blob: 146488e507baaff058a8ef8f01e21e94d22c52c4 [file] [log] [blame]
Chris Lattnerfe718932008-01-06 01:10:31 +00001//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
Chris Lattner6cefb772008-01-05 22:25:12 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Chris Lattnerfe718932008-01-06 01:10:31 +000010// This file implements the CodeGenDAGPatterns class, which is used to read and
Chris Lattner6cefb772008-01-05 22:25:12 +000011// represent the patterns present in a .td file for instructions.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattner93c7e412008-01-05 23:37:52 +000015#include "CodeGenDAGPatterns.h"
Chris Lattner6cefb772008-01-05 22:25:12 +000016#include "Record.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/Support/Debug.h"
Chris Lattner6cefb772008-01-05 22:25:12 +000019#include "llvm/Support/Streams.h"
Chris Lattner6cefb772008-01-05 22:25:12 +000020#include <set>
Chuck Rose III9a79de32008-01-15 21:43:17 +000021#include <algorithm>
Chris Lattner6cefb772008-01-05 22:25:12 +000022using namespace llvm;
23
24//===----------------------------------------------------------------------===//
25// Helpers for working with extended types.
26
27/// FilterVTs - Filter a list of VT's according to a predicate.
28///
29template<typename T>
30static std::vector<MVT::ValueType>
31FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) {
32 std::vector<MVT::ValueType> Result;
33 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
34 if (Filter(InVTs[i]))
35 Result.push_back(InVTs[i]);
36 return Result;
37}
38
39template<typename T>
40static std::vector<unsigned char>
41FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
42 std::vector<unsigned char> Result;
43 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
44 if (Filter((MVT::ValueType)InVTs[i]))
45 Result.push_back(InVTs[i]);
46 return Result;
47}
48
49static std::vector<unsigned char>
50ConvertVTs(const std::vector<MVT::ValueType> &InVTs) {
51 std::vector<unsigned char> Result;
52 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
53 Result.push_back(InVTs[i]);
54 return Result;
55}
56
57static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
58 const std::vector<unsigned char> &RHS) {
59 if (LHS.size() > RHS.size()) return false;
60 for (unsigned i = 0, e = LHS.size(); i != e; ++i)
61 if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
62 return false;
63 return true;
64}
65
66/// isExtIntegerVT - Return true if the specified extended value type vector
67/// contains isInt or an integer value type.
68namespace llvm {
69namespace MVT {
70bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
71 assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
72 return EVTs[0] == isInt || !(FilterEVTs(EVTs, isInteger).empty());
73}
74
75/// isExtFloatingPointVT - Return true if the specified extended value type
76/// vector contains isFP or a FP value type.
77bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
78 assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
79 return EVTs[0] == isFP || !(FilterEVTs(EVTs, isFloatingPoint).empty());
80}
81} // end namespace MVT.
82} // end namespace llvm.
83
84//===----------------------------------------------------------------------===//
85// SDTypeConstraint implementation
86//
87
88SDTypeConstraint::SDTypeConstraint(Record *R) {
89 OperandNo = R->getValueAsInt("OperandNum");
90
91 if (R->isSubClassOf("SDTCisVT")) {
92 ConstraintType = SDTCisVT;
93 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
94 } else if (R->isSubClassOf("SDTCisPtrTy")) {
95 ConstraintType = SDTCisPtrTy;
96 } else if (R->isSubClassOf("SDTCisInt")) {
97 ConstraintType = SDTCisInt;
98 } else if (R->isSubClassOf("SDTCisFP")) {
99 ConstraintType = SDTCisFP;
100 } else if (R->isSubClassOf("SDTCisSameAs")) {
101 ConstraintType = SDTCisSameAs;
102 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
103 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
104 ConstraintType = SDTCisVTSmallerThanOp;
105 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
106 R->getValueAsInt("OtherOperandNum");
107 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
108 ConstraintType = SDTCisOpSmallerThanOp;
109 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
110 R->getValueAsInt("BigOperandNum");
111 } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) {
112 ConstraintType = SDTCisIntVectorOfSameSize;
113 x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum =
114 R->getValueAsInt("OtherOpNum");
Nate Begemanb5af3342008-02-09 01:37:05 +0000115 } else if (R->isSubClassOf("SDTCisEltOfVec")) {
116 ConstraintType = SDTCisEltOfVec;
117 x.SDTCisEltOfVec_Info.OtherOperandNum =
118 R->getValueAsInt("OtherOpNum");
Chris Lattner6cefb772008-01-05 22:25:12 +0000119 } else {
120 cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
121 exit(1);
122 }
123}
124
125/// getOperandNum - Return the node corresponding to operand #OpNo in tree
126/// N, which has NumResults results.
127TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
128 TreePatternNode *N,
129 unsigned NumResults) const {
130 assert(NumResults <= 1 &&
131 "We only work with nodes with zero or one result so far!");
132
133 if (OpNo >= (NumResults + N->getNumChildren())) {
134 cerr << "Invalid operand number " << OpNo << " ";
135 N->dump();
136 cerr << '\n';
137 exit(1);
138 }
139
140 if (OpNo < NumResults)
141 return N; // FIXME: need value #
142 else
143 return N->getChild(OpNo-NumResults);
144}
145
146/// ApplyTypeConstraint - Given a node in a pattern, apply this type
147/// constraint to the nodes operands. This returns true if it makes a
148/// change, false otherwise. If a type contradiction is found, throw an
149/// exception.
150bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
151 const SDNodeInfo &NodeInfo,
152 TreePattern &TP) const {
153 unsigned NumResults = NodeInfo.getNumResults();
154 assert(NumResults <= 1 &&
155 "We only work with nodes with zero or one result so far!");
156
157 // Check that the number of operands is sane. Negative operands -> varargs.
158 if (NodeInfo.getNumOperands() >= 0) {
159 if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
160 TP.error(N->getOperator()->getName() + " node requires exactly " +
161 itostr(NodeInfo.getNumOperands()) + " operands!");
162 }
163
164 const CodeGenTarget &CGT = TP.getDAGPatterns().getTargetInfo();
165
166 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
167
168 switch (ConstraintType) {
169 default: assert(0 && "Unknown constraint type!");
170 case SDTCisVT:
171 // Operand must be a particular type.
172 return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
173 case SDTCisPtrTy: {
174 // Operand must be same as target pointer type.
175 return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
176 }
177 case SDTCisInt: {
178 // If there is only one integer type supported, this must be it.
179 std::vector<MVT::ValueType> IntVTs =
180 FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger);
181
182 // If we found exactly one supported integer type, apply it.
183 if (IntVTs.size() == 1)
184 return NodeToApply->UpdateNodeType(IntVTs[0], TP);
185 return NodeToApply->UpdateNodeType(MVT::isInt, TP);
186 }
187 case SDTCisFP: {
188 // If there is only one FP type supported, this must be it.
189 std::vector<MVT::ValueType> FPVTs =
190 FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint);
191
192 // If we found exactly one supported FP type, apply it.
193 if (FPVTs.size() == 1)
194 return NodeToApply->UpdateNodeType(FPVTs[0], TP);
195 return NodeToApply->UpdateNodeType(MVT::isFP, TP);
196 }
197 case SDTCisSameAs: {
198 TreePatternNode *OtherNode =
199 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
200 return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
201 OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
202 }
203 case SDTCisVTSmallerThanOp: {
204 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
205 // have an integer type that is smaller than the VT.
206 if (!NodeToApply->isLeaf() ||
207 !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
208 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
209 ->isSubClassOf("ValueType"))
210 TP.error(N->getOperator()->getName() + " expects a VT operand!");
211 MVT::ValueType VT =
212 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
213 if (!MVT::isInteger(VT))
214 TP.error(N->getOperator()->getName() + " VT operand must be integer!");
215
216 TreePatternNode *OtherNode =
217 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
218
219 // It must be integer.
220 bool MadeChange = false;
221 MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP);
222
223 // This code only handles nodes that have one type set. Assert here so
224 // that we can change this if we ever need to deal with multiple value
225 // types at this point.
226 assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
227 if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
228 OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error.
229 return false;
230 }
231 case SDTCisOpSmallerThanOp: {
232 TreePatternNode *BigOperand =
233 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
234
235 // Both operands must be integer or FP, but we don't care which.
236 bool MadeChange = false;
237
238 // This code does not currently handle nodes which have multiple types,
239 // where some types are integer, and some are fp. Assert that this is not
240 // the case.
241 assert(!(MVT::isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
242 MVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
243 !(MVT::isExtIntegerInVTs(BigOperand->getExtTypes()) &&
244 MVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
245 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
246 if (MVT::isExtIntegerInVTs(NodeToApply->getExtTypes()))
247 MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP);
248 else if (MVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
249 MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP);
250 if (MVT::isExtIntegerInVTs(BigOperand->getExtTypes()))
251 MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP);
252 else if (MVT::isExtFloatingPointInVTs(BigOperand->getExtTypes()))
253 MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP);
254
255 std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes();
256
257 if (MVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) {
258 VTs = FilterVTs(VTs, MVT::isInteger);
259 } else if (MVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
260 VTs = FilterVTs(VTs, MVT::isFloatingPoint);
261 } else {
262 VTs.clear();
263 }
264
265 switch (VTs.size()) {
266 default: // Too many VT's to pick from.
267 case 0: break; // No info yet.
268 case 1:
269 // Only one VT of this flavor. Cannot ever satisify the constraints.
270 return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw
271 case 2:
272 // If we have exactly two possible types, the little operand must be the
273 // small one, the big operand should be the big one. Common with
274 // float/double for example.
