulExpr(LIOps);
1761 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1762 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001763
Dan Gohmanb9f96512010-06-30 07:16:37 +00001764 // Build the new addrec. Propagate the NUW and NSW flags if both the
1765 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohman0f32ae32010-08-29 14:55:19 +00001766 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
Dan Gohmana10756e2010-01-21 02:09:26 +00001767 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001768 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001769
1770 // If all of the other operands were loop invariant, we are done.
1771 if (Ops.size() == 1) return NewRec;
1772
1773 // Otherwise, multiply the folded AddRec by the non-liv parts.
1774 for (unsigned i = 0;; ++i)
1775 if (Ops[i] == AddRec) {
1776 Ops[i] = NewRec;
1777 break;
1778 }
Dan Gohman246b2562007-10-22 18:31:58 +00001779 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001780 }
1781
1782 // Okay, if there weren't any loop invariants to be folded, check to see if
1783 // there are multiple AddRec's with the same loop induction variable being
1784 // multiplied together. If so, we can fold them.
1785 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001786 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1787 ++OtherIdx)
1788 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1789 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1790 // {A*C,+,F*D + G*B + B*D}<L>
1791 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1792 ++OtherIdx)
1793 if (const SCEVAddRecExpr *OtherAddRec =
1794 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1795 if (OtherAddRec->getLoop() == AddRecLoop) {
1796 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1797 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1798 const SCEV *B = F->getStepRecurrence(*this);
1799 const SCEV *D = G->getStepRecurrence(*this);
1800 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1801 getMulExpr(G, B),
1802 getMulExpr(B, D));
1803 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1804 F->getLoop());
1805 if (Ops.size() == 2) return NewAddRec;
1806 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1807 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1808 }
1809 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001810 }
1811
1812 // Otherwise couldn't fold anything into this recurrence. Move onto the
1813 // next one.
1814 }
1815
1816 // Okay, it looks like we really DO need an mul expr. Check to see if we
1817 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001818 FoldingSetNodeID ID;
1819 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001820 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1821 ID.AddPointer(Ops[i]);
1822 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001823 SCEVMulExpr *S =
1824 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1825 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001826 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1827 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001828 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1829 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001830 UniqueSCEVs.InsertNode(S, IP);
1831 }
Dan Gohman3645b012009-10-09 00:10:36 +00001832 if (HasNUW) S->setHasNoUnsignedWrap(true);
1833 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001834 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001835}
1836
Andreas Bolka8a11c982009-08-07 22:55:26 +00001837/// getUDivExpr - Get a canonical unsigned division expression, or something
1838/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001839const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1840 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001841 assert(getEffectiveSCEVType(LHS->getType()) ==
1842 getEffectiveSCEVType(RHS->getType()) &&
1843 "SCEVUDivExpr operand types don't match!");
1844
Dan Gohman622ed672009-05-04 22:02:23 +00001845 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001846 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001847 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001848 // If the denominator is zero, the result of the udiv is undefined. Don't
1849 // try to analyze it, because the resolution chosen here may differ from
1850 // the resolution chosen in other parts of the compiler.
1851 if (!RHSC->getValue()->isZero()) {
1852 // Determine if the division can be folded into the operands of
1853 // its operands.
1854 // TODO: Generalize this to non-constants by using known-bits information.
1855 const Type *Ty = LHS->getType();
1856 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001857 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001858 // For non-power-of-two values, effectively round the value up to the
1859 // nearest power of two.
1860 if (!RHSC->getValue()->getValue().isPowerOf2())
1861 ++MaxShiftAmt;
1862 const IntegerType *ExtTy =
1863 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1864 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1865 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1866 if (const SCEVConstant *Step =
1867 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1868 if (!Step->getValue()->getValue()
1869 .urem(RHSC->getValue()->getValue()) &&
1870 getZeroExtendExpr(AR, ExtTy) ==
1871 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1872 getZeroExtendExpr(Step, ExtTy),
1873 AR->getLoop())) {
1874 SmallVector<const SCEV *, 4> Operands;
1875 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1876 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1877 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001878 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001879 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1880 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1881 SmallVector<const SCEV *, 4> Operands;
1882 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1883 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1884 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1885 // Find an operand that's safely divisible.
1886 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1887 const SCEV *Op = M->getOperand(i);
1888 const SCEV *Div = getUDivExpr(Op, RHSC);
1889 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1890 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1891 M->op_end());
1892 Operands[i] = Div;
1893 return getMulExpr(Operands);
1894 }
1895 }
Dan Gohman185cf032009-05-08 20:18:49 +00001896 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001897 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1898 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1899 SmallVector<const SCEV *, 4> Operands;
1900 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1901 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1902 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1903 Operands.clear();
1904 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1905 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1906 if (isa<SCEVUDivExpr>(Op) ||
1907 getMulExpr(Op, RHS) != A->getOperand(i))
1908 break;
1909 Operands.push_back(Op);
1910 }
1911 if (Operands.size() == A->getNumOperands())
1912 return getAddExpr(Operands);
1913 }
1914 }
Dan Gohman185cf032009-05-08 20:18:49 +00001915
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001916 // Fold if both operands are constant.
1917 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1918 Constant *LHSCV = LHSC->getValue();
1919 Constant *RHSCV = RHSC->getValue();
1920 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1921 RHSCV)));
1922 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001923 }
1924 }
1925
Dan Gohman1c343752009-06-27 21:21:31 +00001926 FoldingSetNodeID ID;
1927 ID.AddInteger(scUDivExpr);
1928 ID.AddPointer(LHS);
1929 ID.AddPointer(RHS);
1930 void *IP = 0;
1931 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001932 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1933 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001934 UniqueSCEVs.InsertNode(S, IP);
1935 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001936}
1937
1938
Dan Gohman6c0866c2009-05-24 23:45:28 +00001939/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1940/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001941const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001942 const SCEV *Step, const Loop *L,
1943 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001944 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001945 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001946 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001947 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001948 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001949 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001950 }
1951
1952 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001953 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001954}
1955
Dan Gohman6c0866c2009-05-24 23:45:28 +00001956/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1957/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001958const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001959ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001960 const Loop *L,
1961 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001962 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001963#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001964 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001965 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001966 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001967 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00001968 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001969 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00001970 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00001971#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001972
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001973 if (Operands.back()->isZero()) {
1974 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001975 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001976 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001977
Dan Gohmanbc028532010-02-19 18:49:22 +00001978 // It's tempting to want to call getMaxBackedgeTakenCount count here and
1979 // use that information to infer NUW and NSW flags. However, computing a
1980 // BE count requires calling getAddRecExpr, so we may not yet have a
1981 // meaningful BE count at this point (and if we don't, we'd be stuck
1982 // with a SCEVCouldNotCompute as the cached BE count).
1983
Dan Gohmana10756e2010-01-21 02:09:26 +00001984 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1985 if (!HasNUW && HasNSW) {
1986 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001987 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
1988 E = Operands.end(); I != E; ++I)
1989 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001990 All = false;
1991 break;
1992 }
1993 if (All) HasNUW = true;
1994 }
1995
Dan Gohmand9cc7492008-08-08 18:33:12 +00001996 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00001997 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00001998 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00001999 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002000 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002001 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002002 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002003 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002004 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002005 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002006 // AddRecs require their operands be loop-invariant with respect to their
2007 // loops. Don't perform this transformation if it would break this
2008 // requirement.
2009 bool AllInvariant = true;
2010 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002011 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002012 AllInvariant = false;
2013 break;
2014 }
2015 if (AllInvariant) {
2016 NestedOperands[0] = getAddRecExpr(Operands, L);
2017 AllInvariant = true;
2018 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002019 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002020 AllInvariant = false;
2021 break;
2022 }
2023 if (AllInvariant)
2024 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002025 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002026 }
2027 // Reset Operands to its original state.
2028 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002029 }
2030 }
2031
Dan Gohman67847532010-01-19 22:27:22 +00002032 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2033 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002034 FoldingSetNodeID ID;
2035 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002036 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2037 ID.AddPointer(Operands[i]);
2038 ID.AddPointer(L);
2039 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002040 SCEVAddRecExpr *S =
2041 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2042 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002043 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2044 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002045 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2046 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002047 UniqueSCEVs.InsertNode(S, IP);
2048 }
Dan Gohman3645b012009-10-09 00:10:36 +00002049 if (HasNUW) S->setHasNoUnsignedWrap(true);
2050 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002051 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002052}
2053
Dan Gohman9311ef62009-06-24 14:49:00 +00002054const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2055 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002056 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002057 Ops.push_back(LHS);
2058 Ops.push_back(RHS);
2059 return getSMaxExpr(Ops);
2060}
2061
Dan Gohman0bba49c2009-07-07 17:06:11 +00002062const SCEV *
2063ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002064 assert(!Ops.empty() && "Cannot get empty smax!");
2065 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002066#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002067 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002068 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002069 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002070 "SCEVSMaxExpr operand types don't match!");
2071#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002072
2073 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002074 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002075
2076 // If there are any constants, fold them together.
2077 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002078 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002079 ++Idx;
2080 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002081 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002082 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002083 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002084 APIntOps::smax(LHSC->getValue()->getValue(),
2085 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002086 Ops[0] = getConstant(Fold);
2087 Ops.erase(Ops.begin()+1); // Erase the folded element
2088 if (Ops.size() == 1) return Ops[0];
2089 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002090 }
2091
Dan Gohmane5aceed2009-06-24 14:46:22 +00002092 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002093 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2094 Ops.erase(Ops.begin());
2095 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002096 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2097 // If we have an smax with a constant maximum-int, it will always be
2098 // maximum-int.
2099 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002100 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002101
Dan Gohman3ab13122010-04-13 16:49:23 +00002102 if (Ops.size() == 1) return Ops[0];
2103 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002104
2105 // Find the first SMax
2106 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2107 ++Idx;
2108
2109 // Check to see if one of the operands is an SMax. If so, expand its operands
2110 // onto our operand list, and recurse to simplify.
2111 if (Idx < Ops.size()) {
2112 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002113 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002114 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002115 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002116 DeletedSMax = true;
2117 }
2118
2119 if (DeletedSMax)
2120 return getSMaxExpr(Ops);
2121 }
2122
2123 // Okay, check to see if the same value occurs in the operand list twice. If
2124 // so, delete one. Since we sorted the list, these values are required to
2125 // be adjacent.
2126 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002127 // X smax Y smax Y --> X smax Y
2128 // X smax Y --> X, if X is always greater than Y
2129 if (Ops[i] == Ops[i+1] ||
2130 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2131 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2132 --i; --e;
2133 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002134 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2135 --i; --e;
2136 }
2137
2138 if (Ops.size() == 1) return Ops[0];
2139
2140 assert(!Ops.empty() && "Reduced smax down to nothing!");
2141
Nick Lewycky3e630762008-02-20 06:48:22 +00002142 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002143 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002144 FoldingSetNodeID ID;
2145 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002146 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2147 ID.AddPointer(Ops[i]);
2148 void *IP = 0;
2149 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002150 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2151 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002152 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2153 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002154 UniqueSCEVs.InsertNode(S, IP);
2155 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002156}
2157
Dan Gohman9311ef62009-06-24 14:49:00 +00002158const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2159 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002160 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002161 Ops.push_back(LHS);
2162 Ops.push_back(RHS);
2163 return getUMaxExpr(Ops);
2164}
2165
Dan Gohman0bba49c2009-07-07 17:06:11 +00002166const SCEV *
2167ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002168 assert(!Ops.empty() && "Cannot get empty umax!");
2169 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002170#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002171 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002172 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002173 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002174 "SCEVUMaxExpr operand types don't match!");
2175#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002176
2177 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002178 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002179
2180 // If there are any constants, fold them together.
2181 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002182 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002183 ++Idx;
2184 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002185 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002186 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002187 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002188 APIntOps::umax(LHSC->getValue()->getValue(),
2189 RHSC->getValue()->getValue()));
2190 Ops[0] = getConstant(Fold);
2191 Ops.erase(Ops.begin()+1); // Erase the folded element
2192 if (Ops.size() == 1) return Ops[0];
2193 LHSC = cast<SCEVConstant>(Ops[0]);
2194 }
2195
Dan Gohmane5aceed2009-06-24 14:46:22 +00002196 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002197 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2198 Ops.erase(Ops.begin());
2199 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002200 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2201 // If we have an umax with a constant maximum-int, it will always be
2202 // maximum-int.
2203 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002204 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002205
Dan Gohman3ab13122010-04-13 16:49:23 +00002206 if (Ops.size() == 1) return Ops[0];
2207 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002208
2209 // Find the first UMax
2210 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2211 ++Idx;
2212
2213 // Check to see if one of the operands is a UMax. If so, expand its operands
2214 // onto our operand list, and recurse to simplify.
2215 if (Idx < Ops.size()) {
2216 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002217 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002218 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002219 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002220 DeletedUMax = true;
2221 }
2222
2223 if (DeletedUMax)
2224 return getUMaxExpr(Ops);
2225 }
2226
2227 // Okay, check to see if the same value occurs in the operand list twice. If
2228 // so, delete one. Since we sorted the list, these values are required to
2229 // be adjacent.
2230 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002231 // X umax Y umax Y --> X umax Y
2232 // X umax Y --> X, if X is always greater than Y
2233 if (Ops[i] == Ops[i+1] ||
2234 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2235 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2236 --i; --e;
2237 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002238 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2239 --i; --e;
2240 }
2241
2242 if (Ops.size() == 1) return Ops[0];
2243
2244 assert(!Ops.empty() && "Reduced umax down to nothing!");
2245
2246 // Okay, it looks like we really DO need a umax expr. Check to see if we
2247 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002248 FoldingSetNodeID ID;
2249 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002250 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2251 ID.AddPointer(Ops[i]);
2252 void *IP = 0;
2253 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002254 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2255 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002256 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2257 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002258 UniqueSCEVs.InsertNode(S, IP);
2259 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002260}
2261
Dan Gohman9311ef62009-06-24 14:49:00 +00002262const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2263 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002264 // ~smax(~x, ~y) == smin(x, y).
2265 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2266}
2267
Dan Gohman9311ef62009-06-24 14:49:00 +00002268const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2269 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002270 // ~umax(~x, ~y) == umin(x, y)
2271 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2272}
2273
Dan Gohman4f8eea82010-02-01 18:27:38 +00002274const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002275 // If we have TargetData, we can bypass creating a target-independent
2276 // constant expression and then folding it back into a ConstantInt.
2277 // This is just a compile-time optimization.
2278 if (TD)
2279 return getConstant(TD->getIntPtrType(getContext()),
2280 TD->getTypeAllocSize(AllocTy));
2281
Dan Gohman4f8eea82010-02-01 18:27:38 +00002282 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2283 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002284 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2285 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002286 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2287 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2288}
2289
2290const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2291 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2292 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002293 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2294 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002295 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2296 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2297}
2298
2299const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2300 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002301 // If we have TargetData, we can bypass creating a target-independent
2302 // constant expression and then folding it back into a ConstantInt.
