blob: 780cab819142a70c29619fae6bb500dd9f8af810 [file] [log] [blame]
Erick Tryzelaar35295ff2008-03-31 08:44:50 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3
4<html>
5<head>
6 <title>Kaleidoscope: Extending the Language: User-defined Operators</title>
7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
8 <meta name="author" content="Chris Lattner">
9 <meta name="author" content="Erick Tryzelaar">
10 <link rel="stylesheet" href="../llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title">Kaleidoscope: Extending the Language: User-defined Operators</div>
16
17<ul>
18<li><a href="index.html">Up to Tutorial Index</a></li>
19<li>Chapter 6
20 <ol>
21 <li><a href="#intro">Chapter 6 Introduction</a></li>
22 <li><a href="#idea">User-defined Operators: the Idea</a></li>
23 <li><a href="#binary">User-defined Binary Operators</a></li>
24 <li><a href="#unary">User-defined Unary Operators</a></li>
25 <li><a href="#example">Kicking the Tires</a></li>
26 <li><a href="#code">Full Code Listing</a></li>
27 </ol>
28</li>
29<li><a href="OCamlLangImpl7.html">Chapter 7</a>: Extending the Language: Mutable
30Variables / SSA Construction</li>
31</ul>
32
33<div class="doc_author">
34 <p>
35 Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
36 and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a>
37 </p>
38</div>
39
40<!-- *********************************************************************** -->
41<div class="doc_section"><a name="intro">Chapter 6 Introduction</a></div>
42<!-- *********************************************************************** -->
43
44<div class="doc_text">
45
46<p>Welcome to Chapter 6 of the "<a href="index.html">Implementing a language
47with LLVM</a>" tutorial. At this point in our tutorial, we now have a fully
48functional language that is fairly minimal, but also useful. There
49is still one big problem with it, however. Our language doesn't have many
50useful operators (like division, logical negation, or even any comparisons
51besides less-than).</p>
52
53<p>This chapter of the tutorial takes a wild digression into adding user-defined
54operators to the simple and beautiful Kaleidoscope language. This digression now
55gives us a simple and ugly language in some ways, but also a powerful one at the
56same time. One of the great things about creating your own language is that you
57get to decide what is good or bad. In this tutorial we'll assume that it is
58okay to use this as a way to show some interesting parsing techniques.</p>
59
60<p>At the end of this tutorial, we'll run through an example Kaleidoscope
61application that <a href="#example">renders the Mandelbrot set</a>. This gives
62an example of what you can build with Kaleidoscope and its feature set.</p>
63
64</div>
65
66<!-- *********************************************************************** -->
67<div class="doc_section"><a name="idea">User-defined Operators: the Idea</a></div>
68<!-- *********************************************************************** -->
69
70<div class="doc_text">
71
72<p>
73The "operator overloading" that we will add to Kaleidoscope is more general than
74languages like C++. In C++, you are only allowed to redefine existing
75operators: you can't programatically change the grammar, introduce new
76operators, change precedence levels, etc. In this chapter, we will add this
77capability to Kaleidoscope, which will let the user round out the set of
78operators that are supported.</p>
79
80<p>The point of going into user-defined operators in a tutorial like this is to
81show the power and flexibility of using a hand-written parser. Thus far, the parser
82we have been implementing uses recursive descent for most parts of the grammar and
83operator precedence parsing for the expressions. See <a
84href="OCamlLangImpl2.html">Chapter 2</a> for details. Without using operator
85precedence parsing, it would be very difficult to allow the programmer to
86introduce new operators into the grammar: the grammar is dynamically extensible
87as the JIT runs.</p>
88
89<p>The two specific features we'll add are programmable unary operators (right
90now, Kaleidoscope has no unary operators at all) as well as binary operators.
91An example of this is:</p>
92
93<div class="doc_code">
94<pre>
95# Logical unary not.
96def unary!(v)
97 if v then
98 0
99 else
100 1;
101
102# Define &gt; with the same precedence as &lt;.
103def binary&gt; 10 (LHS RHS)
104 RHS &lt; LHS;
105
106# Binary "logical or", (note that it does not "short circuit")
107def binary| 5 (LHS RHS)
108 if LHS then
109 1
110 else if RHS then
111 1
112 else
113 0;
114
115# Define = with slightly lower precedence than relationals.
116def binary= 9 (LHS RHS)
117 !(LHS &lt; RHS | LHS &gt; RHS);
118</pre>
119</div>
120
121<p>Many languages aspire to being able to implement their standard runtime
122library in the language itself. In Kaleidoscope, we can implement significant
123parts of the language in the library!</p>
124
125<p>We will break down implementation of these features into two parts:
126implementing support for user-defined binary operators and adding unary
127operators.</p>
128
129</div>
130
131<!-- *********************************************************************** -->
132<div class="doc_section"><a name="binary">User-defined Binary Operators</a></div>
133<!-- *********************************************************************** -->
134
135<div class="doc_text">
136
137<p>Adding support for user-defined binary operators is pretty simple with our
138current framework. We'll first add support for the unary/binary keywords:</p>
139
140<div class="doc_code">
141<pre>
142type token =
143 ...
144 <b>(* operators *)
145 | Binary | Unary</b>
146
147...
148
149and lex_ident buffer = parser
150 ...