275 assert(VTs[0] < VTs[1] && "Should be sorted!");
276 MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
277 MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
278 break;
279 }
280 return MadeChange;
281 }
282 case SDTCisIntVectorOfSameSize: {
283 TreePatternNode *OtherOperand =
284 getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum,
285 N, NumResults);
286 if (OtherOperand->hasTypeSet()) {
287 if (!MVT::isVector(OtherOperand->getTypeNum(0)))
288 TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
289 MVT::ValueType IVT = OtherOperand->getTypeNum(0);
290 IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT));
291 return NodeToApply->UpdateNodeType(IVT, TP);
292 }
293 return false;
294 }
Nate Begemanb5af3342008-02-09 01:37:05 +0000295 case SDTCisEltOfVec: {
296 TreePatternNode *OtherOperand =
297 getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum,
298 N, NumResults);
299 if (OtherOperand->hasTypeSet()) {
300 if (!MVT::isVector(OtherOperand->getTypeNum(0)))
301 TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
302 MVT::ValueType IVT = OtherOperand->getTypeNum(0);
303 IVT = MVT::getVectorElementType(IVT);
304 return NodeToApply->UpdateNodeType(IVT, TP);
305 }
306 return false;
307 }
Chris Lattner6cefb772008-01-05 22:25:12 +0000308 }
309 return false;
310}
311
312//===----------------------------------------------------------------------===//
313// SDNodeInfo implementation
314//
315SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
316 EnumName = R->getValueAsString("Opcode");
317 SDClassName = R->getValueAsString("SDClass");
318 Record *TypeProfile = R->getValueAsDef("TypeProfile");
319 NumResults = TypeProfile->getValueAsInt("NumResults");
320 NumOperands = TypeProfile->getValueAsInt("NumOperands");
321
322 // Parse the properties.
323 Properties = 0;
324 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
325 for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
326 if (PropList[i]->getName() == "SDNPCommutative") {
327 Properties |= 1 << SDNPCommutative;
328 } else if (PropList[i]->getName() == "SDNPAssociative") {
329 Properties |= 1 << SDNPAssociative;
330 } else if (PropList[i]->getName() == "SDNPHasChain") {
331 Properties |= 1 << SDNPHasChain;
332 } else if (PropList[i]->getName() == "SDNPOutFlag") {
333 Properties |= 1 << SDNPOutFlag;
334 } else if (PropList[i]->getName() == "SDNPInFlag") {
335 Properties |= 1 << SDNPInFlag;
336 } else if (PropList[i]->getName() == "SDNPOptInFlag") {
337 Properties |= 1 << SDNPOptInFlag;
Chris Lattnerc8478d82008-01-06 06:44:58 +0000338 } else if (PropList[i]->getName() == "SDNPMayStore") {
339 Properties |= 1 << SDNPMayStore;
Chris Lattner710e9952008-01-10 04:38:57 +0000340 } else if (PropList[i]->getName() == "SDNPMayLoad") {
341 Properties |= 1 << SDNPMayLoad;
Chris Lattnerbc0b9f72008-01-10 05:39:30 +0000342 } else if (PropList[i]->getName() == "SDNPSideEffect") {
343 Properties |= 1 << SDNPSideEffect;
Chris Lattner6cefb772008-01-05 22:25:12 +0000344 } else {
345 cerr << "Unknown SD Node property '" << PropList[i]->getName()
346 << "' on node '" << R->getName() << "'!\n";
347 exit(1);
348 }
349 }
350
351
352 // Parse the type constraints.
353 std::vector<Record*> ConstraintList =
354 TypeProfile->getValueAsListOfDefs("Constraints");
355 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
356}
357
358//===----------------------------------------------------------------------===//
359// TreePatternNode implementation
360//
361
362TreePatternNode::~TreePatternNode() {
363#if 0 // FIXME: implement refcounted tree nodes!
364 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
365 delete getChild(i);
366#endif
367}
368
369/// UpdateNodeType - Set the node type of N to VT if VT contains
370/// information. If N already contains a conflicting type, then throw an
371/// exception. This returns true if any information was updated.
372///
373bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
374 TreePattern &TP) {
375 assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
376
377 if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
378 return false;
379 if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
380 setTypes(ExtVTs);
381 return true;
382 }
383
384 if (getExtTypeNum(0) == MVT::iPTR) {
385 if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt)
386 return false;
387 if (MVT::isExtIntegerInVTs(ExtVTs)) {
388 std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, MVT::isInteger);
389 if (FVTs.size()) {
390 setTypes(ExtVTs);
391 return true;
392 }
393 }
394 }
395
396 if (ExtVTs[0] == MVT::isInt && MVT::isExtIntegerInVTs(getExtTypes())) {
397 assert(hasTypeSet() && "should be handled above!");
398 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
399 if (getExtTypes() == FVTs)
400 return false;
401 setTypes(FVTs);
402 return true;
403 }
404 if (ExtVTs[0] == MVT::iPTR && MVT::isExtIntegerInVTs(getExtTypes())) {
405 //assert(hasTypeSet() && "should be handled above!");
406 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
407 if (getExtTypes() == FVTs)
408 return false;
409 if (FVTs.size()) {
410 setTypes(FVTs);
411 return true;
412 }
413 }
414 if (ExtVTs[0] == MVT::isFP && MVT::isExtFloatingPointInVTs(getExtTypes())) {
415 assert(hasTypeSet() && "should be handled above!");
416 std::vector<unsigned char> FVTs =
417 FilterEVTs(getExtTypes(), MVT::isFloatingPoint);
418 if (getExtTypes() == FVTs)
419 return false;
420 setTypes(FVTs);
421 return true;
422 }
423
424 // If we know this is an int or fp type, and we are told it is a specific one,
425 // take the advice.
426 //
427 // Similarly, we should probably set the type here to the intersection of
428 // {isInt|isFP} and ExtVTs
429 if ((getExtTypeNum(0) == MVT::isInt && MVT::isExtIntegerInVTs(ExtVTs)) ||
430 (getExtTypeNum(0) == MVT::isFP && MVT::isExtFloatingPointInVTs(ExtVTs))){
431 setTypes(ExtVTs);
432 return true;
433 }
434 if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) {
435 setTypes(ExtVTs);
436 return true;
437 }
438
439 if (isLeaf()) {
440 dump();
441 cerr << " ";
442 TP.error("Type inference contradiction found in node!");
443 } else {
444 TP.error("Type inference contradiction found in node " +
445 getOperator()->getName() + "!");
446 }
447 return true; // unreachable
448}
449
450
451void TreePatternNode::print(std::ostream &OS) const {
452 if (isLeaf()) {
453 OS << *getLeafValue();
454 } else {
455 OS << "(" << getOperator()->getName();
456 }
457
458 // FIXME: At some point we should handle printing all the value types for
459 // nodes that are multiply typed.
460 switch (getExtTypeNum(0)) {
461 case MVT::Other: OS << ":Other"; break;
462 case MVT::isInt: OS << ":isInt"; break;
463 case MVT::isFP : OS << ":isFP"; break;
464 case MVT::isUnknown: ; /*OS << ":?";*/ break;
465 case MVT::iPTR: OS << ":iPTR"; break;
466 default: {
467 std::string VTName = llvm::getName(getTypeNum(0));
468 // Strip off MVT:: prefix if present.
469 if (VTName.substr(0,5) == "MVT::")
470 VTName = VTName.substr(5);
471 OS << ":" << VTName;
472 break;
473 }
474 }
475
476 if (!isLeaf()) {
477 if (getNumChildren() != 0) {
478 OS << " ";
479 getChild(0)->print(OS);
480 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
481 OS << ", ";
482 getChild(i)->print(OS);
483 }
484 }
485 OS << ")";
486 }
487
488 if (!PredicateFn.empty())
489 OS << "<<P:" << PredicateFn << ">>";
490 if (TransformFn)
491 OS << "<<X:" << TransformFn->getName() << ">>";
492 if (!getName().empty())
493 OS << ":$" << getName();
494
495}
496void TreePatternNode::dump() const {
497 print(*cerr.stream());
498}
499
500/// isIsomorphicTo - Return true if this node is recursively isomorphic to
501/// the specified node. For this comparison, all of the state of the node
502/// is considered, except for the assigned name. Nodes with differing names
503/// that are otherwise identical are considered isomorphic.
504bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const {
505 if (N == this) return true;
506 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
507 getPredicateFn() != N->getPredicateFn() ||
508 getTransformFn() != N->getTransformFn())
509 return false;
510
511 if (isLeaf()) {
512 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()))
513 if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue()))
514 return DI->getDef() == NDI->getDef();
515 return getLeafValue() == N->getLeafValue();
516 }
517
518 if (N->getOperator() != getOperator() ||
519 N->getNumChildren() != getNumChildren()) return false;
520 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
521 if (!getChild(i)->isIsomorphicTo(N->getChild(i)))
522 return false;
523 return true;
524}
525
526/// clone - Make a copy of this tree and all of its children.
527///
528TreePatternNode *TreePatternNode::clone() const {
529 TreePatternNode *New;
530 if (isLeaf()) {
531 New = new TreePatternNode(getLeafValue());
532 } else {
533 std::vector<TreePatternNode*> CChildren;
534 CChildren.reserve(Children.size());
535 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
536 CChildren.push_back(getChild(i)->clone());
537 New = new TreePatternNode(getOperator(), CChildren);
538 }
539 New->setName(getName());
540 New->setTypes(getExtTypes());
541 New->setPredicateFn(getPredicateFn());
542 New->setTransformFn(getTransformFn());
543 return New;
544}
545
546/// SubstituteFormalArguments - Replace the formal arguments in this tree
547/// with actual values specified by ArgMap.