2303 // This is just a compile-time optimization.
2304 if (TD)
2305 return getConstant(TD->getIntPtrType(getContext()),
2306 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2307
Dan Gohman0f5efe52010-01-28 02:15:55 +00002308 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2309 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002310 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2311 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002312 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002313 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002314}
2315
Dan Gohman4f8eea82010-02-01 18:27:38 +00002316const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2317 Constant *FieldNo) {
2318 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002319 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002320 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2321 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002322 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002323 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002324}
2325
Dan Gohman0bba49c2009-07-07 17:06:11 +00002326const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002327 // Don't attempt to do anything other than create a SCEVUnknown object
2328 // here. createSCEV only calls getUnknown after checking for all other
2329 // interesting possibilities, and any other code that calls getUnknown
2330 // is doing so in order to hide a value from SCEV canonicalization.
2331
Dan Gohman1c343752009-06-27 21:21:31 +00002332 FoldingSetNodeID ID;
2333 ID.AddInteger(scUnknown);
2334 ID.AddPointer(V);
2335 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002336 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2337 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2338 "Stale SCEVUnknown in uniquing map!");
2339 return S;
2340 }
2341 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2342 FirstUnknown);
2343 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002344 UniqueSCEVs.InsertNode(S, IP);
2345 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002346}
2347
Chris Lattner53e677a2004-04-02 20:23:17 +00002348//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002349// Basic SCEV Analysis and PHI Idiom Recognition Code
2350//
2351
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002352/// isSCEVable - Test if values of the given type are analyzable within
2353/// the SCEV framework. This primarily includes integer types, and it
2354/// can optionally include pointer types if the ScalarEvolution class
2355/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002356bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002357 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002358 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002359}
2360
2361/// getTypeSizeInBits - Return the size in bits of the specified type,
2362/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002363uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002364 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2365
2366 // If we have a TargetData, use it!
2367 if (TD)
2368 return TD->getTypeSizeInBits(Ty);
2369
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002370 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002371 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002372 return Ty->getPrimitiveSizeInBits();
2373
2374 // The only other support type is pointer. Without TargetData, conservatively
2375 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002376 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002377 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002378}
2379
2380/// getEffectiveSCEVType - Return a type with the same bitwidth as
2381/// the given type and which represents how SCEV will treat the given
2382/// type, for which isSCEVable must return true. For pointer types,
2383/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002384const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002385 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2386
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002387 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002388 return Ty;
2389
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002390 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002391 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002392 if (TD) return TD->getIntPtrType(getContext());
2393
2394 // Without TargetData, conservatively assume pointers are 64-bit.
2395 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002396}
Chris Lattner53e677a2004-04-02 20:23:17 +00002397
Dan Gohman0bba49c2009-07-07 17:06:11 +00002398const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002399 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002400}
2401
Chris Lattner53e677a2004-04-02 20:23:17 +00002402/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2403/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002404const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002405 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002406
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002407 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2408 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002409 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002410
2411 // The process of creating a SCEV for V may have caused other SCEVs
2412 // to have been created, so it's necessary to insert the new entry
2413 // from scratch, rather than trying to remember the insert position
2414 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002415 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002416 return S;
2417}
2418
Dan Gohman2d1be872009-04-16 03:18:22 +00002419/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2420///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002421const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002422 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002423 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002424 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002425
2426 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002427 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002428 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002429 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002430}
2431
2432/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002433const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002434 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002435 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002436 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002437
2438 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002439 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002440 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002441 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002442 return getMinusSCEV(AllOnes, V);
2443}
2444
2445/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2446///
Dan Gohman9311ef62009-06-24 14:49:00 +00002447const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2448 const SCEV *RHS) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002449 // Fast path: X - X --> 0.
2450 if (LHS == RHS)
2451 return getConstant(LHS->getType(), 0);
2452
Dan Gohman2d1be872009-04-16 03:18:22 +00002453 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002454 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002455}
2456
2457/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2458/// input value to the specified type. If the type must be extended, it is zero
2459/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002460const SCEV *
2461ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002462 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002463 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002464 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2465 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002466 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002467 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002468 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002469 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002470 return getTruncateExpr(V, Ty);
2471 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002472}
2473
2474/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2475/// input value to the specified type. If the type must be extended, it is sign
2476/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002477const SCEV *
2478ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002479 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002480 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002481 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2482 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002483 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002484 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002485 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002486 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002487 return getTruncateExpr(V, Ty);
2488 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002489}
2490
Dan Gohman467c4302009-05-13 03:46:30 +00002491/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2492/// input value to the specified type. If the type must be extended, it is zero
2493/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002494const SCEV *
2495ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002496 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002497 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2498 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002499 "Cannot noop or zero extend with non-integer arguments!");
2500 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2501 "getNoopOrZeroExtend cannot truncate!");
2502 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2503 return V; // No conversion
2504 return getZeroExtendExpr(V, Ty);
2505}
2506
2507/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2508/// input value to the specified type. If the type must be extended, it is sign
2509/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002510const SCEV *
2511ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002512 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002513 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2514 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002515 "Cannot noop or sign extend with non-integer arguments!");
2516 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2517 "getNoopOrSignExtend cannot truncate!");
2518 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2519 return V; // No conversion
2520 return getSignExtendExpr(V, Ty);
2521}
2522
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002523/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2524/// the input value to the specified type. If the type must be extended,
2525/// it is extended with unspecified bits. The conversion must not be
2526/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002527const SCEV *
2528ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002529 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002530 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2531 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002532 "Cannot noop or any extend with non-integer arguments!");
2533 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2534 "getNoopOrAnyExtend cannot truncate!");
2535 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2536 return V; // No conversion
2537 return getAnyExtendExpr(V, Ty);
2538}
2539
Dan Gohman467c4302009-05-13 03:46:30 +00002540/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2541/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002542const SCEV *
2543ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002544 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002545 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2546 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002547 "Cannot truncate or noop with non-integer arguments!");
2548 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2549 "getTruncateOrNoop cannot extend!");
2550 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2551 return V; // No conversion
2552 return getTruncateExpr(V, Ty);
2553}
2554
Dan Gohmana334aa72009-06-22 00:31:57 +00002555/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2556/// the types using zero-extension, and then perform a umax operation
2557/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002558const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2559 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002560 const SCEV *PromotedLHS = LHS;
2561 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002562
2563 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2564 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2565 else
2566 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2567
2568 return getUMaxExpr(PromotedLHS, PromotedRHS);
2569}
2570
Dan Gohmanc9759e82009-06-22 15:03:27 +00002571/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2572/// the types using zero-extension, and then perform a umin operation
2573/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002574const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2575 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002576 const SCEV *PromotedLHS = LHS;
2577 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002578
2579 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2580 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2581 else
2582 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2583
2584 return getUMinExpr(PromotedLHS, PromotedRHS);
2585}
2586
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002587/// PushDefUseChildren - Push users of the given Instruction
2588/// onto the given Worklist.
2589static void
2590PushDefUseChildren(Instruction *I,
2591 SmallVectorImpl<Instruction *> &Worklist) {
2592 // Push the def-use children onto the Worklist stack.
2593 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2594 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002595 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002596}
2597
2598/// ForgetSymbolicValue - This looks up computed SCEV values for all
2599/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002600/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002601/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002602void
Dan Gohman85669632010-02-25 06:57:05 +00002603ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002604 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002605 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002606
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002607 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002608 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002609 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002610 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002611 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002612
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002613 ValueExprMapType::iterator It =
2614 ValueExprMap.find(static_cast<Value *>(I));
2615 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002616 const SCEV *Old = It->second;
2617
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002618 // Short-circuit the def-use traversal if the symbolic name
2619 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002620 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002621 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002622
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002623 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002624 // structure, it's a PHI that's in the progress of being computed
2625 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2626 // additional loop trip count information isn't going to change anything.
2627 // In the second case, createNodeForPHI will perform the necessary
2628 // updates on its own when it gets to that point. In the third, we do
2629 // want to forget the SCEVUnknown.
2630 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002631 !isa<SCEVUnknown>(Old) ||
2632 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002633 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002634 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002635 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002636 }
2637
2638 PushDefUseChildren(I, Worklist);
2639 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002640}
Chris Lattner53e677a2004-04-02 20:23:17 +00002641
2642/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2643/// a loop header, making it a potential recurrence, or it doesn't.
2644///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002645const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002646 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2647 if (L->getHeader() == PN->getParent()) {
2648 // The loop may have multiple entrances or multiple exits; we can analyze
2649 // this phi as an addrec if it has a unique entry value and a unique
2650 // backedge value.
2651 Value *BEValueV = 0, *StartValueV = 0;
2652 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2653 Value *V = PN->getIncomingValue(i);
2654 if (L->contains(PN->getIncomingBlock(i))) {
2655 if (!BEValueV) {
2656 BEValueV = V;
2657 } else if (BEValueV != V) {
2658 BEValueV = 0;
2659 break;
2660 }
2661 } else if (!StartValueV) {
2662 StartValueV = V;
2663 } else if (StartValueV != V) {
2664 StartValueV = 0;
2665 break;
2666 }
2667 }
2668 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002669 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002670 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002671 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002672 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002673 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002674
2675 // Using this symbolic name for the PHI, analyze the value coming around
2676 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002677 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002678
2679 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2680 // has a special value for the first iteration of the loop.
2681
2682 // If the value coming around the backedge is an add with the symbolic
2683 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002684 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002685 // If there is a single occurrence of the symbolic value, replace it
2686 // with a recurrence.
2687 unsigned FoundIndex = Add->getNumOperands();
2688 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2689 if (Add->getOperand(i) == SymbolicName)
2690 if (FoundIndex == e) {
2691 FoundIndex = i;
2692 break;
2693 }
2694
2695 if (FoundIndex != Add->getNumOperands()) {
2696 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002697 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002698 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2699 if (i != FoundIndex)
2700 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002701 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002702
2703 // This is not a valid addrec if the step amount is varying each
2704 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002705 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00002706 (isa<SCEVAddRecExpr>(Accum) &&
2707 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002708 bool HasNUW = false;
2709 bool HasNSW = false;
2710
2711 // If the increment doesn't overflow, then neither the addrec nor
2712 // the post-increment will overflow.
2713 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2714 if (OBO->hasNoUnsignedWrap())
2715 HasNUW = true;
2716 if (OBO->hasNoSignedWrap())
2717 HasNSW = true;
2718 }
2719
Dan Gohman27dead42010-04-12 07:49:36 +00002720 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002721 const SCEV *PHISCEV =
2722 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002723
Dan Gohmana10756e2010-01-21 02:09:26 +00002724 // Since the no-wrap flags are on the increment, they apply to the
2725 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002726 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00002727 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2728 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002729
2730 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002731 // to be symbolic. We now need to go back and purge all of the
2732 // entries for the scalars that use the symbolic expression.
2733 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002734 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002735 return PHISCEV;
2736 }
2737 }
Dan Gohman622ed672009-05-04 22:02:23 +00002738 } else if (const SCEVAddRecExpr *AddRec =
2739 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002740 // Otherwise, this could be a loop like this:
2741 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2742 // In this case, j = {1,+,1} and BEValue is j.
2743 // Because the other in-value of i (0) fits the evolution of BEValue
2744 // i really is an addrec evolution.
2745 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002746 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002747
2748 // If StartVal = j.start - j.stride, we can use StartVal as the
2749 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002750 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002751 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002752 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002753 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002754
2755 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002756 // to be symbolic. We now need to go back and purge all of the
2757 // entries for the scalars that use the symbolic expression.
2758 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002759 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002760 return PHISCEV;
2761 }
2762 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002763 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002764 }
Dan Gohman27dead42010-04-12 07:49:36 +00002765 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002766
Dan Gohman85669632010-02-25 06:57:05 +00002767 // If the PHI has a single incoming value, follow that value, unless the
2768 // PHI's incoming blocks are in a different loop, in which case doing so
2769 // risks breaking LCSSA form. Instcombine would normally zap these, but
2770 // it doesn't have DominatorTree information, so it may miss cases.
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00002771 if (Value *V = SimplifyInstruction(PN, TD, DT))
2772 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00002773 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00002774
Chris Lattner53e677a2004-04-02 20:23:17 +00002775 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002776 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002777}
2778
Dan Gohman26466c02009-05-08 20:26:55 +00002779/// createNodeForGEP - Expand GEP instructions into add and multiply
2780/// operations. This allows them to be analyzed by regular SCEV code.
2781///
Dan Gohmand281ed22009-12-18 02:09:29 +00002782const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002783
Dan Gohmanb9f96512010-06-30 07:16:37 +00002784 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2785 // Add expression, because the Instruction may be guarded by control flow
2786 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002787 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002788
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002789 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002790 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002791 // Don't attempt to analyze GEPs over unsized objects.
2792 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2793 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002794 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002795 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002796 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002797 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002798 I != E; ++I) {
2799 Value *Index = *I;
2800 // Compute the (potentially symbolic) offset in bytes for this index.
2801 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2802 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002803 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002804 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2805
Dan Gohmanb9f96512010-06-30 07:16:37 +00002806 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002807 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002808 } else {
2809 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002810 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2811 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002812 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002813 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2814
Dan Gohmanb9f96512010-06-30 07:16:37 +00002815 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002816 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002817
2818 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002819 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002820 }
2821 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002822
2823 // Get the SCEV for the GEP base.
2824 const SCEV *BaseS = getSCEV(Base);
2825
Dan Gohmanb9f96512010-06-30 07:16:37 +00002826 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002827 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002828}
2829
Nick Lewycky83bb0052007-11-22 07:59:40 +00002830/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2831/// guaranteed to end in (at every loop iteration). It is, at the same time,
2832/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2833/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002834uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002835ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002836 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002837 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002838
Dan Gohman622ed672009-05-04 22:02:23 +00002839 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002840 return std::min(GetMinTrailingZeros(T->getOperand()),
2841 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002842
Dan Gohman622ed672009-05-04 22:02:23 +00002843 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002844 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2845 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2846 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002847 }
2848
Dan Gohman622ed672009-05-04 22:02:23 +00002849 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002850 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2851 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2852 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002853 }
2854
Dan Gohman622ed672009-05-04 22:02:23 +00002855 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002856 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002857 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002858 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002859 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002860 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002861 }
2862
Dan Gohman622ed672009-05-04 22:02:23 +00002863 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002864 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002865 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2866 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002867 for (unsigned i = 1, e = M->getNumOperands();
2868 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002869 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002870 BitWidth);
2871 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002872 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002873
Dan Gohman622ed672009-05-04 22:02:23 +00002874 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002875 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002876 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002877 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002878 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002879 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002880 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002881
Dan Gohman622ed672009-05-04 22:02:23 +00002882 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002883 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002884 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002885 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002886 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002887 return MinOpRes;
2888 }
2889
Dan Gohman622ed672009-05-04 22:02:23 +00002890 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002891 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002892 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002893 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002894 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002895 return MinOpRes;
2896 }
2897
Dan Gohman2c364ad2009-06-19 23:29:04 +00002898 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2899 // For a SCEVUnknown, ask ValueTracking.