151 | "for" -&gt; [&lt; 'Token.For; stream &gt;]
152 | "in" -&gt; [&lt; 'Token.In; stream &gt;]
153 <b>| "binary" -&gt; [&lt; 'Token.Binary; stream &gt;]
154 | "unary" -&gt; [&lt; 'Token.Unary; stream &gt;]</b>
155</pre>
156</div>
157
158<p>This just adds lexer support for the unary and binary keywords, like we
159did in <a href="OCamlLangImpl5.html#iflexer">previous chapters</a>. One nice
160thing about our current AST, is that we represent binary operators with full
161generalisation by using their ASCII code as the opcode. For our extended
162operators, we'll use this same representation, so we don't need any new AST or
163parser support.</p>
164
165<p>On the other hand, we have to be able to represent the definitions of these
166new operators, in the "def binary| 5" part of the function definition. In our
167grammar so far, the "name" for the function definition is parsed as the
168"prototype" production and into the <tt>Ast.Prototype</tt> AST node. To
169represent our new user-defined operators as prototypes, we have to extend
170the <tt>Ast.Prototype</tt> AST node like this:</p>
171
172<div class="doc_code">
173<pre>
174(* proto - This type represents the "prototype" for a function, which captures
175 * its name, and its argument names (thus implicitly the number of arguments the
176 * function takes). *)
177type proto =
178 | Prototype of string * string array
179 <b>| BinOpPrototype of string * string array * int</b>
180</pre>
181</div>
182
183<p>Basically, in addition to knowing a name for the prototype, we now keep track
184of whether it was an operator, and if it was, what precedence level the operator
185is at. The precedence is only used for binary operators (as you'll see below,
186it just doesn't apply for unary operators). Now that we have a way to represent
187the prototype for a user-defined operator, we need to parse it:</p>
188
189<div class="doc_code">
190<pre>
191(* prototype
192 * ::= id '(' id* ')'
193 <b>* ::= binary LETTER number? (id, id)
194 * ::= unary LETTER number? (id) *)</b>
195let parse_prototype =
196 let rec parse_args accumulator = parser
197 | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
198 | [&lt; &gt;] -&gt; accumulator
199 in
200 let parse_operator = parser
201 | [&lt; 'Token.Unary &gt;] -&gt; "unary", 1
202 | [&lt; 'Token.Binary &gt;] -&gt; "binary", 2
203 in
204 let parse_binary_precedence = parser
205 | [&lt; 'Token.Number n &gt;] -&gt; int_of_float n
206 | [&lt; &gt;] -&gt; 30
207 in
208 parser
209 | [&lt; 'Token.Ident id;
210 'Token.Kwd '(' ?? "expected '(' in prototype";
211 args=parse_args [];
212 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
213 (* success. *)
214 Ast.Prototype (id, Array.of_list (List.rev args))
215 <b>| [&lt; (prefix, kind)=parse_operator;
216 'Token.Kwd op ?? "expected an operator";
217 (* Read the precedence if present. *)
218 binary_precedence=parse_binary_precedence;
219 'Token.Kwd '(' ?? "expected '(' in prototype";
220 args=parse_args [];
221 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
222 let name = prefix ^ (String.make 1 op) in
223 let args = Array.of_list (List.rev args) in
224
225 (* Verify right number of arguments for operator. *)
226 if Array.length args != kind
227 then raise (Stream.Error "invalid number of operands for operator")
228 else
229 if kind == 1 then
230 Ast.Prototype (name, args)
231 else
232 Ast.BinOpPrototype (name, args, binary_precedence)</b>
233 | [&lt; &gt;] -&gt;
234 raise (Stream.Error "expected function name in prototype")
235</pre>
236</div>
237
238<p>This is all fairly straightforward parsing code, and we have already seen
239a lot of similar code in the past. One interesting part about the code above is
240the couple lines that set up <tt>name</tt> for binary operators. This builds
241names like "binary@" for a newly defined "@" operator. This then takes
242advantage of the fact that symbol names in the LLVM symbol table are allowed to
243have any character in them, including embedded nul characters.</p>
244
245<p>The next interesting thing to add, is codegen support for these binary
246operators. Given our current structure, this is a simple addition of a default
247case for our existing binary operator node:</p>
248
249<div class="doc_code">
250<pre>
251let codegen_expr = function
252 ...
253 | Ast.Binary (op, lhs, rhs) -&gt;
254 let lhs_val = codegen_expr lhs in
255 let rhs_val = codegen_expr rhs in
256 begin
257 match op with
258 | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
259 | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
260 | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
261 | '&lt;' -&gt;
262 (* Convert bool 0/1 to double 0.0 or 1.0 *)
263 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
264 build_uitofp i double_type "booltmp" builder
265 <b>| _ -&gt;
266 (* If it wasn't a builtin binary operator, it must be a user defined
267 * one. Emit a call to it. *)
268 let callee = "binary" ^ (String.make 1 op) in
269 let callee =
270 match lookup_function callee the_module with
271 | Some callee -&gt; callee
272 | None -&gt; raise (Error "binary operator not found!")
273 in
274 build_call callee [|lhs_val; rhs_val|] "binop" builder</b>
275 end
276</pre>
277</div>
278
279<p>As you can see above, the new code is actually really simple. It just does
280a lookup for the appropriate operator in the symbol table and generates a
281function call to it. Since user-defined operators are just built as normal
282functions (because the "prototype" boils down to a function with the right
283name) everything falls into place.</p>
284
285<p>The final piece of code we are missing, is a bit of top level magic:</p>
286
287<div class="doc_code">
288<pre>
289let codegen_func the_fpm = function
290 | Ast.Function (proto, body) -&gt;
291 Hashtbl.clear named_values;
292 let the_function = codegen_proto proto in
293
294 <b>(* If this is an operator, install it. *)
295 begin match proto with
296 | Ast.BinOpPrototype (name, args, prec) -&gt;
297 let op = name.[String.length name - 1] in
298 Hashtbl.add Parser.binop_precedence op prec;
299 | _ -&gt; ()
300 end;</b>
301
302 (* Create a new basic block to start insertion into. *)
303 let bb = append_block "entry" the_function in
304 position_at_end bb builder;
305 ...
306</pre>
307</div>
308
309<p>Basically, before codegening a function, if it is a user-defined operator, we
310register it in the precedence table. This allows the binary operator parsing
311logic we already have in place to handle it. Since we are working on a
312fully-general operator precedence parser, this is all we need to do to "extend
313the grammar".</p>
314
315<p>Now we have useful user-defined binary operators. This builds a lot
316on the previous framework we built for other operators. Adding unary operators
317is a bit more challenging, because we don't have any framework for it yet - lets
318see what it takes.</p>
319
320</div>
321
322<!-- *********************************************************************** -->
323<div class="doc_section"><a name="unary">User-defined Unary Operators</a></div>
324<!-- *********************************************************************** -->
325
326<div class="doc_text">
327
328<p>Since we don't currently support unary operators in the Kaleidoscope
329language, we'll need to add everything to support them. Above, we added simple
330support for the 'unary' keyword to the lexer. In addition to that, we need an
331AST node:</p>
332
333<div class="doc_code">
334<pre>
335type expr =
336 ...
337 (* variant for a unary operator. *)
338 | Unary of char * expr
339 ...
340</pre>
341</div>
342
343<p>This AST node is very simple and obvious by now. It directly mirrors the
344binary operator AST node, except that it only has one child. With this, we
345need to add the parsing logic. Parsing a unary operator is pretty simple: we'll
346add a new function to do it:</p>
347
348<div class="doc_code">
349<pre>
350(* unary
351 * ::= primary
352 * ::= '!' unary *)
353and parse_unary = parser
354 (* If this is a unary operator, read it. *)
355 | [&lt; 'Token.Kwd op when op != '(' &amp;&amp; op != ')'; operand=parse_expr &gt;] -&gt;
356 Ast.Unary (op, operand)
357
358 (* If the current token is not an operator, it must be a primary expr. *)
359 | [&lt; stream &gt;] -&gt; parse_primary stream
360</pre>
361</div>
362
363<p>The grammar we add is pretty straightforward here. If we see a unary
364operator when parsing a primary operator, we eat the operator as a prefix and
365parse the remaining piece as another unary operator. This allows us to handle
366multiple unary operators (e.g. "!!x"). Note that unary operators can't have
367ambiguous parses like binary operators can, so there is no need for precedence
368information.</p>
369
370<p>The problem with this function, is that we need to call ParseUnary from
371somewhere. To do this, we change previous callers of ParsePrimary to call
372<tt>parse_unary</tt> instead:</p>
373
374<div class="doc_code">
375<pre>
376(* binoprhs
377 * ::= ('+' primary)* *)
378and parse_bin_rhs expr_prec lhs stream =
379 ...
380 <b>(* Parse the unary expression after the binary operator. *)
381 let rhs = parse_unary stream in</b>
382 ...
383
384...
