blob: ff95e90dc72ff728ff9438f514d6674913eab88d [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
21#include "llvm/ParameterAttributes.h"
22#include "llvm/Pass.h"
23#include "llvm/PassManager.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Analysis/ConstantsScanner.h"
29#include "llvm/Analysis/FindUsedTypes.h"
30#include "llvm/Analysis/LoopInfo.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/Transforms/Scalar.h"
33#include "llvm/Target/TargetMachineRegistry.h"
34#include "llvm/Target/TargetAsmInfo.h"
35#include "llvm/Target/TargetData.h"
36#include "llvm/Support/CallSite.h"
37#include "llvm/Support/CFG.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/InstVisitor.h"
40#include "llvm/Support/Mangler.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/ADT/StringExtras.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Config/config.h"
46#include <algorithm>
47#include <sstream>
48using namespace llvm;
49
50namespace {
51 // Register the target.
52 RegisterTarget<CTargetMachine> X("c", " C backend");
53
54 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
55 /// any unnamed structure types that are used by the program, and merges
56 /// external functions with the same name.
57 ///
58 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
59 public:
60 static char ID;
61 CBackendNameAllUsedStructsAndMergeFunctions()
62 : ModulePass((intptr_t)&ID) {}
63 void getAnalysisUsage(AnalysisUsage &AU) const {
64 AU.addRequired<FindUsedTypes>();
65 }
66
67 virtual const char *getPassName() const {
68 return "C backend type canonicalizer";
69 }
70
71 virtual bool runOnModule(Module &M);
72 };
73
74 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
75
76 /// CWriter - This class is the main chunk of code that converts an LLVM
77 /// module to a C translation unit.
78 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
79 std::ostream &Out;
80 IntrinsicLowering *IL;
81 Mangler *Mang;
82 LoopInfo *LI;
83 const Module *TheModule;
84 const TargetAsmInfo* TAsm;
85 const TargetData* TD;
86 std::map<const Type *, std::string> TypeNames;
87 std::map<const ConstantFP *, unsigned> FPConstantMap;
88 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
89
90 public:
91 static char ID;
92 CWriter(std::ostream &o)
93 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
94 TheModule(0), TAsm(0), TD(0) {}
95
96 virtual const char *getPassName() const { return "C backend"; }
97
98 void getAnalysisUsage(AnalysisUsage &AU) const {
99 AU.addRequired<LoopInfo>();
100 AU.setPreservesAll();
101 }
102
103 virtual bool doInitialization(Module &M);
104
105 bool runOnFunction(Function &F) {
106 LI = &getAnalysis<LoopInfo>();
107
108 // Get rid of intrinsics we can't handle.
109 lowerIntrinsics(F);
110
111 // Output all floating point constants that cannot be printed accurately.
112 printFloatingPointConstants(F);
113
114 printFunction(F);
115 FPConstantMap.clear();
116 return false;
117 }
118
119 virtual bool doFinalization(Module &M) {
120 // Free memory...
121 delete Mang;
122 TypeNames.clear();
123 return false;
124 }
125
126 std::ostream &printType(std::ostream &Out, const Type *Ty,
127 bool isSigned = false,
128 const std::string &VariableName = "",
129 bool IgnoreName = false);
130 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
131 bool isSigned,
132 const std::string &NameSoFar = "");
133
134 void printStructReturnPointerFunctionType(std::ostream &Out,
135 const PointerType *Ty);
136
137 void writeOperand(Value *Operand);
138 void writeOperandRaw(Value *Operand);
139 void writeOperandInternal(Value *Operand);
140 void writeOperandWithCast(Value* Operand, unsigned Opcode);
141 void writeOperandWithCast(Value* Operand, ICmpInst::Predicate predicate);
142 bool writeInstructionCast(const Instruction &I);
143
144 private :
145 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
146
147 void lowerIntrinsics(Function &F);
148
149 void printModule(Module *M);
150 void printModuleTypes(const TypeSymbolTable &ST);
151 void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
152 void printFloatingPointConstants(Function &F);
153 void printFunctionSignature(const Function *F, bool Prototype);
154
155 void printFunction(Function &);
156 void printBasicBlock(BasicBlock *BB);
157 void printLoop(Loop *L);
158
159 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
160 void printConstant(Constant *CPV);
161 void printConstantWithCast(Constant *CPV, unsigned Opcode);
162 bool printConstExprCast(const ConstantExpr *CE);
163 void printConstantArray(ConstantArray *CPA);
164 void printConstantVector(ConstantVector *CP);
165
166 // isInlinableInst - Attempt to inline instructions into their uses to build
167 // trees as much as possible. To do this, we have to consistently decide
168 // what is acceptable to inline, so that variable declarations don't get
169 // printed and an extra copy of the expr is not emitted.
170 //
171 static bool isInlinableInst(const Instruction &I) {
172 // Always inline cmp instructions, even if they are shared by multiple
173 // expressions. GCC generates horrible code if we don't.
174 if (isa<CmpInst>(I))
175 return true;
176
177 // Must be an expression, must be used exactly once. If it is dead, we
178 // emit it inline where it would go.
179 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
180 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
181 isa<LoadInst>(I) || isa<VAArgInst>(I))
182 // Don't inline a load across a store or other bad things!
183 return false;
184
185 // Must not be used in inline asm
186 if (I.hasOneUse() && isInlineAsm(*I.use_back())) return false;
187
188 // Only inline instruction it if it's use is in the same BB as the inst.
189 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
190 }
191
192 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
193 // variables which are accessed with the & operator. This causes GCC to
194 // generate significantly better code than to emit alloca calls directly.
195 //
196 static const AllocaInst *isDirectAlloca(const Value *V) {
197 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
198 if (!AI) return false;
199 if (AI->isArrayAllocation())
200 return 0; // FIXME: we can also inline fixed size array allocas!
201 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
202 return 0;
203 return AI;
204 }
205
206 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
207 static bool isInlineAsm(const Instruction& I) {
208 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
209 return true;
210 return false;
211 }
212
213 // Instruction visitation functions
214 friend class InstVisitor<CWriter>;
215
216 void visitReturnInst(ReturnInst &I);
217 void visitBranchInst(BranchInst &I);
218 void visitSwitchInst(SwitchInst &I);
219 void visitInvokeInst(InvokeInst &I) {
220 assert(0 && "Lowerinvoke pass didn't work!");
221 }
222
223 void visitUnwindInst(UnwindInst &I) {
224 assert(0 && "Lowerinvoke pass didn't work!");
225 }
226 void visitUnreachableInst(UnreachableInst &I);
227
228 void visitPHINode(PHINode &I);
229 void visitBinaryOperator(Instruction &I);
230 void visitICmpInst(ICmpInst &I);
231 void visitFCmpInst(FCmpInst &I);
232
233 void visitCastInst (CastInst &I);
234 void visitSelectInst(SelectInst &I);
235 void visitCallInst (CallInst &I);
236 void visitInlineAsm(CallInst &I);
237
238 void visitMallocInst(MallocInst &I);
239 void visitAllocaInst(AllocaInst &I);
240 void visitFreeInst (FreeInst &I);
241 void visitLoadInst (LoadInst &I);
242 void visitStoreInst (StoreInst &I);
243 void visitGetElementPtrInst(GetElementPtrInst &I);
244 void visitVAArgInst (VAArgInst &I);
245
246 void visitInstruction(Instruction &I) {
247 cerr << "C Writer does not know about " << I;
248 abort();
249 }
250
251 void outputLValue(Instruction *I) {
252 Out << " " << GetValueName(I) << " = ";
253 }
254
255 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
256 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
257 BasicBlock *Successor, unsigned Indent);
258 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
259 unsigned Indent);
260 void printIndexingExpression(Value *Ptr, gep_type_iterator I,
261 gep_type_iterator E);
262
263 std::string GetValueName(const Value *Operand);
264 };
265}
266
267char CWriter::ID = 0;
268
269/// This method inserts names for any unnamed structure types that are used by
270/// the program, and removes names from structure types that are not used by the
271/// program.
272///
273bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
274 // Get a set of types that are used by the program...
275 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
276
277 // Loop over the module symbol table, removing types from UT that are
278 // already named, and removing names for types that are not used.
279 //
280 TypeSymbolTable &TST = M.getTypeSymbolTable();
281 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
282 TI != TE; ) {
283 TypeSymbolTable::iterator I = TI++;
284
285 // If this isn't a struct type, remove it from our set of types to name.
286 // This simplifies emission later.
287 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
288 TST.remove(I);
289 } else {
290 // If this is not used, remove it from the symbol table.
291 std::set<const Type *>::iterator UTI = UT.find(I->second);
292 if (UTI == UT.end())
293 TST.remove(I);
294 else
295 UT.erase(UTI); // Only keep one name for this type.
296 }
297 }
298
299 // UT now contains types that are not named. Loop over it, naming
300 // structure types.
301 //
302 bool Changed = false;
303 unsigned RenameCounter = 0;
304 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
305 I != E; ++I)
306 if (const StructType *ST = dyn_cast<StructType>(*I)) {
307 while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
308 ++RenameCounter;
309 Changed = true;
310 }
311
312
313 // Loop over all external functions and globals. If we have two with
314 // identical names, merge them.
315 // FIXME: This code should disappear when we don't allow values with the same
316 // names when they have different types!
317 std::map<std::string, GlobalValue*> ExtSymbols;
318 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
319 Function *GV = I++;
320 if (GV->isDeclaration() && GV->hasName()) {
321 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
322 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
323 if (!X.second) {
324 // Found a conflict, replace this global with the previous one.
325 GlobalValue *OldGV = X.first->second;
326 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
327 GV->eraseFromParent();
328 Changed = true;
329 }
330 }
331 }
332 // Do the same for globals.
333 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
334 I != E;) {
335 GlobalVariable *GV = I++;
336 if (GV->isDeclaration() && GV->hasName()) {
337 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
338 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
339 if (!X.second) {
340 // Found a conflict, replace this global with the previous one.
341 GlobalValue *OldGV = X.first->second;
342 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
343 GV->eraseFromParent();
344 Changed = true;
345 }
346 }
347 }
348
349 return Changed;
350}
351
352/// printStructReturnPointerFunctionType - This is like printType for a struct
353/// return type, except, instead of printing the type as void (*)(Struct*, ...)
354/// print it as "Struct (*)(...)", for struct return functions.
355void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
356 const PointerType *TheTy) {
357 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
358 std::stringstream FunctionInnards;
359 FunctionInnards << " (*) (";
360 bool PrintedType = false;
361
362 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
363 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
364 unsigned Idx = 1;
365 const ParamAttrsList *Attrs = FTy->getParamAttrs();
366 for (++I; I != E; ++I) {
367 if (PrintedType)
368 FunctionInnards << ", ";
369 printType(FunctionInnards, *I,
370 /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt), "");
371 PrintedType = true;
372 }
373 if (FTy->isVarArg()) {
374 if (PrintedType)
375 FunctionInnards << ", ...";
376 } else if (!PrintedType) {
377 FunctionInnards << "void";
378 }
379 FunctionInnards << ')';
380 std::string tstr = FunctionInnards.str();
381 printType(Out, RetTy,
382 /*isSigned=*/Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt), tstr);
383}
384
385std::ostream &
386CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
387 const std::string &NameSoFar) {
388 assert((Ty->isPrimitiveType() || Ty->isInteger()) &&
389 "Invalid type for printSimpleType");
390 switch (Ty->getTypeID()) {
391 case Type::VoidTyID: return Out << "void " << NameSoFar;
392 case Type::IntegerTyID: {
393 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
394 if (NumBits == 1)
395 return Out << "bool " << NameSoFar;
396 else if (NumBits <= 8)
397 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
398 else if (NumBits <= 16)
399 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
400 else if (NumBits <= 32)
401 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
402 else {
403 assert(NumBits <= 64 && "Bit widths > 64 not implemented yet");
404 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
405 }
406 }
407 case Type::FloatTyID: return Out << "float " << NameSoFar;
408 case Type::DoubleTyID: return Out << "double " << NameSoFar;
409 default :
410 cerr << "Unknown primitive type: " << *Ty << "\n";
411 abort();
412 }
413}
414
415// Pass the Type* and the variable name and this prints out the variable
416// declaration.