2900 unsigned BitWidth = getTypeSizeInBits(U->getType());
2901 APInt Mask = APInt::getAllOnesValue(BitWidth);
2902 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2903 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2904 return Zeros.countTrailingOnes();
2905 }
2906
2907 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002908 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002909}
Chris Lattner53e677a2004-04-02 20:23:17 +00002910
Dan Gohman85b05a22009-07-13 21:35:55 +00002911/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2912///
2913ConstantRange
2914ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002915 // See if we've computed this range already.
2916 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
2917 if (I != UnsignedRanges.end())
2918 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002919
2920 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002921 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00002922
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002923 unsigned BitWidth = getTypeSizeInBits(S->getType());
2924 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2925
2926 // If the value has known zeros, the maximum unsigned value will have those
2927 // known zeros as well.
2928 uint32_t TZ = GetMinTrailingZeros(S);
2929 if (TZ != 0)
2930 ConservativeResult =
2931 ConstantRange(APInt::getMinValue(BitWidth),
2932 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2933
Dan Gohman85b05a22009-07-13 21:35:55 +00002934 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2935 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2936 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2937 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002938 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002939 }
2940
2941 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2942 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2943 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2944 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002945 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002946 }
2947
2948 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2949 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2950 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2951 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002952 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002953 }
2954
2955 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2956 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2957 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2958 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002959 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002960 }
2961
2962 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2963 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2964 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002965 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00002966 }
2967
2968 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2969 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002970 return setUnsignedRange(ZExt,
2971 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00002972 }
2973
2974 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2975 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002976 return setUnsignedRange(SExt,
2977 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00002978 }
2979
2980 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2981 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002982 return setUnsignedRange(Trunc,
2983 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00002984 }
2985
Dan Gohman85b05a22009-07-13 21:35:55 +00002986 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002987 // If there's no unsigned wrap, the value will never be less than its
2988 // initial value.
2989 if (AddRec->hasNoUnsignedWrap())
2990 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00002991 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00002992 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00002993 ConservativeResult.intersectWith(
2994 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00002995
2996 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002997 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002998 const Type *Ty = AddRec->getType();
2999 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003000 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3001 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003002 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3003
3004 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003005 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003006
3007 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003008 ConstantRange StepRange = getSignedRange(Step);
3009 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3010 ConstantRange EndRange =
3011 StartRange.add(MaxBECountRange.multiply(StepRange));
3012
3013 // Check for overflow. This must be done with ConstantRange arithmetic
3014 // because we could be called from within the ScalarEvolution overflow
3015 // checking code.
3016 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3017 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3018 ConstantRange ExtMaxBECountRange =
3019 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3020 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3021 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3022 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003023 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003024
Dan Gohman85b05a22009-07-13 21:35:55 +00003025 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3026 EndRange.getUnsignedMin());
3027 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3028 EndRange.getUnsignedMax());
3029 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003030 return setUnsignedRange(AddRec, ConservativeResult);
3031 return setUnsignedRange(AddRec,
3032 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003033 }
3034 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003035
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003036 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003037 }
3038
3039 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3040 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003041 APInt Mask = APInt::getAllOnesValue(BitWidth);
3042 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3043 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003044 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003045 return setUnsignedRange(U, ConservativeResult);
3046 return setUnsignedRange(U,
3047 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003048 }
3049
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003050 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003051}
3052
Dan Gohman85b05a22009-07-13 21:35:55 +00003053/// getSignedRange - Determine the signed range for a particular SCEV.
3054///
3055ConstantRange
3056ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003057 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3058 if (I != SignedRanges.end())
3059 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003060
Dan Gohman85b05a22009-07-13 21:35:55 +00003061 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003062 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003063
Dan Gohman52fddd32010-01-26 04:40:18 +00003064 unsigned BitWidth = getTypeSizeInBits(S->getType());
3065 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3066
3067 // If the value has known zeros, the maximum signed value will have those
3068 // known zeros as well.
3069 uint32_t TZ = GetMinTrailingZeros(S);
3070 if (TZ != 0)
3071 ConservativeResult =
3072 ConstantRange(APInt::getSignedMinValue(BitWidth),
3073 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3074
Dan Gohman85b05a22009-07-13 21:35:55 +00003075 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3076 ConstantRange X = getSignedRange(Add->getOperand(0));
3077 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3078 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003079 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003080 }
3081
Dan Gohman85b05a22009-07-13 21:35:55 +00003082 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3083 ConstantRange X = getSignedRange(Mul->getOperand(0));
3084 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3085 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003086 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003087 }
3088
Dan Gohman85b05a22009-07-13 21:35:55 +00003089 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3090 ConstantRange X = getSignedRange(SMax->getOperand(0));
3091 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3092 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003093 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003094 }
Dan Gohman62849c02009-06-24 01:05:09 +00003095
Dan Gohman85b05a22009-07-13 21:35:55 +00003096 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3097 ConstantRange X = getSignedRange(UMax->getOperand(0));
3098 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3099 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003100 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003101 }
Dan Gohman62849c02009-06-24 01:05:09 +00003102
Dan Gohman85b05a22009-07-13 21:35:55 +00003103 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3104 ConstantRange X = getSignedRange(UDiv->getLHS());
3105 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003106 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003107 }
Dan Gohman62849c02009-06-24 01:05:09 +00003108
Dan Gohman85b05a22009-07-13 21:35:55 +00003109 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3110 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003111 return setSignedRange(ZExt,
3112 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003113 }
3114
3115 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3116 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003117 return setSignedRange(SExt,
3118 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003119 }
3120
3121 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3122 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003123 return setSignedRange(Trunc,
3124 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003125 }
3126
Dan Gohman85b05a22009-07-13 21:35:55 +00003127 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003128 // If there's no signed wrap, and all the operands have the same sign or
3129 // zero, the value won't ever change sign.
3130 if (AddRec->hasNoSignedWrap()) {
3131 bool AllNonNeg = true;
3132 bool AllNonPos = true;
3133 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3134 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3135 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3136 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003137 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003138 ConservativeResult = ConservativeResult.intersectWith(
3139 ConstantRange(APInt(BitWidth, 0),
3140 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003141 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003142 ConservativeResult = ConservativeResult.intersectWith(
3143 ConstantRange(APInt::getSignedMinValue(BitWidth),
3144 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003145 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003146
3147 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003148 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003149 const Type *Ty = AddRec->getType();
3150 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003151 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3152 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003153 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3154
3155 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003156 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003157
3158 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003159 ConstantRange StepRange = getSignedRange(Step);
3160 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3161 ConstantRange EndRange =
3162 StartRange.add(MaxBECountRange.multiply(StepRange));
3163
3164 // Check for overflow. This must be done with ConstantRange arithmetic
3165 // because we could be called from within the ScalarEvolution overflow
3166 // checking code.
3167 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3168 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3169 ConstantRange ExtMaxBECountRange =
3170 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3171 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3172 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3173 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003174 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003175
Dan Gohman85b05a22009-07-13 21:35:55 +00003176 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3177 EndRange.getSignedMin());
3178 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3179 EndRange.getSignedMax());
3180 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003181 return setSignedRange(AddRec, ConservativeResult);
3182 return setSignedRange(AddRec,
3183 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003184 }
Dan Gohman62849c02009-06-24 01:05:09 +00003185 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003186
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003187 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003188 }
3189
Dan Gohman2c364ad2009-06-19 23:29:04 +00003190 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3191 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003192 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003193 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003194 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3195 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003196 return setSignedRange(U, ConservativeResult);
3197 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003198 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003199 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003200 }
3201
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003202 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003203}
3204
Chris Lattner53e677a2004-04-02 20:23:17 +00003205/// createSCEV - We know that there is no SCEV for the specified value.
3206/// Analyze the expression.
3207///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003208const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003209 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003210 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003211
Dan Gohman6c459a22008-06-22 19:56:46 +00003212 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003213 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003214 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003215
3216 // Don't attempt to analyze instructions in blocks that aren't
3217 // reachable. Such instructions don't matter, and they aren't required
3218 // to obey basic rules for definitions dominating uses which this
3219 // analysis depends on.
3220 if (!DT->isReachableFromEntry(I->getParent()))
3221 return getUnknown(V);
3222 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003223 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003224 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3225 return getConstant(CI);
3226 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003227 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003228 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3229 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003230 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003231 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003232
Dan Gohmanca178902009-07-17 20:47:02 +00003233 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003234 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003235 case Instruction::Add: {
3236 // The simple thing to do would be to just call getSCEV on both operands
3237 // and call getAddExpr with the result. However if we're looking at a
3238 // bunch of things all added together, this can be quite inefficient,
3239 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3240 // Instead, gather up all the operands and make a single getAddExpr call.
3241 // LLVM IR canonical form means we need only traverse the left operands.
3242 SmallVector<const SCEV *, 4> AddOps;
3243 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003244 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3245 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3246 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3247 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003248 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003249 const SCEV *Op1 = getSCEV(U->getOperand(1));
3250 if (Opcode == Instruction::Sub)
3251 AddOps.push_back(getNegativeSCEV(Op1));
3252 else
3253 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003254 }
3255 AddOps.push_back(getSCEV(U->getOperand(0)));
3256 return getAddExpr(AddOps);
3257 }
3258 case Instruction::Mul: {
3259 // See the Add code above.
3260 SmallVector<const SCEV *, 4> MulOps;
3261 MulOps.push_back(getSCEV(U->getOperand(1)));
3262 for (Value *Op = U->getOperand(0);
3263 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3264 Op = U->getOperand(0)) {
3265 U = cast<Operator>(Op);
3266 MulOps.push_back(getSCEV(U->getOperand(1)));
3267 }
3268 MulOps.push_back(getSCEV(U->getOperand(0)));
3269 return getMulExpr(MulOps);
3270 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003271 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003272 return getUDivExpr(getSCEV(U->getOperand(0)),
3273 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003274 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003275 return getMinusSCEV(getSCEV(U->getOperand(0)),
3276 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003277 case Instruction::And:
3278 // For an expression like x&255 that merely masks off the high bits,
3279 // use zext(trunc(x)) as the SCEV expression.
3280 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003281 if (CI->isNullValue())
3282 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003283 if (CI->isAllOnesValue())
3284 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003285 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003286
3287 // Instcombine's ShrinkDemandedConstant may strip bits out of
3288 // constants, obscuring what would otherwise be a low-bits mask.
3289 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3290 // knew about to reconstruct a low-bits mask value.
3291 unsigned LZ = A.countLeadingZeros();
3292 unsigned BitWidth = A.getBitWidth();
3293 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3294 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3295 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3296
3297 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3298
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003299 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003300 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003301 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003302 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003303 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003304 }
3305 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003306
Dan Gohman6c459a22008-06-22 19:56:46 +00003307 case Instruction::Or:
3308 // If the RHS of the Or is a constant, we may have something like:
3309 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3310 // optimizations will transparently handle this case.
3311 //
3312 // In order for this transformation to be safe, the LHS must be of the
3313 // form X*(2^n) and the Or constant must be less than 2^n.
3314 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003315 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003316 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003317 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003318 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3319 // Build a plain add SCEV.
3320 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3321 // If the LHS of the add was an addrec and it has no-wrap flags,
3322 // transfer the no-wrap flags, since an or won't introduce a wrap.
3323 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3324 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3325 if (OldAR->hasNoUnsignedWrap())
3326 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3327 if (OldAR->hasNoSignedWrap())
3328 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3329 }
3330 return S;
3331 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003332 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003333 break;
3334 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003335 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003336 // If the RHS of the xor is a signbit, then this is just an add.
3337 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003338 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003339 return getAddExpr(getSCEV(U->getOperand(0)),
3340 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003341
3342 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003343 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003344 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003345
3346 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3347 // This is a variant of the check for xor with -1, and it handles
3348 // the case where instcombine has trimmed non-demanded bits out
3349 // of an xor with -1.
3350 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3351 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3352 if (BO->getOpcode() == Instruction::And &&
3353 LCI->getValue() == CI->getValue())
3354 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003355 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003356 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003357 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003358 const Type *Z0Ty = Z0->getType();
3359 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3360
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003361 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003362 // mask off the high bits. Complement the operand and
3363 // re-apply the zext.
3364 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3365 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3366
3367 // If C is a single bit, it may be in the sign-bit position
3368 // before the zero-extend. In this case, represent the xor
3369 // using an add, which is equivalent, and re-apply the zext.
3370 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3371 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3372 Trunc.isSignBit())
3373 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3374 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003375 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003376 }
3377 break;
3378
3379 case Instruction::Shl:
3380 // Turn shift left of a constant amount into a multiply.
3381 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003382 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003383
3384 // If the shift count is not less than the bitwidth, the result of
3385 // the shift is undefined. Don't try to analyze it, because the
3386 // resolution chosen here may differ from the resolution chosen in
3387 // other parts of the compiler.
3388 if (SA->getValue().uge(BitWidth))
3389 break;
3390
Owen Andersoneed707b2009-07-24 23:12:02 +00003391 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003392 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003393 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003394 }
3395 break;
3396
Nick Lewycky01eaf802008-07-07 06:15:49 +00003397 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003398 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003399 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003400 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003401
3402 // If the shift count is not less than the bitwidth, the result of
3403 // the shift is undefined. Don't try to analyze it, because the
3404 // resolution chosen here may differ from the resolution chosen in
3405 // other parts of the compiler.
3406 if (SA->getValue().uge(BitWidth))
3407 break;
3408
Owen Andersoneed707b2009-07-24 23:12:02 +00003409 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003410 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003411 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003412 }
3413 break;
3414
Dan Gohman4ee29af2009-04-21 02:26:00 +00003415 case Instruction::AShr:
3416 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3417 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003418 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003419 if (L->getOpcode() == Instruction::Shl &&
3420 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003421 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3422
3423 // If the shift count is not less than the bitwidth, the result of
3424 // the shift is undefined. Don't try to analyze it, because the
3425 // resolution chosen here may differ from the resolution chosen in
3426 // other parts of the compiler.