385
386(* expression
387 * ::= primary binoprhs *)
388and parse_expr = parser
389 | [&lt; lhs=<b>parse_unary</b>; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
390</pre>
391</div>
392
393<p>With these two simple changes, we are now able to parse unary operators and build the
394AST for them. Next up, we need to add parser support for prototypes, to parse
395the unary operator prototype. We extend the binary operator code above
396with:</p>
397
398<div class="doc_code">
399<pre>
400(* prototype
401 * ::= id '(' id* ')'
402 * ::= binary LETTER number? (id, id)
403 <b>* ::= unary LETTER number? (id)</b> *)
404let parse_prototype =
405 let rec parse_args accumulator = parser
406 | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
407 | [&lt; &gt;] -&gt; accumulator
408 in
409 <b>let parse_operator = parser
410 | [&lt; 'Token.Unary &gt;] -&gt; "unary", 1
411 | [&lt; 'Token.Binary &gt;] -&gt; "binary", 2
412 in</b>
413 let parse_binary_precedence = parser
414 | [&lt; 'Token.Number n &gt;] -&gt; int_of_float n
415 | [&lt; &gt;] -&gt; 30
416 in
417 parser
418 | [&lt; 'Token.Ident id;
419 'Token.Kwd '(' ?? "expected '(' in prototype";
420 args=parse_args [];
421 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
422 (* success. *)
423 Ast.Prototype (id, Array.of_list (List.rev args))
424 <b>| [&lt; (prefix, kind)=parse_operator;
425 'Token.Kwd op ?? "expected an operator";
426 (* Read the precedence if present. *)
427 binary_precedence=parse_binary_precedence;
428 'Token.Kwd '(' ?? "expected '(' in prototype";
429 args=parse_args [];
430 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
431 let name = prefix ^ (String.make 1 op) in
432 let args = Array.of_list (List.rev args) in
433
434 (* Verify right number of arguments for operator. *)
435 if Array.length args != kind
436 then raise (Stream.Error "invalid number of operands for operator")
437 else
438 if kind == 1 then
439 Ast.Prototype (name, args)
440 else
441 Ast.BinOpPrototype (name, args, binary_precedence)</b>
442 | [&lt; &gt;] -&gt;
443 raise (Stream.Error "expected function name in prototype")
444</pre>
445</div>
446
447<p>As with binary operators, we name unary operators with a name that includes
448the operator character. This assists us at code generation time. Speaking of,
449the final piece we need to add is codegen support for unary operators. It looks
450like this:</p>
451
452<div class="doc_code">
453<pre>
454let rec codegen_expr = function
455 ...
456 | Ast.Unary (op, operand) -&gt;
457 let operand = codegen_expr operand in
458 let callee = "unary" ^ (String.make 1 op) in
459 let callee =
460 match lookup_function callee the_module with
461 | Some callee -&gt; callee
462 | None -&gt; raise (Error "unknown unary operator")
463 in
464 build_call callee [|operand|] "unop" builder
465</pre>
466</div>
467
468<p>This code is similar to, but simpler than, the code for binary operators. It
469is simpler primarily because it doesn't need to handle any predefined operators.
470</p>
471
472</div>
473
474<!-- *********************************************************************** -->
475<div class="doc_section"><a name="example">Kicking the Tires</a></div>
476<!-- *********************************************************************** -->
477
478<div class="doc_text">
479
480<p>It is somewhat hard to believe, but with a few simple extensions we've
481covered in the last chapters, we have grown a real-ish language. With this, we
482can do a lot of interesting things, including I/O, math, and a bunch of other
483things. For example, we can now add a nice sequencing operator (printd is
484defined to print out the specified value and a newline):</p>
485
486<div class="doc_code">
487<pre>
488ready&gt; <b>extern printd(x);</b>
489Read extern: declare double @printd(double)
490ready&gt; <b>def binary : 1 (x y) 0; # Low-precedence operator that ignores operands.</b>
491..
492ready&gt; <b>printd(123) : printd(456) : printd(789);</b>
493123.000000
494456.000000
495789.000000
496Evaluated to 0.000000
497</pre>
498</div>
499
500<p>We can also define a bunch of other "primitive" operations, such as:</p>
501
502<div class="doc_code">
503<pre>
504# Logical unary not.
505def unary!(v)
506 if v then
507 0
508 else
509 1;
510
511# Unary negate.
512def unary-(v)
513 0-v;
514
515# Define &gt; with the same precedence as &gt;.
516def binary&gt; 10 (LHS RHS)
517 RHS &lt; LHS;
518
519# Binary logical or, which does not short circuit.
520def binary| 5 (LHS RHS)
521 if LHS then
522 1
523 else if RHS then
524 1
525 else
526 0;
527
528# Binary logical and, which does not short circuit.
529def binary&amp; 6 (LHS RHS)
530 if !LHS then
531 0
532 else
533 !!RHS;
534
535# Define = with slightly lower precedence than relationals.
536def binary = 9 (LHS RHS)
537 !(LHS &lt; RHS | LHS &gt; RHS);
538
539</pre>
540</div>
541
542
543<p>Given the previous if/then/else support, we can also define interesting
544functions for I/O. For example, the following prints out a character whose
545"density" reflects the value passed in: the lower the value, the denser the
546character:</p>
547
548<div class="doc_code">
549<pre>
550ready&gt;
551<b>
552extern putchard(char)
553def printdensity(d)
554 if d &gt; 8 then
555 putchard(32) # ' '
556 else if d &gt; 4 then
557 putchard(46) # '.'
558 else if d &gt; 2 then
559 putchard(43) # '+'
560 else
561 putchard(42); # '*'</b>
562...
563ready&gt; <b>printdensity(1): printdensity(2): printdensity(3) :
564 printdensity(4): printdensity(5): printdensity(9): putchard(10);</b>
565*++..
566Evaluated to 0.000000
567</pre>
568</div>
569
570<p>Based on these simple primitive operations, we can start to define more
571interesting things. For example, here's a little function that solves for the
572number of iterations it takes a function in the complex plane to
573converge:</p>
574
575<div class="doc_code">
576<pre>
577# determine whether the specific location diverges.
578# Solve for z = z^2 + c in the complex plane.
579def mandleconverger(real imag iters creal cimag)
580 if iters &gt; 255 | (real*real + imag*imag &gt; 4) then
581 iters
582 else
583 mandleconverger(real*real - imag*imag + creal,
584 2*real*imag + cimag,
585 iters+1, creal, cimag);
586
587# return the number of iterations required for the iteration to escape
588def mandleconverge(real imag)
589 mandleconverger(real, imag, 0, real, imag);
590</pre>
591</div>
592
593<p>This "z = z<sup>2</sup> + c" function is a beautiful little creature that is the basis
594for computation of the <a
595href="http://en.wikipedia.org/wiki/Mandelbrot_set">Mandelbrot Set</a>. Our
596<tt>mandelconverge</tt> function returns the number of iterations that it takes
597for a complex orbit to escape, saturating to 255. This is not a very useful
598function by itself, but if you plot its value over a two-dimensional plane,
599you can see the Mandelbrot set. Given that we are limited to using putchard
600here, our amazing graphical output is limited, but we can whip together
601something using the density plotter above:</p>
602
603<div class="doc_code">
604<pre>
605# compute and plot the mandlebrot set with the specified 2 dimensional range
606# info.