417//
418std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
419 bool isSigned, const std::string &NameSoFar,
420 bool IgnoreName) {
421 if (Ty->isPrimitiveType() || Ty->isInteger()) {
422 printSimpleType(Out, Ty, isSigned, NameSoFar);
423 return Out;
424 }
425
426 // Check to see if the type is named.
427 if (!IgnoreName || isa<OpaqueType>(Ty)) {
428 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
429 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
430 }
431
432 switch (Ty->getTypeID()) {
433 case Type::FunctionTyID: {
434 const FunctionType *FTy = cast<FunctionType>(Ty);
435 std::stringstream FunctionInnards;
436 FunctionInnards << " (" << NameSoFar << ") (";
437 const ParamAttrsList *Attrs = FTy->getParamAttrs();
438 unsigned Idx = 1;
439 for (FunctionType::param_iterator I = FTy->param_begin(),
440 E = FTy->param_end(); I != E; ++I) {
441 if (I != FTy->param_begin())
442 FunctionInnards << ", ";
443 printType(FunctionInnards, *I,
444 /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt), "");
445 ++Idx;
446 }
447 if (FTy->isVarArg()) {
448 if (FTy->getNumParams())
449 FunctionInnards << ", ...";
450 } else if (!FTy->getNumParams()) {
451 FunctionInnards << "void";
452 }
453 FunctionInnards << ')';
454 std::string tstr = FunctionInnards.str();
455 printType(Out, FTy->getReturnType(),
456 /*isSigned=*/Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt), tstr);
457 return Out;
458 }
459 case Type::StructTyID: {
460 const StructType *STy = cast<StructType>(Ty);
461 Out << NameSoFar + " {\n";
462 unsigned Idx = 0;
463 for (StructType::element_iterator I = STy->element_begin(),
464 E = STy->element_end(); I != E; ++I) {
465 Out << " ";
466 printType(Out, *I, false, "field" + utostr(Idx++));
467 Out << ";\n";
468 }
469 Out << '}';
470 if (STy->isPacked())
471 Out << " __attribute__ ((packed))";
472 return Out;
473 }
474
475 case Type::PointerTyID: {
476 const PointerType *PTy = cast<PointerType>(Ty);
477 std::string ptrName = "*" + NameSoFar;
478
479 if (isa<ArrayType>(PTy->getElementType()) ||
480 isa<VectorType>(PTy->getElementType()))
481 ptrName = "(" + ptrName + ")";
482
483 return printType(Out, PTy->getElementType(), false, ptrName);
484 }
485
486 case Type::ArrayTyID: {
487 const ArrayType *ATy = cast<ArrayType>(Ty);
488 unsigned NumElements = ATy->getNumElements();
489 if (NumElements == 0) NumElements = 1;
490 return printType(Out, ATy->getElementType(), false,
491 NameSoFar + "[" + utostr(NumElements) + "]");
492 }
493
494 case Type::VectorTyID: {
495 const VectorType *PTy = cast<VectorType>(Ty);
496 unsigned NumElements = PTy->getNumElements();
497 if (NumElements == 0) NumElements = 1;
498 return printType(Out, PTy->getElementType(), false,
499 NameSoFar + "[" + utostr(NumElements) + "]");
500 }
501
502 case Type::OpaqueTyID: {
503 static int Count = 0;
504 std::string TyName = "struct opaque_" + itostr(Count++);
505 assert(TypeNames.find(Ty) == TypeNames.end());
506 TypeNames[Ty] = TyName;
507 return Out << TyName << ' ' << NameSoFar;
508 }
509 default:
510 assert(0 && "Unhandled case in getTypeProps!");
511 abort();
512 }
513
514 return Out;
515}
516
517void CWriter::printConstantArray(ConstantArray *CPA) {
518
519 // As a special case, print the array as a string if it is an array of
520 // ubytes or an array of sbytes with positive values.
521 //
522 const Type *ETy = CPA->getType()->getElementType();
523 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
524
525 // Make sure the last character is a null char, as automatically added by C
526 if (isString && (CPA->getNumOperands() == 0 ||
527 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
528 isString = false;
529
530 if (isString) {
531 Out << '\"';
532 // Keep track of whether the last number was a hexadecimal escape
533 bool LastWasHex = false;
534
535 // Do not include the last character, which we know is null
536 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
537 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
538
539 // Print it out literally if it is a printable character. The only thing
540 // to be careful about is when the last letter output was a hex escape
541 // code, in which case we have to be careful not to print out hex digits
542 // explicitly (the C compiler thinks it is a continuation of the previous
543 // character, sheesh...)
544 //
545 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
546 LastWasHex = false;
547 if (C == '"' || C == '\\')
548 Out << "\\" << C;
549 else
550 Out << C;
551 } else {
552 LastWasHex = false;
553 switch (C) {
554 case '\n': Out << "\\n"; break;
555 case '\t': Out << "\\t"; break;
556 case '\r': Out << "\\r"; break;
557 case '\v': Out << "\\v"; break;
558 case '\a': Out << "\\a"; break;
559 case '\"': Out << "\\\""; break;
560 case '\'': Out << "\\\'"; break;
561 default:
562 Out << "\\x";
563 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
564 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
565 LastWasHex = true;
566 break;
567 }
568 }
569 }
570 Out << '\"';
571 } else {
572 Out << '{';
573 if (CPA->getNumOperands()) {
574 Out << ' ';
575 printConstant(cast<Constant>(CPA->getOperand(0)));
576 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
577 Out << ", ";
578 printConstant(cast<Constant>(CPA->getOperand(i)));
579 }
580 }
581 Out << " }";
582 }
583}
584
585void CWriter::printConstantVector(ConstantVector *CP) {
586 Out << '{';
587 if (CP->getNumOperands()) {
588 Out << ' ';
589 printConstant(cast<Constant>(CP->getOperand(0)));
590 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
591 Out << ", ";
592 printConstant(cast<Constant>(CP->getOperand(i)));
593 }
594 }
595 Out << " }";
596}
597
598// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
599// textually as a double (rather than as a reference to a stack-allocated
600// variable). We decide this by converting CFP to a string and back into a
601// double, and then checking whether the conversion results in a bit-equal
602// double to the original value of CFP. This depends on us and the target C
603// compiler agreeing on the conversion process (which is pretty likely since we
604// only deal in IEEE FP).
605//
606static bool isFPCSafeToPrint(const ConstantFP *CFP) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000607 APFloat APF = APFloat(CFP->getValueAPF()); // copy
608 if (CFP->getType()==Type::FloatTy)
609 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000610#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
611 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000612 sprintf(Buffer, "%a", APF.convertToDouble());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000613 if (!strncmp(Buffer, "0x", 2) ||
614 !strncmp(Buffer, "-0x", 3) ||
615 !strncmp(Buffer, "+0x", 3))
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000616 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000617 return false;
618#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000619 std::string StrVal = ftostr(APF);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000620
621 while (StrVal[0] == ' ')
622 StrVal.erase(StrVal.begin());
623
624 // Check to make sure that the stringized number is not some string like "Inf"
625 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
626 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
627 ((StrVal[0] == '-' || StrVal[0] == '+') &&
628 (StrVal[1] >= '0' && StrVal[1] <= '9')))
629 // Reparse stringized version!
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000630 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000631 return false;
632#endif
633}
634
635/// Print out the casting for a cast operation. This does the double casting
636/// necessary for conversion to the destination type, if necessary.
637/// @brief Print a cast
638void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
639 // Print the destination type cast
640 switch (opc) {
641 case Instruction::UIToFP:
642 case Instruction::SIToFP:
643 case Instruction::IntToPtr:
644 case Instruction::Trunc:
645 case Instruction::BitCast:
646 case Instruction::FPExt:
647 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
648 Out << '(';
649 printType(Out, DstTy);
650 Out << ')';
651 break;
652 case Instruction::ZExt:
653 case Instruction::PtrToInt:
654 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
655 Out << '(';
656 printSimpleType(Out, DstTy, false);
657 Out << ')';
658 break;
659 case Instruction::SExt:
660 case Instruction::FPToSI: // For these, make sure we get a signed dest
661 Out << '(';
662 printSimpleType(Out, DstTy, true);
663 Out << ')';
664 break;
665 default:
666 assert(0 && "Invalid cast opcode");
667 }
668
669 // Print the source type cast
670 switch (opc) {
671 case Instruction::UIToFP:
672 case Instruction::ZExt:
673 Out << '(';
674 printSimpleType(Out, SrcTy, false);
675 Out << ')';
676 break;
677 case Instruction::SIToFP:
678 case Instruction::SExt:
679 Out << '(';
680 printSimpleType(Out, SrcTy, true);
681 Out << ')';
682 break;
683 case Instruction::IntToPtr:
684 case Instruction::PtrToInt:
685 // Avoid "cast to pointer from integer of different size" warnings
686 Out << "(unsigned long)";
687 break;
688 case Instruction::Trunc:
689 case Instruction::BitCast:
690 case Instruction::FPExt:
691 case Instruction::FPTrunc:
692 case Instruction::FPToSI:
693 case Instruction::FPToUI:
694 break; // These don't need a source cast.
695 default:
696 assert(0 && "Invalid cast opcode");
697 break;
698 }
699}
700
701// printConstant - The LLVM Constant to C Constant converter.
