blob: 57556827678fd1f57fcf95e11d47f9107db62c9a [file] [log] [blame]
Chris Lattnera960d952003-01-13 01:01:59 +00001//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Chris Lattner847df252004-01-30 22:25:18 +000011// virtual registers into register stack instructions. This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code. In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges. Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet. The stackifier pass only works on local
27// basic blocks.
Chris Lattnera960d952003-01-13 01:01:59 +000028//
29//===----------------------------------------------------------------------===//
30
Chris Lattnercb533582003-08-03 21:14:38 +000031#define DEBUG_TYPE "fp"
Chris Lattnera960d952003-01-13 01:01:59 +000032#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/LiveVariables.h"
Alkis Evlogimenos359b65f2003-12-13 05:36:22 +000037#include "llvm/CodeGen/Passes.h"
Chris Lattner3501fea2003-01-14 22:00:31 +000038#include "llvm/Target/TargetInstrInfo.h"
Chris Lattnera960d952003-01-13 01:01:59 +000039#include "llvm/Target/TargetMachine.h"
Chris Lattner847df252004-01-30 22:25:18 +000040#include "llvm/Function.h" // FIXME: remove when using MBB CFG!
41#include "llvm/Support/CFG.h" // FIXME: remove when using MBB CFG!
Chris Lattnera11136b2003-08-01 22:21:34 +000042#include "Support/Debug.h"
Chris Lattner847df252004-01-30 22:25:18 +000043#include "Support/DepthFirstIterator.h"
Chris Lattnera960d952003-01-13 01:01:59 +000044#include "Support/Statistic.h"
Alkis Evlogimenosf81af212004-02-14 01:18:34 +000045#include "Support/STLExtras.h"
Chris Lattnera960d952003-01-13 01:01:59 +000046#include <algorithm>
Chris Lattner847df252004-01-30 22:25:18 +000047#include <set>
Chris Lattnerf2e49d42003-12-20 09:58:55 +000048using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000049
Chris Lattnera960d952003-01-13 01:01:59 +000050namespace {
51 Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
52 Statistic<> NumFP ("x86-codegen", "Number of floating point instructions");
53
54 struct FPS : public MachineFunctionPass {
55 virtual bool runOnMachineFunction(MachineFunction &MF);
56
57 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
58
59 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60 AU.addRequired<LiveVariables>();
61 MachineFunctionPass::getAnalysisUsage(AU);
62 }
63 private:
64 LiveVariables *LV; // Live variable info for current function...
65 MachineBasicBlock *MBB; // Current basic block
66 unsigned Stack[8]; // FP<n> Registers in each stack slot...
67 unsigned RegMap[8]; // Track which stack slot contains each register
68 unsigned StackTop; // The current top of the FP stack.
69
70 void dumpStack() const {
71 std::cerr << "Stack contents:";
72 for (unsigned i = 0; i != StackTop; ++i) {
73 std::cerr << " FP" << Stack[i];
74 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
75 }
76 std::cerr << "\n";
77 }
78 private:
79 // getSlot - Return the stack slot number a particular register number is
80 // in...