607def mandelhelp(xmin xmax xstep ymin ymax ystep)
608 for y = ymin, y &lt; ymax, ystep in (
609 (for x = xmin, x &lt; xmax, xstep in
610 printdensity(mandleconverge(x,y)))
611 : putchard(10)
612 )
613
614# mandel - This is a convenient helper function for ploting the mandelbrot set
615# from the specified position with the specified Magnification.
616def mandel(realstart imagstart realmag imagmag)
617 mandelhelp(realstart, realstart+realmag*78, realmag,
618 imagstart, imagstart+imagmag*40, imagmag);
619</pre>
620</div>
621
622<p>Given this, we can try plotting out the mandlebrot set! Lets try it out:</p>
623
624<div class="doc_code">
625<pre>
626ready&gt; <b>mandel(-2.3, -1.3, 0.05, 0.07);</b>
627*******************************+++++++++++*************************************
628*************************+++++++++++++++++++++++*******************************
629**********************+++++++++++++++++++++++++++++****************************
630*******************+++++++++++++++++++++.. ...++++++++*************************
631*****************++++++++++++++++++++++.... ...+++++++++***********************
632***************+++++++++++++++++++++++..... ...+++++++++*********************
633**************+++++++++++++++++++++++.... ....+++++++++********************
634*************++++++++++++++++++++++...... .....++++++++*******************
635************+++++++++++++++++++++....... .......+++++++******************
636***********+++++++++++++++++++.... ... .+++++++*****************
637**********+++++++++++++++++....... .+++++++****************
638*********++++++++++++++........... ...+++++++***************
639********++++++++++++............ ...++++++++**************
640********++++++++++... .......... .++++++++**************
641*******+++++++++..... .+++++++++*************
642*******++++++++...... ..+++++++++*************
643*******++++++....... ..+++++++++*************
644*******+++++...... ..+++++++++*************
645*******.... .... ...+++++++++*************
646*******.... . ...+++++++++*************
647*******+++++...... ...+++++++++*************
648*******++++++....... ..+++++++++*************
649*******++++++++...... .+++++++++*************
650*******+++++++++..... ..+++++++++*************
651********++++++++++... .......... .++++++++**************
652********++++++++++++............ ...++++++++**************
653*********++++++++++++++.......... ...+++++++***************
654**********++++++++++++++++........ .+++++++****************
655**********++++++++++++++++++++.... ... ..+++++++****************
656***********++++++++++++++++++++++....... .......++++++++*****************
657************+++++++++++++++++++++++...... ......++++++++******************
658**************+++++++++++++++++++++++.... ....++++++++********************
659***************+++++++++++++++++++++++..... ...+++++++++*********************
660*****************++++++++++++++++++++++.... ...++++++++***********************
661*******************+++++++++++++++++++++......++++++++*************************
662*********************++++++++++++++++++++++.++++++++***************************
663*************************+++++++++++++++++++++++*******************************
664******************************+++++++++++++************************************
665*******************************************************************************
666*******************************************************************************
667*******************************************************************************
668Evaluated to 0.000000
669ready&gt; <b>mandel(-2, -1, 0.02, 0.04);</b>
670**************************+++++++++++++++++++++++++++++++++++++++++++++++++++++
671***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++
672*********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.
673*******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++...
674*****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....
675***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........
676**************++++++++++++++++++++++++++++++++++++++++++++++++++++++...........
677************+++++++++++++++++++++++++++++++++++++++++++++++++++++..............
678***********++++++++++++++++++++++++++++++++++++++++++++++++++........ .
679**********++++++++++++++++++++++++++++++++++++++++++++++.............
680********+++++++++++++++++++++++++++++++++++++++++++..................
681*******+++++++++++++++++++++++++++++++++++++++.......................
682******+++++++++++++++++++++++++++++++++++...........................
683*****++++++++++++++++++++++++++++++++............................
684*****++++++++++++++++++++++++++++...............................
685****++++++++++++++++++++++++++...... .........................
686***++++++++++++++++++++++++......... ...... ...........
687***++++++++++++++++++++++............
688**+++++++++++++++++++++..............
689**+++++++++++++++++++................
690*++++++++++++++++++.................
691*++++++++++++++++............ ...
692*++++++++++++++..............
693*+++....++++................
694*.......... ...........
695*
696*.......... ...........
697*+++....++++................
698*++++++++++++++..............
699*++++++++++++++++............ ...
700*++++++++++++++++++.................
701**+++++++++++++++++++................
702**+++++++++++++++++++++..............
703***++++++++++++++++++++++............
704***++++++++++++++++++++++++......... ...... ...........
705****++++++++++++++++++++++++++...... .........................
706*****++++++++++++++++++++++++++++...............................
707*****++++++++++++++++++++++++++++++++............................
708******+++++++++++++++++++++++++++++++++++...........................
709*******+++++++++++++++++++++++++++++++++++++++.......................
710********+++++++++++++++++++++++++++++++++++++++++++..................