3427 if (CI->getValue().uge(BitWidth))
3428 break;
3429
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003430 uint64_t Amt = BitWidth - CI->getZExtValue();
3431 if (Amt == BitWidth)
3432 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003433 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003434 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003435 IntegerType::get(getContext(),
3436 Amt)),
3437 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003438 }
3439 break;
3440
Dan Gohman6c459a22008-06-22 19:56:46 +00003441 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003442 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003443
3444 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003445 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003446
3447 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003448 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003449
3450 case Instruction::BitCast:
3451 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003452 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003453 return getSCEV(U->getOperand(0));
3454 break;
3455
Dan Gohman4f8eea82010-02-01 18:27:38 +00003456 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3457 // lead to pointer expressions which cannot safely be expanded to GEPs,
3458 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3459 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003460
Dan Gohman26466c02009-05-08 20:26:55 +00003461 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003462 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003463
Dan Gohman6c459a22008-06-22 19:56:46 +00003464 case Instruction::PHI:
3465 return createNodeForPHI(cast<PHINode>(U));
3466
3467 case Instruction::Select:
3468 // This could be a smax or umax that was lowered earlier.
3469 // Try to recover it.
3470 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3471 Value *LHS = ICI->getOperand(0);
3472 Value *RHS = ICI->getOperand(1);
3473 switch (ICI->getPredicate()) {
3474 case ICmpInst::ICMP_SLT:
3475 case ICmpInst::ICMP_SLE:
3476 std::swap(LHS, RHS);
3477 // fall through
3478 case ICmpInst::ICMP_SGT:
3479 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003480 // a >s b ? a+x : b+x -> smax(a, b)+x
3481 // a >s b ? b+x : a+x -> smin(a, b)+x
3482 if (LHS->getType() == U->getType()) {
3483 const SCEV *LS = getSCEV(LHS);
3484 const SCEV *RS = getSCEV(RHS);
3485 const SCEV *LA = getSCEV(U->getOperand(1));
3486 const SCEV *RA = getSCEV(U->getOperand(2));
3487 const SCEV *LDiff = getMinusSCEV(LA, LS);
3488 const SCEV *RDiff = getMinusSCEV(RA, RS);
3489 if (LDiff == RDiff)
3490 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3491 LDiff = getMinusSCEV(LA, RS);
3492 RDiff = getMinusSCEV(RA, LS);
3493 if (LDiff == RDiff)
3494 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3495 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003496 break;
3497 case ICmpInst::ICMP_ULT:
3498 case ICmpInst::ICMP_ULE:
3499 std::swap(LHS, RHS);
3500 // fall through
3501 case ICmpInst::ICMP_UGT:
3502 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003503 // a >u b ? a+x : b+x -> umax(a, b)+x
3504 // a >u b ? b+x : a+x -> umin(a, b)+x
3505 if (LHS->getType() == U->getType()) {
3506 const SCEV *LS = getSCEV(LHS);
3507 const SCEV *RS = getSCEV(RHS);
3508 const SCEV *LA = getSCEV(U->getOperand(1));
3509 const SCEV *RA = getSCEV(U->getOperand(2));
3510 const SCEV *LDiff = getMinusSCEV(LA, LS);
3511 const SCEV *RDiff = getMinusSCEV(RA, RS);
3512 if (LDiff == RDiff)
3513 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3514 LDiff = getMinusSCEV(LA, RS);
3515 RDiff = getMinusSCEV(RA, LS);
3516 if (LDiff == RDiff)
3517 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3518 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003519 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003520 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003521 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3522 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003523 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003524 cast<ConstantInt>(RHS)->isZero()) {
3525 const SCEV *One = getConstant(LHS->getType(), 1);
3526 const SCEV *LS = getSCEV(LHS);
3527 const SCEV *LA = getSCEV(U->getOperand(1));
3528 const SCEV *RA = getSCEV(U->getOperand(2));
3529 const SCEV *LDiff = getMinusSCEV(LA, LS);
3530 const SCEV *RDiff = getMinusSCEV(RA, One);
3531 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003532 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003533 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003534 break;
3535 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003536 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3537 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003538 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003539 cast<ConstantInt>(RHS)->isZero()) {
3540 const SCEV *One = getConstant(LHS->getType(), 1);
3541 const SCEV *LS = getSCEV(LHS);
3542 const SCEV *LA = getSCEV(U->getOperand(1));
3543 const SCEV *RA = getSCEV(U->getOperand(2));
3544 const SCEV *LDiff = getMinusSCEV(LA, One);
3545 const SCEV *RDiff = getMinusSCEV(RA, LS);
3546 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003547 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003548 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003549 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003550 default:
3551 break;
3552 }
3553 }
3554
3555 default: // We cannot analyze this expression.
3556 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003557 }
3558
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003559 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003560}
3561
3562
3563
3564//===----------------------------------------------------------------------===//
3565// Iteration Count Computation Code
3566//
3567
Dan Gohman46bdfb02009-02-24 18:55:53 +00003568/// getBackedgeTakenCount - If the specified loop has a predictable
3569/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3570/// object. The backedge-taken count is the number of times the loop header
3571/// will be branched to from within the loop. This is one less than the
3572/// trip count of the loop, since it doesn't count the first iteration,
3573/// when the header is branched to from outside the loop.
3574///
3575/// Note that it is not valid to call this method on a loop without a
3576/// loop-invariant backedge-taken count (see
3577/// hasLoopInvariantBackedgeTakenCount).
3578///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003579const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003580 return getBackedgeTakenInfo(L).Exact;
3581}
3582
3583/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3584/// return the least SCEV value that is known never to be less than the
3585/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003586const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003587 return getBackedgeTakenInfo(L).Max;
3588}
3589
Dan Gohman59ae6b92009-07-08 19:23:34 +00003590/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3591/// onto the given Worklist.
3592static void
3593PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3594 BasicBlock *Header = L->getHeader();
3595
3596 // Push all Loop-header PHIs onto the Worklist stack.
3597 for (BasicBlock::iterator I = Header->begin();
3598 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3599 Worklist.push_back(PN);
3600}
3601
Dan Gohmana1af7572009-04-30 20:47:05 +00003602const ScalarEvolution::BackedgeTakenInfo &
3603ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003604 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003605 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003606 // update the value. The temporary CouldNotCompute value tells SCEV
3607 // code elsewhere that it shouldn't attempt to request a new
3608 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003609 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003610 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3611 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003612 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3613 if (BECount.Exact != getCouldNotCompute()) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00003614 assert(isLoopInvariant(BECount.Exact, L) &&
3615 isLoopInvariant(BECount.Max, L) &&
Dan Gohman93dacad2010-01-26 16:46:18 +00003616 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003617 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003618
Dan Gohman01ecca22009-04-27 20:16:15 +00003619 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003620 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003621 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003622 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003623 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003624 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003625 if (isa<PHINode>(L->getHeader()->begin()))
3626 // Only count loops that have phi nodes as not being computable.
3627 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003628 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003629
3630 // Now that we know more about the trip count for this loop, forget any
3631 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003632 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003633 // information. This is similar to the code in forgetLoop, except that
3634 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003635 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003636 SmallVector<Instruction *, 16> Worklist;
3637 PushLoopPHIs(L, Worklist);
3638
3639 SmallPtrSet<Instruction *, 8> Visited;
3640 while (!Worklist.empty()) {
3641 Instruction *I = Worklist.pop_back_val();
3642 if (!Visited.insert(I)) continue;
3643
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003644 ValueExprMapType::iterator It =
3645 ValueExprMap.find(static_cast<Value *>(I));
3646 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003647 const SCEV *Old = It->second;
3648
Dan Gohman59ae6b92009-07-08 19:23:34 +00003649 // SCEVUnknown for a PHI either means that it has an unrecognized
3650 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003651 // by createNodeForPHI. In the former case, additional loop trip
3652 // count information isn't going to change anything. In the later
3653 // case, createNodeForPHI will perform the necessary updates on its
3654 // own when it gets to that point.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003655 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
Dan Gohman56a75682010-11-17 23:28:48 +00003656 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003657 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003658 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003659 if (PHINode *PN = dyn_cast<PHINode>(I))
3660 ConstantEvolutionLoopExitValue.erase(PN);
3661 }
3662
3663 PushDefUseChildren(I, Worklist);
3664 }
3665 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003666 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003667 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003668}
3669
Dan Gohman4c7279a2009-10-31 15:04:55 +00003670/// forgetLoop - This method should be called by the client when it has
3671/// changed a loop in a way that may effect ScalarEvolution's ability to
3672/// compute a trip count, or if the loop is deleted.
3673void ScalarEvolution::forgetLoop(const Loop *L) {
3674 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003675 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003676
Dan Gohman4c7279a2009-10-31 15:04:55 +00003677 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003678 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003679 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003680
Dan Gohman59ae6b92009-07-08 19:23:34 +00003681 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003682 while (!Worklist.empty()) {
3683 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003684 if (!Visited.insert(I)) continue;
3685
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003686 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3687 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003688 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003689 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003690 if (PHINode *PN = dyn_cast<PHINode>(I))
3691 ConstantEvolutionLoopExitValue.erase(PN);
3692 }
3693
3694 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003695 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00003696
3697 // Forget all contained loops too, to avoid dangling entries in the
3698 // ValuesAtScopes map.
3699 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3700 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00003701}
3702
Eric Christophere6cbfa62010-07-29 01:25:38 +00003703/// forgetValue - This method should be called by the client when it has
3704/// changed a value in a way that may effect its value, or which may
3705/// disconnect it from a def-use chain linking it to a loop.
3706void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003707 Instruction *I = dyn_cast<Instruction>(V);
3708 if (!I) return;
3709
3710 // Drop information about expressions based on loop-header PHIs.
3711 SmallVector<Instruction *, 16> Worklist;
3712 Worklist.push_back(I);
3713
3714 SmallPtrSet<Instruction *, 8> Visited;
3715 while (!Worklist.empty()) {
3716 I = Worklist.pop_back_val();
3717 if (!Visited.insert(I)) continue;
3718
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003719 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3720 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003721 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003722 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003723 if (PHINode *PN = dyn_cast<PHINode>(I))
3724 ConstantEvolutionLoopExitValue.erase(PN);
3725 }
3726
3727 PushDefUseChildren(I, Worklist);
3728 }
3729}
3730
Dan Gohman46bdfb02009-02-24 18:55:53 +00003731/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3732/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003733ScalarEvolution::BackedgeTakenInfo
3734ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003735 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003736 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003737
Dan Gohmana334aa72009-06-22 00:31:57 +00003738 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003739 const SCEV *BECount = getCouldNotCompute();
3740 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003741 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003742 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3743 BackedgeTakenInfo NewBTI =
3744 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003745
Dan Gohman1c343752009-06-27 21:21:31 +00003746 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003747 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003748 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003749 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003750 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003751 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003752 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003753 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003754 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003755 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003756 }
Dan Gohman1c343752009-06-27 21:21:31 +00003757 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003758 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003759 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003760 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003761 }
3762
3763 return BackedgeTakenInfo(BECount, MaxBECount);
3764}
3765
3766/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3767/// of the specified loop will execute if it exits via the specified block.
3768ScalarEvolution::BackedgeTakenInfo
3769ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3770 BasicBlock *ExitingBlock) {
3771
3772 // Okay, we've chosen an exiting block. See what condition causes us to
3773 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003774 //
3775 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003776 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003777 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003778 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003779
Chris Lattner8b0e3602007-01-07 02:24:26 +00003780 // At this point, we know we have a conditional branch that determines whether
3781 // the loop is exited. However, we don't know if the branch is executed each
3782 // time through the loop. If not, then the execution count of the branch will
3783 // not be equal to the trip count of the loop.
3784 //
3785 // Currently we check for this by checking to see if the Exit branch goes to
3786 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003787 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003788 // loop header. This is common for un-rotated loops.
3789 //
3790 // If both of those tests fail, walk up the unique predecessor chain to the
3791 // header, stopping if there is an edge that doesn't exit the loop. If the
3792 // header is reached, the execution count of the branch will be equal to the
3793 // trip count of the loop.
3794 //
3795 // More extensive analysis could be done to handle more cases here.
3796 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003797 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003798 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003799 ExitBr->getParent() != L->getHeader()) {
3800 // The simple checks failed, try climbing the unique predecessor chain
3801 // up to the header.
3802 bool Ok = false;
3803 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3804 BasicBlock *Pred = BB->getUniquePredecessor();
3805 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003806 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003807 TerminatorInst *PredTerm = Pred->getTerminator();
3808 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3809 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3810 if (PredSucc == BB)
3811 continue;
3812 // If the predecessor has a successor that isn't BB and isn't
3813 // outside the loop, assume the worst.
3814 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003815 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003816 }
3817 if (Pred == L->getHeader()) {
3818 Ok = true;
3819 break;
3820 }
3821 BB = Pred;
3822 }
3823 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003824 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003825 }
3826
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003827 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003828 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3829 ExitBr->getSuccessor(0),
3830 ExitBr->getSuccessor(1));
3831}
3832
3833/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3834/// backedge of the specified loop will execute if its exit condition
3835/// were a conditional branch of ExitCond, TBB, and FBB.
3836ScalarEvolution::BackedgeTakenInfo
3837ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3838 Value *ExitCond,
3839 BasicBlock *TBB,
3840 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003841 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003842 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3843 if (BO->getOpcode() == Instruction::And) {
3844 // Recurse on the operands of the and.
3845 BackedgeTakenInfo BTI0 =
3846 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3847 BackedgeTakenInfo BTI1 =
3848 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003849 const SCEV *BECount = getCouldNotCompute();
3850 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003851 if (L->contains(TBB)) {
3852 // Both conditions must be true for the loop to continue executing.
3853 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003854 if (BTI0.Exact == getCouldNotCompute() ||
3855 BTI1.Exact == getCouldNotCompute())
3856 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003857 else
3858 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003859 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003860 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003861 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003862 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003863 else
3864 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003865 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003866 // Both conditions must be true at the same time for the loop to exit.
3867 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003868 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003869 if (BTI0.Max == BTI1.Max)
3870 MaxBECount = BTI0.Max;
3871 if (BTI0.Exact == BTI1.Exact)
3872 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003873 }
3874
3875 return BackedgeTakenInfo(BECount, MaxBECount);
3876 }
3877 if (BO->getOpcode() == Instruction::Or) {
3878 // Recurse on the operands of the or.
3879 BackedgeTakenInfo BTI0 =
3880 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3881 BackedgeTakenInfo BTI1 =
3882 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003883 const SCEV *BECount = getCouldNotCompute();
3884 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003885 if (L->contains(FBB)) {
3886 // Both conditions must be false for the loop to continue executing.
3887 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003888 if (BTI0.Exact == getCouldNotCompute() ||
3889 BTI1.Exact == getCouldNotCompute())
3890 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003891 else
3892 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003893 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003894 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003895 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003896 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003897 else
3898 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003899 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003900 // Both conditions must be false at the same time for the loop to exit.
3901 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003902 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003903 if (BTI0.Max == BTI1.Max)
3904 MaxBECount = BTI0.Max;
3905 if (BTI0.Exact == BTI1.Exact)
3906 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003907 }
3908
3909 return BackedgeTakenInfo(BECount, MaxBECount);
3910 }
3911 }
3912
3913 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003914 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003915 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3916 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003917
Dan Gohman00cb5b72010-02-19 18:12:07 +00003918 // Check for a constant condition. These are normally stripped out by
3919 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3920 // preserve the CFG and is temporarily leaving constant conditions
3921 // in place.