548void TreePatternNode::
549SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
550 if (isLeaf()) return;
551
552 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
553 TreePatternNode *Child = getChild(i);
554 if (Child->isLeaf()) {
555 Init *Val = Child->getLeafValue();
556 if (dynamic_cast<DefInit*>(Val) &&
557 static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
558 // We found a use of a formal argument, replace it with its value.
559 Child = ArgMap[Child->getName()];
560 assert(Child && "Couldn't find formal argument!");
561 setChild(i, Child);
562 }
563 } else {
564 getChild(i)->SubstituteFormalArguments(ArgMap);
565 }
566 }
567}
568
569
570/// InlinePatternFragments - If this pattern refers to any pattern
571/// fragments, inline them into place, giving us a pattern without any
572/// PatFrag references.
573TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
574 if (isLeaf()) return this; // nothing to do.
575 Record *Op = getOperator();
576
577 if (!Op->isSubClassOf("PatFrag")) {
578 // Just recursively inline children nodes.
579 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
580 setChild(i, getChild(i)->InlinePatternFragments(TP));
581 return this;
582 }
583
584 // Otherwise, we found a reference to a fragment. First, look up its
585 // TreePattern record.
586 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
587
588 // Verify that we are passing the right number of operands.
589 if (Frag->getNumArgs() != Children.size())
590 TP.error("'" + Op->getName() + "' fragment requires " +
591 utostr(Frag->getNumArgs()) + " operands!");
592
593 TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
594
595 // Resolve formal arguments to their actual value.
596 if (Frag->getNumArgs()) {
597 // Compute the map of formal to actual arguments.
598 std::map<std::string, TreePatternNode*> ArgMap;
599 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
600 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
601
602 FragTree->SubstituteFormalArguments(ArgMap);
603 }
604
605 FragTree->setName(getName());
606 FragTree->UpdateNodeType(getExtTypes(), TP);
607
608 // Get a new copy of this fragment to stitch into here.
609 //delete this; // FIXME: implement refcounting!
610 return FragTree;
611}
612
613/// getImplicitType - Check to see if the specified record has an implicit
614/// type which should be applied to it. This infer the type of register
615/// references from the register file information, for example.
616///
617static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
618 TreePattern &TP) {
619 // Some common return values
620 std::vector<unsigned char> Unknown(1, MVT::isUnknown);
621 std::vector<unsigned char> Other(1, MVT::Other);
622
623 // Check to see if this is a register or a register class...
624 if (R->isSubClassOf("RegisterClass")) {
625 if (NotRegisters)
626 return Unknown;
627 const CodeGenRegisterClass &RC =
628 TP.getDAGPatterns().getTargetInfo().getRegisterClass(R);
629 return ConvertVTs(RC.getValueTypes());
630 } else if (R->isSubClassOf("PatFrag")) {
631 // Pattern fragment types will be resolved when they are inlined.
632 return Unknown;
633 } else if (R->isSubClassOf("Register")) {
634 if (NotRegisters)
635 return Unknown;
636 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
637 return T.getRegisterVTs(R);
638 } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
639 // Using a VTSDNode or CondCodeSDNode.
640 return Other;
641 } else if (R->isSubClassOf("ComplexPattern")) {
642 if (NotRegisters)
643 return Unknown;
644 std::vector<unsigned char>
645 ComplexPat(1, TP.getDAGPatterns().getComplexPattern(R).getValueType());
646 return ComplexPat;
647 } else if (R->getName() == "ptr_rc") {
648 Other[0] = MVT::iPTR;
649 return Other;
650 } else if (R->getName() == "node" || R->getName() == "srcvalue" ||
651 R->getName() == "zero_reg") {
652 // Placeholder.
653 return Unknown;
654 }
655
656 TP.error("Unknown node flavor used in pattern: " + R->getName());
657 return Other;
658}
659
Chris Lattnere67bde52008-01-06 05:36:50 +0000660
661/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
662/// CodeGenIntrinsic information for it, otherwise return a null pointer.
663const CodeGenIntrinsic *TreePatternNode::
664getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
665 if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
666 getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
667 getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
668 return 0;
669
670 unsigned IID =
671 dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
672 return &CDP.getIntrinsicInfo(IID);
673}
674
675
Chris Lattner6cefb772008-01-05 22:25:12 +0000676/// ApplyTypeConstraints - Apply all of the type constraints relevent to
677/// this node and its children in the tree. This returns true if it makes a
678/// change, false otherwise. If a type contradiction is found, throw an
679/// exception.
680bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
Chris Lattnerfe718932008-01-06 01:10:31 +0000681 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
Chris Lattner6cefb772008-01-05 22:25:12 +0000682 if (isLeaf()) {
683 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
684 // If it's a regclass or something else known, include the type.
685 return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
686 } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
687 // Int inits are always integers. :)
688 bool MadeChange = UpdateNodeType(MVT::isInt, TP);
689
690 if (hasTypeSet()) {
691 // At some point, it may make sense for this tree pattern to have
692 // multiple types. Assert here that it does not, so we revisit this
693 // code when appropriate.
694 assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
695 MVT::ValueType VT = getTypeNum(0);
696 for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
697 assert(getTypeNum(i) == VT && "TreePattern has too many types!");
698
699 VT = getTypeNum(0);
700 if (VT != MVT::iPTR) {
701 unsigned Size = MVT::getSizeInBits(VT);
702 // Make sure that the value is representable for this type.
703 if (Size < 32) {
704 int Val = (II->getValue() << (32-Size)) >> (32-Size);
705 if (Val != II->getValue())
706 TP.error("Sign-extended integer value '" + itostr(II->getValue())+
707 "' is out of range for type '" +
708 getEnumName(getTypeNum(0)) + "'!");
709 }
710 }
711 }
712
713 return MadeChange;
714 }
715 return false;
716 }
717
718 // special handling for set, which isn't really an SDNode.
719 if (getOperator()->getName() == "set") {
720 assert (getNumChildren() >= 2 && "Missing RHS of a set?");
721 unsigned NC = getNumChildren();
722 bool MadeChange = false;
723 for (unsigned i = 0; i < NC-1; ++i) {
724 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
725 MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters);
726
727 // Types of operands must match.
728 MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(),
729 TP);
730 MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(),
731 TP);
732 MadeChange |= UpdateNodeType(MVT::isVoid, TP);
733 }
734 return MadeChange;
735 } else if (getOperator()->getName() == "implicit" ||
736 getOperator()->getName() == "parallel") {
737 bool MadeChange = false;
738 for (unsigned i = 0; i < getNumChildren(); ++i)
739 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
740 MadeChange |= UpdateNodeType(MVT::isVoid, TP);
741 return MadeChange;
Chris Lattnere67bde52008-01-06 05:36:50 +0000742 } else if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
Chris Lattner6cefb772008-01-05 22:25:12 +0000743 bool MadeChange = false;
744
745 // Apply the result type to the node.
Chris Lattnere67bde52008-01-06 05:36:50 +0000746 MadeChange = UpdateNodeType(Int->ArgVTs[0], TP);
Chris Lattner6cefb772008-01-05 22:25:12 +0000747
Chris Lattnere67bde52008-01-06 05:36:50 +0000748 if (getNumChildren() != Int->ArgVTs.size())
749 TP.error("Intrinsic '" + Int->Name + "' expects " +
750 utostr(Int->ArgVTs.size()-1) + " operands, not " +
Chris Lattner6cefb772008-01-05 22:25:12 +0000751 utostr(getNumChildren()-1) + " operands!");
752
753 // Apply type info to the intrinsic ID.
754 MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
755
756 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
Chris Lattnere67bde52008-01-06 05:36:50 +0000757 MVT::ValueType OpVT = Int->ArgVTs[i];
Chris Lattner6cefb772008-01-05 22:25:12 +0000758 MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
759 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
760 }
761 return MadeChange;
762 } else if (getOperator()->isSubClassOf("SDNode")) {
763 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
764
765 bool MadeChange = NI.ApplyTypeConstraints(this, TP);
766 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
767 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
768 // Branch, etc. do not produce results and top-level forms in instr pattern
769 // must have void types.
770 if (NI.getNumResults() == 0)
771 MadeChange |= UpdateNodeType(MVT::isVoid, TP);
772
773 // If this is a vector_shuffle operation, apply types to the build_vector
774 // operation. The types of the integers don't matter, but this ensures they
775 // won't get checked.
776 if (getOperator()->getName() == "vector_shuffle" &&
777 getChild(2)->getOperator()->getName() == "build_vector") {
778 TreePatternNode *BV = getChild(2);
779 const std::vector<MVT::ValueType> &LegalVTs
780 = CDP.getTargetInfo().getLegalValueTypes();
781 MVT::ValueType LegalIntVT = MVT::Other;
782 for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i)
783 if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) {
784 LegalIntVT = LegalVTs[i];
785 break;
786 }
787 assert(LegalIntVT != MVT::Other && "No legal integer VT?");
788
789 for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i)
790 MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP);
791 }
792 return MadeChange;
793 } else if (getOperator()->isSubClassOf("Instruction")) {
794 const DAGInstruction &Inst = CDP.getInstruction(getOperator());
795 bool MadeChange = false;
796 unsigned NumResults = Inst.getNumResults();
797
798 assert(NumResults <= 1 &&
799 "Only supports zero or one result instrs!");
800
801 CodeGenInstruction &InstInfo =
802 CDP.getTargetInfo().getInstruction(getOperator()->getName());
803 // Apply the result type to the node
804 if (NumResults == 0 || InstInfo.NumDefs == 0) {
805 MadeChange = UpdateNodeType(MVT::isVoid, TP);
806 } else {
807 Record *ResultNode = Inst.getResult(0);
808
809 if (ResultNode->getName() == "ptr_rc") {
810 std::vector<unsigned char> VT;
811 VT.push_back(MVT::iPTR);
812 MadeChange = UpdateNodeType(VT, TP);
813 } else {
814 assert(ResultNode->isSubClassOf("RegisterClass") &&
815 "Operands should be register classes!");
816
817 const CodeGenRegisterClass &RC =
818 CDP.getTargetInfo().getRegisterClass(ResultNode);
819 MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
820 }
821 }
822
823 unsigned ChildNo = 0;
824 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
825 Record *OperandNode = Inst.getOperand(i);
826
827 // If the instruction expects a predicate or optional def operand, we
828 // codegen this by setting the operand to it's default value if it has a
829 // non-empty DefaultOps field.