711Evaluated to 0.000000
712ready&gt; <b>mandel(-0.9, -1.4, 0.02, 0.03);</b>
713*******************************************************************************
714*******************************************************************************
715*******************************************************************************
716**********+++++++++++++++++++++************************************************
717*+++++++++++++++++++++++++++++++++++++++***************************************
718+++++++++++++++++++++++++++++++++++++++++++++**********************************
719++++++++++++++++++++++++++++++++++++++++++++++++++*****************************
720++++++++++++++++++++++++++++++++++++++++++++++++++++++*************************
721+++++++++++++++++++++++++++++++++++++++++++++++++++++++++**********************
722+++++++++++++++++++++++++++++++++.........++++++++++++++++++*******************
723+++++++++++++++++++++++++++++++.... ......+++++++++++++++++++****************
724+++++++++++++++++++++++++++++....... ........+++++++++++++++++++**************
725++++++++++++++++++++++++++++........ ........++++++++++++++++++++************
726+++++++++++++++++++++++++++......... .. ...+++++++++++++++++++++**********
727++++++++++++++++++++++++++........... ....++++++++++++++++++++++********
728++++++++++++++++++++++++............. .......++++++++++++++++++++++******
729+++++++++++++++++++++++............. ........+++++++++++++++++++++++****
730++++++++++++++++++++++........... ..........++++++++++++++++++++++***
731++++++++++++++++++++........... .........++++++++++++++++++++++*
732++++++++++++++++++............ ...........++++++++++++++++++++
733++++++++++++++++............... .............++++++++++++++++++
734++++++++++++++................. ...............++++++++++++++++
735++++++++++++.................. .................++++++++++++++
736+++++++++.................. .................+++++++++++++
737++++++........ . ......... ..++++++++++++
738++............ ...... ....++++++++++
739.............. ...++++++++++
740.............. ....+++++++++
741.............. .....++++++++
742............. ......++++++++
743........... .......++++++++
744......... ........+++++++
745......... ........+++++++
746......... ....+++++++
747........ ...+++++++
748....... ...+++++++
749 ....+++++++
750 .....+++++++
751 ....+++++++
752 ....+++++++
753 ....+++++++
754Evaluated to 0.000000
755ready&gt; <b>^D</b>
756</pre>
757</div>
758
759<p>At this point, you may be starting to realize that Kaleidoscope is a real
760and powerful language. It may not be self-similar :), but it can be used to
761plot things that are!</p>
762
763<p>With this, we conclude the "adding user-defined operators" chapter of the
764tutorial. We have successfully augmented our language, adding the ability to
765extend the language in the library, and we have shown how this can be used to
766build a simple but interesting end-user application in Kaleidoscope. At this
767point, Kaleidoscope can build a variety of applications that are functional and
768can call functions with side-effects, but it can't actually define and mutate a
769variable itself.</p>
770
771<p>Strikingly, variable mutation is an important feature of some
772languages, and it is not at all obvious how to <a href="OCamlLangImpl7.html">add
773support for mutable variables</a> without having to add an "SSA construction"
774phase to your front-end. In the next chapter, we will describe how you can
775add variable mutation without building SSA in your front-end.</p>
776
777</div>
778
779
780<!-- *********************************************************************** -->
781<div class="doc_section"><a name="code">Full Code Listing</a></div>
782<!-- *********************************************************************** -->
783
784<div class="doc_text">
785
786<p>
787Here is the complete code listing for our running example, enhanced with the
788if/then/else and for expressions.. To build this example, use:
789</p>
790
791<div class="doc_code">
792<pre>
793# Compile
794ocamlbuild toy.byte
795# Run
796./toy.byte
797</pre>
798</div>
799
800<p>Here is the code:</p>
801
802<dl>
803<dt>_tags:</dt>
804<dd class="doc_code">
805<pre>
806&lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
807&lt;*.{byte,native}&gt;: g++, use_llvm, use_llvm_analysis
808&lt;*.{byte,native}&gt;: use_llvm_executionengine, use_llvm_target
809&lt;*.{byte,native}&gt;: use_llvm_scalar_opts, use_bindings
810</pre>
811</dd>
812
813<dt>myocamlbuild.ml:</dt>
814<dd class="doc_code">
815<pre>
816open Ocamlbuild_plugin;;
817
818ocaml_lib ~extern:true "llvm";;
819ocaml_lib ~extern:true "llvm_analysis";;
820ocaml_lib ~extern:true "llvm_executionengine";;
821ocaml_lib ~extern:true "llvm_target";;
822ocaml_lib ~extern:true "llvm_scalar_opts";;
823
824flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
825dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
826</pre>
827</dd>
828
829<dt>token.ml:</dt>
830<dd class="doc_code">
831<pre>
832(*===----------------------------------------------------------------------===
833 * Lexer Tokens
834 *===----------------------------------------------------------------------===*)
835
836(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
837 * these others for known things. *)
838type token =
839 (* commands *)
840 | Def | Extern
841
842 (* primary *)
843 | Ident of string | Number of float
844
845 (* unknown *)
846 | Kwd of char
847
848 (* control *)
849 | If | Then | Else
850 | For | In
851
852 (* operators *)
853 | Binary | Unary
854</pre>
855</dd>
856
857<dt>lexer.ml:</dt>
858<dd class="doc_code">
859<pre>
860(*===----------------------------------------------------------------------===
861 * Lexer
862 *===----------------------------------------------------------------------===*)
863
864let rec lex = parser
865 (* Skip any whitespace. *)
866 | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream
867
868 (* identifier: [a-zA-Z][a-zA-Z0-9] *)
869 | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
870 let buffer = Buffer.create 1 in
871 Buffer.add_char buffer c;
872 lex_ident buffer stream
873
874 (* number: [0-9.]+ *)
875 | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
876 let buffer = Buffer.create 1 in
877 Buffer.add_char buffer c;
878 lex_number buffer stream
879
880 (* Comment until end of line. *)
881 | [&lt; ' ('#'); stream &gt;] -&gt;
882 lex_comment stream
883
884 (* Otherwise, just return the character as its ascii value. *)
885 | [&lt; 'c; stream &gt;] -&gt;
886 [&lt; 'Token.Kwd c; lex stream &gt;]
887
888 (* end of stream. *)
889 | [&lt; &gt;] -&gt; [&lt; &gt;]
890
891and lex_number buffer = parser
892 | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
893 Buffer.add_char buffer c;
894 lex_number buffer stream
895 | [&lt; stream=lex &gt;] -&gt;
896 [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]
897
898and lex_ident buffer = parser
899 | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
900 Buffer.add_char buffer c;
901 lex_ident buffer stream
902 | [&lt; stream=lex &gt;] -&gt;
903 match Buffer.contents buffer with
904 | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
905 | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
906 | "if" -&gt; [&lt; 'Token.If; stream &gt;]
907 | "then" -&gt; [&lt; 'Token.Then; stream &gt;]
908 | "else" -&gt; [&lt; 'Token.Else; stream &gt;]
909 | "for" -&gt; [&lt; 'Token.For; stream &gt;]
910 | "in" -&gt; [&lt; 'Token.In; stream &gt;]
911 | "binary" -&gt; [&lt; 'Token.Binary; stream &gt;]
912 | "unary" -&gt; [&lt; 'Token.Unary; stream &gt;]
913 | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
914
915and lex_comment = parser
916 | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
917 | [&lt; 'c; e=lex_comment &gt;] -&gt; e
918 | [&lt; &gt;] -&gt; [&lt; &gt;]
919</pre>
920</dd>
921
922<dt>ast.ml:</dt>
923<dd class="doc_code">
924<pre>
925(*===----------------------------------------------------------------------===
926 * Abstract Syntax Tree (aka Parse Tree)
927 *===----------------------------------------------------------------------===*)
928
929(* expr - Base type for all expression nodes. *)
930type expr =
931 (* variant for numeric literals like "1.0". *)
932 | Number of float
933
934 (* variant for referencing a variable, like "a". *)
935 | Variable of string
936
937 (* variant for a unary operator. *)
938 | Unary of char * expr
939
940 (* variant for a binary operator. *)
941 | Binary of char * expr * expr
942
943 (* variant for function calls. *)
944 | Call of string * expr array
945
946 (* variant for if/then/else. *)
947 | If of expr * expr * expr
948
949 (* variant for for/in. *)
950 | For of string * expr * expr * expr option * expr
951
952(* proto - This type represents the "prototype" for a function, which captures
953 * its name, and its argument names (thus implicitly the number of arguments the