702void CWriter::printConstant(Constant *CPV) {
703 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
704 switch (CE->getOpcode()) {
705 case Instruction::Trunc:
706 case Instruction::ZExt:
707 case Instruction::SExt:
708 case Instruction::FPTrunc:
709 case Instruction::FPExt:
710 case Instruction::UIToFP:
711 case Instruction::SIToFP:
712 case Instruction::FPToUI:
713 case Instruction::FPToSI:
714 case Instruction::PtrToInt:
715 case Instruction::IntToPtr:
716 case Instruction::BitCast:
717 Out << "(";
718 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
719 if (CE->getOpcode() == Instruction::SExt &&
720 CE->getOperand(0)->getType() == Type::Int1Ty) {
721 // Make sure we really sext from bool here by subtracting from 0
722 Out << "0-";
723 }
724 printConstant(CE->getOperand(0));
725 if (CE->getType() == Type::Int1Ty &&
726 (CE->getOpcode() == Instruction::Trunc ||
727 CE->getOpcode() == Instruction::FPToUI ||
728 CE->getOpcode() == Instruction::FPToSI ||
729 CE->getOpcode() == Instruction::PtrToInt)) {
730 // Make sure we really truncate to bool here by anding with 1
731 Out << "&1u";
732 }
733 Out << ')';
734 return;
735
736 case Instruction::GetElementPtr:
737 Out << "(&(";
738 printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV),
739 gep_type_end(CPV));
740 Out << "))";
741 return;
742 case Instruction::Select:
743 Out << '(';
744 printConstant(CE->getOperand(0));
745 Out << '?';
746 printConstant(CE->getOperand(1));
747 Out << ':';
748 printConstant(CE->getOperand(2));
749 Out << ')';
750 return;
751 case Instruction::Add:
752 case Instruction::Sub:
753 case Instruction::Mul:
754 case Instruction::SDiv:
755 case Instruction::UDiv:
756 case Instruction::FDiv:
757 case Instruction::URem:
758 case Instruction::SRem:
759 case Instruction::FRem:
760 case Instruction::And:
761 case Instruction::Or:
762 case Instruction::Xor:
763 case Instruction::ICmp:
764 case Instruction::Shl:
765 case Instruction::LShr:
766 case Instruction::AShr:
767 {
768 Out << '(';
769 bool NeedsClosingParens = printConstExprCast(CE);
770 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
771 switch (CE->getOpcode()) {
772 case Instruction::Add: Out << " + "; break;
773 case Instruction::Sub: Out << " - "; break;
774 case Instruction::Mul: Out << " * "; break;
775 case Instruction::URem:
776 case Instruction::SRem:
777 case Instruction::FRem: Out << " % "; break;
778 case Instruction::UDiv:
779 case Instruction::SDiv:
780 case Instruction::FDiv: Out << " / "; break;
781 case Instruction::And: Out << " & "; break;
782 case Instruction::Or: Out << " | "; break;
783 case Instruction::Xor: Out << " ^ "; break;
784 case Instruction::Shl: Out << " << "; break;
785 case Instruction::LShr:
786 case Instruction::AShr: Out << " >> "; break;
787 case Instruction::ICmp:
788 switch (CE->getPredicate()) {
789 case ICmpInst::ICMP_EQ: Out << " == "; break;
790 case ICmpInst::ICMP_NE: Out << " != "; break;
791 case ICmpInst::ICMP_SLT:
792 case ICmpInst::ICMP_ULT: Out << " < "; break;
793 case ICmpInst::ICMP_SLE:
794 case ICmpInst::ICMP_ULE: Out << " <= "; break;
795 case ICmpInst::ICMP_SGT:
796 case ICmpInst::ICMP_UGT: Out << " > "; break;
797 case ICmpInst::ICMP_SGE:
798 case ICmpInst::ICMP_UGE: Out << " >= "; break;
799 default: assert(0 && "Illegal ICmp predicate");
800 }
801 break;
802 default: assert(0 && "Illegal opcode here!");
803 }
804 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
805 if (NeedsClosingParens)
806 Out << "))";
807 Out << ')';
808 return;
809 }
810 case Instruction::FCmp: {
811 Out << '(';
812 bool NeedsClosingParens = printConstExprCast(CE);
813 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
814 Out << "0";
815 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
816 Out << "1";
817 else {
818 const char* op = 0;
819 switch (CE->getPredicate()) {
820 default: assert(0 && "Illegal FCmp predicate");
821 case FCmpInst::FCMP_ORD: op = "ord"; break;
822 case FCmpInst::FCMP_UNO: op = "uno"; break;
823 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
824 case FCmpInst::FCMP_UNE: op = "une"; break;
825 case FCmpInst::FCMP_ULT: op = "ult"; break;
826 case FCmpInst::FCMP_ULE: op = "ule"; break;
827 case FCmpInst::FCMP_UGT: op = "ugt"; break;
828 case FCmpInst::FCMP_UGE: op = "uge"; break;
829 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
830 case FCmpInst::FCMP_ONE: op = "one"; break;
831 case FCmpInst::FCMP_OLT: op = "olt"; break;
832 case FCmpInst::FCMP_OLE: op = "ole"; break;
833 case FCmpInst::FCMP_OGT: op = "ogt"; break;
834 case FCmpInst::FCMP_OGE: op = "oge"; break;
835 }
836 Out << "llvm_fcmp_" << op << "(";
837 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
838 Out << ", ";
839 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
840 Out << ")";
841 }
842 if (NeedsClosingParens)
843 Out << "))";
844 Out << ')';
845 }
846 default:
847 cerr << "CWriter Error: Unhandled constant expression: "
848 << *CE << "\n";
849 abort();
850 }
851 } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
852 Out << "((";
853 printType(Out, CPV->getType()); // sign doesn't matter
854 Out << ")/*UNDEF*/0)";
855 return;
856 }
857
858 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
859 const Type* Ty = CI->getType();
860 if (Ty == Type::Int1Ty)
861 Out << (CI->getZExtValue() ? '1' : '0') ;
862 else {
863 Out << "((";
864 printSimpleType(Out, Ty, false) << ')';
865 if (CI->isMinValue(true))
866 Out << CI->getZExtValue() << 'u';
867 else
868 Out << CI->getSExtValue();
869 if (Ty->getPrimitiveSizeInBits() > 32)
870 Out << "ll";
871 Out << ')';
872 }
873 return;
874 }
875
876 switch (CPV->getType()->getTypeID()) {
877 case Type::FloatTyID:
878 case Type::DoubleTyID: {
879 ConstantFP *FPC = cast<ConstantFP>(CPV);
880 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
881 if (I != FPConstantMap.end()) {
882 // Because of FP precision problems we must load from a stack allocated
883 // value that holds the value in hex.
884 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double")
885 << "*)&FPConstant" << I->second << ')';
886 } else {
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000887 double V = FPC->getType() == Type::FloatTy ?
888 FPC->getValueAPF().convertToFloat() :
889 FPC->getValueAPF().convertToDouble();
890 if (IsNAN(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000891 // The value is NaN
892
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000893 // FIXME the actual NaN bits should be emitted.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000894 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
895 // it's 0x7ff4.
896 const unsigned long QuietNaN = 0x7ff8UL;
897 //const unsigned long SignalNaN = 0x7ff4UL;
898
899 // We need to grab the first part of the FP #
900 char Buffer[100];
901
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000902 uint64_t ll = DoubleToBits(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000903 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
904
905 std::string Num(&Buffer[0], &Buffer[6]);
906 unsigned long Val = strtoul(Num.c_str(), 0, 16);
907
908 if (FPC->getType() == Type::FloatTy)
909 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
910 << Buffer << "\") /*nan*/ ";
911 else
912 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
913 << Buffer << "\") /*nan*/ ";
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000914 } else if (IsInf(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000915 // The value is Inf
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000916 if (V < 0) Out << '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000917 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
918 << " /*inf*/ ";
919 } else {
920 std::string Num;
921#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
922 // Print out the constant as a floating point number.
923 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000924 sprintf(Buffer, "%a", V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000925 Num = Buffer;
926#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000927 Num = ftostr(FPC->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000928#endif
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000929 Out << Num;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000930 }
931 }
932 break;
933 }
934
935 case Type::ArrayTyID:
936 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
937 const ArrayType *AT = cast<ArrayType>(CPV->getType());
938 Out << '{';
939 if (AT->getNumElements()) {
940 Out << ' ';
941 Constant *CZ = Constant::getNullValue(AT->getElementType());
942 printConstant(CZ);
943 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
944 Out << ", ";
945 printConstant(CZ);
946 }
947 }
948 Out << " }";
949 } else {
950 printConstantArray(cast<ConstantArray>(CPV));
951 }
952 break;
953
954 case Type::VectorTyID:
955 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
956 const VectorType *AT = cast<VectorType>(CPV->getType());
957 Out << '{';
958 if (AT->getNumElements()) {
959 Out << ' ';
960 Constant *CZ = Constant::getNullValue(AT->getElementType());
961 printConstant(CZ);
962 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
963 Out << ", ";
964 printConstant(CZ);
965 }
966 }
967 Out << " }";
968 } else {
969 printConstantVector(cast<ConstantVector>(CPV));
970 }
971 break;
972
973 case Type::StructTyID:
974 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
975 const StructType *ST = cast<StructType>(CPV->getType());
976 Out << '{';
977 if (ST->getNumElements()) {
978 Out << ' ';
979 printConstant(Constant::getNullValue(ST->getElementType(0)));
980 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
981 Out << ", ";
982 printConstant(Constant::getNullValue(ST->getElementType(i)));
983 }
984 }
985 Out << " }";
986 } else {
987 Out << '{';
988 if (CPV->getNumOperands()) {
989 Out << ' ';
990 printConstant(cast<Constant>(CPV->getOperand(0)));
991 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
992 Out << ", ";
993 printConstant(cast<Constant>(CPV->getOperand(i)));
994 }
995 }
996 Out << " }";
997 }
998 break;
999
1000 case Type::PointerTyID:
1001 if (isa<ConstantPointerNull>(CPV)) {
1002 Out << "((";
1003 printType(Out, CPV->getType()); // sign doesn't matter
1004 Out << ")/*NULL*/0)";
1005 break;
1006 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1007 writeOperand(GV);
1008 break;
1009 }
1010 // FALL THROUGH
1011 default:
1012 cerr << "Unknown constant type: " << *CPV << "\n";
1013 abort();
1014 }
1015}
1016
1017// Some constant expressions need to be casted back to the original types
1018// because their operands were casted to the expected type. This function takes
1019// care of detecting that case and printing the cast for the ConstantExpr.
1020bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1021 bool NeedsExplicitCast = false;
1022 const Type *Ty = CE->getOperand(0)->getType();
1023 bool TypeIsSigned = false;
1024 switch (CE->getOpcode()) {
1025 case Instruction::LShr:
1026 case Instruction::URem:
1027 case Instruction::UDiv: NeedsExplicitCast = true; break;
1028 case Instruction::AShr:
1029 case Instruction::SRem:
1030 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1031 case Instruction::SExt:
1032 Ty = CE->getType();
1033 NeedsExplicitCast = true;
1034 TypeIsSigned = true;
1035 break;
1036 case Instruction::ZExt:
1037 case Instruction::Trunc:
1038 case Instruction::FPTrunc:
1039 case Instruction::FPExt:
1040 case Instruction::UIToFP:
1041 case Instruction::SIToFP:
1042 case Instruction::FPToUI:
1043 case Instruction::FPToSI:
1044 case Instruction::PtrToInt:
1045 case Instruction::IntToPtr:
1046 case Instruction::BitCast:
1047 Ty = CE->getType();
1048 NeedsExplicitCast = true;
1049 break;
1050 default: break;
1051 }
1052 if (NeedsExplicitCast) {
1053 Out << "((";
1054 if (Ty->isInteger() && Ty != Type::Int1Ty)
1055 printSimpleType(Out, Ty, TypeIsSigned);
1056 else
1057 printType(Out, Ty); // not integer, sign doesn't matter
1058 Out << ")(";
1059 }
1060 return NeedsExplicitCast;
1061}
1062
1063// Print a constant assuming that it is the operand for a given Opcode. The
1064// opcodes that care about sign need to cast their operands to the expected
1065// type before the operation proceeds. This function does the casting.
1066void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1067
1068 // Extract the operand's type, we'll need it.
1069 const Type* OpTy = CPV->getType();
1070
1071 // Indicate whether to do the cast or not.
1072 bool shouldCast = false;
1073 bool typeIsSigned = false;
1074
1075 // Based on the Opcode for which this Constant is being written, determine
1076 // the new type to which the operand should be casted by setting the value
1077 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1078 // casted below.
1079 switch (Opcode) {
1080 default:
1081 // for most instructions, it doesn't matter
1082 break;
1083 case Instruction::LShr:
1084 case Instruction::UDiv:
1085 case Instruction::URem:
1086 shouldCast = true;
1087 break;
1088 case Instruction::AShr:
1089 case Instruction::SDiv:
1090 case Instruction::SRem:
1091 shouldCast = true;
1092 typeIsSigned = true;
1093 break;
1094 }
1095
1096 // Write out the casted constant if we should, otherwise just write the
1097 // operand.