81 unsigned getSlot(unsigned RegNo) const {
82 assert(RegNo < 8 && "Regno out of range!");
83 return RegMap[RegNo];
84 }
85
86 // getStackEntry - Return the X86::FP<n> register in register ST(i)
87 unsigned getStackEntry(unsigned STi) const {
88 assert(STi < StackTop && "Access past stack top!");
89 return Stack[StackTop-1-STi];
90 }
91
92 // getSTReg - Return the X86::ST(i) register which contains the specified
93 // FP<RegNo> register
94 unsigned getSTReg(unsigned RegNo) const {
Brian Gaeked0fde302003-11-11 22:41:34 +000095 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +000096 }
97
Chris Lattner4a06f352004-02-02 19:23:15 +000098 // pushReg - Push the specified FP<n> register onto the stack
Chris Lattnera960d952003-01-13 01:01:59 +000099 void pushReg(unsigned Reg) {
100 assert(Reg < 8 && "Register number out of range!");
101 assert(StackTop < 8 && "Stack overflow!");
102 Stack[StackTop] = Reg;
103 RegMap[Reg] = StackTop++;
104 }
105
106 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
107 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
108 if (!isAtTop(RegNo)) {
109 unsigned Slot = getSlot(RegNo);
110 unsigned STReg = getSTReg(RegNo);
111 unsigned RegOnTop = getStackEntry(0);
112
113 // Swap the slots the regs are in
114 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
115
116 // Swap stack slot contents
117 assert(RegMap[RegOnTop] < StackTop);
118 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
119
120 // Emit an fxch to update the runtime processors version of the state
121 MachineInstr *MI = BuildMI(X86::FXCH, 1).addReg(STReg);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000122 MBB->insert(I, MI);
Chris Lattnera960d952003-01-13 01:01:59 +0000123 NumFXCH++;
124 }
125 }
126
127 void duplicateToTop(unsigned RegNo, unsigned AsReg,
128 MachineBasicBlock::iterator &I) {
129 unsigned STReg = getSTReg(RegNo);
130 pushReg(AsReg); // New register on top of stack
131
132 MachineInstr *MI = BuildMI(X86::FLDrr, 1).addReg(STReg);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000133 MBB->insert(I, MI);
Chris Lattnera960d952003-01-13 01:01:59 +0000134 }
135
136 // popStackAfter - Pop the current value off of the top of the FP stack
137 // after the specified instruction.
138 void popStackAfter(MachineBasicBlock::iterator &I);
139
140 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
141
142 void handleZeroArgFP(MachineBasicBlock::iterator &I);
143 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner4a06f352004-02-02 19:23:15 +0000144 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000145 void handleTwoArgFP(MachineBasicBlock::iterator &I);
146 void handleSpecialFP(MachineBasicBlock::iterator &I);
147 };
148}
149
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000150FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000151
152/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
153/// register references into FP stack references.
154///
155bool FPS::runOnMachineFunction(MachineFunction &MF) {
156 LV = &getAnalysis<LiveVariables>();
157 StackTop = 0;
158
Chris Lattner847df252004-01-30 22:25:18 +0000159 // Figure out the mapping of MBB's to BB's.
160 //
161 // FIXME: Eventually we should be able to traverse the MBB CFG directly, and
162 // we will need to extend this when one llvm basic block can codegen to
163 // multiple MBBs.
164 //
165 // FIXME again: Just use the mapping established by LiveVariables!
166 //
167 std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
Chris Lattnera960d952003-01-13 01:01:59 +0000168 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
Chris Lattner847df252004-01-30 22:25:18 +0000169 MBBMap[I->getBasicBlock()] = I;
170
171 // Process the function in depth first order so that we process at least one
172 // of the predecessors for every reachable block in the function.
173 std::set<const BasicBlock*> Processed;
174 const BasicBlock *Entry = MF.getFunction()->begin();
175
176 bool Changed = false;
177 for (df_ext_iterator<const BasicBlock*, std::set<const BasicBlock*> >
178 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
179 I != E; ++I)
180 Changed |= processBasicBlock(MF, *MBBMap[*I]);
181
182 assert(MBBMap.size() == Processed.size() &&
183 "Doesn't handle unreachable code yet!");
184
Chris Lattnera960d952003-01-13 01:01:59 +0000185 return Changed;
186}
187
188/// processBasicBlock - Loop over all of the instructions in the basic block,
189/// transforming FP instructions into their stack form.
190///
191bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
192 const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
193 bool Changed = false;
194 MBB = &BB;
195
196 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000197 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000198 unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
Chris Lattner847df252004-01-30 22:25:18 +0000199 if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
200 continue; // Efficiently ignore non-fp insts!