954 * function takes). *)
955type proto =
956 | Prototype of string * string array
957 | BinOpPrototype of string * string array * int
958
959(* func - This type represents a function definition itself. *)
960type func = Function of proto * expr
961</pre>
962</dd>
963
964<dt>parser.ml:</dt>
965<dd class="doc_code">
966<pre>
967(*===---------------------------------------------------------------------===
968 * Parser
969 *===---------------------------------------------------------------------===*)
970
971(* binop_precedence - This holds the precedence for each binary operator that is
972 * defined *)
973let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
974
975(* precedence - Get the precedence of the pending binary operator token. *)
976let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
977
978(* primary
979 * ::= identifier
980 * ::= numberexpr
981 * ::= parenexpr
982 * ::= ifexpr
983 * ::= forexpr *)
984let rec parse_primary = parser
985 (* numberexpr ::= number *)
986 | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
987
988 (* parenexpr ::= '(' expression ')' *)
989 | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
990
991 (* identifierexpr
992 * ::= identifier
993 * ::= identifier '(' argumentexpr ')' *)
994 | [&lt; 'Token.Ident id; stream &gt;] -&gt;
995 let rec parse_args accumulator = parser
996 | [&lt; e=parse_expr; stream &gt;] -&gt;
997 begin parser
998 | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
999 | [&lt; &gt;] -&gt; e :: accumulator
1000 end stream
1001 | [&lt; &gt;] -&gt; accumulator
1002 in
1003 let rec parse_ident id = parser
1004 (* Call. *)
1005 | [&lt; 'Token.Kwd '(';
1006 args=parse_args [];
1007 'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
1008 Ast.Call (id, Array.of_list (List.rev args))
1009
1010 (* Simple variable ref. *)
1011 | [&lt; &gt;] -&gt; Ast.Variable id
1012 in
1013 parse_ident id stream
1014
1015 (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
1016 | [&lt; 'Token.If; c=parse_expr;
1017 'Token.Then ?? "expected 'then'"; t=parse_expr;
1018 'Token.Else ?? "expected 'else'"; e=parse_expr &gt;] -&gt;
1019 Ast.If (c, t, e)
1020
1021 (* forexpr
1022 ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
1023 | [&lt; 'Token.For;
1024 'Token.Ident id ?? "expected identifier after for";
1025 'Token.Kwd '=' ?? "expected '=' after for";
1026 stream &gt;] -&gt;
1027 begin parser
1028 | [&lt;
1029 start=parse_expr;
1030 'Token.Kwd ',' ?? "expected ',' after for";
1031 end_=parse_expr;
1032 stream &gt;] -&gt;
1033 let step =
1034 begin parser
1035 | [&lt; 'Token.Kwd ','; step=parse_expr &gt;] -&gt; Some step
1036 | [&lt; &gt;] -&gt; None
1037 end stream
1038 in
1039 begin parser
1040 | [&lt; 'Token.In; body=parse_expr &gt;] -&gt;
1041 Ast.For (id, start, end_, step, body)
1042 | [&lt; &gt;] -&gt;
1043 raise (Stream.Error "expected 'in' after for")
1044 end stream
1045 | [&lt; &gt;] -&gt;
1046 raise (Stream.Error "expected '=' after for")
1047 end stream
1048
1049 | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
1050
1051(* unary
1052 * ::= primary
1053 * ::= '!' unary *)
1054and parse_unary = parser
1055 (* If this is a unary operator, read it. *)
1056 | [&lt; 'Token.Kwd op when op != '(' &amp;&amp; op != ')'; operand=parse_expr &gt;] -&gt;
1057 Ast.Unary (op, operand)
1058
1059 (* If the current token is not an operator, it must be a primary expr. *)
1060 | [&lt; stream &gt;] -&gt; parse_primary stream
1061
1062(* binoprhs
1063 * ::= ('+' primary)* *)
1064and parse_bin_rhs expr_prec lhs stream =
1065 match Stream.peek stream with
1066 (* If this is a binop, find its precedence. *)
1067 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
1068 let token_prec = precedence c in
1069
1070 (* If this is a binop that binds at least as tightly as the current binop,
1071 * consume it, otherwise we are done. *)
1072 if token_prec &lt; expr_prec then lhs else begin
1073 (* Eat the binop. *)
1074 Stream.junk stream;
1075
1076 (* Parse the unary expression after the binary operator. *)
1077 let rhs = parse_unary stream in
1078
1079 (* Okay, we know this is a binop. *)
1080 let rhs =
1081 match Stream.peek stream with
1082 | Some (Token.Kwd c2) -&gt;
1083 (* If BinOp binds less tightly with rhs than the operator after
1084 * rhs, let the pending operator take rhs as its lhs. *)
1085 let next_prec = precedence c2 in
1086 if token_prec &lt; next_prec
1087 then parse_bin_rhs (token_prec + 1) rhs stream
1088 else rhs
1089 | _ -&gt; rhs
1090 in
1091
1092 (* Merge lhs/rhs. *)
1093 let lhs = Ast.Binary (c, lhs, rhs) in
1094 parse_bin_rhs expr_prec lhs stream
1095 end
1096 | _ -&gt; lhs
1097
1098(* expression
1099 * ::= primary binoprhs *)
1100and parse_expr = parser
1101 | [&lt; lhs=parse_unary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
1102
1103(* prototype
1104 * ::= id '(' id* ')'
1105 * ::= binary LETTER number? (id, id)
1106 * ::= unary LETTER number? (id) *)
1107let parse_prototype =
1108 let rec parse_args accumulator = parser
1109 | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
1110 | [&lt; &gt;] -&gt; accumulator
1111 in
1112 let parse_operator = parser
1113 | [&lt; 'Token.Unary &gt;] -&gt; "unary", 1
1114 | [&lt; 'Token.Binary &gt;] -&gt; "binary", 2
1115 in
1116 let parse_binary_precedence = parser
1117 | [&lt; 'Token.Number n &gt;] -&gt; int_of_float n
1118 | [&lt; &gt;] -&gt; 30
1119 in
1120 parser
1121 | [&lt; 'Token.Ident id;
1122 'Token.Kwd '(' ?? "expected '(' in prototype";
1123 args=parse_args [];
1124 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
1125 (* success. *)
1126 Ast.Prototype (id, Array.of_list (List.rev args))
1127 | [&lt; (prefix, kind)=parse_operator;
1128 'Token.Kwd op ?? "expected an operator";
1129 (* Read the precedence if present. *)
1130 binary_precedence=parse_binary_precedence;
1131 'Token.Kwd '(' ?? "expected '(' in prototype";
1132 args=parse_args [];
1133 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
1134 let name = prefix ^ (String.make 1 op) in
1135 let args = Array.of_list (List.rev args) in
1136
1137 (* Verify right number of arguments for operator. *)
1138 if Array.length args != kind
1139 then raise (Stream.Error "invalid number of operands for operator")
1140 else
1141 if kind == 1 then
1142 Ast.Prototype (name, args)
1143 else
1144 Ast.BinOpPrototype (name, args, binary_precedence)
1145 | [&lt; &gt;] -&gt;
1146 raise (Stream.Error "expected function name in prototype")
1147
1148(* definition ::= 'def' prototype expression *)
1149let parse_definition = parser
1150 | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
1151 Ast.Function (p, e)
1152
1153(* toplevelexpr ::= expression *)
1154let parse_toplevel = parser
1155 | [&lt; e=parse_expr &gt;] -&gt;
1156 (* Make an anonymous proto. *)
1157 Ast.Function (Ast.Prototype ("", [||]), e)
1158
1159(* external ::= 'extern' prototype *)
1160let parse_extern = parser
1161 | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
1162</pre>
1163</dd>
1164
1165<dt>codegen.ml:</dt>
1166<dd class="doc_code">
1167<pre>
1168(*===----------------------------------------------------------------------===
1169 * Code Generation
1170 *===----------------------------------------------------------------------===*)
1171
1172open Llvm
1173
1174exception Error of string
1175
1176let the_module = create_module "my cool jit"
1177let builder = builder ()
1178let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
1179
1180let rec codegen_expr = function
1181 | Ast.Number n -&gt; const_float double_type n
1182 | Ast.Variable name -&gt;
1183 (try Hashtbl.find named_values name with
1184 | Not_found -&gt; raise (Error "unknown variable name"))
1185 | Ast.Unary (op, operand) -&gt;
1186 let operand = codegen_expr operand in
1187 let callee = "unary" ^ (String.make 1 op) in
1188 let callee =
1189 match lookup_function callee the_module with
1190 | Some callee -&gt; callee
1191 | None -&gt; raise (Error "unknown unary operator")
1192 in
1193 build_call callee [|operand|] "unop" builder
1194 | Ast.Binary (op, lhs, rhs) -&gt;
1195 let lhs_val = codegen_expr lhs in
1196 let rhs_val = codegen_expr rhs in
1197 begin
1198 match op with
1199 | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
1200 | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
1201 | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
1202 | '&lt;' -&gt;
1203 (* Convert bool 0/1 to double 0.0 or 1.0 *)
1204 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
1205 build_uitofp i double_type "booltmp" builder
1206 | _ -&gt;
1207 (* If it wasn't a builtin binary operator, it must be a user defined
1208 * one. Emit a call to it. *)
1209 let callee = "binary" ^ (String.make 1 op) in
1210 let callee =
1211 match lookup_function callee the_module with
1212 | Some callee -&gt; callee
1213 | None -&gt; raise (Error "binary operator not found!")