3922 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3923 if (L->contains(FBB) == !CI->getZExtValue())
3924 // The backedge is always taken.
3925 return getCouldNotCompute();
3926 else
3927 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00003928 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00003929 }
3930
Eli Friedman361e54d2009-05-09 12:32:42 +00003931 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003932 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3933}
3934
3935/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3936/// backedge of the specified loop will execute if its exit condition
3937/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3938ScalarEvolution::BackedgeTakenInfo
3939ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3940 ICmpInst *ExitCond,
3941 BasicBlock *TBB,
3942 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003943
Reid Spencere4d87aa2006-12-23 06:05:41 +00003944 // If the condition was exit on true, convert the condition to exit on false
3945 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003946 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003947 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003948 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003949 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003950
3951 // Handle common loops like: for (X = "string"; *X; ++X)
3952 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3953 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003954 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003955 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003956 if (ItCnt.hasAnyInfo())
3957 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00003958 }
3959
Dan Gohman0bba49c2009-07-07 17:06:11 +00003960 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3961 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00003962
3963 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003964 LHS = getSCEVAtScope(LHS, L);
3965 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003966
Dan Gohman64a845e2009-06-24 04:48:43 +00003967 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00003968 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003969 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003970 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003971 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003972 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003973 }
3974
Dan Gohman03557dc2010-05-03 16:35:17 +00003975 // Simplify the operands before analyzing them.
3976 (void)SimplifyICmpOperands(Cond, LHS, RHS);
3977
Chris Lattner53e677a2004-04-02 20:23:17 +00003978 // If we have a comparison of a chrec against a constant, try to use value
3979 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003980 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3981 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003982 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003983 // Form the constant range.
3984 ConstantRange CompRange(
3985 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003986
Dan Gohman0bba49c2009-07-07 17:06:11 +00003987 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00003988 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003989 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003990
Chris Lattner53e677a2004-04-02 20:23:17 +00003991 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003992 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003993 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003994 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3995 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003996 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003997 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00003998 case ICmpInst::ICMP_EQ: { // while (X == Y)
3999 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004000 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4001 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004002 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004003 }
4004 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004005 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4006 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004007 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004008 }
4009 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004010 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4011 getNotSCEV(RHS), L, true);
4012 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004013 break;
4014 }
4015 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004016 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4017 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004018 break;
4019 }
4020 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004021 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4022 getNotSCEV(RHS), L, false);
4023 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004024 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004025 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004026 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004027#if 0
David Greene25e0e872009-12-23 22:18:14 +00004028 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004029 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004030 dbgs() << "[unsigned] ";
4031 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004032 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004033 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004034#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004035 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004036 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004037 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004038 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004039}
4040
Chris Lattner673e02b2004-10-12 01:49:27 +00004041static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004042EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4043 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004044 const SCEV *InVal = SE.getConstant(C);
4045 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004046 assert(isa<SCEVConstant>(Val) &&
4047 "Evaluation of SCEV at constant didn't fold correctly?");
4048 return cast<SCEVConstant>(Val)->getValue();
4049}
4050
4051/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4052/// and a GEP expression (missing the pointer index) indexing into it, return
4053/// the addressed element of the initializer or null if the index expression is
4054/// invalid.
4055static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004056GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004057 const std::vector<ConstantInt*> &Indices) {
4058 Constant *Init = GV->getInitializer();
4059 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004060 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004061 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4062 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4063 Init = cast<Constant>(CS->getOperand(Idx));
4064 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4065 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4066 Init = cast<Constant>(CA->getOperand(Idx));
4067 } else if (isa<ConstantAggregateZero>(Init)) {
4068 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4069 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004070 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004071 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4072 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004073 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004074 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004075 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004076 }
4077 return 0;
4078 } else {
4079 return 0; // Unknown initializer type
4080 }
4081 }
4082 return Init;
4083}
4084
Dan Gohman46bdfb02009-02-24 18:55:53 +00004085/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4086/// 'icmp op load X, cst', try to see if we can compute the backedge
4087/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004088ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004089ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4090 LoadInst *LI,
4091 Constant *RHS,
4092 const Loop *L,
4093 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004094 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004095
4096 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004097 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004098 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004099 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004100
4101 // Make sure that it is really a constant global we are gepping, with an
4102 // initializer, and make sure the first IDX is really 0.
4103 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004104 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004105 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4106 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004107 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004108
4109 // Okay, we allow one non-constant index into the GEP instruction.
4110 Value *VarIdx = 0;
4111 std::vector<ConstantInt*> Indexes;
4112 unsigned VarIdxNum = 0;
4113 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4114 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4115 Indexes.push_back(CI);
4116 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004117 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004118 VarIdx = GEP->getOperand(i);
4119 VarIdxNum = i-2;
4120 Indexes.push_back(0);
4121 }
4122
4123 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4124 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004125 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004126 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004127
4128 // We can only recognize very limited forms of loop index expressions, in
4129 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004130 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004131 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004132 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4133 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004134 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004135
4136 unsigned MaxSteps = MaxBruteForceIterations;
4137 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004138 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004139 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004140 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004141
4142 // Form the GEP offset.
4143 Indexes[VarIdxNum] = Val;
4144
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004145 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004146 if (Result == 0) break; // Cannot compute!
4147
4148 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004149 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004150 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004151 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004152#if 0
David Greene25e0e872009-12-23 22:18:14 +00004153 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004154 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4155 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004156#endif
4157 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004158 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004159 }
4160 }
Dan Gohman1c343752009-06-27 21:21:31 +00004161 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004162}
4163
4164
Chris Lattner3221ad02004-04-17 22:58:41 +00004165/// CanConstantFold - Return true if we can constant fold an instruction of the
4166/// specified type, assuming that all operands were constants.
4167static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004168 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004169 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4170 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004171
Chris Lattner3221ad02004-04-17 22:58:41 +00004172 if (const CallInst *CI = dyn_cast<CallInst>(I))
4173 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004174 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004175 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004176}
4177
Chris Lattner3221ad02004-04-17 22:58:41 +00004178/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4179/// in the loop that V is derived from. We allow arbitrary operations along the
4180/// way, but the operands of an operation must either be constants or a value
4181/// derived from a constant PHI. If this expression does not fit with these
4182/// constraints, return null.
4183static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4184 // If this is not an instruction, or if this is an instruction outside of the
4185 // loop, it can't be derived from a loop PHI.
4186 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004187 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004188
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004189 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004190 if (L->getHeader() == I->getParent())
4191 return PN;
4192 else
4193 // We don't currently keep track of the control flow needed to evaluate
4194 // PHIs, so we cannot handle PHIs inside of loops.
4195 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004196 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004197
4198 // If we won't be able to constant fold this expression even if the operands
4199 // are constants, return early.
4200 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004201
Chris Lattner3221ad02004-04-17 22:58:41 +00004202 // Otherwise, we can evaluate this instruction if all of its operands are
4203 // constant or derived from a PHI node themselves.
4204 PHINode *PHI = 0;
4205 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004206 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004207 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4208 if (P == 0) return 0; // Not evolving from PHI
4209 if (PHI == 0)
4210 PHI = P;
4211 else if (PHI != P)
4212 return 0; // Evolving from multiple different PHIs.
4213 }
4214
4215 // This is a expression evolving from a constant PHI!
4216 return PHI;
4217}
4218
4219/// EvaluateExpression - Given an expression that passes the
4220/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4221/// in the loop has the value PHIVal. If we can't fold this expression for some
4222/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004223static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4224 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004225 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004226 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004227 Instruction *I = cast<Instruction>(V);
4228
Dan Gohman9d4588f2010-06-22 13:15:46 +00004229 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004230
4231 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004232 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004233 if (Operands[i] == 0) return 0;
4234 }
4235
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004236 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004237 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004238 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004239 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004240 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004241}
4242
4243/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4244/// in the header of its containing loop, we know the loop executes a
4245/// constant number of times, and the PHI node is just a recurrence
4246/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004247Constant *
4248ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004249 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004250 const Loop *L) {
Dan Gohman8d9c7a62010-08-16 16:30:01 +00004251 std::map<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004252 ConstantEvolutionLoopExitValue.find(PN);
4253 if (I != ConstantEvolutionLoopExitValue.end())
4254 return I->second;
4255
Dan Gohmane0567812010-04-08 23:03:40 +00004256 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004257 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4258
4259 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4260
4261 // Since the loop is canonicalized, the PHI node must have two entries. One
4262 // entry must be a constant (coming in from outside of the loop), and the
4263 // second must be derived from the same PHI.
4264 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4265 Constant *StartCST =
4266 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4267 if (StartCST == 0)
4268 return RetVal = 0; // Must be a constant.
4269
4270 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004271 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4272 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004273 return RetVal = 0; // Not derived from same PHI.
4274
4275 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004276 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004277 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004278
Dan Gohman46bdfb02009-02-24 18:55:53 +00004279 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004280 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004281 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4282 if (IterationNum == NumIterations)
4283 return RetVal = PHIVal; // Got exit value!
4284
4285 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004286 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004287 if (NextPHI == PHIVal)
4288 return RetVal = NextPHI; // Stopped evolving!
4289 if (NextPHI == 0)
4290 return 0; // Couldn't evaluate!
4291 PHIVal = NextPHI;
4292 }
4293}
4294
Dan Gohman07ad19b2009-07-27 16:09:48 +00004295/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004296/// constant number of times (the condition evolves only from constants),
4297/// try to evaluate a few iterations of the loop until we get the exit
4298/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004299/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004300const SCEV *
4301ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4302 Value *Cond,
4303 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004304 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004305 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004306
Dan Gohmanb92654d2010-06-19 14:17:24 +00004307 // If the loop is canonicalized, the PHI will have exactly two entries.
4308 // That's the only form we support here.
4309 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4310
4311 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004312 // second must be derived from the same PHI.
4313 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4314 Constant *StartCST =
4315 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004316 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004317
4318 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004319 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4320 !isa<Constant>(BEValue))
4321 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004322
4323 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4324 // the loop symbolically to determine when the condition gets a value of
4325 // "ExitWhen".
4326 unsigned IterationNum = 0;
4327 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4328 for (Constant *PHIVal = StartCST;
4329 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004330 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004331 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004332
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004333 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004334 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004335
Reid Spencere8019bb2007-03-01 07:25:48 +00004336 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004337 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004338 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004339 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004340
Chris Lattner3221ad02004-04-17 22:58:41 +00004341 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004342 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004343 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004344 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004345 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004346 }
4347
4348 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004349 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004350}
4351
Dan Gohmane7125f42009-09-03 15:00:26 +00004352/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004353/// at the specified scope in the program. The L value specifies a loop
4354/// nest to evaluate the expression at, where null is the top-level or a
4355/// specified loop is immediately inside of the loop.
4356///
4357/// This method can be used to compute the exit value for a variable defined
4358/// in a loop by querying what the value will hold in the parent loop.
4359///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004360/// In the case that a relevant loop exit value cannot be computed, the
4361/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004362const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004363 // Check to see if we've folded this expression at this loop before.
4364 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4365 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4366 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4367 if (!Pair.second)
4368 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004369
Dan Gohman42214892009-08-31 21:15:23 +00004370 // Otherwise compute it.
4371 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004372 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004373 return C;
4374}
4375
4376const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004377 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004378
Nick Lewycky3e630762008-02-20 06:48:22 +00004379 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004380 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004381 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004382 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004383 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004384 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4385 if (PHINode *PN = dyn_cast<PHINode>(I))
4386 if (PN->getParent() == LI->getHeader()) {
4387 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004388 // to see if the loop that contains it has a known backedge-taken
4389 // count. If so, we may be able to force computation of the exit
4390 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004391 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004392 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004393 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004394 // Okay, we know how many times the containing loop executes. If
4395 // this is a constant evolving PHI node, get the final value at
4396 // the specified iteration number.
4397 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004398 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004399 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004400 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004401 }
4402 }
4403
Reid Spencer09906f32006-12-04 21:33:23 +00004404 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004405 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004406 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004407 // result. This is particularly useful for computing loop exit values.
4408 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004409 SmallVector<Constant *, 4> Operands;
4410 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004411 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4412 Value *Op = I->getOperand(i);
4413 if (Constant *C = dyn_cast<Constant>(Op)) {
4414 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004415 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004416 }
Dan Gohman11046452010-06-29 23:43:06 +00004417
4418 // If any of the operands is non-constant and if they are
4419 // non-integer and non-pointer, don't even try to analyze them
4420 // with scev techniques.
4421 if (!isSCEVable(Op->getType()))
4422 return V;
4423
4424 const SCEV *OrigV = getSCEV(Op);
4425 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4426 MadeImprovement |= OrigV != OpV;
4427
4428 Constant *C = 0;
4429 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4430 C = SC->getValue();
4431 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4432 C = dyn_cast<Constant>(SU->getValue());
4433 if (!C) return V;
4434 if (C->getType() != Op->getType())
4435 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4436 Op->getType(),
4437 false),
4438 C, Op->getType());
4439 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004440 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004441
Dan Gohman11046452010-06-29 23:43:06 +00004442 // Check to see if getSCEVAtScope actually made an improvement.
4443 if (MadeImprovement) {
4444 Constant *C = 0;
4445 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4446 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4447 Operands[0], Operands[1], TD);
4448 else
4449 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4450 &Operands[0], Operands.size(), TD);
4451 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004452 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004453 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004454 }
4455 }
4456
4457 // This is some other type of SCEVUnknown, just return it.
4458 return V;
4459 }
4460
Dan Gohman622ed672009-05-04 22:02:23 +00004461 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004462 // Avoid performing the look-up in the common case where the specified
4463 // expression has no loop-variant portions.
4464 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004465 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004466 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004467 // Okay, at least one of these operands is loop variant but might be
4468 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004469 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4470 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004471 NewOps.push_back(OpAtScope);
4472
4473 for (++i; i != e; ++i) {
4474 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004475 NewOps.push_back(OpAtScope);
4476 }
4477 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004478 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004479 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004480 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004481 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004482 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004483 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004484 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004485 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004486 }
4487 }
4488 // If we got here, all operands are loop invariant.
4489 return Comm;
4490 }
4491
Dan Gohman622ed672009-05-04 22:02:23 +00004492 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004493 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4494 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004495 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4496 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004497 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004498 }
4499
4500 // If this is a loop recurrence for a loop that does not contain L, then we
4501 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004502 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004503 // First, attempt to evaluate each operand.
4504 // Avoid performing the look-up in the common case where the specified
4505 // expression has no loop-variant portions.
4506 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4507 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4508 if (OpAtScope == AddRec->getOperand(i))
4509 continue;
4510
4511 // Okay, at least one of these operands is loop variant but might be
4512 // foldable. Build a new instance of the folded commutative expression.