Chris Lattnera960d952003-01-13 01:01:59 +0000201
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000202 MachineInstr *PrevMI = 0;
Alkis Evlogimenosf81af212004-02-14 01:18:34 +0000203 if (I != BB.begin())
204 PrevMI = prior(I);
Chris Lattnera960d952003-01-13 01:01:59 +0000205
206 ++NumFP; // Keep track of # of pseudo instrs
207 DEBUG(std::cerr << "\nFPInst:\t";
208 MI->print(std::cerr, MF.getTarget()));
209
210 // Get dead variables list now because the MI pointer may be deleted as part
211 // of processing!
212 LiveVariables::killed_iterator IB = LV->dead_begin(MI);
213 LiveVariables::killed_iterator IE = LV->dead_end(MI);
214
215 DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
216 LiveVariables::killed_iterator I = LV->killed_begin(MI);
217 LiveVariables::killed_iterator E = LV->killed_end(MI);
218 if (I != E) {
219 std::cerr << "Killed Operands:";
220 for (; I != E; ++I)
221 std::cerr << " %" << MRI->getName(I->second);
222 std::cerr << "\n";
223 });
224
225 switch (Flags & X86II::FPTypeMask) {
Chris Lattner4a06f352004-02-02 19:23:15 +0000226 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
227 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
228 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
229 case X86II::TwoArgFP: handleTwoArgFP(I); break;
230 case X86II::SpecialFP: handleSpecialFP(I); break;
Chris Lattnera960d952003-01-13 01:01:59 +0000231 default: assert(0 && "Unknown FP Type!");
232 }
233
234 // Check to see if any of the values defined by this instruction are dead
235 // after definition. If so, pop them.
236 for (; IB != IE; ++IB) {
237 unsigned Reg = IB->second;
238 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
239 DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
240 ++I; // Insert fxch AFTER the instruction
Misha Brukman5560c9d2003-08-18 14:43:39 +0000241 moveToTop(Reg-X86::FP0, I); // Insert fxch if necessary
Chris Lattnera960d952003-01-13 01:01:59 +0000242 --I; // Move to fxch or old instruction
243 popStackAfter(I); // Pop the top of the stack, killing value
244 }
245 }
246
247 // Print out all of the instructions expanded to if -debug
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000248 DEBUG(
249 MachineBasicBlock::iterator PrevI(PrevMI);
250 if (I == PrevI) {
251 std::cerr<< "Just deleted pseudo instruction\n";
252 } else {
253 MachineBasicBlock::iterator Start = I;
254 // Rewind to first instruction newly inserted.
255 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
256 std::cerr << "Inserted instructions:\n\t";
257 Start->print(std::cerr, MF.getTarget());
258 while (++Start != next(I));
259 }
260 dumpStack();
261 );
Chris Lattnera960d952003-01-13 01:01:59 +0000262
263 Changed = true;
264 }
265
266 assert(StackTop == 0 && "Stack not empty at end of basic block?");
267 return Changed;
268}
269
270//===----------------------------------------------------------------------===//
271// Efficient Lookup Table Support
272//===----------------------------------------------------------------------===//
273
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000274namespace {
275 struct TableEntry {
276 unsigned from;
277 unsigned to;
278 bool operator<(const TableEntry &TE) const { return from < TE.from; }
279 bool operator<(unsigned V) const { return from < V; }
280 };
281}
Chris Lattnera960d952003-01-13 01:01:59 +0000282
283static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
284 for (unsigned i = 0; i != NumEntries-1; ++i)
285 if (!(Table[i] < Table[i+1])) return false;
286 return true;
287}
288
289static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
290 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
291 if (I != Table+N && I->from == Opcode)
292 return I->to;
293 return -1;
294}
295
296#define ARRAY_SIZE(TABLE) \
297 (sizeof(TABLE)/sizeof(TABLE[0]))
298
299#ifdef NDEBUG
300#define ASSERT_SORTED(TABLE)
301#else
302#define ASSERT_SORTED(TABLE) \
303 { static bool TABLE##Checked = false; \
304 if (!TABLE##Checked) \
305 assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) && \
306 "All lookup tables must be sorted for efficient access!"); \
307 }
308#endif
309
310
311//===----------------------------------------------------------------------===//
312// Helper Methods
313//===----------------------------------------------------------------------===//
314
315// PopTable - Sorted map of instructions to their popping version. The first
316// element is an instruction, the second is the version which pops.