1214 in
1215 build_call callee [|lhs_val; rhs_val|] "binop" builder
1216 end
1217 | Ast.Call (callee, args) -&gt;
1218 (* Look up the name in the module table. *)
1219 let callee =
1220 match lookup_function callee the_module with
1221 | Some callee -&gt; callee
1222 | None -&gt; raise (Error "unknown function referenced")
1223 in
1224 let params = params callee in
1225
1226 (* If argument mismatch error. *)
1227 if Array.length params == Array.length args then () else
1228 raise (Error "incorrect # arguments passed");
1229 let args = Array.map codegen_expr args in
1230 build_call callee args "calltmp" builder
1231 | Ast.If (cond, then_, else_) -&gt;
1232 let cond = codegen_expr cond in
1233
1234 (* Convert condition to a bool by comparing equal to 0.0 *)
1235 let zero = const_float double_type 0.0 in
1236 let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in
1237
1238 (* Grab the first block so that we might later add the conditional branch
1239 * to it at the end of the function. *)
1240 let start_bb = insertion_block builder in
1241 let the_function = block_parent start_bb in
1242
1243 let then_bb = append_block "then" the_function in
1244
1245 (* Emit 'then' value. *)
1246 position_at_end then_bb builder;
1247 let then_val = codegen_expr then_ in
1248
1249 (* Codegen of 'then' can change the current block, update then_bb for the
1250 * phi. We create a new name because one is used for the phi node, and the
1251 * other is used for the conditional branch. *)
1252 let new_then_bb = insertion_block builder in
1253
1254 (* Emit 'else' value. *)
1255 let else_bb = append_block "else" the_function in
1256 position_at_end else_bb builder;
1257 let else_val = codegen_expr else_ in
1258
1259 (* Codegen of 'else' can change the current block, update else_bb for the
1260 * phi. *)
1261 let new_else_bb = insertion_block builder in
1262
1263 (* Emit merge block. *)
1264 let merge_bb = append_block "ifcont" the_function in
1265 position_at_end merge_bb builder;
1266 let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
1267 let phi = build_phi incoming "iftmp" builder in
1268
1269 (* Return to the start block to add the conditional branch. *)
1270 position_at_end start_bb builder;
1271 ignore (build_cond_br cond_val then_bb else_bb builder);
1272
1273 (* Set a unconditional branch at the end of the 'then' block and the
1274 * 'else' block to the 'merge' block. *)
1275 position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
1276 position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
1277
1278 (* Finally, set the builder to the end of the merge block. *)
1279 position_at_end merge_bb builder;
1280
1281 phi
1282 | Ast.For (var_name, start, end_, step, body) -&gt;
1283 (* Emit the start code first, without 'variable' in scope. *)
1284 let start_val = codegen_expr start in
1285
1286 (* Make the new basic block for the loop header, inserting after current
1287 * block. *)
1288 let preheader_bb = insertion_block builder in
1289 let the_function = block_parent preheader_bb in
1290 let loop_bb = append_block "loop" the_function in
1291
1292 (* Insert an explicit fall through from the current block to the
1293 * loop_bb. *)
1294 ignore (build_br loop_bb builder);
1295
1296 (* Start insertion in loop_bb. *)
1297 position_at_end loop_bb builder;
1298
1299 (* Start the PHI node with an entry for start. *)
1300 let variable = build_phi [(start_val, preheader_bb)] var_name builder in
1301
1302 (* Within the loop, the variable is defined equal to the PHI node. If it
1303 * shadows an existing variable, we have to restore it, so save it
1304 * now. *)
1305 let old_val =
1306 try Some (Hashtbl.find named_values var_name) with Not_found -&gt; None
1307 in
1308 Hashtbl.add named_values var_name variable;
1309
1310 (* Emit the body of the loop. This, like any other expr, can change the
1311 * current BB. Note that we ignore the value computed by the body, but
1312 * don't allow an error *)
1313 ignore (codegen_expr body);
1314
1315 (* Emit the step value. *)
1316 let step_val =
1317 match step with
1318 | Some step -&gt; codegen_expr step
1319 (* If not specified, use 1.0. *)
1320 | None -&gt; const_float double_type 1.0
1321 in
1322
1323 let next_var = build_add variable step_val "nextvar" builder in
1324
1325 (* Compute the end condition. *)
1326 let end_cond = codegen_expr end_ in
1327
1328 (* Convert condition to a bool by comparing equal to 0.0. *)
1329 let zero = const_float double_type 0.0 in
1330 let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in
1331
1332 (* Create the "after loop" block and insert it. *)
1333 let loop_end_bb = insertion_block builder in
1334 let after_bb = append_block "afterloop" the_function in
1335
1336 (* Insert the conditional branch into the end of loop_end_bb. *)
1337 ignore (build_cond_br end_cond loop_bb after_bb builder);
1338
1339 (* Any new code will be inserted in after_bb. *)
1340 position_at_end after_bb builder;
1341
1342 (* Add a new entry to the PHI node for the backedge. *)
1343 add_incoming (next_var, loop_end_bb) variable;
1344
1345 (* Restore the unshadowed variable. *)
1346 begin match old_val with
1347 | Some old_val -&gt; Hashtbl.add named_values var_name old_val
1348 | None -&gt; ()
1349 end;
1350
1351 (* for expr always returns 0.0. *)
1352 const_null double_type
1353
1354let codegen_proto = function
1355 | Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) -&gt;
1356 (* Make the function type: double(double,double) etc. *)
1357 let doubles = Array.make (Array.length args) double_type in
1358 let ft = function_type double_type doubles in
1359 let f =
1360 match lookup_function name the_module with
1361 | None -&gt; declare_function name ft the_module
1362
1363 (* If 'f' conflicted, there was already something named 'name'. If it
1364 * has a body, don't allow redefinition or reextern. *)
1365 | Some f -&gt;
1366 (* If 'f' already has a body, reject this. *)
1367 if block_begin f &lt;&gt; At_end f then
1368 raise (Error "redefinition of function");
1369
1370 (* If 'f' took a different number of arguments, reject. *)
1371 if element_type (type_of f) &lt;&gt; ft then
1372 raise (Error "redefinition of function with different # args");