4513 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4514 AddRec->op_begin()+i);
4515 NewOps.push_back(OpAtScope);
4516 for (++i; i != e; ++i)
4517 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4518
4519 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4520 break;
4521 }
4522
4523 // If the scope is outside the addrec's loop, evaluate it by using the
4524 // loop exit value of the addrec.
4525 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004526 // To evaluate this recurrence, we need to know how many times the AddRec
4527 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004528 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004529 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004530
Eli Friedmanb42a6262008-08-04 23:49:06 +00004531 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004532 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004533 }
Dan Gohman11046452010-06-29 23:43:06 +00004534
Dan Gohmand594e6f2009-05-24 23:25:42 +00004535 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004536 }
4537
Dan Gohman622ed672009-05-04 22:02:23 +00004538 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004539 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004540 if (Op == Cast->getOperand())
4541 return Cast; // must be loop invariant
4542 return getZeroExtendExpr(Op, Cast->getType());
4543 }
4544
Dan Gohman622ed672009-05-04 22:02:23 +00004545 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004546 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004547 if (Op == Cast->getOperand())
4548 return Cast; // must be loop invariant
4549 return getSignExtendExpr(Op, Cast->getType());
4550 }
4551
Dan Gohman622ed672009-05-04 22:02:23 +00004552 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004553 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004554 if (Op == Cast->getOperand())
4555 return Cast; // must be loop invariant
4556 return getTruncateExpr(Op, Cast->getType());
4557 }
4558
Torok Edwinc23197a2009-07-14 16:55:14 +00004559 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004560 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004561}
4562
Dan Gohman66a7e852009-05-08 20:38:54 +00004563/// getSCEVAtScope - This is a convenience function which does
4564/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004565const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004566 return getSCEVAtScope(getSCEV(V), L);
4567}
4568
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004569/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4570/// following equation:
4571///
4572/// A * X = B (mod N)
4573///
4574/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4575/// A and B isn't important.
4576///
4577/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004578static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004579 ScalarEvolution &SE) {
4580 uint32_t BW = A.getBitWidth();
4581 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4582 assert(A != 0 && "A must be non-zero.");
4583
4584 // 1. D = gcd(A, N)
4585 //
4586 // The gcd of A and N may have only one prime factor: 2. The number of
4587 // trailing zeros in A is its multiplicity
4588 uint32_t Mult2 = A.countTrailingZeros();
4589 // D = 2^Mult2
4590
4591 // 2. Check if B is divisible by D.
4592 //
4593 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4594 // is not less than multiplicity of this prime factor for D.
4595 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004596 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004597
4598 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4599 // modulo (N / D).
4600 //
4601 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4602 // bit width during computations.
4603 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4604 APInt Mod(BW + 1, 0);
4605 Mod.set(BW - Mult2); // Mod = N / D
4606 APInt I = AD.multiplicativeInverse(Mod);
4607
4608 // 4. Compute the minimum unsigned root of the equation:
4609 // I * (B / D) mod (N / D)
4610 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4611
4612 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4613 // bits.
4614 return SE.getConstant(Result.trunc(BW));
4615}
Chris Lattner53e677a2004-04-02 20:23:17 +00004616
4617/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4618/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4619/// might be the same) or two SCEVCouldNotCompute objects.
4620///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004621static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004622SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004623 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004624 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4625 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4626 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004627
Chris Lattner53e677a2004-04-02 20:23:17 +00004628 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004629 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004630 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004631 return std::make_pair(CNC, CNC);
4632 }
4633
Reid Spencere8019bb2007-03-01 07:25:48 +00004634 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004635 const APInt &L = LC->getValue()->getValue();
4636 const APInt &M = MC->getValue()->getValue();
4637 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004638 APInt Two(BitWidth, 2);
4639 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004640
Dan Gohman64a845e2009-06-24 04:48:43 +00004641 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004642 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004643 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004644 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4645 // The B coefficient is M-N/2
4646 APInt B(M);
4647 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004648
Reid Spencere8019bb2007-03-01 07:25:48 +00004649 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004650 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004651
Reid Spencere8019bb2007-03-01 07:25:48 +00004652 // Compute the B^2-4ac term.
4653 APInt SqrtTerm(B);
4654 SqrtTerm *= B;
4655 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004656
Reid Spencere8019bb2007-03-01 07:25:48 +00004657 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4658 // integer value or else APInt::sqrt() will assert.
4659 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004660
Dan Gohman64a845e2009-06-24 04:48:43 +00004661 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004662 // The divisions must be performed as signed divisions.
4663 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004664 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004665 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004666 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004667 return std::make_pair(CNC, CNC);
4668 }
4669
Owen Andersone922c022009-07-22 00:24:57 +00004670 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004671
4672 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004673 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004674 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004675 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004676
Dan Gohman64a845e2009-06-24 04:48:43 +00004677 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004678 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004679 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004680}
4681
4682/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004683/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004684ScalarEvolution::BackedgeTakenInfo
4685ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004686 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004687 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004688 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004689 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004690 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004691 }
4692
Dan Gohman35738ac2009-05-04 22:30:44 +00004693 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004694 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004695 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004696
4697 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004698 // If this is an affine expression, the execution count of this branch is
4699 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004700 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004701 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004702 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004703 // equivalent to:
4704 //
4705 // Step*N = -Start (mod 2^BW)
4706 //
4707 // where BW is the common bit width of Start and Step.
4708
Chris Lattner53e677a2004-04-02 20:23:17 +00004709 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004710 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4711 L->getParentLoop());
4712 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4713 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004714
Dan Gohman622ed672009-05-04 22:02:23 +00004715 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004716 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004717
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004718 // First, handle unitary steps.
4719 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004720 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004721 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4722 return Start; // N = Start (as unsigned)
4723
4724 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004725 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004726 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004727 -StartC->getValue()->getValue(),
4728 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004729 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004730 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004731 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4732 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004733 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004734 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004735 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4736 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004737 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004738#if 0
David Greene25e0e872009-12-23 22:18:14 +00004739 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004740 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004741#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004742 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004743 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004744 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004745 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004746 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004747 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004748
Chris Lattner53e677a2004-04-02 20:23:17 +00004749 // We can only use this value if the chrec ends up with an exact zero
4750 // value at this index. When solving for "X*X != 5", for example, we
4751 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004752 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004753 if (Val->isZero())
4754 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004755 }
4756 }
4757 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004758
Dan Gohman1c343752009-06-27 21:21:31 +00004759 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004760}
4761
4762/// HowFarToNonZero - Return the number of times a backedge checking the
4763/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004764/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004765ScalarEvolution::BackedgeTakenInfo
4766ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004767 // Loops that look like: while (X == 0) are very strange indeed. We don't
4768 // handle them yet except for the trivial case. This could be expanded in the
4769 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004770
Chris Lattner53e677a2004-04-02 20:23:17 +00004771 // If the value is a constant, check to see if it is known to be non-zero
4772 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004773 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004774 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004775 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004776 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004777 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004778
Chris Lattner53e677a2004-04-02 20:23:17 +00004779 // We could implement others, but I really doubt anyone writes loops like
4780 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004781 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004782}
4783
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004784/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4785/// (which may not be an immediate predecessor) which has exactly one
4786/// successor from which BB is reachable, or null if no such block is
4787/// found.
4788///
Dan Gohman005752b2010-04-15 16:19:08 +00004789std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004790ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004791 // If the block has a unique predecessor, then there is no path from the
4792 // predecessor to the block that does not go through the direct edge
4793 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004794 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004795 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004796
4797 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004798 // If the header has a unique predecessor outside the loop, it must be
4799 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004800 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004801 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004802
Dan Gohman005752b2010-04-15 16:19:08 +00004803 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004804}
4805
Dan Gohman763bad12009-06-20 00:35:32 +00004806/// HasSameValue - SCEV structural equivalence is usually sufficient for
4807/// testing whether two expressions are equal, however for the purposes of
4808/// looking for a condition guarding a loop, it can be useful to be a little
4809/// more general, since a front-end may have replicated the controlling
4810/// expression.
4811///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004812static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004813 // Quick check to see if they are the same SCEV.
4814 if (A == B) return true;
4815
4816 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4817 // two different instructions with the same value. Check for this case.
4818 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4819 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4820 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4821 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004822 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004823 return true;
4824
4825 // Otherwise assume they may have a different value.
4826 return false;
4827}
4828
Dan Gohmane9796502010-04-24 01:28:42 +00004829/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4830/// predicate Pred. Return true iff any changes were made.
4831///
4832bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4833 const SCEV *&LHS, const SCEV *&RHS) {
4834 bool Changed = false;
4835
4836 // Canonicalize a constant to the right side.
4837 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4838 // Check for both operands constant.
4839 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4840 if (ConstantExpr::getICmp(Pred,
4841 LHSC->getValue(),
4842 RHSC->getValue())->isNullValue())
4843 goto trivially_false;
4844 else
4845 goto trivially_true;
4846 }
4847 // Otherwise swap the operands to put the constant on the right.
4848 std::swap(LHS, RHS);
4849 Pred = ICmpInst::getSwappedPredicate(Pred);
4850 Changed = true;
4851 }
4852
4853 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004854 // addrec's loop, put the addrec on the left. Also make a dominance check,
4855 // as both operands could be addrecs loop-invariant in each other's loop.
4856 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4857 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00004858 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00004859 std::swap(LHS, RHS);
4860 Pred = ICmpInst::getSwappedPredicate(Pred);
4861 Changed = true;
4862 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004863 }
Dan Gohmane9796502010-04-24 01:28:42 +00004864
4865 // If there's a constant operand, canonicalize comparisons with boundary
4866 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4867 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4868 const APInt &RA = RC->getValue()->getValue();
4869 switch (Pred) {
4870 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4871 case ICmpInst::ICMP_EQ:
4872 case ICmpInst::ICMP_NE:
4873 break;
4874 case ICmpInst::ICMP_UGE:
4875 if ((RA - 1).isMinValue()) {
4876 Pred = ICmpInst::ICMP_NE;
4877 RHS = getConstant(RA - 1);
4878 Changed = true;
4879 break;
4880 }
4881 if (RA.isMaxValue()) {
4882 Pred = ICmpInst::ICMP_EQ;
4883 Changed = true;
4884 break;
4885 }
4886 if (RA.isMinValue()) goto trivially_true;
4887
4888 Pred = ICmpInst::ICMP_UGT;
4889 RHS = getConstant(RA - 1);
4890 Changed = true;
4891 break;
4892 case ICmpInst::ICMP_ULE:
4893 if ((RA + 1).isMaxValue()) {
4894 Pred = ICmpInst::ICMP_NE;
4895 RHS = getConstant(RA + 1);
4896 Changed = true;
4897 break;
4898 }
4899 if (RA.isMinValue()) {
4900 Pred = ICmpInst::ICMP_EQ;
4901 Changed = true;
4902 break;
4903 }
4904 if (RA.isMaxValue()) goto trivially_true;
4905
4906 Pred = ICmpInst::ICMP_ULT;
4907 RHS = getConstant(RA + 1);
4908 Changed = true;
4909 break;
4910 case ICmpInst::ICMP_SGE:
4911 if ((RA - 1).isMinSignedValue()) {
4912 Pred = ICmpInst::ICMP_NE;
4913 RHS = getConstant(RA - 1);
4914 Changed = true;
4915 break;
4916 }
4917 if (RA.isMaxSignedValue()) {
4918 Pred = ICmpInst::ICMP_EQ;
4919 Changed = true;
4920 break;
4921 }
4922 if (RA.isMinSignedValue()) goto trivially_true;
4923
4924 Pred = ICmpInst::ICMP_SGT;
4925 RHS = getConstant(RA - 1);
4926 Changed = true;
4927 break;
4928 case ICmpInst::ICMP_SLE:
4929 if ((RA + 1).isMaxSignedValue()) {
4930 Pred = ICmpInst::ICMP_NE;
4931 RHS = getConstant(RA + 1);
4932 Changed = true;
4933 break;
4934 }
4935 if (RA.isMinSignedValue()) {
4936 Pred = ICmpInst::ICMP_EQ;
4937 Changed = true;
4938 break;
4939 }
4940 if (RA.isMaxSignedValue()) goto trivially_true;
4941
4942 Pred = ICmpInst::ICMP_SLT;
4943 RHS = getConstant(RA + 1);
4944 Changed = true;
4945 break;
4946 case ICmpInst::ICMP_UGT:
4947 if (RA.isMinValue()) {
4948 Pred = ICmpInst::ICMP_NE;
4949 Changed = true;
4950 break;
4951 }
4952 if ((RA + 1).isMaxValue()) {
4953 Pred = ICmpInst::ICMP_EQ;
4954 RHS = getConstant(RA + 1);
4955 Changed = true;
4956 break;
4957 }
4958 if (RA.isMaxValue()) goto trivially_false;
4959 break;
4960 case ICmpInst::ICMP_ULT:
4961 if (RA.isMaxValue()) {
4962 Pred = ICmpInst::ICMP_NE;
4963 Changed = true;
4964 break;
4965 }
4966 if ((RA - 1).isMinValue()) {
4967 Pred = ICmpInst::ICMP_EQ;
4968 RHS = getConstant(RA - 1);
4969 Changed = true;
4970 break;
4971 }
4972 if (RA.isMinValue()) goto trivially_false;
4973 break;
4974 case ICmpInst::ICMP_SGT:
4975 if (RA.isMinSignedValue()) {
4976 Pred = ICmpInst::ICMP_NE;
4977 Changed = true;
4978 break;
4979 }
4980 if ((RA + 1).isMaxSignedValue()) {
4981 Pred = ICmpInst::ICMP_EQ;
4982 RHS = getConstant(RA + 1);
4983 Changed = true;
4984 break;
4985 }
4986 if (RA.isMaxSignedValue()) goto trivially_false;
4987 break;
4988 case ICmpInst::ICMP_SLT:
4989 if (RA.isMaxSignedValue()) {
4990 Pred = ICmpInst::ICMP_NE;
4991 Changed = true;
4992 break;
4993 }
4994 if ((RA - 1).isMinSignedValue()) {
4995 Pred = ICmpInst::ICMP_EQ;
4996 RHS = getConstant(RA - 1);
4997 Changed = true;
4998 break;
4999 }
5000 if (RA.isMinSignedValue()) goto trivially_false;
5001 break;
5002 }
5003 }
5004
5005 // Check for obvious equality.
5006 if (HasSameValue(LHS, RHS)) {
5007 if (ICmpInst::isTrueWhenEqual(Pred))
5008 goto trivially_true;
5009 if (ICmpInst::isFalseWhenEqual(Pred))
5010 goto trivially_false;
5011 }
5012
Dan Gohman03557dc2010-05-03 16:35:17 +00005013 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5014 // adding or subtracting 1 from one of the operands.