317//
318static const TableEntry PopTable[] = {
Chris Lattner113455b2003-08-03 21:56:36 +0000319 { X86::FADDrST0 , X86::FADDPrST0 },
320
321 { X86::FDIVRrST0, X86::FDIVRPrST0 },
322 { X86::FDIVrST0 , X86::FDIVPrST0 },
323
Chris Lattnera960d952003-01-13 01:01:59 +0000324 { X86::FISTr16 , X86::FISTPr16 },
325 { X86::FISTr32 , X86::FISTPr32 },
326
Chris Lattnera960d952003-01-13 01:01:59 +0000327 { X86::FMULrST0 , X86::FMULPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000328
Chris Lattner113455b2003-08-03 21:56:36 +0000329 { X86::FSTr32 , X86::FSTPr32 },
330 { X86::FSTr64 , X86::FSTPr64 },
331 { X86::FSTrr , X86::FSTPrr },
332
333 { X86::FSUBRrST0, X86::FSUBRPrST0 },
334 { X86::FSUBrST0 , X86::FSUBPrST0 },
335
Chris Lattnera960d952003-01-13 01:01:59 +0000336 { X86::FUCOMPr , X86::FUCOMPPr },
Chris Lattner113455b2003-08-03 21:56:36 +0000337 { X86::FUCOMr , X86::FUCOMPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000338};
339
340/// popStackAfter - Pop the current value off of the top of the FP stack after
341/// the specified instruction. This attempts to be sneaky and combine the pop
342/// into the instruction itself if possible. The iterator is left pointing to
343/// the last instruction, be it a new pop instruction inserted, or the old
344/// instruction if it was modified in place.
345///
346void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
347 ASSERT_SORTED(PopTable);
348 assert(StackTop > 0 && "Cannot pop empty stack!");
349 RegMap[Stack[--StackTop]] = ~0; // Update state
350
351 // Check to see if there is a popping version of this instruction...
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000352 int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), I->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000353 if (Opcode != -1) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000354 I->setOpcode(Opcode);
Chris Lattnera960d952003-01-13 01:01:59 +0000355 if (Opcode == X86::FUCOMPPr)
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000356 I->RemoveOperand(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000357
358 } else { // Insert an explicit pop
359 MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(X86::ST0);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000360 I = MBB->insert(++I, MI);
Chris Lattnera960d952003-01-13 01:01:59 +0000361 }
362}
363
364static unsigned getFPReg(const MachineOperand &MO) {
Chris Lattner6d215182004-02-10 20:31:28 +0000365 assert(MO.isRegister() && "Expected an FP register!");
Chris Lattnera960d952003-01-13 01:01:59 +0000366 unsigned Reg = MO.getReg();
367 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
368 return Reg - X86::FP0;
369}
370
371
372//===----------------------------------------------------------------------===//
373// Instruction transformation implementation
374//===----------------------------------------------------------------------===//
375
376/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner4a06f352004-02-02 19:23:15 +0000377///
Chris Lattnera960d952003-01-13 01:01:59 +0000378void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000379 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000380 unsigned DestReg = getFPReg(MI->getOperand(0));
381 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
382
383 // Result gets pushed on the stack...
384 pushReg(DestReg);
385}
386
Chris Lattner4a06f352004-02-02 19:23:15 +0000387/// handleOneArgFP - fst <mem>, ST(0)
388///
Chris Lattnera960d952003-01-13 01:01:59 +0000389void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000390 MachineInstr *MI = I;
Chris Lattnerb97046a2004-02-03 07:27:34 +0000391 assert((MI->getNumOperands() == 5 || MI->getNumOperands() == 1) &&
392 "Can only handle fst* & ftst instructions!");
Chris Lattnera960d952003-01-13 01:01:59 +0000393
Chris Lattner4a06f352004-02-02 19:23:15 +0000394 // Is this the last use of the source register?