830 if ((OperandNode->isSubClassOf("PredicateOperand") ||
831 OperandNode->isSubClassOf("OptionalDefOperand")) &&
832 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
833 continue;
834
835 // Verify that we didn't run out of provided operands.
836 if (ChildNo >= getNumChildren())
837 TP.error("Instruction '" + getOperator()->getName() +
838 "' expects more operands than were provided.");
839
840 MVT::ValueType VT;
841 TreePatternNode *Child = getChild(ChildNo++);
842 if (OperandNode->isSubClassOf("RegisterClass")) {
843 const CodeGenRegisterClass &RC =
844 CDP.getTargetInfo().getRegisterClass(OperandNode);
845 MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
846 } else if (OperandNode->isSubClassOf("Operand")) {
847 VT = getValueType(OperandNode->getValueAsDef("Type"));
848 MadeChange |= Child->UpdateNodeType(VT, TP);
849 } else if (OperandNode->getName() == "ptr_rc") {
850 MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
851 } else {
852 assert(0 && "Unknown operand type!");
853 abort();
854 }
855 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
856 }
857
858 if (ChildNo != getNumChildren())
859 TP.error("Instruction '" + getOperator()->getName() +
860 "' was provided too many operands!");
861
862 return MadeChange;
863 } else {
864 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
865
866 // Node transforms always take one operand.
867 if (getNumChildren() != 1)
868 TP.error("Node transform '" + getOperator()->getName() +
869 "' requires one operand!");
870
871 // If either the output or input of the xform does not have exact
872 // type info. We assume they must be the same. Otherwise, it is perfectly
873 // legal to transform from one type to a completely different type.
874 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
875 bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
876 MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
877 return MadeChange;
878 }
879 return false;
880 }
881}
882
883/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
884/// RHS of a commutative operation, not the on LHS.
885static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
886 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
887 return true;
888 if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
889 return true;
890 return false;
891}
892
893
894/// canPatternMatch - If it is impossible for this pattern to match on this
895/// target, fill in Reason and return false. Otherwise, return true. This is
896/// used as a santity check for .td files (to prevent people from writing stuff
897/// that can never possibly work), and to prevent the pattern permuter from
898/// generating stuff that is useless.
899bool TreePatternNode::canPatternMatch(std::string &Reason,
Chris Lattnerfe718932008-01-06 01:10:31 +0000900 CodeGenDAGPatterns &CDP){
Chris Lattner6cefb772008-01-05 22:25:12 +0000901 if (isLeaf()) return true;
902
903 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
904 if (!getChild(i)->canPatternMatch(Reason, CDP))
905 return false;
906
907 // If this is an intrinsic, handle cases that would make it not match. For
908 // example, if an operand is required to be an immediate.
909 if (getOperator()->isSubClassOf("Intrinsic")) {
910 // TODO:
911 return true;
912 }
913
914 // If this node is a commutative operator, check that the LHS isn't an
915 // immediate.
916 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
917 if (NodeInfo.hasProperty(SDNPCommutative)) {
918 // Scan all of the operands of the node and make sure that only the last one
919 // is a constant node, unless the RHS also is.
920 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
921 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i)
922 if (OnlyOnRHSOfCommutative(getChild(i))) {
923 Reason="Immediate value must be on the RHS of commutative operators!";
924 return false;
925 }
926 }
927 }
928
929 return true;
930}
931
932//===----------------------------------------------------------------------===//
933// TreePattern implementation
934//
935
936TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
Chris Lattnerfe718932008-01-06 01:10:31 +0000937 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
Chris Lattner6cefb772008-01-05 22:25:12 +0000938 isInputPattern = isInput;
939 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
940 Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
941}
942
943TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
Chris Lattnerfe718932008-01-06 01:10:31 +0000944 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
Chris Lattner6cefb772008-01-05 22:25:12 +0000945 isInputPattern = isInput;
946 Trees.push_back(ParseTreePattern(Pat));
947}
948
949TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
Chris Lattnerfe718932008-01-06 01:10:31 +0000950 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
Chris Lattner6cefb772008-01-05 22:25:12 +0000951 isInputPattern = isInput;
952 Trees.push_back(Pat);
953}
954
955
956
957void TreePattern::error(const std::string &Msg) const {
958 dump();
959 throw "In " + TheRecord->getName() + ": " + Msg;
960}
961
962TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
963 DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
964 if (!OpDef) error("Pattern has unexpected operator type!");
965 Record *Operator = OpDef->getDef();
966
967 if (Operator->isSubClassOf("ValueType")) {
968 // If the operator is a ValueType, then this must be "type cast" of a leaf
969 // node.
970 if (Dag->getNumArgs() != 1)
971 error("Type cast only takes one operand!");
972
973 Init *Arg = Dag->getArg(0);
974 TreePatternNode *New;
975 if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
976 Record *R = DI->getDef();
977 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
978 Dag->setArg(0, new DagInit(DI,
979 std::vector<std::pair<Init*, std::string> >()));
980 return ParseTreePattern(Dag);
981 }
982 New = new TreePatternNode(DI);
983 } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
984 New = ParseTreePattern(DI);
985 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
986 New = new TreePatternNode(II);
987 if (!Dag->getArgName(0).empty())
988 error("Constant int argument should not have a name!");
989 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
990 // Turn this into an IntInit.
991 Init *II = BI->convertInitializerTo(new IntRecTy());
992 if (II == 0 || !dynamic_cast<IntInit*>(II))
993 error("Bits value must be constants!");
994
995 New = new TreePatternNode(dynamic_cast<IntInit*>(II));
996 if (!Dag->getArgName(0).empty())
997 error("Constant int argument should not have a name!");
998 } else {
999 Arg->dump();
1000 error("Unknown leaf value for tree pattern!");
1001 return 0;
1002 }
1003
1004 // Apply the type cast.
1005 New->UpdateNodeType(getValueType(Operator), *this);
1006 New->setName(Dag->getArgName(0));
1007 return New;
1008 }
1009
1010 // Verify that this is something that makes sense for an operator.
1011 if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") &&
1012 !Operator->isSubClassOf("Instruction") &&
1013 !Operator->isSubClassOf("SDNodeXForm") &&
1014 !Operator->isSubClassOf("Intrinsic") &&
1015 Operator->getName() != "set" &&
1016 Operator->getName() != "implicit" &&
1017 Operator->getName() != "parallel")
1018 error("Unrecognized node '" + Operator->getName() + "'!");
1019
1020 // Check to see if this is something that is illegal in an input pattern.
1021 if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
1022 Operator->isSubClassOf("SDNodeXForm")))
1023 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
1024
1025 std::vector<TreePatternNode*> Children;
1026
1027 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
1028 Init *Arg = Dag->getArg(i);
1029 if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
1030 Children.push_back(ParseTreePattern(DI));
1031 if (Children.back()->getName().empty())
1032 Children.back()->setName(Dag->getArgName(i));
1033 } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
1034 Record *R = DefI->getDef();
1035 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
1036 // TreePatternNode if its own.
1037 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
1038 Dag->setArg(i, new DagInit(DefI,
1039 std::vector<std::pair<Init*, std::string> >()));
1040 --i; // Revisit this node...
1041 } else {
1042 TreePatternNode *Node = new TreePatternNode(DefI);
1043 Node->setName(Dag->getArgName(i));
1044 Children.push_back(Node);
1045
1046 // Input argument?
1047 if (R->getName() == "node") {
1048 if (Dag->getArgName(i).empty())
1049 error("'node' argument requires a name to match with operand list");
1050 Args.push_back(Dag->getArgName(i));
1051 }
1052 }
1053 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
1054 TreePatternNode *Node = new TreePatternNode(II);
1055 if (!Dag->getArgName(i).empty())
1056 error("Constant int argument should not have a name!");
1057 Children.push_back(Node);
1058 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
1059 // Turn this into an IntInit.
1060 Init *II = BI->convertInitializerTo(new IntRecTy());
1061 if (II == 0 || !dynamic_cast<IntInit*>(II))
1062 error("Bits value must be constants!");
1063
1064 TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
1065 if (!Dag->getArgName(i).empty())
1066 error("Constant int argument should not have a name!");
1067 Children.push_back(Node);
1068 } else {
1069 cerr << '"';
1070 Arg->dump();
1071 cerr << "\": ";
1072 error("Unknown leaf value for tree pattern!");
1073 }
1074 }
1075
1076 // If the operator is an intrinsic, then this is just syntactic sugar for for
1077 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
1078 // convert the intrinsic name to a number.
1079 if (Operator->isSubClassOf("Intrinsic")) {
1080 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
1081 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
1082
1083 // If this intrinsic returns void, it must have side-effects and thus a
1084 // chain.
1085 if (Int.ArgVTs[0] == MVT::isVoid) {
1086 Operator = getDAGPatterns().get_intrinsic_void_sdnode();
1087 } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
1088 // Has side-effects, requires chain.
1089 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
1090 } else {
1091 // Otherwise, no chain.