5015 switch (Pred) {
5016 case ICmpInst::ICMP_SLE:
5017 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5018 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5019 /*HasNUW=*/false, /*HasNSW=*/true);
5020 Pred = ICmpInst::ICMP_SLT;
5021 Changed = true;
5022 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005023 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005024 /*HasNUW=*/false, /*HasNSW=*/true);
5025 Pred = ICmpInst::ICMP_SLT;
5026 Changed = true;
5027 }
5028 break;
5029 case ICmpInst::ICMP_SGE:
5030 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005031 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005032 /*HasNUW=*/false, /*HasNSW=*/true);
5033 Pred = ICmpInst::ICMP_SGT;
5034 Changed = true;
5035 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5036 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5037 /*HasNUW=*/false, /*HasNSW=*/true);
5038 Pred = ICmpInst::ICMP_SGT;
5039 Changed = true;
5040 }
5041 break;
5042 case ICmpInst::ICMP_ULE:
5043 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005044 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005045 /*HasNUW=*/true, /*HasNSW=*/false);
5046 Pred = ICmpInst::ICMP_ULT;
5047 Changed = true;
5048 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005049 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005050 /*HasNUW=*/true, /*HasNSW=*/false);
5051 Pred = ICmpInst::ICMP_ULT;
5052 Changed = true;
5053 }
5054 break;
5055 case ICmpInst::ICMP_UGE:
5056 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005057 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005058 /*HasNUW=*/true, /*HasNSW=*/false);
5059 Pred = ICmpInst::ICMP_UGT;
5060 Changed = true;
5061 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005062 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005063 /*HasNUW=*/true, /*HasNSW=*/false);
5064 Pred = ICmpInst::ICMP_UGT;
5065 Changed = true;
5066 }
5067 break;
5068 default:
5069 break;
5070 }
5071
Dan Gohmane9796502010-04-24 01:28:42 +00005072 // TODO: More simplifications are possible here.
5073
5074 return Changed;
5075
5076trivially_true:
5077 // Return 0 == 0.
5078 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5079 Pred = ICmpInst::ICMP_EQ;
5080 return true;
5081
5082trivially_false:
5083 // Return 0 != 0.
5084 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5085 Pred = ICmpInst::ICMP_NE;
5086 return true;
5087}
5088
Dan Gohman85b05a22009-07-13 21:35:55 +00005089bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5090 return getSignedRange(S).getSignedMax().isNegative();
5091}
5092
5093bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5094 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5095}
5096
5097bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5098 return !getSignedRange(S).getSignedMin().isNegative();
5099}
5100
5101bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5102 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5103}
5104
5105bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5106 return isKnownNegative(S) || isKnownPositive(S);
5107}
5108
5109bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5110 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005111 // Canonicalize the inputs first.
5112 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5113
Dan Gohman53c66ea2010-04-11 22:16:48 +00005114 // If LHS or RHS is an addrec, check to see if the condition is true in
5115 // every iteration of the loop.
5116 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5117 if (isLoopEntryGuardedByCond(
5118 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5119 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005120 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005121 return true;
5122 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5123 if (isLoopEntryGuardedByCond(
5124 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5125 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005126 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005127 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005128
Dan Gohman53c66ea2010-04-11 22:16:48 +00005129 // Otherwise see what can be done with known constant ranges.
5130 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5131}
5132
5133bool
5134ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5135 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005136 if (HasSameValue(LHS, RHS))
5137 return ICmpInst::isTrueWhenEqual(Pred);
5138
Dan Gohman53c66ea2010-04-11 22:16:48 +00005139 // This code is split out from isKnownPredicate because it is called from
5140 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005141 switch (Pred) {
5142 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005143 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005144 break;
5145 case ICmpInst::ICMP_SGT:
5146 Pred = ICmpInst::ICMP_SLT;
5147 std::swap(LHS, RHS);
5148 case ICmpInst::ICMP_SLT: {
5149 ConstantRange LHSRange = getSignedRange(LHS);
5150 ConstantRange RHSRange = getSignedRange(RHS);
5151 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5152 return true;
5153 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5154 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005155 break;
5156 }
5157 case ICmpInst::ICMP_SGE:
5158 Pred = ICmpInst::ICMP_SLE;
5159 std::swap(LHS, RHS);
5160 case ICmpInst::ICMP_SLE: {
5161 ConstantRange LHSRange = getSignedRange(LHS);
5162 ConstantRange RHSRange = getSignedRange(RHS);
5163 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5164 return true;
5165 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5166 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005167 break;
5168 }
5169 case ICmpInst::ICMP_UGT:
5170 Pred = ICmpInst::ICMP_ULT;
5171 std::swap(LHS, RHS);
5172 case ICmpInst::ICMP_ULT: {
5173 ConstantRange LHSRange = getUnsignedRange(LHS);
5174 ConstantRange RHSRange = getUnsignedRange(RHS);
5175 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5176 return true;
5177 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5178 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005179 break;
5180 }
5181 case ICmpInst::ICMP_UGE:
5182 Pred = ICmpInst::ICMP_ULE;
5183 std::swap(LHS, RHS);
5184 case ICmpInst::ICMP_ULE: {
5185 ConstantRange LHSRange = getUnsignedRange(LHS);
5186 ConstantRange RHSRange = getUnsignedRange(RHS);
5187 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5188 return true;
5189 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5190 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005191 break;
5192 }
5193 case ICmpInst::ICMP_NE: {
5194 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5195 return true;
5196 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5197 return true;
5198
5199 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5200 if (isKnownNonZero(Diff))
5201 return true;
5202 break;
5203 }
5204 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005205 // The check at the top of the function catches the case where
5206 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005207 break;
5208 }
5209 return false;
5210}
5211
5212/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5213/// protected by a conditional between LHS and RHS. This is used to
5214/// to eliminate casts.
5215bool
5216ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5217 ICmpInst::Predicate Pred,
5218 const SCEV *LHS, const SCEV *RHS) {
5219 // Interpret a null as meaning no loop, where there is obviously no guard
5220 // (interprocedural conditions notwithstanding).
5221 if (!L) return true;
5222
5223 BasicBlock *Latch = L->getLoopLatch();
5224 if (!Latch)
5225 return false;
5226
5227 BranchInst *LoopContinuePredicate =
5228 dyn_cast<BranchInst>(Latch->getTerminator());
5229 if (!LoopContinuePredicate ||
5230 LoopContinuePredicate->isUnconditional())
5231 return false;
5232
Dan Gohmanaf08a362010-08-10 23:46:30 +00005233 return isImpliedCond(Pred, LHS, RHS,
5234 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005235 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005236}
5237
Dan Gohman3948d0b2010-04-11 19:27:13 +00005238/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005239/// by a conditional between LHS and RHS. This is used to help avoid max
5240/// expressions in loop trip counts, and to eliminate casts.
5241bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005242ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5243 ICmpInst::Predicate Pred,
5244 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005245 // Interpret a null as meaning no loop, where there is obviously no guard
5246 // (interprocedural conditions notwithstanding).
5247 if (!L) return false;
5248
Dan Gohman859b4822009-05-18 15:36:09 +00005249 // Starting at the loop predecessor, climb up the predecessor chain, as long
5250 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005251 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005252 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005253 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005254 Pair.first;
5255 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005256
5257 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005258 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005259 if (!LoopEntryPredicate ||
5260 LoopEntryPredicate->isUnconditional())
5261 continue;
5262
Dan Gohmanaf08a362010-08-10 23:46:30 +00005263 if (isImpliedCond(Pred, LHS, RHS,
5264 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005265 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005266 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005267 }
5268
Dan Gohman38372182008-08-12 20:17:31 +00005269 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005270}
5271
Dan Gohman0f4b2852009-07-21 23:03:19 +00005272/// isImpliedCond - Test whether the condition described by Pred, LHS,
5273/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005274bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005275 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005276 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005277 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005278 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005279 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005280 if (BO->getOpcode() == Instruction::And) {
5281 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005282 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5283 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005284 } else if (BO->getOpcode() == Instruction::Or) {
5285 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005286 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5287 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005288 }
5289 }
5290
Dan Gohmanaf08a362010-08-10 23:46:30 +00005291 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005292 if (!ICI) return false;
5293
Dan Gohman85b05a22009-07-13 21:35:55 +00005294 // Bail if the ICmp's operands' types are wider than the needed type
5295 // before attempting to call getSCEV on them. This avoids infinite
5296 // recursion, since the analysis of widening casts can require loop
5297 // exit condition information for overflow checking, which would
5298 // lead back here.
5299 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005300 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005301 return false;
5302
Dan Gohman0f4b2852009-07-21 23:03:19 +00005303 // Now that we found a conditional branch that dominates the loop, check to
5304 // see if it is the comparison we are looking for.
5305 ICmpInst::Predicate FoundPred;
5306 if (Inverse)
5307 FoundPred = ICI->getInversePredicate();
5308 else
5309 FoundPred = ICI->getPredicate();
5310
5311 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5312 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005313
5314 // Balance the types. The case where FoundLHS' type is wider than
5315 // LHS' type is checked for above.
5316 if (getTypeSizeInBits(LHS->getType()) >
5317 getTypeSizeInBits(FoundLHS->getType())) {
5318 if (CmpInst::isSigned(Pred)) {
5319 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5320 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5321 } else {
5322 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5323 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5324 }
5325 }
5326
Dan Gohman0f4b2852009-07-21 23:03:19 +00005327 // Canonicalize the query to match the way instcombine will have
5328 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005329 if (SimplifyICmpOperands(Pred, LHS, RHS))
5330 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005331 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005332 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5333 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005334 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005335
5336 // Check to see if we can make the LHS or RHS match.
5337 if (LHS == FoundRHS || RHS == FoundLHS) {
5338 if (isa<SCEVConstant>(RHS)) {
5339 std::swap(FoundLHS, FoundRHS);
5340 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5341 } else {
5342 std::swap(LHS, RHS);
5343 Pred = ICmpInst::getSwappedPredicate(Pred);
5344 }
5345 }
5346
5347 // Check whether the found predicate is the same as the desired predicate.
5348 if (FoundPred == Pred)
5349 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5350
5351 // Check whether swapping the found predicate makes it the same as the
5352 // desired predicate.
5353 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5354 if (isa<SCEVConstant>(RHS))
5355 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5356 else
5357 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5358 RHS, LHS, FoundLHS, FoundRHS);
5359 }
5360
5361 // Check whether the actual condition is beyond sufficient.
5362 if (FoundPred == ICmpInst::ICMP_EQ)
5363 if (ICmpInst::isTrueWhenEqual(Pred))
5364 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5365 return true;
5366 if (Pred == ICmpInst::ICMP_NE)
5367 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5368 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5369 return true;
5370
5371 // Otherwise assume the worst.
5372 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005373}
5374
Dan Gohman0f4b2852009-07-21 23:03:19 +00005375/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005376/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005377/// and FoundRHS is true.
5378bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5379 const SCEV *LHS, const SCEV *RHS,
5380 const SCEV *FoundLHS,
5381 const SCEV *FoundRHS) {
5382 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5383 FoundLHS, FoundRHS) ||
5384 // ~x < ~y --> x > y
5385 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5386 getNotSCEV(FoundRHS),
5387 getNotSCEV(FoundLHS));
5388}
5389
5390/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005391/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005392/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005393bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005394ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5395 const SCEV *LHS, const SCEV *RHS,
5396 const SCEV *FoundLHS,
5397 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005398 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005399 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5400 case ICmpInst::ICMP_EQ:
5401 case ICmpInst::ICMP_NE:
5402 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5403 return true;
5404 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005405 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005406 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005407 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5408 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005409 return true;
5410 break;
5411 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005412 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005413 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5414 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005415 return true;
5416 break;
5417 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005418 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005419 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5420 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005421 return true;
5422 break;
5423 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005424 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005425 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5426 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005427 return true;
5428 break;
5429 }
5430
5431 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005432}
5433
Dan Gohman51f53b72009-06-21 23:46:38 +00005434/// getBECount - Subtract the end and start values and divide by the step,
5435/// rounding up, to get the number of times the backedge is executed. Return
5436/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005437const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005438 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005439 const SCEV *Step,
5440 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005441 assert(!isKnownNegative(Step) &&
5442 "This code doesn't handle negative strides yet!");
5443
Dan Gohman51f53b72009-06-21 23:46:38 +00005444 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005445 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005446 const SCEV *Diff = getMinusSCEV(End, Start);
5447 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005448
5449 // Add an adjustment to the difference between End and Start so that
5450 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005451 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005452
Dan Gohman1f96e672009-09-17 18:05:20 +00005453 if (!NoWrap) {
5454 // Check Add for unsigned overflow.
5455 // TODO: More sophisticated things could be done here.
5456 const Type *WideTy = IntegerType::get(getContext(),
5457 getTypeSizeInBits(Ty) + 1);
5458 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5459 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5460 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5461 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5462 return getCouldNotCompute();
5463 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005464
5465 return getUDivExpr(Add, Step);
5466}
5467
Chris Lattnerdb25de42005-08-15 23:33:51 +00005468/// HowManyLessThans - Return the number of times a backedge containing the
5469/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005470/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005471ScalarEvolution::BackedgeTakenInfo
5472ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5473 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005474 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00005475 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005476
Dan Gohman35738ac2009-05-04 22:30:44 +00005477 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005478 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005479 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005480
Dan Gohman1f96e672009-09-17 18:05:20 +00005481 // Check to see if we have a flag which makes analysis easy.
5482 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5483 AddRec->hasNoUnsignedWrap();
5484
Chris Lattnerdb25de42005-08-15 23:33:51 +00005485 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005486 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005487 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005488
Dan Gohman52fddd32010-01-26 04:40:18 +00005489 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005490 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005491 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005492 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005493 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005494 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005495 // value and past the maximum value for its type in a single step.
5496 // Note that it's not sufficient to check NoWrap here, because even
5497 // though the value after a wrap is undefined, it's not undefined
5498 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005499 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005500 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005501 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005502 if (isSigned) {
5503 APInt Max = APInt::getSignedMaxValue(BitWidth);
5504 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5505 .slt(getSignedRange(RHS).getSignedMax()))
5506 return getCouldNotCompute();
5507 } else {
5508 APInt Max = APInt::getMaxValue(BitWidth);
5509 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5510 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5511 return getCouldNotCompute();
5512 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005513 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005514 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005515 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005516
Dan Gohmana1af7572009-04-30 20:47:05 +00005517 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5518 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5519 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005520 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005521
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005522 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005523 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005524
Dan Gohmana1af7572009-04-30 20:47:05 +00005525 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005526 const SCEV *MinStart = getConstant(isSigned ?