Chris Lattnerb97046a2004-02-03 07:27:34 +0000395 unsigned Reg = getFPReg(MI->getOperand(MI->getNumOperands()-1));
Chris Lattnera960d952003-01-13 01:01:59 +0000396 bool KillsSrc = false;
397 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
398 E = LV->killed_end(MI); KI != E; ++KI)
399 KillsSrc |= KI->second == X86::FP0+Reg;
400
401 // FSTPr80 and FISTPr64 are strange because there are no non-popping versions.
402 // If we have one _and_ we don't want to pop the operand, duplicate the value
403 // on the stack instead of moving it. This ensure that popping the value is
404 // always ok.
405 //
406 if ((MI->getOpcode() == X86::FSTPr80 ||
407 MI->getOpcode() == X86::FISTPr64) && !KillsSrc) {
408 duplicateToTop(Reg, 7 /*temp register*/, I);
409 } else {
410 moveToTop(Reg, I); // Move to the top of the stack...
411 }
Chris Lattnerb97046a2004-02-03 07:27:34 +0000412 MI->RemoveOperand(MI->getNumOperands()-1); // Remove explicit ST(0) operand
Chris Lattnera960d952003-01-13 01:01:59 +0000413
414 if (MI->getOpcode() == X86::FSTPr80 || MI->getOpcode() == X86::FISTPr64) {
415 assert(StackTop > 0 && "Stack empty??");
416 --StackTop;
417 } else if (KillsSrc) { // Last use of operand?
418 popStackAfter(I);
419 }
420}
421
Chris Lattner4a06f352004-02-02 19:23:15 +0000422
423/// handleOneArgFPRW - fchs - ST(0) = -ST(0)
424///
425void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000426 MachineInstr *MI = I;
Chris Lattner4a06f352004-02-02 19:23:15 +0000427 assert(MI->getNumOperands() == 2 && "Can only handle fst* instructions!");
428
429 // Is this the last use of the source register?
430 unsigned Reg = getFPReg(MI->getOperand(1));
431 bool KillsSrc = false;
432 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
433 E = LV->killed_end(MI); KI != E; ++KI)
434 KillsSrc |= KI->second == X86::FP0+Reg;
435
436 if (KillsSrc) {
437 // If this is the last use of the source register, just make sure it's on
438 // the top of the stack.
439 moveToTop(Reg, I);
440 assert(StackTop > 0 && "Stack cannot be empty!");
441 --StackTop;
442 pushReg(getFPReg(MI->getOperand(0)));
443 } else {
444 // If this is not the last use of the source register, _copy_ it to the top
445 // of the stack.
446 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
447 }
448
449 MI->RemoveOperand(1); // Drop the source operand.
450 MI->RemoveOperand(0); // Drop the destination operand.
451}
452
453
Chris Lattnera960d952003-01-13 01:01:59 +0000454//===----------------------------------------------------------------------===//
455// Define tables of various ways to map pseudo instructions
456//
457
458// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
459static const TableEntry ForwardST0Table[] = {
460 { X86::FpADD, X86::FADDST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000461 { X86::FpDIV, X86::FDIVST0r },
Chris Lattner113455b2003-08-03 21:56:36 +0000462 { X86::FpMUL, X86::FMULST0r },
463 { X86::FpSUB, X86::FSUBST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000464 { X86::FpUCOM, X86::FUCOMr },
465};
466
467// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
468static const TableEntry ReverseST0Table[] = {
469 { X86::FpADD, X86::FADDST0r }, // commutative
Chris Lattnera960d952003-01-13 01:01:59 +0000470 { X86::FpDIV, X86::FDIVRST0r },
Chris Lattner113455b2003-08-03 21:56:36 +0000471 { X86::FpMUL, X86::FMULST0r }, // commutative
472 { X86::FpSUB, X86::FSUBRST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000473 { X86::FpUCOM, ~0 },
474};
475
476// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
477static const TableEntry ForwardSTiTable[] = {
478 { X86::FpADD, X86::FADDrST0 }, // commutative
Chris Lattnera960d952003-01-13 01:01:59 +0000479 { X86::FpDIV, X86::FDIVRrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000480 { X86::FpMUL, X86::FMULrST0 }, // commutative
481 { X86::FpSUB, X86::FSUBRrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000482 { X86::FpUCOM, X86::FUCOMr },
483};
484
485// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
486static const TableEntry ReverseSTiTable[] = {
487 { X86::FpADD, X86::FADDrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000488 { X86::FpDIV, X86::FDIVrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000489 { X86::FpMUL, X86::FMULrST0 },
490 { X86::FpSUB, X86::FSUBrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000491 { X86::FpUCOM, ~0 },
492};
493
494
495/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
496/// instructions which need to be simplified and possibly transformed.