1092 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1093 }
1094
1095 TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
1096 Children.insert(Children.begin(), IIDNode);
1097 }
1098
1099 return new TreePatternNode(Operator, Children);
1100}
1101
1102/// InferAllTypes - Infer/propagate as many types throughout the expression
1103/// patterns as possible. Return true if all types are infered, false
1104/// otherwise. Throw an exception if a type contradiction is found.
1105bool TreePattern::InferAllTypes() {
1106 bool MadeChange = true;
1107 while (MadeChange) {
1108 MadeChange = false;
1109 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1110 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
1111 }
1112
1113 bool HasUnresolvedTypes = false;
1114 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1115 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
1116 return !HasUnresolvedTypes;
1117}
1118
1119void TreePattern::print(std::ostream &OS) const {
1120 OS << getRecord()->getName();
1121 if (!Args.empty()) {
1122 OS << "(" << Args[0];
1123 for (unsigned i = 1, e = Args.size(); i != e; ++i)
1124 OS << ", " << Args[i];
1125 OS << ")";
1126 }
1127 OS << ": ";
1128
1129 if (Trees.size() > 1)
1130 OS << "[\n";
1131 for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1132 OS << "\t";
1133 Trees[i]->print(OS);
1134 OS << "\n";
1135 }
1136
1137 if (Trees.size() > 1)
1138 OS << "]\n";
1139}
1140
1141void TreePattern::dump() const { print(*cerr.stream()); }
1142
1143//===----------------------------------------------------------------------===//
Chris Lattnerfe718932008-01-06 01:10:31 +00001144// CodeGenDAGPatterns implementation
Chris Lattner6cefb772008-01-05 22:25:12 +00001145//
1146
1147// FIXME: REMOVE OSTREAM ARGUMENT
Chris Lattnerfe718932008-01-06 01:10:31 +00001148CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) {
Chris Lattner6cefb772008-01-05 22:25:12 +00001149 Intrinsics = LoadIntrinsics(Records);
1150 ParseNodeInfo();
Chris Lattner443e3f92008-01-05 22:54:53 +00001151 ParseNodeTransforms();
Chris Lattner6cefb772008-01-05 22:25:12 +00001152 ParseComplexPatterns();
Chris Lattnerdc32f982008-01-05 22:43:57 +00001153 ParsePatternFragments();
Chris Lattner6cefb772008-01-05 22:25:12 +00001154 ParseDefaultOperands();
1155 ParseInstructions();
1156 ParsePatterns();
1157
1158 // Generate variants. For example, commutative patterns can match
1159 // multiple ways. Add them to PatternsToMatch as well.
1160 GenerateVariants();
1161}
1162
Chris Lattnerfe718932008-01-06 01:10:31 +00001163CodeGenDAGPatterns::~CodeGenDAGPatterns() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001164 for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
1165 E = PatternFragments.end(); I != E; ++I)
1166 delete I->second;
1167}
1168
1169
Chris Lattnerfe718932008-01-06 01:10:31 +00001170Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
Chris Lattner6cefb772008-01-05 22:25:12 +00001171 Record *N = Records.getDef(Name);
1172 if (!N || !N->isSubClassOf("SDNode")) {
1173 cerr << "Error getting SDNode '" << Name << "'!\n";
1174 exit(1);
1175 }
1176 return N;
1177}
1178
1179// Parse all of the SDNode definitions for the target, populating SDNodes.
Chris Lattnerfe718932008-01-06 01:10:31 +00001180void CodeGenDAGPatterns::ParseNodeInfo() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001181 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
1182 while (!Nodes.empty()) {
1183 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
1184 Nodes.pop_back();
1185 }
1186
1187 // Get the buildin intrinsic nodes.
1188 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
1189 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
1190 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
1191}
1192
1193/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
1194/// map, and emit them to the file as functions.
Chris Lattnerfe718932008-01-06 01:10:31 +00001195void CodeGenDAGPatterns::ParseNodeTransforms() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001196 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
1197 while (!Xforms.empty()) {
1198 Record *XFormNode = Xforms.back();
1199 Record *SDNode = XFormNode->getValueAsDef("Opcode");
1200 std::string Code = XFormNode->getValueAsCode("XFormFunction");
Chris Lattner443e3f92008-01-05 22:54:53 +00001201 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
Chris Lattner6cefb772008-01-05 22:25:12 +00001202
1203 Xforms.pop_back();
1204 }
1205}
1206
Chris Lattnerfe718932008-01-06 01:10:31 +00001207void CodeGenDAGPatterns::ParseComplexPatterns() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001208 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
1209 while (!AMs.empty()) {
1210 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
1211 AMs.pop_back();
1212 }
1213}
1214
1215
1216/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
1217/// file, building up the PatternFragments map. After we've collected them all,
1218/// inline fragments together as necessary, so that there are no references left
1219/// inside a pattern fragment to a pattern fragment.
1220///
Chris Lattnerfe718932008-01-06 01:10:31 +00001221void CodeGenDAGPatterns::ParsePatternFragments() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001222 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
1223
Chris Lattnerdc32f982008-01-05 22:43:57 +00001224 // First step, parse all of the fragments.
Chris Lattner6cefb772008-01-05 22:25:12 +00001225 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
1226 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
1227 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
1228 PatternFragments[Fragments[i]] = P;
1229
Chris Lattnerdc32f982008-01-05 22:43:57 +00001230 // Validate the argument list, converting it to set, to discard duplicates.
Chris Lattner6cefb772008-01-05 22:25:12 +00001231 std::vector<std::string> &Args = P->getArgList();
Chris Lattnerdc32f982008-01-05 22:43:57 +00001232 std::set<std::string> OperandsSet(Args.begin(), Args.end());
Chris Lattner6cefb772008-01-05 22:25:12 +00001233
Chris Lattnerdc32f982008-01-05 22:43:57 +00001234 if (OperandsSet.count(""))
Chris Lattner6cefb772008-01-05 22:25:12 +00001235 P->error("Cannot have unnamed 'node' values in pattern fragment!");
1236
1237 // Parse the operands list.
1238 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
1239 DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
1240 // Special cases: ops == outs == ins. Different names are used to
1241 // improve readibility.
1242 if (!OpsOp ||
1243 (OpsOp->getDef()->getName() != "ops" &&
1244 OpsOp->getDef()->getName() != "outs" &&
1245 OpsOp->getDef()->getName() != "ins"))
1246 P->error("Operands list should start with '(ops ... '!");
1247
1248 // Copy over the arguments.
1249 Args.clear();
1250 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
1251 if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
1252 static_cast<DefInit*>(OpsList->getArg(j))->
1253 getDef()->getName() != "node")
1254 P->error("Operands list should all be 'node' values.");
1255 if (OpsList->getArgName(j).empty())
1256 P->error("Operands list should have names for each operand!");
Chris Lattnerdc32f982008-01-05 22:43:57 +00001257 if (!OperandsSet.count(OpsList->getArgName(j)))
Chris Lattner6cefb772008-01-05 22:25:12 +00001258 P->error("'" + OpsList->getArgName(j) +
1259 "' does not occur in pattern or was multiply specified!");
Chris Lattnerdc32f982008-01-05 22:43:57 +00001260 OperandsSet.erase(OpsList->getArgName(j));
Chris Lattner6cefb772008-01-05 22:25:12 +00001261 Args.push_back(OpsList->getArgName(j));
1262 }
1263
Chris Lattnerdc32f982008-01-05 22:43:57 +00001264 if (!OperandsSet.empty())
Chris Lattner6cefb772008-01-05 22:25:12 +00001265 P->error("Operands list does not contain an entry for operand '" +
Chris Lattnerdc32f982008-01-05 22:43:57 +00001266 *OperandsSet.begin() + "'!");
Chris Lattner6cefb772008-01-05 22:25:12 +00001267
Chris Lattnerdc32f982008-01-05 22:43:57 +00001268 // If there is a code init for this fragment, keep track of the fact that
1269 // this fragment uses it.
Chris Lattner6cefb772008-01-05 22:25:12 +00001270 std::string Code = Fragments[i]->getValueAsCode("Predicate");
Chris Lattnerdc32f982008-01-05 22:43:57 +00001271 if (!Code.empty())
Chris Lattner6cefb772008-01-05 22:25:12 +00001272 P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName());
Chris Lattner6cefb772008-01-05 22:25:12 +00001273
1274 // If there is a node transformation corresponding to this, keep track of
1275 // it.
1276 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
1277 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
1278 P->getOnlyTree()->setTransformFn(Transform);
1279 }
1280
Chris Lattner6cefb772008-01-05 22:25:12 +00001281 // Now that we've parsed all of the tree fragments, do a closure on them so
1282 // that there are not references to PatFrags left inside of them.
1283 for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
1284 E = PatternFragments.end(); I != E; ++I) {
1285 TreePattern *ThePat = I->second;
1286 ThePat->InlinePatternFragments();
1287
1288 // Infer as many types as possible. Don't worry about it if we don't infer
1289 // all of them, some may depend on the inputs of the pattern.
1290 try {
1291 ThePat->InferAllTypes();
1292 } catch (...) {
1293 // If this pattern fragment is not supported by this target (no types can
1294 // satisfy its constraints), just ignore it. If the bogus pattern is
1295 // actually used by instructions, the type consistency error will be
1296 // reported there.
1297 }
1298
1299 // If debugging, print out the pattern fragment result.
1300 DEBUG(ThePat->dump());
1301 }
1302}
1303
Chris Lattnerfe718932008-01-06 01:10:31 +00001304void CodeGenDAGPatterns::ParseDefaultOperands() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001305 std::vector<Record*> DefaultOps[2];
1306 DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
1307 DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
1308
1309 // Find some SDNode.