5527 getSignedRange(Start).getSignedMin() :
5528 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005529
Dan Gohmana1af7572009-04-30 20:47:05 +00005530 // If we know that the condition is true in order to enter the loop,
5531 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005532 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5533 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005534 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005535 if (!isLoopEntryGuardedByCond(L,
5536 isSigned ? ICmpInst::ICMP_SLT :
5537 ICmpInst::ICMP_ULT,
5538 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005539 End = isSigned ? getSMaxExpr(RHS, Start)
5540 : getUMaxExpr(RHS, Start);
5541
5542 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005543 const SCEV *MaxEnd = getConstant(isSigned ?
5544 getSignedRange(End).getSignedMax() :
5545 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005546
Dan Gohman52fddd32010-01-26 04:40:18 +00005547 // If MaxEnd is within a step of the maximum integer value in its type,
5548 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005549 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005550 // compute the correct value.
5551 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005552 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005553 MaxEnd = isSigned ?
5554 getSMinExpr(MaxEnd,
5555 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5556 StepMinusOne)) :
5557 getUMinExpr(MaxEnd,
5558 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5559 StepMinusOne));
5560
Dan Gohmana1af7572009-04-30 20:47:05 +00005561 // Finally, we subtract these two values and divide, rounding up, to get
5562 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005563 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005564
5565 // The maximum backedge count is similar, except using the minimum start
5566 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005567 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005568
5569 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005570 }
5571
Dan Gohman1c343752009-06-27 21:21:31 +00005572 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005573}
5574
Chris Lattner53e677a2004-04-02 20:23:17 +00005575/// getNumIterationsInRange - Return the number of iterations of this loop that
5576/// produce values in the specified constant range. Another way of looking at
5577/// this is that it returns the first iteration number where the value is not in
5578/// the condition, thus computing the exit count. If the iteration count can't
5579/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005580const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005581 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005582 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005583 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005584
5585 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005586 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005587 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005588 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005589 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005590 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005591 if (const SCEVAddRecExpr *ShiftedAddRec =
5592 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005593 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005594 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005595 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005596 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005597 }
5598
5599 // The only time we can solve this is when we have all constant indices.
5600 // Otherwise, we cannot determine the overflow conditions.
5601 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5602 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005603 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005604
5605
5606 // Okay at this point we know that all elements of the chrec are constants and
5607 // that the start element is zero.
5608
5609 // First check to see if the range contains zero. If not, the first
5610 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005611 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005612 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005613 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005614
Chris Lattner53e677a2004-04-02 20:23:17 +00005615 if (isAffine()) {
5616 // If this is an affine expression then we have this situation:
5617 // Solve {0,+,A} in Range === Ax in Range
5618
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005619 // We know that zero is in the range. If A is positive then we know that
5620 // the upper value of the range must be the first possible exit value.
5621 // If A is negative then the lower of the range is the last possible loop
5622 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005623 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005624 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5625 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005626
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005627 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005628 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005629 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005630
5631 // Evaluate at the exit value. If we really did fall out of the valid
5632 // range, then we computed our trip count, otherwise wrap around or other
5633 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005634 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005635 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005636 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005637
5638 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005639 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005640 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005641 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005642 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005643 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005644 } else if (isQuadratic()) {
5645 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5646 // quadratic equation to solve it. To do this, we must frame our problem in
5647 // terms of figuring out when zero is crossed, instead of when
5648 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005649 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005650 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005651 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005652
5653 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005654 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005655 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005656 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5657 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005658 if (R1) {
5659 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005660 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005661 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005662 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005663 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005664 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005665
Chris Lattner53e677a2004-04-02 20:23:17 +00005666 // Make sure the root is not off by one. The returned iteration should
5667 // not be in the range, but the previous one should be. When solving
5668 // for "X*X < 5", for example, we should not return a root of 2.
5669 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005670 R1->getValue(),
5671 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005672 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005673 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005674 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005675 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005676
Dan Gohman246b2562007-10-22 18:31:58 +00005677 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005678 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005679 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005680 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005681 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005682
Chris Lattner53e677a2004-04-02 20:23:17 +00005683 // If R1 was not in the range, then it is a good return value. Make
5684 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005685 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005686 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005687 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005688 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005689 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005690 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005691 }
5692 }
5693 }
5694
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005695 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005696}
5697
5698
5699
5700//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005701// SCEVCallbackVH Class Implementation
5702//===----------------------------------------------------------------------===//
5703
Dan Gohman1959b752009-05-19 19:22:47 +00005704void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005705 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005706 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5707 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005708 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00005709 // this now dangles!
5710}
5711
Dan Gohman81f91212010-07-28 01:09:07 +00005712void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005713 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005714
Dan Gohman35738ac2009-05-04 22:30:44 +00005715 // Forget all the expressions associated with users of the old value,
5716 // so that future queries will recompute the expressions using the new
5717 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005718 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005719 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005720 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005721 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5722 UI != UE; ++UI)
5723 Worklist.push_back(*UI);
5724 while (!Worklist.empty()) {
5725 User *U = Worklist.pop_back_val();
5726 // Deleting the Old value will cause this to dangle. Postpone
5727 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005728 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005729 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005730 if (!Visited.insert(U))
5731 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005732 if (PHINode *PN = dyn_cast<PHINode>(U))
5733 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005734 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00005735 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5736 UI != UE; ++UI)
5737 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005738 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005739 // Delete the Old value.
5740 if (PHINode *PN = dyn_cast<PHINode>(Old))
5741 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005742 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00005743 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005744}
5745
Dan Gohman1959b752009-05-19 19:22:47 +00005746ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005747 : CallbackVH(V), SE(se) {}
5748
5749//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005750// ScalarEvolution Class Implementation
5751//===----------------------------------------------------------------------===//
5752
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005753ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005754 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00005755 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005756}
5757
Chris Lattner53e677a2004-04-02 20:23:17 +00005758bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005759 this->F = &F;
5760 LI = &getAnalysis<LoopInfo>();
5761 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005762 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005763 return false;
5764}
5765
5766void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005767 // Iterate through all the SCEVUnknown instances and call their
5768 // destructors, so that they release their references to their values.
5769 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5770 U->~SCEVUnknown();
5771 FirstUnknown = 0;
5772
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005773 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005774 BackedgeTakenCounts.clear();
5775 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005776 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00005777 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00005778 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00005779 UnsignedRanges.clear();
5780 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005781 UniqueSCEVs.clear();
5782 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005783}
5784
5785void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5786 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005787 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005788 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005789}
5790
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005791bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005792 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005793}
5794
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005795static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005796 const Loop *L) {
5797 // Print all inner loops first
5798 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5799 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005800
Dan Gohman30733292010-01-09 18:17:45 +00005801 OS << "Loop ";
5802 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5803 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005804
Dan Gohman5d984912009-12-18 01:14:11 +00005805 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005806 L->getExitBlocks(ExitBlocks);
5807 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005808 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005809
Dan Gohman46bdfb02009-02-24 18:55:53 +00005810 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5811 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005812 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005813 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005814 }
5815
Dan Gohman30733292010-01-09 18:17:45 +00005816 OS << "\n"
5817 "Loop ";
5818 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5819 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005820
5821 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5822 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5823 } else {
5824 OS << "Unpredictable max backedge-taken count. ";
5825 }
5826
5827 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005828}
5829
Dan Gohman5d984912009-12-18 01:14:11 +00005830void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005831 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005832 // out SCEV values of all instructions that are interesting. Doing
5833 // this potentially causes it to create new SCEV objects though,
5834 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005835 // observable from outside the class though, so casting away the
5836 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005837 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005838
Dan Gohman30733292010-01-09 18:17:45 +00005839 OS << "Classifying expressions for: ";
5840 WriteAsOperand(OS, F, /*PrintType=*/false);
5841 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005842 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005843 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005844 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005845 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005846 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005847 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005848
Dan Gohman0c689c52009-06-19 17:49:54 +00005849 const Loop *L = LI->getLoopFor((*I).getParent());
5850
Dan Gohman0bba49c2009-07-07 17:06:11 +00005851 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005852 if (AtUse != SV) {
5853 OS << " --> ";
5854 AtUse->print(OS);
5855 }
5856
5857 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005858 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005859 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00005860 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005861 OS << "<<Unknown>>";
5862 } else {
5863 OS << *ExitValue;
5864 }
5865 }
5866
Chris Lattner53e677a2004-04-02 20:23:17 +00005867 OS << "\n";
5868 }
5869
Dan Gohman30733292010-01-09 18:17:45 +00005870 OS << "Determining loop execution counts for: ";
5871 WriteAsOperand(OS, F, /*PrintType=*/false);
5872 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005873 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5874 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005875}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005876
Dan Gohman714b5292010-11-17 23:21:44 +00005877ScalarEvolution::LoopDisposition
5878ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
5879 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
5880 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
5881 Values.insert(std::make_pair(L, LoopVariant));
5882 if (!Pair.second)
5883 return Pair.first->second;
5884
5885 LoopDisposition D = computeLoopDisposition(S, L);
5886 return LoopDispositions[S][L] = D;
5887}
5888
5889ScalarEvolution::LoopDisposition
5890ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00005891 switch (S->getSCEVType()) {
5892 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00005893 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00005894 case scTruncate:
5895 case scZeroExtend:
5896 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00005897 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00005898 case scAddRecExpr: {
5899 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
5900
Dan Gohman714b5292010-11-17 23:21:44 +00005901 // If L is the addrec's loop, it's computable.
5902 if (AR->getLoop() == L)
5903 return LoopComputable;
5904
Dan Gohman17ead4f2010-11-17 21:23:15 +00005905 // Add recurrences are never invariant in the function-body (null loop).
5906 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00005907 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00005908
5909 // This recurrence is variant w.r.t. L if L contains AR's loop.
5910 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00005911 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00005912
5913 // This recurrence is invariant w.r.t. L if AR's loop contains L.
5914 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00005915 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00005916
5917 // This recurrence is variant w.r.t. L if any of its operands
5918 // are variant.
5919 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
5920 I != E; ++I)
5921 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00005922 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00005923
5924 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00005925 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00005926 }
5927 case scAddExpr:
5928 case scMulExpr:
5929 case scUMaxExpr:
5930 case scSMaxExpr: {
5931 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00005932 bool HasVarying = false;
5933 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
5934 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00005935 LoopDisposition D = getLoopDisposition(*I, L);
5936 if (D == LoopVariant)
5937 return LoopVariant;
5938 if (D == LoopComputable)
5939 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00005940 }
Dan Gohman714b5292010-11-17 23:21:44 +00005941 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00005942 }
5943 case scUDivExpr: {
5944 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00005945 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
5946 if (LD == LoopVariant)
5947 return LoopVariant;
5948 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
5949 if (RD == LoopVariant)
5950 return LoopVariant;
5951 return (LD == LoopInvariant && RD == LoopInvariant) ?
5952 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00005953 }
5954 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00005955 // All non-instruction values are loop invariant. All instructions are loop
5956 // invariant if they are not contained in the specified loop.
5957 // Instructions are never considered invariant in the function body
5958 // (null loop) because they are defined within the "loop".
5959 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
5960 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
5961 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00005962 case scCouldNotCompute:
5963 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman714b5292010-11-17 23:21:44 +00005964 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00005965 default: break;
5966 }
5967 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman714b5292010-11-17 23:21:44 +00005968 return LoopVariant;
5969}
5970
5971bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
5972 return getLoopDisposition(S, L) == LoopInvariant;
5973}
5974
5975bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
5976 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00005977}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005978
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00005979ScalarEvolution::BlockDisposition
5980ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
5981 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
5982 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
5983 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
5984 if (!Pair.second)
5985 return Pair.first->second;
5986
5987 BlockDisposition D = computeBlockDisposition(S, BB);
5988 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005989}
5990
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00005991ScalarEvolution::BlockDisposition
5992ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005993 switch (S->getSCEVType()) {
5994 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00005995 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005996 case scTruncate:
5997 case scZeroExtend:
5998 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00005999 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006000 case scAddRecExpr: {
6001 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006002 // to test for proper dominance too, because the instruction which
6003 // produces the addrec's value is a PHI, and a PHI effectively properly
6004 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006005 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6006 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006007 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006008 }
6009 // FALL THROUGH into SCEVNAryExpr handling.
6010 case scAddExpr:
6011 case scMulExpr:
6012 case scUMaxExpr:
6013 case scSMaxExpr: {
6014 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006015 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006016 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006017 I != E; ++I) {
6018 BlockDisposition D = getBlockDisposition(*I, BB);
6019 if (D == DoesNotDominateBlock)
6020 return DoesNotDominateBlock;
6021 if (D == DominatesBlock)
6022 Proper = false;
6023 }
6024 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006025 }
6026 case scUDivExpr: {
6027 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006028 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6029 BlockDisposition LD = getBlockDisposition(LHS, BB);
6030 if (LD == DoesNotDominateBlock)
6031 return DoesNotDominateBlock;
6032 BlockDisposition RD = getBlockDisposition(RHS, BB);
6033 if (RD == DoesNotDominateBlock)
6034 return DoesNotDominateBlock;
6035 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6036 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006037 }
6038 case scUnknown:
6039 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006040 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6041 if (I->getParent() == BB)
6042 return DominatesBlock;
6043 if (DT->properlyDominates(I->getParent(), BB))
6044 return ProperlyDominatesBlock;
6045 return DoesNotDominateBlock;
6046 }
6047 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006048 case scCouldNotCompute:
6049 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006050 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006051 default: break;
6052 }
6053 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006054 return DoesNotDominateBlock;
6055}
6056
6057bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6058 return getBlockDisposition(S, BB) >= DominatesBlock;
6059}
6060
6061bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6062 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006063}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006064
6065bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6066 switch (S->getSCEVType()) {
6067 case scConstant:
6068 return false;
6069 case scTruncate:
6070 case scZeroExtend:
6071 case scSignExtend: {
6072 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6073 const SCEV *CastOp = Cast->getOperand();
6074 return Op == CastOp || hasOperand(CastOp, Op);
6075 }
6076 case scAddRecExpr:
6077 case scAddExpr:
6078 case scMulExpr:
6079 case scUMaxExpr:
6080 case scSMaxExpr: {
6081 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6082 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6083 I != E; ++I) {
6084 const SCEV *NAryOp = *I;
6085 if (NAryOp == Op || hasOperand(NAryOp, Op))
6086 return true;
6087 }
6088 return false;
6089 }
6090 case scUDivExpr: {
6091 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6092 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6093 return LHS == Op || hasOperand(LHS, Op) ||
6094 RHS == Op || hasOperand(RHS, Op);
6095 }
6096 case scUnknown:
6097 return false;
6098 case scCouldNotCompute:
6099 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6100 return false;
6101 default: break;
6102 }
6103 llvm_unreachable("Unknown SCEV kind!");
6104 return false;
6105}
Dan Gohman56a75682010-11-17 23:28:48 +00006106
6107void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6108 ValuesAtScopes.erase(S);
6109 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006110 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006111 UnsignedRanges.erase(S);
6112 SignedRanges.erase(S);
6113}