497///
498/// Result: ST(0) = fsub ST(0), ST(i)
499/// ST(i) = fsub ST(0), ST(i)
500/// ST(0) = fsubr ST(0), ST(i)
501/// ST(i) = fsubr ST(0), ST(i)
502///
503/// In addition to three address instructions, this also handles the FpUCOM
504/// instruction which only has two operands, but no destination. This
505/// instruction is also annoying because there is no "reverse" form of it
506/// available.
507///
508void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
509 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
510 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000511 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000512
513 unsigned NumOperands = MI->getNumOperands();
514 assert(NumOperands == 3 ||
515 (NumOperands == 2 && MI->getOpcode() == X86::FpUCOM) &&
516 "Illegal TwoArgFP instruction!");
517 unsigned Dest = getFPReg(MI->getOperand(0));
518 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
519 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
520 bool KillsOp0 = false, KillsOp1 = false;
521
522 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
523 E = LV->killed_end(MI); KI != E; ++KI) {
524 KillsOp0 |= (KI->second == X86::FP0+Op0);
525 KillsOp1 |= (KI->second == X86::FP0+Op1);
526 }
527
528 // If this is an FpUCOM instruction, we must make sure the first operand is on
529 // the top of stack, the other one can be anywhere...
530 if (MI->getOpcode() == X86::FpUCOM)
531 moveToTop(Op0, I);
532
533 unsigned TOS = getStackEntry(0);
534
535 // One of our operands must be on the top of the stack. If neither is yet, we
536 // need to move one.
537 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
538 // We can choose to move either operand to the top of the stack. If one of
539 // the operands is killed by this instruction, we want that one so that we
540 // can update right on top of the old version.
541 if (KillsOp0) {
542 moveToTop(Op0, I); // Move dead operand to TOS.
543 TOS = Op0;
544 } else if (KillsOp1) {
545 moveToTop(Op1, I);
546 TOS = Op1;
547 } else {
548 // All of the operands are live after this instruction executes, so we
549 // cannot update on top of any operand. Because of this, we must
550 // duplicate one of the stack elements to the top. It doesn't matter
551 // which one we pick.
552 //
553 duplicateToTop(Op0, Dest, I);
554 Op0 = TOS = Dest;
555 KillsOp0 = true;
556 }
557 } else if (!KillsOp0 && !KillsOp1 && MI->getOpcode() != X86::FpUCOM) {
558 // If we DO have one of our operands at the top of the stack, but we don't
559 // have a dead operand, we must duplicate one of the operands to a new slot
560 // on the stack.
561 duplicateToTop(Op0, Dest, I);
562 Op0 = TOS = Dest;
563 KillsOp0 = true;
564 }
565
566 // Now we know that one of our operands is on the top of the stack, and at
567 // least one of our operands is killed by this instruction.
568 assert((TOS == Op0 || TOS == Op1) &&
569 (KillsOp0 || KillsOp1 || MI->getOpcode() == X86::FpUCOM) &&
570 "Stack conditions not set up right!");
571
572 // We decide which form to use based on what is on the top of the stack, and
573 // which operand is killed by this instruction.