1310 assert(!SDNodes.empty() && "No SDNodes parsed?");
1311 Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
1312
1313 for (unsigned iter = 0; iter != 2; ++iter) {
1314 for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
1315 DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
1316
1317 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
1318 // SomeSDnode so that we can parse this.
1319 std::vector<std::pair<Init*, std::string> > Ops;
1320 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
1321 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
1322 DefaultInfo->getArgName(op)));
1323 DagInit *DI = new DagInit(SomeSDNode, Ops);
1324
1325 // Create a TreePattern to parse this.
1326 TreePattern P(DefaultOps[iter][i], DI, false, *this);
1327 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
1328
1329 // Copy the operands over into a DAGDefaultOperand.
1330 DAGDefaultOperand DefaultOpInfo;
1331
1332 TreePatternNode *T = P.getTree(0);
1333 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
1334 TreePatternNode *TPN = T->getChild(op);
1335 while (TPN->ApplyTypeConstraints(P, false))
1336 /* Resolve all types */;
1337
1338 if (TPN->ContainsUnresolvedType())
1339 if (iter == 0)
1340 throw "Value #" + utostr(i) + " of PredicateOperand '" +
1341 DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
1342 else
1343 throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
1344 DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
1345
1346 DefaultOpInfo.DefaultOps.push_back(TPN);
1347 }
1348
1349 // Insert it into the DefaultOperands map so we can find it later.
1350 DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
1351 }
1352 }
1353}
1354
1355/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
1356/// instruction input. Return true if this is a real use.
1357static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
1358 std::map<std::string, TreePatternNode*> &InstInputs,
1359 std::vector<Record*> &InstImpInputs) {
1360 // No name -> not interesting.
1361 if (Pat->getName().empty()) {
1362 if (Pat->isLeaf()) {
1363 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1364 if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
1365 I->error("Input " + DI->getDef()->getName() + " must be named!");
1366 else if (DI && DI->getDef()->isSubClassOf("Register"))
1367 InstImpInputs.push_back(DI->getDef());
1368 ;
1369 }
1370 return false;
1371 }
1372
1373 Record *Rec;
1374 if (Pat->isLeaf()) {
1375 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1376 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
1377 Rec = DI->getDef();
1378 } else {
1379 assert(Pat->getNumChildren() == 0 && "can't be a use with children!");
1380 Rec = Pat->getOperator();
1381 }
1382
1383 // SRCVALUE nodes are ignored.
1384 if (Rec->getName() == "srcvalue")
1385 return false;
1386
1387 TreePatternNode *&Slot = InstInputs[Pat->getName()];
1388 if (!Slot) {
1389 Slot = Pat;
1390 } else {
1391 Record *SlotRec;
1392 if (Slot->isLeaf()) {
1393 SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
1394 } else {
1395 assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
1396 SlotRec = Slot->getOperator();
1397 }
1398
1399 // Ensure that the inputs agree if we've already seen this input.
1400 if (Rec != SlotRec)
1401 I->error("All $" + Pat->getName() + " inputs must agree with each other");
1402 if (Slot->getExtTypes() != Pat->getExtTypes())
1403 I->error("All $" + Pat->getName() + " inputs must agree with each other");
1404 }
1405 return true;
1406}
1407
1408/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
1409/// part of "I", the instruction), computing the set of inputs and outputs of
1410/// the pattern. Report errors if we see anything naughty.
Chris Lattnerfe718932008-01-06 01:10:31 +00001411void CodeGenDAGPatterns::
Chris Lattner6cefb772008-01-05 22:25:12 +00001412FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
1413 std::map<std::string, TreePatternNode*> &InstInputs,
1414 std::map<std::string, TreePatternNode*>&InstResults,
1415 std::vector<Record*> &InstImpInputs,
1416 std::vector<Record*> &InstImpResults) {
1417 if (Pat->isLeaf()) {
1418 bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1419 if (!isUse && Pat->getTransformFn())
1420 I->error("Cannot specify a transform function for a non-input value!");
1421 return;
1422 } else if (Pat->getOperator()->getName() == "implicit") {
1423 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
1424 TreePatternNode *Dest = Pat->getChild(i);
1425 if (!Dest->isLeaf())
1426 I->error("implicitly defined value should be a register!");
1427
1428 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
1429 if (!Val || !Val->getDef()->isSubClassOf("Register"))
1430 I->error("implicitly defined value should be a register!");
1431 InstImpResults.push_back(Val->getDef());
1432 }
1433 return;
1434 } else if (Pat->getOperator()->getName() != "set") {
1435 // If this is not a set, verify that the children nodes are not void typed,
1436 // and recurse.
1437 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
1438 if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
1439 I->error("Cannot have void nodes inside of patterns!");
1440 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
1441 InstImpInputs, InstImpResults);
1442 }
1443
1444 // If this is a non-leaf node with no children, treat it basically as if
1445 // it were a leaf. This handles nodes like (imm).
1446 bool isUse = false;
1447 if (Pat->getNumChildren() == 0)
1448 isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1449
1450 if (!isUse && Pat->getTransformFn())
1451 I->error("Cannot specify a transform function for a non-input value!");
1452 return;
1453 }
1454
1455 // Otherwise, this is a set, validate and collect instruction results.
1456 if (Pat->getNumChildren() == 0)
1457 I->error("set requires operands!");
1458
1459 if (Pat->getTransformFn())
1460 I->error("Cannot specify a transform function on a set node!");
1461
1462 // Check the set destinations.
1463 unsigned NumDests = Pat->getNumChildren()-1;
1464 for (unsigned i = 0; i != NumDests; ++i) {
1465 TreePatternNode *Dest = Pat->getChild(i);
1466 if (!Dest->isLeaf())
1467 I->error("set destination should be a register!");
1468
1469 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
1470 if (!Val)
1471 I->error("set destination should be a register!");
1472
1473 if (Val->getDef()->isSubClassOf("RegisterClass") ||
1474 Val->getDef()->getName() == "ptr_rc") {
1475 if (Dest->getName().empty())
1476 I->error("set destination must have a name!");
1477 if (InstResults.count(Dest->getName()))
1478 I->error("cannot set '" + Dest->getName() +"' multiple times");
1479 InstResults[Dest->getName()] = Dest;
1480 } else if (Val->getDef()->isSubClassOf("Register")) {
1481 InstImpResults.push_back(Val->getDef());
1482 } else {
1483 I->error("set destination should be a register!");
1484 }
1485 }
1486
1487 // Verify and collect info from the computation.
1488 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
1489 InstInputs, InstResults,
1490 InstImpInputs, InstImpResults);
1491}
1492
1493/// ParseInstructions - Parse all of the instructions, inlining and resolving
1494/// any fragments involved. This populates the Instructions list with fully
1495/// resolved instructions.
Chris Lattnerfe718932008-01-06 01:10:31 +00001496void CodeGenDAGPatterns::ParseInstructions() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001497 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
1498
1499 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
1500 ListInit *LI = 0;
1501
1502 if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
1503 LI = Instrs[i]->getValueAsListInit("Pattern");
1504
1505 // If there is no pattern, only collect minimal information about the
1506 // instruction for its operand list. We have to assume that there is one
1507 // result, as we have no detailed info.
1508 if (!LI || LI->getSize() == 0) {
1509 std::vector<Record*> Results;
1510 std::vector<Record*> Operands;
1511
1512 CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
1513
1514 if (InstInfo.OperandList.size() != 0) {
1515 if (InstInfo.NumDefs == 0) {
1516 // These produce no results
1517 for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
1518 Operands.push_back(InstInfo.OperandList[j].Rec);
1519 } else {
1520 // Assume the first operand is the result.
1521 Results.push_back(InstInfo.OperandList[0].Rec);
1522
1523 // The rest are inputs.
1524 for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
1525 Operands.push_back(InstInfo.OperandList[j].Rec);
1526 }
1527 }
1528
1529 // Create and insert the instruction.
1530 std::vector<Record*> ImpResults;
1531 std::vector<Record*> ImpOperands;
1532 Instructions.insert(std::make_pair(Instrs[i],
1533 DAGInstruction(0, Results, Operands, ImpResults,
1534 ImpOperands)));
1535 continue; // no pattern.
1536 }
1537
1538 // Parse the instruction.
1539 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
1540 // Inline pattern fragments into it.
1541 I->InlinePatternFragments();
1542
1543 // Infer as many types as possible. If we cannot infer all of them, we can
1544 // never do anything with this instruction pattern: report it to the user.
1545 if (!I->InferAllTypes())
1546 I->error("Could not infer all types in pattern!");
1547
1548 // InstInputs - Keep track of all of the inputs of the instruction, along
1549 // with the record they are declared as.
1550 std::map<std::string, TreePatternNode*> InstInputs;
1551
1552 // InstResults - Keep track of all the virtual registers that are 'set'
1553 // in the instruction, including what reg class they are.
1554 std::map<std::string, TreePatternNode*> InstResults;
1555
1556 std::vector<Record*> InstImpInputs;
1557 std::vector<Record*> InstImpResults;
1558
1559 // Verify that the top-level forms in the instruction are of void type, and
1560 // fill in the InstResults map.
1561 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
1562 TreePatternNode *Pat = I->getTree(j);
1563 if (Pat->getExtTypeNum(0) != MVT::isVoid)
1564 I->error("Top-level forms in instruction pattern should have"
1565 " void types");
1566
1567 // Find inputs and outputs, and verify the structure of the uses/defs.
1568 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
1569 InstImpInputs, InstImpResults);
1570 }
1571
1572 // Now that we have inputs and outputs of the pattern, inspect the operands
1573 // list for the instruction. This determines the order that operands are
1574 // added to the machine instruction the node corresponds to.