1098 if (shouldCast) {
1099 Out << "((";
1100 printSimpleType(Out, OpTy, typeIsSigned);
1101 Out << ")";
1102 printConstant(CPV);
1103 Out << ")";
1104 } else
1105 printConstant(CPV);
1106}
1107
1108std::string CWriter::GetValueName(const Value *Operand) {
1109 std::string Name;
1110
1111 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1112 std::string VarName;
1113
1114 Name = Operand->getName();
1115 VarName.reserve(Name.capacity());
1116
1117 for (std::string::iterator I = Name.begin(), E = Name.end();
1118 I != E; ++I) {
1119 char ch = *I;
1120
1121 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
1122 (ch >= '0' && ch <= '9') || ch == '_'))
1123 VarName += '_';
1124 else
1125 VarName += ch;
1126 }
1127
1128 Name = "llvm_cbe_" + VarName;
1129 } else {
1130 Name = Mang->getValueName(Operand);
1131 }
1132
1133 return Name;
1134}
1135
1136void CWriter::writeOperandInternal(Value *Operand) {
1137 if (Instruction *I = dyn_cast<Instruction>(Operand))
1138 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1139 // Should we inline this instruction to build a tree?
1140 Out << '(';
1141 visit(*I);
1142 Out << ')';
1143 return;
1144 }
1145
1146 Constant* CPV = dyn_cast<Constant>(Operand);
1147
1148 if (CPV && !isa<GlobalValue>(CPV))
1149 printConstant(CPV);
1150 else
1151 Out << GetValueName(Operand);
1152}
1153
1154void CWriter::writeOperandRaw(Value *Operand) {
1155 Constant* CPV = dyn_cast<Constant>(Operand);
1156 if (CPV && !isa<GlobalValue>(CPV)) {
1157 printConstant(CPV);
1158 } else {
1159 Out << GetValueName(Operand);
1160 }
1161}
1162
1163void CWriter::writeOperand(Value *Operand) {
1164 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
1165 Out << "(&"; // Global variables are referenced as their addresses by llvm
1166
1167 writeOperandInternal(Operand);
1168
1169 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
1170 Out << ')';
1171}
1172
1173// Some instructions need to have their result value casted back to the
1174// original types because their operands were casted to the expected type.
1175// This function takes care of detecting that case and printing the cast
1176// for the Instruction.
1177bool CWriter::writeInstructionCast(const Instruction &I) {
1178 const Type *Ty = I.getOperand(0)->getType();
1179 switch (I.getOpcode()) {
1180 case Instruction::LShr:
1181 case Instruction::URem:
1182 case Instruction::UDiv:
1183 Out << "((";
1184 printSimpleType(Out, Ty, false);
1185 Out << ")(";
1186 return true;
1187 case Instruction::AShr:
1188 case Instruction::SRem:
1189 case Instruction::SDiv:
1190 Out << "((";
1191 printSimpleType(Out, Ty, true);
1192 Out << ")(";
1193 return true;
1194 default: break;
1195 }
1196 return false;
1197}
1198
1199// Write the operand with a cast to another type based on the Opcode being used.
1200// This will be used in cases where an instruction has specific type
1201// requirements (usually signedness) for its operands.
1202void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1203
1204 // Extract the operand's type, we'll need it.
1205 const Type* OpTy = Operand->getType();
1206
1207 // Indicate whether to do the cast or not.
1208 bool shouldCast = false;
1209
1210 // Indicate whether the cast should be to a signed type or not.
1211 bool castIsSigned = false;
1212
1213 // Based on the Opcode for which this Operand is being written, determine
1214 // the new type to which the operand should be casted by setting the value
1215 // of OpTy. If we change OpTy, also set shouldCast to true.
1216 switch (Opcode) {
1217 default:
1218 // for most instructions, it doesn't matter
1219 break;
1220 case Instruction::LShr:
1221 case Instruction::UDiv:
1222 case Instruction::URem: // Cast to unsigned first
1223 shouldCast = true;
1224 castIsSigned = false;
1225 break;
1226 case Instruction::AShr:
1227 case Instruction::SDiv:
1228 case Instruction::SRem: // Cast to signed first
1229 shouldCast = true;
1230 castIsSigned = true;
1231 break;
1232 }
1233
1234 // Write out the casted operand if we should, otherwise just write the
1235 // operand.
1236 if (shouldCast) {
1237 Out << "((";
1238 printSimpleType(Out, OpTy, castIsSigned);
1239 Out << ")";
1240 writeOperand(Operand);
1241 Out << ")";
1242 } else
1243 writeOperand(Operand);
1244}
1245
1246// Write the operand with a cast to another type based on the icmp predicate
1247// being used.
1248void CWriter::writeOperandWithCast(Value* Operand, ICmpInst::Predicate predicate) {
1249
1250 // Extract the operand's type, we'll need it.
1251 const Type* OpTy = Operand->getType();
1252
1253 // Indicate whether to do the cast or not.
1254 bool shouldCast = false;
1255
1256 // Indicate whether the cast should be to a signed type or not.
1257 bool castIsSigned = false;
1258
1259 // Based on the Opcode for which this Operand is being written, determine
1260 // the new type to which the operand should be casted by setting the value
1261 // of OpTy. If we change OpTy, also set shouldCast to true.
1262 switch (predicate) {
1263 default:
1264 // for eq and ne, it doesn't matter
1265 break;
1266 case ICmpInst::ICMP_UGT:
1267 case ICmpInst::ICMP_UGE:
1268 case ICmpInst::ICMP_ULT:
1269 case ICmpInst::ICMP_ULE:
1270 shouldCast = true;
1271 break;
1272 case ICmpInst::ICMP_SGT:
1273 case ICmpInst::ICMP_SGE:
1274 case ICmpInst::ICMP_SLT:
1275 case ICmpInst::ICMP_SLE:
1276 shouldCast = true;
1277 castIsSigned = true;
1278 break;
1279 }
1280
1281 // Write out the casted operand if we should, otherwise just write the
1282 // operand.
1283 if (shouldCast) {
1284 Out << "((";
1285 if (OpTy->isInteger() && OpTy != Type::Int1Ty)
1286 printSimpleType(Out, OpTy, castIsSigned);
1287 else
1288 printType(Out, OpTy); // not integer, sign doesn't matter
1289 Out << ")";
1290 writeOperand(Operand);
1291 Out << ")";
1292 } else
1293 writeOperand(Operand);
1294}
1295
1296// generateCompilerSpecificCode - This is where we add conditional compilation
1297// directives to cater to specific compilers as need be.
1298//
1299static void generateCompilerSpecificCode(std::ostream& Out) {
1300 // Alloca is hard to get, and we don't want to include stdlib.h here.
1301 Out << "/* get a declaration for alloca */\n"
1302 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1303 << "#define alloca(x) __builtin_alloca((x))\n"
1304 << "#define _alloca(x) __builtin_alloca((x))\n"
1305 << "#elif defined(__APPLE__)\n"
1306 << "extern void *__builtin_alloca(unsigned long);\n"
1307 << "#define alloca(x) __builtin_alloca(x)\n"
1308 << "#define longjmp _longjmp\n"
1309 << "#define setjmp _setjmp\n"
1310 << "#elif defined(__sun__)\n"
1311 << "#if defined(__sparcv9)\n"
1312 << "extern void *__builtin_alloca(unsigned long);\n"
1313 << "#else\n"
1314 << "extern void *__builtin_alloca(unsigned int);\n"
1315 << "#endif\n"
1316 << "#define alloca(x) __builtin_alloca(x)\n"
1317 << "#elif defined(__FreeBSD__) || defined(__OpenBSD__)\n"
1318 << "#define alloca(x) __builtin_alloca(x)\n"
1319 << "#elif defined(_MSC_VER)\n"
1320 << "#define inline _inline\n"
1321 << "#define alloca(x) _alloca(x)\n"
1322 << "#else\n"
1323 << "#include <alloca.h>\n"
1324 << "#endif\n\n";
1325
1326 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1327 // If we aren't being compiled with GCC, just drop these attributes.
1328 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1329 << "#define __attribute__(X)\n"
1330 << "#endif\n\n";
1331
1332 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1333 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1334 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1335 << "#elif defined(__GNUC__)\n"
1336 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1337 << "#else\n"
1338 << "#define __EXTERNAL_WEAK__\n"
1339 << "#endif\n\n";
1340
1341 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1342 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1343 << "#define __ATTRIBUTE_WEAK__\n"
1344 << "#elif defined(__GNUC__)\n"
1345 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1346 << "#else\n"
1347 << "#define __ATTRIBUTE_WEAK__\n"
1348 << "#endif\n\n";
1349
1350 // Add hidden visibility support. FIXME: APPLE_CC?
1351 Out << "#if defined(__GNUC__)\n"
1352 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1353 << "#endif\n\n";
1354
1355 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1356 // From the GCC documentation:
1357 //
1358 // double __builtin_nan (const char *str)
1359 //
1360 // This is an implementation of the ISO C99 function nan.
1361 //
1362 // Since ISO C99 defines this function in terms of strtod, which we do
1363 // not implement, a description of the parsing is in order. The string is
1364 // parsed as by strtol; that is, the base is recognized by leading 0 or
1365 // 0x prefixes. The number parsed is placed in the significand such that
1366 // the least significant bit of the number is at the least significant
1367 // bit of the significand. The number is truncated to fit the significand
1368 // field provided. The significand is forced to be a quiet NaN.
1369 //
1370 // This function, if given a string literal, is evaluated early enough
1371 // that it is considered a compile-time constant.
1372 //
1373 // float __builtin_nanf (const char *str)
1374 //
1375 // Similar to __builtin_nan, except the return type is float.
1376 //
1377 // double __builtin_inf (void)
1378 //
1379 // Similar to __builtin_huge_val, except a warning is generated if the
1380 // target floating-point format does not support infinities. This
1381 // function is suitable for implementing the ISO C99 macro INFINITY.
1382 //
1383 // float __builtin_inff (void)
1384 //
1385 // Similar to __builtin_inf, except the return type is float.
1386 Out << "#ifdef __GNUC__\n"
1387 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1388 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1389 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1390 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1391 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1392 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1393 << "#define LLVM_PREFETCH(addr,rw,locality) "
1394 "__builtin_prefetch(addr,rw,locality)\n"
1395 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1396 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1397 << "#define LLVM_ASM __asm__\n"
1398 << "#else\n"
1399 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1400 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1401 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1402 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1403 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1404 << "#define LLVM_INFF 0.0F /* Float */\n"
1405 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1406 << "#define __ATTRIBUTE_CTOR__\n"
1407 << "#define __ATTRIBUTE_DTOR__\n"
1408 << "#define LLVM_ASM(X)\n"
1409 << "#endif\n\n";
1410
1411 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1412 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1413 << "#define __builtin_stack_restore(X) /* noop */\n"
1414 << "#endif\n\n";
1415
1416 // Output target-specific code that should be inserted into main.
1417 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
1418 // On X86, set the FP control word to 64-bits of precision instead of 80 bits.
1419 Out << "#if defined(__GNUC__) && !defined(__llvm__)\n"
1420 << "#if defined(i386) || defined(__i386__) || defined(__i386) || "
1421 << "defined(__x86_64__)\n"
1422 << "#undef CODE_FOR_MAIN\n"
1423 << "#define CODE_FOR_MAIN() \\\n"
1424 << " {short F;__asm__ (\"fnstcw %0\" : \"=m\" (*&F)); \\\n"
1425 << " F=(F&~0x300)|0x200;__asm__(\"fldcw %0\"::\"m\"(*&F));}\n"
1426 << "#endif\n#endif\n";
1427
1428}
1429
1430/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1431/// the StaticTors set.
1432static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1433 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1434 if (!InitList) return;
1435
1436 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1437 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1438 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1439
1440 if (CS->getOperand(1)->isNullValue())
1441 return; // Found a null terminator, exit printing.
1442 Constant *FP = CS->getOperand(1);
1443 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1444 if (CE->isCast())
1445 FP = CE->getOperand(0);
1446 if (Function *F = dyn_cast<Function>(FP))
1447 StaticTors.insert(F);
1448 }
1449}
1450
1451enum SpecialGlobalClass {
1452 NotSpecial = 0,
1453 GlobalCtors, GlobalDtors,
1454 NotPrinted
1455};
1456
1457/// getGlobalVariableClass - If this is a global that is specially recognized
1458/// by LLVM, return a code that indicates how we should handle it.