574 const TableEntry *InstTable;
575 bool isForward = TOS == Op0;
576 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
577 if (updateST0) {
578 if (isForward)
579 InstTable = ForwardST0Table;
580 else
581 InstTable = ReverseST0Table;
582 } else {
583 if (isForward)
584 InstTable = ForwardSTiTable;
585 else
586 InstTable = ReverseSTiTable;
587 }
588
589 int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
590 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
591
592 // NotTOS - The register which is not on the top of stack...
593 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
594
595 // Replace the old instruction with a new instruction
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000596 MBB->remove(I);
597 I = MBB->insert(I, BuildMI(Opcode, 1).addReg(getSTReg(NotTOS)));
Chris Lattnera960d952003-01-13 01:01:59 +0000598
599 // If both operands are killed, pop one off of the stack in addition to
600 // overwriting the other one.
601 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
602 assert(!updateST0 && "Should have updated other operand!");
603 popStackAfter(I); // Pop the top of stack
604 }
605
606 // Insert an explicit pop of the "updated" operand for FUCOM
607 if (MI->getOpcode() == X86::FpUCOM) {
608 if (KillsOp0 && !KillsOp1)
609 popStackAfter(I); // If we kill the first operand, pop it!
610 else if (KillsOp1 && Op0 != Op1) {
611 if (getStackEntry(0) == Op1) {
612 popStackAfter(I); // If it's right at the top of stack, just pop it
613 } else {
614 // Otherwise, move the top of stack into the dead slot, killing the
615 // operand without having to add in an explicit xchg then pop.
616 //
617 unsigned STReg = getSTReg(Op1);
618 unsigned OldSlot = getSlot(Op1);
619 unsigned TopReg = Stack[StackTop-1];
620 Stack[OldSlot] = TopReg;
621 RegMap[TopReg] = OldSlot;
622 RegMap[Op1] = ~0;
623 Stack[--StackTop] = ~0;
624
625 MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(STReg);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000626 I = MBB->insert(++I, MI);
Chris Lattnera960d952003-01-13 01:01:59 +0000627 }
628 }
629 }
630
631 // Update stack information so that we know the destination register is now on
632 // the stack.
633 if (MI->getOpcode() != X86::FpUCOM) {
634 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
635 assert(UpdatedSlot < StackTop && Dest < 7);
636 Stack[UpdatedSlot] = Dest;
637 RegMap[Dest] = UpdatedSlot;
638 }
639 delete MI; // Remove the old instruction
640}
641
642
643/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +0000644/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +0000645/// instructions.
646///
647void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000648 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000649 switch (MI->getOpcode()) {
650 default: assert(0 && "Unknown SpecialFP instruction!");
651 case X86::FpGETRESULT: // Appears immediately after a call returning FP type!
652 assert(StackTop == 0 && "Stack should be empty after a call!");
653 pushReg(getFPReg(MI->getOperand(0)));
654 break;
655 case X86::FpSETRESULT:
656 assert(StackTop == 1 && "Stack should have one element on it to return!");
657 --StackTop; // "Forget" we have something on the top of stack!
658 break;
659 case X86::FpMOV: {
660 unsigned SrcReg = getFPReg(MI->getOperand(1));
661 unsigned DestReg = getFPReg(MI->getOperand(0));
662 bool KillsSrc = false;
663 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
664 E = LV->killed_end(MI); KI != E; ++KI)
665 KillsSrc |= KI->second == X86::FP0+SrcReg;
666
667 if (KillsSrc) {
668 // If the input operand is killed, we can just change the owner of the
669 // incoming stack slot into the result.
670 unsigned Slot = getSlot(SrcReg);
671 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
672 Stack[Slot] = DestReg;
673 RegMap[DestReg] = Slot;
674
675 } else {
676 // For FMOV we just duplicate the specified value to a new stack slot.
677 // This could be made better, but would require substantial changes.
678 duplicateToTop(SrcReg, DestReg, I);
679 }
680 break;
681 }
682 }
683
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000684 I = MBB->erase(I); // Remove the pseudo instruction
685 --I;
Chris Lattnera960d952003-01-13 01:01:59 +0000686}