1575 unsigned NumResults = InstResults.size();
1576
1577 // Parse the operands list from the (ops) list, validating it.
1578 assert(I->getArgList().empty() && "Args list should still be empty here!");
1579 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
1580
1581 // Check that all of the results occur first in the list.
1582 std::vector<Record*> Results;
1583 TreePatternNode *Res0Node = NULL;
1584 for (unsigned i = 0; i != NumResults; ++i) {
1585 if (i == CGI.OperandList.size())
1586 I->error("'" + InstResults.begin()->first +
1587 "' set but does not appear in operand list!");
1588 const std::string &OpName = CGI.OperandList[i].Name;
1589
1590 // Check that it exists in InstResults.
1591 TreePatternNode *RNode = InstResults[OpName];
1592 if (RNode == 0)
1593 I->error("Operand $" + OpName + " does not exist in operand list!");
1594
1595 if (i == 0)
1596 Res0Node = RNode;
1597 Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
1598 if (R == 0)
1599 I->error("Operand $" + OpName + " should be a set destination: all "
1600 "outputs must occur before inputs in operand list!");
1601
1602 if (CGI.OperandList[i].Rec != R)
1603 I->error("Operand $" + OpName + " class mismatch!");
1604
1605 // Remember the return type.
1606 Results.push_back(CGI.OperandList[i].Rec);
1607
1608 // Okay, this one checks out.
1609 InstResults.erase(OpName);
1610 }
1611
1612 // Loop over the inputs next. Make a copy of InstInputs so we can destroy
1613 // the copy while we're checking the inputs.
1614 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
1615
1616 std::vector<TreePatternNode*> ResultNodeOperands;
1617 std::vector<Record*> Operands;
1618 for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
1619 CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i];
1620 const std::string &OpName = Op.Name;
1621 if (OpName.empty())
1622 I->error("Operand #" + utostr(i) + " in operands list has no name!");
1623
1624 if (!InstInputsCheck.count(OpName)) {
1625 // If this is an predicate operand or optional def operand with an
1626 // DefaultOps set filled in, we can ignore this. When we codegen it,
1627 // we will do so as always executed.
1628 if (Op.Rec->isSubClassOf("PredicateOperand") ||
1629 Op.Rec->isSubClassOf("OptionalDefOperand")) {
1630 // Does it have a non-empty DefaultOps field? If so, ignore this
1631 // operand.
1632 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
1633 continue;
1634 }
1635 I->error("Operand $" + OpName +
1636 " does not appear in the instruction pattern");
1637 }
1638 TreePatternNode *InVal = InstInputsCheck[OpName];
1639 InstInputsCheck.erase(OpName); // It occurred, remove from map.
1640
1641 if (InVal->isLeaf() &&
1642 dynamic_cast<DefInit*>(InVal->getLeafValue())) {
1643 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
1644 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
1645 I->error("Operand $" + OpName + "'s register class disagrees"
1646 " between the operand and pattern");
1647 }
1648 Operands.push_back(Op.Rec);
1649
1650 // Construct the result for the dest-pattern operand list.
1651 TreePatternNode *OpNode = InVal->clone();
1652
1653 // No predicate is useful on the result.
1654 OpNode->setPredicateFn("");
1655
1656 // Promote the xform function to be an explicit node if set.
1657 if (Record *Xform = OpNode->getTransformFn()) {
1658 OpNode->setTransformFn(0);
1659 std::vector<TreePatternNode*> Children;
1660 Children.push_back(OpNode);
1661 OpNode = new TreePatternNode(Xform, Children);
1662 }
1663
1664 ResultNodeOperands.push_back(OpNode);
1665 }
1666
1667 if (!InstInputsCheck.empty())
1668 I->error("Input operand $" + InstInputsCheck.begin()->first +
1669 " occurs in pattern but not in operands list!");
1670
1671 TreePatternNode *ResultPattern =
1672 new TreePatternNode(I->getRecord(), ResultNodeOperands);
1673 // Copy fully inferred output node type to instruction result pattern.
1674 if (NumResults > 0)
1675 ResultPattern->setTypes(Res0Node->getExtTypes());
1676
1677 // Create and insert the instruction.
1678 // FIXME: InstImpResults and InstImpInputs should not be part of
1679 // DAGInstruction.
1680 DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
1681 Instructions.insert(std::make_pair(I->getRecord(), TheInst));
1682
1683 // Use a temporary tree pattern to infer all types and make sure that the
1684 // constructed result is correct. This depends on the instruction already
1685 // being inserted into the Instructions map.
1686 TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
1687 Temp.InferAllTypes();
1688
1689 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
1690 TheInsertedInst.setResultPattern(Temp.getOnlyTree());
1691
1692 DEBUG(I->dump());
1693 }
1694
1695 // If we can, convert the instructions to be patterns that are matched!
1696 for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
1697 E = Instructions.end(); II != E; ++II) {
1698 DAGInstruction &TheInst = II->second;
Chris Lattnerf1ab4f12008-01-06 01:52:22 +00001699 const TreePattern *I = TheInst.getPattern();
Chris Lattner6cefb772008-01-05 22:25:12 +00001700 if (I == 0) continue; // No pattern.
1701
1702 // FIXME: Assume only the first tree is the pattern. The others are clobber
1703 // nodes.
1704 TreePatternNode *Pattern = I->getTree(0);
1705 TreePatternNode *SrcPattern;
1706 if (Pattern->getOperator()->getName() == "set") {
1707 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
1708 } else{
1709 // Not a set (store or something?)
1710 SrcPattern = Pattern;
1711 }
1712
1713 std::string Reason;
1714 if (!SrcPattern->canPatternMatch(Reason, *this))
1715 I->error("Instruction can never match: " + Reason);
1716
1717 Record *Instr = II->first;
1718 TreePatternNode *DstPattern = TheInst.getResultPattern();
1719 PatternsToMatch.
1720 push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
1721 SrcPattern, DstPattern, TheInst.getImpResults(),
1722 Instr->getValueAsInt("AddedComplexity")));
1723 }
1724}
1725
Chris Lattnerfe718932008-01-06 01:10:31 +00001726void CodeGenDAGPatterns::ParsePatterns() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001727 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
1728
1729 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
1730 DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
1731 DefInit *OpDef = dynamic_cast<DefInit*>(Tree->getOperator());
1732 Record *Operator = OpDef->getDef();
1733 TreePattern *Pattern;
1734 if (Operator->getName() != "parallel")
1735 Pattern = new TreePattern(Patterns[i], Tree, true, *this);
1736 else {
1737 std::vector<Init*> Values;
1738 for (unsigned j = 0, ee = Tree->getNumArgs(); j != ee; ++j)
1739 Values.push_back(Tree->getArg(j));
1740 ListInit *LI = new ListInit(Values);
1741 Pattern = new TreePattern(Patterns[i], LI, true, *this);
1742 }
1743
1744 // Inline pattern fragments into it.
1745 Pattern->InlinePatternFragments();
1746
1747 ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
1748 if (LI->getSize() == 0) continue; // no pattern.
1749
1750 // Parse the instruction.
1751 TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
1752
1753 // Inline pattern fragments into it.
1754 Result->InlinePatternFragments();
1755
1756 if (Result->getNumTrees() != 1)
1757 Result->error("Cannot handle instructions producing instructions "
1758 "with temporaries yet!");
1759
1760 bool IterateInference;
1761 bool InferredAllPatternTypes, InferredAllResultTypes;
1762 do {
1763 // Infer as many types as possible. If we cannot infer all of them, we
1764 // can never do anything with this pattern: report it to the user.
1765 InferredAllPatternTypes = Pattern->InferAllTypes();
1766
1767 // Infer as many types as possible. If we cannot infer all of them, we
1768 // can never do anything with this pattern: report it to the user.
1769 InferredAllResultTypes = Result->InferAllTypes();
1770
1771 // Apply the type of the result to the source pattern. This helps us
1772 // resolve cases where the input type is known to be a pointer type (which
1773 // is considered resolved), but the result knows it needs to be 32- or
1774 // 64-bits. Infer the other way for good measure.
1775 IterateInference = Pattern->getTree(0)->
1776 UpdateNodeType(Result->getTree(0)->getExtTypes(), *Result);
1777 IterateInference |= Result->getTree(0)->
1778 UpdateNodeType(Pattern->getTree(0)->getExtTypes(), *Result);
1779 } while (IterateInference);
1780
1781 // Verify that we inferred enough types that we can do something with the
1782 // pattern and result. If these fire the user has to add type casts.
1783 if (!InferredAllPatternTypes)
1784 Pattern->error("Could not infer all types in pattern!");
1785 if (!InferredAllResultTypes)
1786 Result->error("Could not infer all types in pattern result!");
1787
1788 // Validate that the input pattern is correct.
1789 std::map<std::string, TreePatternNode*> InstInputs;
1790 std::map<std::string, TreePatternNode*> InstResults;
1791 std::vector<Record*> InstImpInputs;
1792 std::vector<Record*> InstImpResults;
1793 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
1794 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
1795 InstInputs, InstResults,
1796 InstImpInputs, InstImpResults);
1797
1798 // Promote the xform function to be an explicit node if set.