1459static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1460 // If this is a global ctors/dtors list, handle it now.
1461 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1462 if (GV->getName() == "llvm.global_ctors")
1463 return GlobalCtors;
1464 else if (GV->getName() == "llvm.global_dtors")
1465 return GlobalDtors;
1466 }
1467
1468 // Otherwise, it it is other metadata, don't print it. This catches things
1469 // like debug information.
1470 if (GV->getSection() == "llvm.metadata")
1471 return NotPrinted;
1472
1473 return NotSpecial;
1474}
1475
1476
1477bool CWriter::doInitialization(Module &M) {
1478 // Initialize
1479 TheModule = &M;
1480
1481 TD = new TargetData(&M);
1482 IL = new IntrinsicLowering(*TD);
1483 IL->AddPrototypes(M);
1484
1485 // Ensure that all structure types have names...
1486 Mang = new Mangler(M);
1487 Mang->markCharUnacceptable('.');
1488
1489 // Keep track of which functions are static ctors/dtors so they can have
1490 // an attribute added to their prototypes.
1491 std::set<Function*> StaticCtors, StaticDtors;
1492 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1493 I != E; ++I) {
1494 switch (getGlobalVariableClass(I)) {
1495 default: break;
1496 case GlobalCtors:
1497 FindStaticTors(I, StaticCtors);
1498 break;
1499 case GlobalDtors:
1500 FindStaticTors(I, StaticDtors);
1501 break;
1502 }
1503 }
1504
1505 // get declaration for alloca
1506 Out << "/* Provide Declarations */\n";
1507 Out << "#include <stdarg.h>\n"; // Varargs support
1508 Out << "#include <setjmp.h>\n"; // Unwind support
1509 generateCompilerSpecificCode(Out);
1510
1511 // Provide a definition for `bool' if not compiling with a C++ compiler.
1512 Out << "\n"
1513 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1514
1515 << "\n\n/* Support for floating point constants */\n"
1516 << "typedef unsigned long long ConstantDoubleTy;\n"
1517 << "typedef unsigned int ConstantFloatTy;\n"
1518
1519 << "\n\n/* Global Declarations */\n";
1520
1521 // First output all the declarations for the program, because C requires
1522 // Functions & globals to be declared before they are used.
1523 //
1524
1525 // Loop over the symbol table, emitting all named constants...
1526 printModuleTypes(M.getTypeSymbolTable());
1527
1528 // Global variable declarations...
1529 if (!M.global_empty()) {
1530 Out << "\n/* External Global Variable Declarations */\n";
1531 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1532 I != E; ++I) {
1533
1534 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
1535 Out << "extern ";
1536 else if (I->hasDLLImportLinkage())
1537 Out << "__declspec(dllimport) ";
1538 else
1539 continue; // Internal Global
1540
1541 // Thread Local Storage
1542 if (I->isThreadLocal())
1543 Out << "__thread ";
1544
1545 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1546
1547 if (I->hasExternalWeakLinkage())
1548 Out << " __EXTERNAL_WEAK__";
1549 Out << ";\n";
1550 }
1551 }
1552
1553 // Function declarations
1554 Out << "\n/* Function Declarations */\n";
1555 Out << "double fmod(double, double);\n"; // Support for FP rem
1556 Out << "float fmodf(float, float);\n";
1557
1558 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1559 // Don't print declarations for intrinsic functions.
1560 if (!I->getIntrinsicID() && I->getName() != "setjmp" &&
1561 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1562 if (I->hasExternalWeakLinkage())
1563 Out << "extern ";
1564 printFunctionSignature(I, true);
1565 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1566 Out << " __ATTRIBUTE_WEAK__";
1567 if (I->hasExternalWeakLinkage())
1568 Out << " __EXTERNAL_WEAK__";
1569 if (StaticCtors.count(I))
1570 Out << " __ATTRIBUTE_CTOR__";
1571 if (StaticDtors.count(I))
1572 Out << " __ATTRIBUTE_DTOR__";
1573 if (I->hasHiddenVisibility())
1574 Out << " __HIDDEN__";
1575
1576 if (I->hasName() && I->getName()[0] == 1)
1577 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
1578
1579 Out << ";\n";
1580 }
1581 }
1582
1583 // Output the global variable declarations
1584 if (!M.global_empty()) {
1585 Out << "\n\n/* Global Variable Declarations */\n";
1586 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1587 I != E; ++I)
1588 if (!I->isDeclaration()) {
1589 // Ignore special globals, such as debug info.
1590 if (getGlobalVariableClass(I))
1591 continue;
1592
1593 if (I->hasInternalLinkage())
1594 Out << "static ";
1595 else
1596 Out << "extern ";
1597
1598 // Thread Local Storage
1599 if (I->isThreadLocal())
1600 Out << "__thread ";
1601
1602 printType(Out, I->getType()->getElementType(), false,
1603 GetValueName(I));
1604
1605 if (I->hasLinkOnceLinkage())
1606 Out << " __attribute__((common))";
1607 else if (I->hasWeakLinkage())
1608 Out << " __ATTRIBUTE_WEAK__";
1609 else if (I->hasExternalWeakLinkage())
1610 Out << " __EXTERNAL_WEAK__";
1611 if (I->hasHiddenVisibility())
1612 Out << " __HIDDEN__";
1613 Out << ";\n";
1614 }
1615 }
1616
1617 // Output the global variable definitions and contents...
1618 if (!M.global_empty()) {
1619 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1620 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1621 I != E; ++I)
1622 if (!I->isDeclaration()) {
1623 // Ignore special globals, such as debug info.
1624 if (getGlobalVariableClass(I))
1625 continue;
1626
1627 if (I->hasInternalLinkage())
1628 Out << "static ";
1629 else if (I->hasDLLImportLinkage())
1630 Out << "__declspec(dllimport) ";
1631 else if (I->hasDLLExportLinkage())
1632 Out << "__declspec(dllexport) ";
1633
1634 // Thread Local Storage
1635 if (I->isThreadLocal())
1636 Out << "__thread ";
1637
1638 printType(Out, I->getType()->getElementType(), false,
1639 GetValueName(I));
1640 if (I->hasLinkOnceLinkage())
1641 Out << " __attribute__((common))";
1642 else if (I->hasWeakLinkage())
1643 Out << " __ATTRIBUTE_WEAK__";
1644
1645 if (I->hasHiddenVisibility())
1646 Out << " __HIDDEN__";
1647
1648 // If the initializer is not null, emit the initializer. If it is null,
1649 // we try to avoid emitting large amounts of zeros. The problem with
1650 // this, however, occurs when the variable has weak linkage. In this
1651 // case, the assembler will complain about the variable being both weak
1652 // and common, so we disable this optimization.
1653 if (!I->getInitializer()->isNullValue()) {
1654 Out << " = " ;
1655 writeOperand(I->getInitializer());
1656 } else if (I->hasWeakLinkage()) {
1657 // We have to specify an initializer, but it doesn't have to be
1658 // complete. If the value is an aggregate, print out { 0 }, and let
1659 // the compiler figure out the rest of the zeros.
1660 Out << " = " ;
1661 if (isa<StructType>(I->getInitializer()->getType()) ||
1662 isa<ArrayType>(I->getInitializer()->getType()) ||
1663 isa<VectorType>(I->getInitializer()->getType())) {
1664 Out << "{ 0 }";
1665 } else {
1666 // Just print it out normally.
1667 writeOperand(I->getInitializer());
1668 }
1669 }
1670 Out << ";\n";
1671 }
1672 }
1673
1674 if (!M.empty())
1675 Out << "\n\n/* Function Bodies */\n";
1676
1677 // Emit some helper functions for dealing with FCMP instruction's
1678 // predicates
1679 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1680 Out << "return X == X && Y == Y; }\n";
1681 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1682 Out << "return X != X || Y != Y; }\n";
1683 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1684 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1685 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1686 Out << "return X != Y; }\n";
1687 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1688 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1689 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1690 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1691 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1692 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1693 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1694 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1695 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1696 Out << "return X == Y ; }\n";
1697 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1698 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1699 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1700 Out << "return X < Y ; }\n";
1701 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1702 Out << "return X > Y ; }\n";
1703 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1704 Out << "return X <= Y ; }\n";
1705 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1706 Out << "return X >= Y ; }\n";
1707 return false;
1708}
1709
1710
1711/// Output all floating point constants that cannot be printed accurately...
1712void CWriter::printFloatingPointConstants(Function &F) {
1713 // Scan the module for floating point constants. If any FP constant is used
1714 // in the function, we want to redirect it here so that we do not depend on
1715 // the precision of the printed form, unless the printed form preserves
1716 // precision.
1717 //
1718 static unsigned FPCounter = 0;
1719 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1720 I != E; ++I)
1721 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1722 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1723 !FPConstantMap.count(FPC)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001724 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1725
1726 if (FPC->getType() == Type::DoubleTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001727 double Val = FPC->getValueAPF().convertToDouble();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001728 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
1729 << " = 0x" << std::hex << DoubleToBits(Val) << std::dec
1730 << "ULL; /* " << Val << " */\n";
1731 } else if (FPC->getType() == Type::FloatTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001732 float Val = FPC->getValueAPF().convertToFloat();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001733 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
1734 << " = 0x" << std::hex << FloatToBits(Val) << std::dec
1735 << "U; /* " << Val << " */\n";
1736 } else
1737 assert(0 && "Unknown float type!");
1738 }
1739
1740 Out << '\n';
1741}
1742
1743
1744/// printSymbolTable - Run through symbol table looking for type names. If a
1745/// type name is found, emit its declaration...
1746///
1747void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1748 Out << "/* Helper union for bitcasts */\n";
1749 Out << "typedef union {\n";
1750 Out << " unsigned int Int32;\n";
1751 Out << " unsigned long long Int64;\n";
1752 Out << " float Float;\n";
1753 Out << " double Double;\n";
1754 Out << "} llvmBitCastUnion;\n";
1755
1756 // We are only interested in the type plane of the symbol table.
1757 TypeSymbolTable::const_iterator I = TST.begin();
1758 TypeSymbolTable::const_iterator End = TST.end();
1759
1760 // If there are no type names, exit early.
1761 if (I == End) return;
1762
1763 // Print out forward declarations for structure types before anything else!
1764 Out << "/* Structure forward decls */\n";
1765 for (; I != End; ++I) {
1766 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1767 Out << Name << ";\n";
1768 TypeNames.insert(std::make_pair(I->second, Name));
1769 }
1770
1771 Out << '\n';
1772
1773 // Now we can print out typedefs. Above, we guaranteed that this can only be
1774 // for struct or opaque types.
1775 Out << "/* Typedefs */\n";
1776 for (I = TST.begin(); I != End; ++I) {
1777 std::string Name = "l_" + Mang->makeNameProper(I->first);
1778 Out << "typedef ";
1779 printType(Out, I->second, false, Name);
1780 Out << ";\n";
1781 }
1782
1783 Out << '\n';
1784
1785 // Keep track of which structures have been printed so far...
1786 std::set<const StructType *> StructPrinted;
1787
1788 // Loop over all structures then push them into the stack so they are
1789 // printed in the correct order.
1790 //
1791 Out << "/* Structure contents */\n";
1792 for (I = TST.begin(); I != End; ++I)
1793 if (const StructType *STy = dyn_cast<StructType>(I->second))
1794 // Only print out used types!
1795 printContainedStructs(STy, StructPrinted);
1796}
1797
1798// Push the struct onto the stack and recursively push all structs
1799// this one depends on.
1800//
1801// TODO: Make this work properly with vector types
1802//
1803void CWriter::printContainedStructs(const Type *Ty,
1804 std::set<const StructType*> &StructPrinted){
1805 // Don't walk through pointers.