1373 f
1374 in
1375
1376 (* Set names for all arguments. *)
1377 Array.iteri (fun i a -&gt;
1378 let n = args.(i) in
1379 set_value_name n a;
1380 Hashtbl.add named_values n a;
1381 ) (params f);
1382 f
1383
1384let codegen_func the_fpm = function
1385 | Ast.Function (proto, body) -&gt;
1386 Hashtbl.clear named_values;
1387 let the_function = codegen_proto proto in
1388
1389 (* If this is an operator, install it. *)
1390 begin match proto with
1391 | Ast.BinOpPrototype (name, args, prec) -&gt;
1392 let op = name.[String.length name - 1] in
1393 Hashtbl.add Parser.binop_precedence op prec;
1394 | _ -&gt; ()
1395 end;
1396
1397 (* Create a new basic block to start insertion into. *)
1398 let bb = append_block "entry" the_function in
1399 position_at_end bb builder;
1400
1401 try
1402 let ret_val = codegen_expr body in
1403
1404 (* Finish off the function. *)
1405 let _ = build_ret ret_val builder in
1406
1407 (* Validate the generated code, checking for consistency. *)
1408 Llvm_analysis.assert_valid_function the_function;
1409
1410 (* Optimize the function. *)
1411 let _ = PassManager.run_function the_function the_fpm in
1412
1413 the_function
1414 with e -&gt;
1415 delete_function the_function;
1416 raise e
1417</pre>
1418</dd>
1419
1420<dt>toplevel.ml:</dt>
1421<dd class="doc_code">
1422<pre>
1423(*===----------------------------------------------------------------------===
1424 * Top-Level parsing and JIT Driver
1425 *===----------------------------------------------------------------------===*)
1426
1427open Llvm
1428open Llvm_executionengine
1429
1430(* top ::= definition | external | expression | ';' *)
1431let rec main_loop the_fpm the_execution_engine stream =
1432 match Stream.peek stream with
1433 | None -&gt; ()
1434
1435 (* ignore top-level semicolons. *)
1436 | Some (Token.Kwd ';') -&gt;
1437 Stream.junk stream;
1438 main_loop the_fpm the_execution_engine stream
1439
1440 | Some token -&gt;
1441 begin
1442 try match token with
1443 | Token.Def -&gt;
1444 let e = Parser.parse_definition stream in
1445 print_endline "parsed a function definition.";
1446 dump_value (Codegen.codegen_func the_fpm e);
1447 | Token.Extern -&gt;
1448 let e = Parser.parse_extern stream in
1449 print_endline "parsed an extern.";
1450 dump_value (Codegen.codegen_proto e);
1451 | _ -&gt;
1452 (* Evaluate a top-level expression into an anonymous function. *)
1453 let e = Parser.parse_toplevel stream in
1454 print_endline "parsed a top-level expr";
1455 let the_function = Codegen.codegen_func the_fpm e in
1456 dump_value the_function;
1457
1458 (* JIT the function, returning a function pointer. *)
1459 let result = ExecutionEngine.run_function the_function [||]
1460 the_execution_engine in
1461
1462 print_string "Evaluated to ";
1463 print_float (GenericValue.as_float double_type result);
1464 print_newline ();
1465 with Stream.Error s | Codegen.Error s -&gt;
1466 (* Skip token for error recovery. *)
1467 Stream.junk stream;
1468 print_endline s;
1469 end;
1470 print_string "ready&gt; "; flush stdout;
1471 main_loop the_fpm the_execution_engine stream
1472</pre>
1473</dd>
1474
1475<dt>toy.ml:</dt>
1476<dd class="doc_code">
1477<pre>
1478(*===----------------------------------------------------------------------===
1479 * Main driver code.
1480 *===----------------------------------------------------------------------===*)
1481
1482open Llvm
1483open Llvm_executionengine
1484open Llvm_target
1485open Llvm_scalar_opts
1486
1487let main () =
1488 (* Install standard binary operators.
1489 * 1 is the lowest precedence. *)
1490 Hashtbl.add Parser.binop_precedence '&lt;' 10;
1491 Hashtbl.add Parser.binop_precedence '+' 20;
1492 Hashtbl.add Parser.binop_precedence '-' 20;
1493 Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
1494
1495 (* Prime the first token. *)
1496 print_string "ready&gt; "; flush stdout;
1497 let stream = Lexer.lex (Stream.of_channel stdin) in
1498
1499 (* Create the JIT. *)
1500 let the_module_provider = ModuleProvider.create Codegen.the_module in
1501 let the_execution_engine = ExecutionEngine.create the_module_provider in
1502 let the_fpm = PassManager.create_function the_module_provider in
1503
1504 (* Set up the optimizer pipeline. Start with registering info about how the
1505 * target lays out data structures. *)
1506 TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
1507
1508 (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
1509 add_instruction_combining the_fpm;
1510
1511 (* reassociate expressions. *)
1512 add_reassociation the_fpm;
1513
1514 (* Eliminate Common SubExpressions. *)
1515 add_gvn the_fpm;
1516
1517 (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
1518 add_cfg_simplification the_fpm;
1519
1520 (* Run the main "interpreter loop" now. *)
1521 Toplevel.main_loop the_fpm the_execution_engine stream;
1522
1523 (* Print out all the generated code. *)
1524 dump_module Codegen.the_module
1525;;
1526
1527main ()
1528</pre>
1529</dd>
1530
1531<dt>bindings.c</dt>
1532<dd class="doc_code">
1533<pre>
1534#include &lt;stdio.h&gt;
1535
1536/* putchard - putchar that takes a double and returns 0. */
1537extern double putchard(double X) {
1538 putchar((char)X);
1539 return 0;
1540}
1541
1542/* printd - printf that takes a double prints it as "%f\n", returning 0. */
1543extern double printd(double X) {
1544 printf("%f\n", X);
1545 return 0;
1546}
1547</pre>
1548</dd>
1549</dl>
1550
1551<a href="OCamlLangImpl7.html">Next: Extending the language: mutable variables /
1552SSA construction</a>
1553</div>
1554
1555<!-- *********************************************************************** -->
1556<hr>
1557<address>
1558 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1559 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1560 <a href="http://validator.w3.org/check/referer"><img
1561 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
1562
1563 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1564 <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br>
1565 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
1566 Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
1567</address>
1568</body>
1569</html>