1799 TreePatternNode *DstPattern = Result->getOnlyTree();
1800 std::vector<TreePatternNode*> ResultNodeOperands;
1801 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
1802 TreePatternNode *OpNode = DstPattern->getChild(ii);
1803 if (Record *Xform = OpNode->getTransformFn()) {
1804 OpNode->setTransformFn(0);
1805 std::vector<TreePatternNode*> Children;
1806 Children.push_back(OpNode);
1807 OpNode = new TreePatternNode(Xform, Children);
1808 }
1809 ResultNodeOperands.push_back(OpNode);
1810 }
1811 DstPattern = Result->getOnlyTree();
1812 if (!DstPattern->isLeaf())
1813 DstPattern = new TreePatternNode(DstPattern->getOperator(),
1814 ResultNodeOperands);
1815 DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
1816 TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
1817 Temp.InferAllTypes();
1818
1819 std::string Reason;
1820 if (!Pattern->getTree(0)->canPatternMatch(Reason, *this))
1821 Pattern->error("Pattern can never match: " + Reason);
1822
1823 PatternsToMatch.
1824 push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
1825 Pattern->getTree(0),
1826 Temp.getOnlyTree(), InstImpResults,
1827 Patterns[i]->getValueAsInt("AddedComplexity")));
1828 }
1829}
1830
1831/// CombineChildVariants - Given a bunch of permutations of each child of the
1832/// 'operator' node, put them together in all possible ways.
1833static void CombineChildVariants(TreePatternNode *Orig,
1834 const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
1835 std::vector<TreePatternNode*> &OutVariants,
Chris Lattnerfe718932008-01-06 01:10:31 +00001836 CodeGenDAGPatterns &CDP) {
Chris Lattner6cefb772008-01-05 22:25:12 +00001837 // Make sure that each operand has at least one variant to choose from.
1838 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
1839 if (ChildVariants[i].empty())
1840 return;
1841
1842 // The end result is an all-pairs construction of the resultant pattern.
1843 std::vector<unsigned> Idxs;
1844 Idxs.resize(ChildVariants.size());
1845 bool NotDone = true;
1846 while (NotDone) {
1847 // Create the variant and add it to the output list.
1848 std::vector<TreePatternNode*> NewChildren;
1849 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
1850 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
1851 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
1852
1853 // Copy over properties.
1854 R->setName(Orig->getName());
1855 R->setPredicateFn(Orig->getPredicateFn());
1856 R->setTransformFn(Orig->getTransformFn());
1857 R->setTypes(Orig->getExtTypes());
1858
1859 // If this pattern cannot every match, do not include it as a variant.
1860 std::string ErrString;
1861 if (!R->canPatternMatch(ErrString, CDP)) {
1862 delete R;
1863 } else {
1864 bool AlreadyExists = false;
1865
1866 // Scan to see if this pattern has already been emitted. We can get
1867 // duplication due to things like commuting:
1868 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
1869 // which are the same pattern. Ignore the dups.
1870 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
1871 if (R->isIsomorphicTo(OutVariants[i])) {
1872 AlreadyExists = true;
1873 break;
1874 }
1875
1876 if (AlreadyExists)
1877 delete R;
1878 else
1879 OutVariants.push_back(R);
1880 }
1881
1882 // Increment indices to the next permutation.
1883 NotDone = false;
1884 // Look for something we can increment without causing a wrap-around.
1885 for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) {
1886 if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) {
1887 NotDone = true; // Found something to increment.
1888 break;
1889 }
1890 Idxs[IdxsIdx] = 0;
1891 }
1892 }
1893}
1894
1895/// CombineChildVariants - A helper function for binary operators.
1896///
1897static void CombineChildVariants(TreePatternNode *Orig,
1898 const std::vector<TreePatternNode*> &LHS,
1899 const std::vector<TreePatternNode*> &RHS,
1900 std::vector<TreePatternNode*> &OutVariants,
Chris Lattnerfe718932008-01-06 01:10:31 +00001901 CodeGenDAGPatterns &CDP) {
Chris Lattner6cefb772008-01-05 22:25:12 +00001902 std::vector<std::vector<TreePatternNode*> > ChildVariants;
1903 ChildVariants.push_back(LHS);
1904 ChildVariants.push_back(RHS);
1905 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP);
1906}
1907
1908
1909static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
1910 std::vector<TreePatternNode *> &Children) {
1911 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
1912 Record *Operator = N->getOperator();
1913
1914 // Only permit raw nodes.
1915 if (!N->getName().empty() || !N->getPredicateFn().empty() ||
1916 N->getTransformFn()) {
1917 Children.push_back(N);
1918 return;
1919 }
1920
1921 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
1922 Children.push_back(N->getChild(0));
1923 else
1924 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
1925
1926 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
1927 Children.push_back(N->getChild(1));
1928 else
1929 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
1930}
1931
1932/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
1933/// the (potentially recursive) pattern by using algebraic laws.
1934///
1935static void GenerateVariantsOf(TreePatternNode *N,
1936 std::vector<TreePatternNode*> &OutVariants,
Chris Lattnerfe718932008-01-06 01:10:31 +00001937 CodeGenDAGPatterns &CDP) {
Chris Lattner6cefb772008-01-05 22:25:12 +00001938 // We cannot permute leaves.
1939 if (N->isLeaf()) {
1940 OutVariants.push_back(N);
1941 return;
1942 }
1943
1944 // Look up interesting info about the node.
1945 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
1946
1947 // If this node is associative, reassociate.
1948 if (NodeInfo.hasProperty(SDNPAssociative)) {
1949 // Reassociate by pulling together all of the linked operators
1950 std::vector<TreePatternNode*> MaximalChildren;
1951 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
1952
1953 // Only handle child sizes of 3. Otherwise we'll end up trying too many
1954 // permutations.
1955 if (MaximalChildren.size() == 3) {
1956 // Find the variants of all of our maximal children.
1957 std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
1958 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP);
1959 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP);
1960 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP);
1961
1962 // There are only two ways we can permute the tree:
1963 // (A op B) op C and A op (B op C)
1964 // Within these forms, we can also permute A/B/C.
1965
1966 // Generate legal pair permutations of A/B/C.
1967 std::vector<TreePatternNode*> ABVariants;
1968 std::vector<TreePatternNode*> BAVariants;
1969 std::vector<TreePatternNode*> ACVariants;
1970 std::vector<TreePatternNode*> CAVariants;
1971 std::vector<TreePatternNode*> BCVariants;
1972 std::vector<TreePatternNode*> CBVariants;
1973 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP);
1974 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP);
1975 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP);
1976 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP);
1977 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP);
1978 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP);
1979
1980 // Combine those into the result: (x op x) op x
1981 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP);
1982 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP);
1983 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP);
1984 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP);
1985 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP);
1986 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP);
1987
1988 // Combine those into the result: x op (x op x)
1989 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP);
1990 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP);
1991 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP);
1992 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP);
1993 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP);
1994 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP);
1995 return;
1996 }
1997 }
1998
1999 // Compute permutations of all children.
2000 std::vector<std::vector<TreePatternNode*> > ChildVariants;
2001 ChildVariants.resize(N->getNumChildren());
2002 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2003 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP);
2004
2005 // Build all permutations based on how the children were formed.
2006 CombineChildVariants(N, ChildVariants, OutVariants, CDP);
2007
2008 // If this node is commutative, consider the commuted order.
2009 if (NodeInfo.hasProperty(SDNPCommutative)) {
2010 assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!");
2011 // Don't count children which are actually register references.
2012 unsigned NC = 0;
2013 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2014 TreePatternNode *Child = N->getChild(i);
2015 if (Child->isLeaf())
2016 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
2017 Record *RR = DI->getDef();
2018 if (RR->isSubClassOf("Register"))
2019 continue;
2020 }
2021 NC++;
2022 }
2023 // Consider the commuted order.
2024 if (NC == 2)
2025 CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
2026 OutVariants, CDP);
2027 }
2028}
2029
2030
2031// GenerateVariants - Generate variants. For example, commutative patterns can
2032// match multiple ways. Add them to PatternsToMatch as well.
Chris Lattnerfe718932008-01-06 01:10:31 +00002033void CodeGenDAGPatterns::GenerateVariants() {
Chris Lattner6cefb772008-01-05 22:25:12 +00002034 DOUT << "Generating instruction variants.\n";
2035
2036 // Loop over all of the patterns we've collected, checking to see if we can
2037 // generate variants of the instruction, through the exploitation of
2038 // identities. This permits the target to provide agressive matching without
2039 // the .td file having to contain tons of variants of instructions.
2040 //
2041 // Note that this loop adds new patterns to the PatternsToMatch list, but we
2042 // intentionally do not reconsider these. Any variants of added patterns have
2043 // already been added.
2044 //
2045 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
2046 std::vector<TreePatternNode*> Variants;
2047 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this);
2048
2049 assert(!Variants.empty() && "Must create at least original variant!");
2050 Variants.erase(Variants.begin()); // Remove the original pattern.
2051
2052 if (Variants.empty()) // No variants for this pattern.
2053 continue;
2054
2055 DOUT << "FOUND VARIANTS OF: ";
2056 DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
2057 DOUT << "\n";
2058
2059 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
2060 TreePatternNode *Variant = Variants[v];
2061
2062 DOUT << " VAR#" << v << ": ";
2063 DEBUG(Variant->dump());
2064 DOUT << "\n";
2065
2066 // Scan to see if an instruction or explicit pattern already matches this.
2067 bool AlreadyExists = false;
2068 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
2069 // Check to see if this variant already exists.
2070 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) {
2071 DOUT << " *** ALREADY EXISTS, ignoring variant.\n";
2072 AlreadyExists = true;
2073 break;
2074 }
2075 }
2076 // If we already have it, ignore the variant.
2077 if (AlreadyExists) continue;
2078
2079 // Otherwise, add it to the list of patterns we have.
2080 PatternsToMatch.
2081 push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
2082 Variant, PatternsToMatch[i].getDstPattern(),
2083 PatternsToMatch[i].getDstRegs(),
2084 PatternsToMatch[i].getAddedComplexity()));
2085 }
2086
2087 DOUT << "\n";
2088 }
2089}
2090