1806 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1807
1808 // Print all contained types first.
1809 for (Type::subtype_iterator I = Ty->subtype_begin(),
1810 E = Ty->subtype_end(); I != E; ++I)
1811 printContainedStructs(*I, StructPrinted);
1812
1813 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1814 // Check to see if we have already printed this struct.
1815 if (StructPrinted.insert(STy).second) {
1816 // Print structure type out.
1817 std::string Name = TypeNames[STy];
1818 printType(Out, STy, false, Name, true);
1819 Out << ";\n\n";
1820 }
1821 }
1822}
1823
1824void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1825 /// isStructReturn - Should this function actually return a struct by-value?
1826 bool isStructReturn = F->getFunctionType()->isStructReturn();
1827
1828 if (F->hasInternalLinkage()) Out << "static ";
1829 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1830 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1831 switch (F->getCallingConv()) {
1832 case CallingConv::X86_StdCall:
1833 Out << "__stdcall ";
1834 break;
1835 case CallingConv::X86_FastCall:
1836 Out << "__fastcall ";
1837 break;
1838 }
1839
1840 // Loop over the arguments, printing them...
1841 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
1842 const ParamAttrsList *Attrs = FT->getParamAttrs();
1843
1844 std::stringstream FunctionInnards;
1845
1846 // Print out the name...
1847 FunctionInnards << GetValueName(F) << '(';
1848
1849 bool PrintedArg = false;
1850 if (!F->isDeclaration()) {
1851 if (!F->arg_empty()) {
1852 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1853
1854 // If this is a struct-return function, don't print the hidden
1855 // struct-return argument.
1856 if (isStructReturn) {
1857 assert(I != E && "Invalid struct return function!");
1858 ++I;
1859 }
1860
1861 std::string ArgName;
1862 unsigned Idx = 1;
1863 for (; I != E; ++I) {
1864 if (PrintedArg) FunctionInnards << ", ";
1865 if (I->hasName() || !Prototype)
1866 ArgName = GetValueName(I);
1867 else
1868 ArgName = "";
1869 printType(FunctionInnards, I->getType(),
1870 /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt),
1871 ArgName);
1872 PrintedArg = true;
1873 ++Idx;
1874 }
1875 }
1876 } else {
1877 // Loop over the arguments, printing them.
1878 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
1879
1880 // If this is a struct-return function, don't print the hidden
1881 // struct-return argument.
1882 if (isStructReturn) {
1883 assert(I != E && "Invalid struct return function!");
1884 ++I;
1885 }
1886
1887 unsigned Idx = 1;
1888 for (; I != E; ++I) {
1889 if (PrintedArg) FunctionInnards << ", ";
1890 printType(FunctionInnards, *I,
1891 /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt));
1892 PrintedArg = true;
1893 ++Idx;
1894 }
1895 }
1896
1897 // Finish printing arguments... if this is a vararg function, print the ...,
1898 // unless there are no known types, in which case, we just emit ().
1899 //
1900 if (FT->isVarArg() && PrintedArg) {
1901 if (PrintedArg) FunctionInnards << ", ";
1902 FunctionInnards << "..."; // Output varargs portion of signature!
1903 } else if (!FT->isVarArg() && !PrintedArg) {
1904 FunctionInnards << "void"; // ret() -> ret(void) in C.
1905 }
1906 FunctionInnards << ')';
1907
1908 // Get the return tpe for the function.
1909 const Type *RetTy;
1910 if (!isStructReturn)
1911 RetTy = F->getReturnType();
1912 else {
1913 // If this is a struct-return function, print the struct-return type.
1914 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
1915 }
1916
1917 // Print out the return type and the signature built above.
1918 printType(Out, RetTy,
1919 /*isSigned=*/ Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
1920 FunctionInnards.str());
1921}
1922
1923static inline bool isFPIntBitCast(const Instruction &I) {
1924 if (!isa<BitCastInst>(I))
1925 return false;
1926 const Type *SrcTy = I.getOperand(0)->getType();
1927 const Type *DstTy = I.getType();
1928 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
1929 (DstTy->isFloatingPoint() && SrcTy->isInteger());
1930}
1931
1932void CWriter::printFunction(Function &F) {
1933 /// isStructReturn - Should this function actually return a struct by-value?
1934 bool isStructReturn = F.getFunctionType()->isStructReturn();
1935
1936 printFunctionSignature(&F, false);
1937 Out << " {\n";
1938
1939 // If this is a struct return function, handle the result with magic.
1940 if (isStructReturn) {
1941 const Type *StructTy =
1942 cast<PointerType>(F.arg_begin()->getType())->getElementType();
1943 Out << " ";
1944 printType(Out, StructTy, false, "StructReturn");
1945 Out << "; /* Struct return temporary */\n";
1946
1947 Out << " ";
1948 printType(Out, F.arg_begin()->getType(), false,
1949 GetValueName(F.arg_begin()));
1950 Out << " = &StructReturn;\n";
1951 }
1952
1953 bool PrintedVar = false;
1954
1955 // print local variable information for the function
1956 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
1957 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
1958 Out << " ";
1959 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
1960 Out << "; /* Address-exposed local */\n";
1961 PrintedVar = true;
1962 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
1963 Out << " ";
1964 printType(Out, I->getType(), false, GetValueName(&*I));
1965 Out << ";\n";
1966
1967 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
1968 Out << " ";
1969 printType(Out, I->getType(), false,
1970 GetValueName(&*I)+"__PHI_TEMPORARY");
1971 Out << ";\n";
1972 }
1973 PrintedVar = true;
1974 }
1975 // We need a temporary for the BitCast to use so it can pluck a value out
1976 // of a union to do the BitCast. This is separate from the need for a
1977 // variable to hold the result of the BitCast.
1978 if (isFPIntBitCast(*I)) {
1979 Out << " llvmBitCastUnion " << GetValueName(&*I)
1980 << "__BITCAST_TEMPORARY;\n";
1981 PrintedVar = true;
1982 }
1983 }
1984
1985 if (PrintedVar)
1986 Out << '\n';
1987
1988 if (F.hasExternalLinkage() && F.getName() == "main")
1989 Out << " CODE_FOR_MAIN();\n";
1990
1991 // print the basic blocks
1992 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1993 if (Loop *L = LI->getLoopFor(BB)) {
1994 if (L->getHeader() == BB && L->getParentLoop() == 0)
1995 printLoop(L);
1996 } else {
1997 printBasicBlock(BB);
1998 }
1999 }
2000
2001 Out << "}\n\n";
2002}
2003
2004void CWriter::printLoop(Loop *L) {
2005 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2006 << "' to make GCC happy */\n";
2007 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2008 BasicBlock *BB = L->getBlocks()[i];
2009 Loop *BBLoop = LI->getLoopFor(BB);
2010 if (BBLoop == L)
2011 printBasicBlock(BB);
2012 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2013 printLoop(BBLoop);
2014 }
2015 Out << " } while (1); /* end of syntactic loop '"
2016 << L->getHeader()->getName() << "' */\n";
2017}
2018
2019void CWriter::printBasicBlock(BasicBlock *BB) {
2020
2021 // Don't print the label for the basic block if there are no uses, or if
2022 // the only terminator use is the predecessor basic block's terminator.
2023 // We have to scan the use list because PHI nodes use basic blocks too but
2024 // do not require a label to be generated.
2025 //
2026 bool NeedsLabel = false;
2027 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2028 if (isGotoCodeNecessary(*PI, BB)) {
2029 NeedsLabel = true;
2030 break;
2031 }
2032
2033 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2034
2035 // Output all of the instructions in the basic block...
2036 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2037 ++II) {
2038 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2039 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2040 outputLValue(II);
2041 else
2042 Out << " ";
2043 visit(*II);
2044 Out << ";\n";
2045 }
2046 }
2047
2048 // Don't emit prefix or suffix for the terminator...
2049 visit(*BB->getTerminator());
2050}
2051
2052
2053// Specific Instruction type classes... note that all of the casts are
2054// necessary because we use the instruction classes as opaque types...
2055//
2056void CWriter::visitReturnInst(ReturnInst &I) {
2057 // If this is a struct return function, return the temporary struct.
2058 bool isStructReturn = I.getParent()->getParent()->
2059 getFunctionType()->isStructReturn();
2060
2061 if (isStructReturn) {
2062 Out << " return StructReturn;\n";
2063 return;
2064 }
2065
2066 // Don't output a void return if this is the last basic block in the function
2067 if (I.getNumOperands() == 0 &&
2068 &*--I.getParent()->getParent()->end() == I.getParent() &&
2069 !I.getParent()->size() == 1) {
2070 return;
2071 }
2072
2073 Out << " return";
2074 if (I.getNumOperands()) {
2075 Out << ' ';
2076 writeOperand(I.getOperand(0));
2077 }
2078 Out << ";\n";
2079}
2080
2081void CWriter::visitSwitchInst(SwitchInst &SI) {
2082
2083 Out << " switch (";
2084 writeOperand(SI.getOperand(0));
2085 Out << ") {\n default:\n";
2086 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2087 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2088 Out << ";\n";
2089 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2090 Out << " case ";
2091 writeOperand(SI.getOperand(i));
2092 Out << ":\n";
2093 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2094 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2095 printBranchToBlock(SI.getParent(), Succ, 2);
2096 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2097 Out << " break;\n";
2098 }
2099 Out << " }\n";
2100}
2101
2102void CWriter::visitUnreachableInst(UnreachableInst &I) {
2103 Out << " /*UNREACHABLE*/;\n";
2104}
2105
2106bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2107 /// FIXME: This should be reenabled, but loop reordering safe!!
2108 return true;
2109
2110 if (next(Function::iterator(From)) != Function::iterator(To))
2111 return true; // Not the direct successor, we need a goto.
2112
2113 //isa<SwitchInst>(From->getTerminator())
2114
2115 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2116 return true;
2117 return false;
2118}
2119
2120void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2121 BasicBlock *Successor,
2122 unsigned Indent) {
2123 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2124 PHINode *PN = cast<PHINode>(I);
2125 // Now we have to do the printing.
2126 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2127 if (!isa<UndefValue>(IV)) {
2128 Out << std::string(Indent, ' ');
2129 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2130 writeOperand(IV);
2131 Out << "; /* for PHI node */\n";
2132 }
2133 }
2134}
2135
2136void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2137 unsigned Indent) {
2138 if (isGotoCodeNecessary(CurBB, Succ)) {
2139 Out << std::string(Indent, ' ') << " goto ";
2140 writeOperand(Succ);
2141 Out << ";\n";
2142 }
2143}
2144
2145// Branch instruction printing - Avoid printing out a branch to a basic block
2146// that immediately succeeds the current one.
2147//
2148void CWriter::visitBranchInst(BranchInst &I) {
2149
2150 if (I.isConditional()) {
2151 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2152 Out << " if (";
2153 writeOperand(I.getCondition());
2154 Out << ") {\n";
2155
2156 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2157 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2158
2159 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2160 Out << " } else {\n";
2161 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2162 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2163 }
2164 } else {
2165 // First goto not necessary, assume second one is...
2166 Out << " if (!";
2167 writeOperand(I.getCondition());
2168 Out << ") {\n";
2169
2170 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2171 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2172 }
2173
2174 Out << " }\n";
2175 } else {
2176 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2177 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2178 }
2179 Out << "\n";
2180}
2181
2182// PHI nodes get copied into temporary values at the end of predecessor basic
2183// blocks. We now need to copy these temporary values into the REAL value for
2184// the PHI.
2185void CWriter::visitPHINode(PHINode &I) {
2186 writeOperand(&I);
2187 Out << "__PHI_TEMPORARY";
2188}
2189
2190
2191void CWriter::visitBinaryOperator(Instruction &I) {
2192 // binary instructions, shift instructions, setCond instructions.
2193 assert(!isa<PointerType>(I.getType()));
2194
2195 // We must cast the results of binary operations which might be promoted.
2196 bool needsCast = false;
2197 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2198 || (I.getType() == Type::FloatTy)) {
2199 needsCast = true;
2200 Out << "((";
2201 printType(Out, I.getType(), false);
2202 Out << ")(";
2203 }
2204
2205 // If this is a negation operation, print it out as such. For FP, we don't
2206 // want to print "-0.0 - X".
2207 if (BinaryOperator::isNeg(&I)) {
2208 Out << "-(";
2209 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2210 Out << ")";
2211 } else if (I.getOpcode() == Instruction::FRem) {
2212 // Output a call to fmod/fmodf instead of emitting a%b
2213 if (I.getType() == Type::FloatTy)
2214 Out << "fmodf(";
2215 else
2216 Out << "fmod(";
2217 writeOperand(I.getOperand(0));
2218 Out << ", ";
2219 writeOperand(I.getOperand(1));
2220 Out << ")";
2221 } else {
2222
2223 // Write out the cast of the instruction's value back to the proper type
2224 // if necessary.
2225 bool NeedsClosingParens = writeInstructionCast(I);
2226
2227 // Certain instructions require the operand to be forced to a specific type
2228 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2229 // below for operand 1
2230 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2231
2232 switch (I.getOpcode()) {
2233 case Instruction::Add: Out << " + "; break;
2234 case Instruction::Sub: Out << " - "; break;
2235 case Instruction::Mul: Out << " * "; break;
2236 case Instruction::URem:
2237 case Instruction::SRem:
2238 case Instruction::FRem: Out << " % "; break;
2239 case Instruction::UDiv:
2240 case Instruction::SDiv:
2241 case Instruction::FDiv: Out << " / "; break;
2242 case Instruction::And: Out << " & "; break;
2243 case Instruction::Or: Out << " | "; break;
2244 case Instruction::Xor: Out << " ^ "; break;
2245 case Instruction::Shl : Out << " << "; break;
2246 case Instruction::LShr:
2247 case Instruction::AShr: Out << " >> "; break;
2248 default: cerr << "Invalid operator type!" << I; abort();
2249 }
2250
2251 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2252 if (NeedsClosingParens)
2253 Out << "))";
2254 }
2255
2256 if (needsCast) {
2257 Out << "))";
2258 }
2259}
2260
2261void CWriter::visitICmpInst(ICmpInst &I) {
2262 // We must cast the results of icmp which might be promoted.
2263 bool needsCast = false;
2264
2265 // Write out the cast of the instruction's value back to the proper type
2266 // if necessary.
2267 bool NeedsClosingParens = writeInstructionCast(I);
2268
2269 // Certain icmp predicate require the operand to be forced to a specific type
2270 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2271 // below for operand 1
2272 writeOperandWithCast(I.getOperand(0), I.getPredicate());
2273
2274 switch (I.getPredicate()) {
2275 case ICmpInst::ICMP_EQ: Out << " == "; break;
2276 case ICmpInst::ICMP_NE: Out << " != "; break;
2277 case ICmpInst::ICMP_ULE:
2278 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2279 case ICmpInst::ICMP_UGE:
2280 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2281 case ICmpInst::ICMP_ULT:
2282 case ICmpInst::ICMP_SLT: Out << " < "; break;
2283 case ICmpInst::ICMP_UGT:
2284 case ICmpInst::ICMP_SGT: Out << " > "; break;
2285 default: cerr << "Invalid icmp predicate!" << I; abort();
2286 }
2287
2288 writeOperandWithCast(I.getOperand(1), I.getPredicate());
2289 if (NeedsClosingParens)
2290 Out << "))";
2291
2292 if (needsCast) {
2293 Out << "))";
2294 }
2295}
2296
2297void CWriter::visitFCmpInst(FCmpInst &I) {
2298 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2299 Out << "0";
2300 return;
2301 }
2302 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2303 Out << "1";
2304 return;
2305 }
2306
2307 const char* op = 0;
2308 switch (I.getPredicate()) {
2309 default: assert(0 && "Illegal FCmp predicate");
2310 case FCmpInst::FCMP_ORD: op = "ord"; break;
2311 case FCmpInst::FCMP_UNO: op = "uno"; break;
2312 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2313 case FCmpInst::FCMP_UNE: op = "une"; break;
2314 case FCmpInst::FCMP_ULT: op = "ult"; break;
2315 case FCmpInst::FCMP_ULE: op = "ule"; break;
2316 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2317 case FCmpInst::FCMP_UGE: op = "uge"; break;
2318 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2319 case FCmpInst::FCMP_ONE: op = "one"; break;
2320 case FCmpInst::FCMP_OLT: op = "olt"; break;
2321 case FCmpInst::FCMP_OLE: op = "ole"; break;
2322 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2323 case FCmpInst::FCMP_OGE: op = "oge"; break;
2324 }
2325
2326 Out << "llvm_fcmp_" << op << "(";
2327 // Write the first operand
2328 writeOperand(I.getOperand(0));
2329 Out << ", ";
2330 // Write the second operand
2331 writeOperand(I.getOperand(1));
2332 Out << ")";
2333}
2334
2335static const char * getFloatBitCastField(const Type *Ty) {
2336 switch (Ty->getTypeID()) {
2337 default: assert(0 && "Invalid Type");
2338 case Type::FloatTyID: return "Float";
2339 case Type::DoubleTyID: return "Double";
2340 case Type::IntegerTyID: {
2341 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2342 if (NumBits <= 32)
2343 return "Int32";
2344 else
2345 return "Int64";
2346 }
2347 }
2348}
2349
2350void CWriter::visitCastInst(CastInst &I) {
2351 const Type *DstTy = I.getType();
2352 const Type *SrcTy = I.getOperand(0)->getType();
2353 Out << '(';
2354 if (isFPIntBitCast(I)) {
2355 // These int<->float and long<->double casts need to be handled specially
2356 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2357 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2358 writeOperand(I.getOperand(0));
2359 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2360 << getFloatBitCastField(I.getType());
2361 } else {
2362 printCast(I.getOpcode(), SrcTy, DstTy);
2363 if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
2364 // Make sure we really get a sext from bool by subtracing the bool from 0
2365 Out << "0-";
2366 }
2367 writeOperand(I.getOperand(0));
2368 if (DstTy == Type::Int1Ty &&
2369 (I.getOpcode() == Instruction::Trunc ||
2370 I.getOpcode() == Instruction::FPToUI ||
2371 I.getOpcode() == Instruction::FPToSI ||
2372 I.getOpcode() == Instruction::PtrToInt)) {
2373 // Make sure we really get a trunc to bool by anding the operand with 1
2374 Out << "&1u";
2375 }
2376 }
2377 Out << ')';
2378}
2379
2380void CWriter::visitSelectInst(SelectInst &I) {
2381 Out << "((";
2382 writeOperand(I.getCondition());
2383 Out << ") ? (";
2384 writeOperand(I.getTrueValue());
2385 Out << ") : (";
2386 writeOperand(I.getFalseValue());
2387 Out << "))";
2388}
2389
2390
2391void CWriter::lowerIntrinsics(Function &F) {
2392 // This is used to keep track of intrinsics that get generated to a lowered
2393 // function. We must generate the prototypes before the function body which
2394 // will only be expanded on first use (by the loop below).
2395 std::vector<Function*> prototypesToGen;
2396
2397 // Examine all the instructions in this function to find the intrinsics that
2398 // need to be lowered.
2399 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2400 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2401 if (CallInst *CI = dyn_cast<CallInst>(I++))
2402 if (Function *F = CI->getCalledFunction())
2403 switch (F->getIntrinsicID()) {
2404 case Intrinsic::not_intrinsic:
2405 case Intrinsic::vastart:
2406 case Intrinsic::vacopy:
2407 case Intrinsic::vaend:
2408 case Intrinsic::returnaddress:
2409 case Intrinsic::frameaddress:
2410 case Intrinsic::setjmp:
2411 case Intrinsic::longjmp:
2412 case Intrinsic::prefetch:
2413 case Intrinsic::dbg_stoppoint:
2414 case Intrinsic::powi_f32:
2415 case Intrinsic::powi_f64:
2416 // We directly implement these intrinsics
2417 break;
2418 default:
2419 // If this is an intrinsic that directly corresponds to a GCC
2420 // builtin, we handle it.
2421 const char *BuiltinName = "";
2422#define GET_GCC_BUILTIN_NAME
2423#include "llvm/Intrinsics.gen"
2424#undef GET_GCC_BUILTIN_NAME
2425 // If we handle it, don't lower it.
2426 if (BuiltinName[0]) break;
2427
2428 // All other intrinsic calls we must lower.
2429 Instruction *Before = 0;
2430 if (CI != &BB->front())
2431 Before = prior(BasicBlock::iterator(CI));
2432
2433 IL->LowerIntrinsicCall(CI);
2434 if (Before) { // Move iterator to instruction after call
2435 I = Before; ++I;
2436 } else {
2437 I = BB->begin();
2438 }
2439 // If the intrinsic got lowered to another call, and that call has
2440 // a definition then we need to make sure its prototype is emitted
2441 // before any calls to it.
2442 if (CallInst *Call = dyn_cast<CallInst>(I))
2443 if (Function *NewF = Call->getCalledFunction())
2444 if (!NewF->isDeclaration())
2445 prototypesToGen.push_back(NewF);
2446
2447 break;
2448 }
2449
2450 // We may have collected some prototypes to emit in the loop above.
2451 // Emit them now, before the function that uses them is emitted. But,
2452 // be careful not to emit them twice.
2453 std::vector<Function*>::iterator I = prototypesToGen.begin();
2454 std::vector<Function*>::iterator E = prototypesToGen.end();
2455 for ( ; I != E; ++I) {
2456 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2457 Out << '\n';
2458 printFunctionSignature(*I, true);
2459 Out << ";\n";
2460 }
2461 }
2462}
2463
2464
2465void CWriter::visitCallInst(CallInst &I) {
2466 //check if we have inline asm
2467 if (isInlineAsm(I)) {
2468 visitInlineAsm(I);
2469 return;
2470 }
2471
2472 bool WroteCallee = false;
2473
2474 // Handle intrinsic function calls first...
2475 if (Function *F = I.getCalledFunction())
2476 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
2477 switch (ID) {
2478 default: {
2479 // If this is an intrinsic that directly corresponds to a GCC
2480 // builtin, we emit it here.
2481 const char *BuiltinName = "";
2482#define GET_GCC_BUILTIN_NAME
2483#include "llvm/Intrinsics.gen"
2484#undef GET_GCC_BUILTIN_NAME
2485 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2486
2487 Out << BuiltinName;
2488 WroteCallee = true;
2489 break;
2490 }
2491 case Intrinsic::vastart:
2492 Out << "0; ";
2493
2494 Out << "va_start(*(va_list*)";
2495 writeOperand(I.getOperand(1));
2496 Out << ", ";
2497 // Output the last argument to the enclosing function...
2498 if (I.getParent()->getParent()->arg_empty()) {
2499 cerr << "The C backend does not currently support zero "
2500 << "argument varargs functions, such as '"
2501 << I.getParent()->getParent()->getName() << "'!\n";
2502 abort();
2503 }
2504 writeOperand(--I.getParent()->getParent()->arg_end());
2505 Out << ')';
2506 return;
2507 case Intrinsic::vaend:
2508 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2509 Out << "0; va_end(*(va_list*)";
2510 writeOperand(I.getOperand(1));
2511 Out << ')';
2512 } else {
2513 Out << "va_end(*(va_list*)0)";
2514 }
2515 return;
2516 case Intrinsic::vacopy:
2517 Out << "0; ";
2518 Out << "va_copy(*(va_list*)";
2519 writeOperand(I.getOperand(1));
2520 Out << ", *(va_list*)";
2521 writeOperand(I.getOperand(2));
2522 Out << ')';
2523 return;
2524 case Intrinsic::returnaddress:
2525 Out << "__builtin_return_address(";
2526 writeOperand(I.getOperand(1));
2527 Out << ')';
2528 return;
2529 case Intrinsic::frameaddress:
2530 Out << "__builtin_frame_address(";
2531 writeOperand(I.getOperand(1));
2532 Out << ')';
2533 return;
2534 case Intrinsic::powi_f32:
2535 case Intrinsic::powi_f64:
2536 Out << "__builtin_powi(";
2537 writeOperand(I.getOperand(1));
2538 Out << ", ";
2539 writeOperand(I.getOperand(2));
2540 Out << ')';
2541 return;
2542 case Intrinsic::setjmp:
2543 Out << "setjmp(*(jmp_buf*)";
2544 writeOperand(I.getOperand(1));
2545 Out << ')';
2546 return;
2547 case Intrinsic::longjmp:
2548 Out << "longjmp(*(jmp_buf*)";
2549 writeOperand(I.getOperand(1));
2550 Out << ", ";
2551 writeOperand(I.getOperand(2));
2552 Out << ')';
2553 return;
2554 case Intrinsic::prefetch:
2555 Out << "LLVM_PREFETCH((const void *)";
2556 writeOperand(I.getOperand(1));
2557 Out << ", ";
2558 writeOperand(I.getOperand(2));
2559 Out << ", ";
2560 writeOperand(I.getOperand(3));
2561 Out << ")";
2562 return;
2563 case Intrinsic::dbg_stoppoint: {
2564 // If we use writeOperand directly we get a "u" suffix which is rejected
2565 // by gcc.
2566 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2567
2568 Out << "\n#line "
2569 << SPI.getLine()
2570 << " \"" << SPI.getDirectory()
2571 << SPI.getFileName() << "\"\n";
2572 return;
2573 }
2574 }
2575 }
2576
2577 Value *Callee = I.getCalledValue();
2578
2579 const PointerType *PTy = cast<PointerType>(Callee->getType());
2580 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2581
2582 // If this is a call to a struct-return function, assign to the first
2583 // parameter instead of passing it to the call.
2584 bool isStructRet = FTy->isStructReturn();
2585 if (isStructRet) {
2586 Out << "*(";
2587 writeOperand(I.getOperand(1));
2588 Out << ") = ";
2589 }
2590
2591 if (I.isTailCall()) Out << " /*tail*/ ";
2592
2593 if (!WroteCallee) {
2594 // If this is an indirect call to a struct return function, we need to cast
2595 // the pointer.
2596 bool NeedsCast = isStructRet && !isa<Function>(Callee);
2597
2598 // GCC is a real PITA. It does not permit codegening casts of functions to
2599 // function pointers if they are in a call (it generates a trap instruction
2600 // instead!). We work around this by inserting a cast to void* in between
2601 // the function and the function pointer cast. Unfortunately, we can't just
2602 // form the constant expression here, because the folder will immediately
2603 // nuke it.
2604 //
2605 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2606 // that void* and function pointers have the same size. :( To deal with this
2607 // in the common case, we handle casts where the number of arguments passed
2608 // match exactly.
2609 //
2610 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2611 if (CE->isCast())
2612 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2613 NeedsCast = true;
2614 Callee = RF;
2615 }
2616
2617 if (NeedsCast) {
2618 // Ok, just cast the pointer type.
2619 Out << "((";
2620 if (!isStructRet)
2621 printType(Out, I.getCalledValue()->getType());
2622 else
2623 printStructReturnPointerFunctionType(Out,
2624 cast<PointerType>(I.getCalledValue()->getType()));
2625 Out << ")(void*)";
2626 }
2627 writeOperand(Callee);
2628 if (NeedsCast) Out << ')';
2629 }
2630
2631 Out << '(';
2632
2633 unsigned NumDeclaredParams = FTy->getNumParams();
2634
2635 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2636 unsigned ArgNo = 0;
2637 if (isStructRet) { // Skip struct return argument.
2638 ++AI;
2639 ++ArgNo;
2640 }
2641
2642 const ParamAttrsList *Attrs = FTy->getParamAttrs();
2643 bool PrintedArg = false;
2644 unsigned Idx = 1;
2645 for (; AI != AE; ++AI, ++ArgNo, ++Idx) {
2646 if (PrintedArg) Out << ", ";
2647 if (ArgNo < NumDeclaredParams &&
2648 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2649 Out << '(';
2650 printType(Out, FTy->getParamType(ArgNo),
2651 /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt));
2652 Out << ')';
2653 }
2654 writeOperand(*AI);
2655 PrintedArg = true;
2656 }
2657 Out << ')';
2658}
2659
2660
2661//This converts the llvm constraint string to something gcc is expecting.
2662//TODO: work out platform independent constraints and factor those out
2663// of the per target tables
2664// handle multiple constraint codes
2665std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2666
2667 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2668
2669 const char** table = 0;
2670
2671 //Grab the translation table from TargetAsmInfo if it exists
2672 if (!TAsm) {
2673 std::string E;
2674 const TargetMachineRegistry::Entry* Match =
2675 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2676 if (Match) {
2677 //Per platform Target Machines don't exist, so create it
2678 // this must be done only once
2679 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2680 TAsm = TM->getTargetAsmInfo();
2681 }
2682 }
2683 if (TAsm)
2684 table = TAsm->getAsmCBE();
2685
2686 //Search the translation table if it exists
2687 for (int i = 0; table && table[i]; i += 2)
2688 if (c.Codes[0] == table[i])
2689 return table[i+1];
2690
2691 //default is identity
2692 return c.Codes[0];
2693}
2694
2695//TODO: import logic from AsmPrinter.cpp
2696static std::string gccifyAsm(std::string asmstr) {
2697 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2698 if (asmstr[i] == '\n')
2699 asmstr.replace(i, 1, "\\n");
2700 else if (asmstr[i] == '\t')
2701 asmstr.replace(i, 1, "\\t");
2702 else if (asmstr[i] == '$') {
2703 if (asmstr[i + 1] == '{') {
2704 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2705 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2706 std::string n = "%" +
2707 asmstr.substr(a + 1, b - a - 1) +
2708 asmstr.substr(i + 2, a - i - 2);
2709 asmstr.replace(i, b - i + 1, n);
2710 i += n.size() - 1;
2711 } else
2712 asmstr.replace(i, 1, "%");
2713 }
2714 else if (asmstr[i] == '%')//grr
2715 { asmstr.replace(i, 1, "%%"); ++i;}
2716
2717 return asmstr;
2718}
2719
2720//TODO: assumptions about what consume arguments from the call are likely wrong
2721// handle communitivity
2722void CWriter::visitInlineAsm(CallInst &CI) {
2723 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2724 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
2725 std::vector<std::pair<std::string, Value*> > Input;
2726 std::vector<std::pair<std::string, Value*> > Output;
2727 std::string Clobber;
2728 int count = CI.getType() == Type::VoidTy ? 1 : 0;
2729 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
2730 E = Constraints.end(); I != E; ++I) {
2731 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
2732 std::string c =
2733 InterpretASMConstraint(*I);
2734 switch(I->Type) {
2735 default:
2736 assert(0 && "Unknown asm constraint");
2737 break;
2738 case InlineAsm::isInput: {
2739 if (c.size()) {
2740 Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
2741 ++count; //consume arg
2742 }
2743 break;
2744 }
2745 case InlineAsm::isOutput: {
2746 if (c.size()) {
2747 Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
2748 count ? CI.getOperand(count) : &CI));
2749 ++count; //consume arg
2750 }
2751 break;
2752 }
2753 case InlineAsm::isClobber: {
2754 if (c.size())
2755 Clobber += ",\"" + c + "\"";
2756 break;
2757 }
2758 }
2759 }
2760
2761 //fix up the asm string for gcc
2762 std::string asmstr = gccifyAsm(as->getAsmString());
2763
2764 Out << "__asm__ volatile (\"" << asmstr << "\"\n";
2765 Out << " :";
2766 for (std::vector<std::pair<std::string, Value*> >::iterator I = Output.begin(),
2767 E = Output.end(); I != E; ++I) {
2768 Out << "\"" << I->first << "\"(";
2769 writeOperandRaw(I->second);
2770 Out << ")";
2771 if (I + 1 != E)
2772 Out << ",";
2773 }
2774 Out << "\n :";
2775 for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
2776 E = Input.end(); I != E; ++I) {
2777 Out << "\"" << I->first << "\"(";
2778 writeOperandRaw(I->second);
2779 Out << ")";
2780 if (I + 1 != E)
2781 Out << ",";
2782 }
2783 if (Clobber.size())
2784 Out << "\n :" << Clobber.substr(1);
2785 Out << ")";
2786}
2787
2788void CWriter::visitMallocInst(MallocInst &I) {
2789 assert(0 && "lowerallocations pass didn't work!");
2790}
2791
2792void CWriter::visitAllocaInst(AllocaInst &I) {
2793 Out << '(';
2794 printType(Out, I.getType());
2795 Out << ") alloca(sizeof(";
2796 printType(Out, I.getType()->getElementType());
2797 Out << ')';
2798 if (I.isArrayAllocation()) {
2799 Out << " * " ;
2800 writeOperand(I.getOperand(0));
2801 }
2802 Out << ')';
2803}
2804
2805void CWriter::visitFreeInst(FreeInst &I) {
2806 assert(0 && "lowerallocations pass didn't work!");
2807}
2808
2809void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I,
2810 gep_type_iterator E) {
2811 bool HasImplicitAddress = false;
2812 // If accessing a global value with no indexing, avoid *(&GV) syndrome
2813 if (isa<GlobalValue>(Ptr)) {
2814 HasImplicitAddress = true;
2815 } else if (isDirectAlloca(Ptr)) {
2816 HasImplicitAddress = true;
2817 }
2818
2819 if (I == E) {
2820 if (!HasImplicitAddress)
2821 Out << '*'; // Implicit zero first argument: '*x' is equivalent to 'x[0]'
2822
2823 writeOperandInternal(Ptr);
2824 return;
2825 }
2826
2827 const Constant *CI = dyn_cast<Constant>(I.getOperand());
2828 if (HasImplicitAddress && (!CI || !CI->isNullValue()))
2829 Out << "(&";
2830
2831 writeOperandInternal(Ptr);
2832
2833 if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
2834 Out << ')';
2835 HasImplicitAddress = false; // HIA is only true if we haven't addressed yet
2836 }
2837
2838 assert(!HasImplicitAddress || (CI && CI->isNullValue()) &&
2839 "Can only have implicit address with direct accessing");
2840
2841 if (HasImplicitAddress) {
2842 ++I;
2843 } else if (CI && CI->isNullValue()) {
2844 gep_type_iterator TmpI = I; ++TmpI;
2845
2846 // Print out the -> operator if possible...
2847 if (TmpI != E && isa<StructType>(*TmpI)) {
2848 Out << (HasImplicitAddress ? "." : "->");
2849 Out << "field" << cast<ConstantInt>(TmpI.getOperand())->getZExtValue();
2850 I = ++TmpI;
2851 }
2852 }
2853
2854 for (; I != E; ++I)
2855 if (isa<StructType>(*I)) {
2856 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
2857 } else {
2858 Out << '[';
2859 writeOperand(I.getOperand());
2860 Out << ']';
2861 }
2862}
2863
2864void CWriter::visitLoadInst(LoadInst &I) {
2865 Out << '*';
2866 if (I.isVolatile()) {
2867 Out << "((";
2868 printType(Out, I.getType(), false, "volatile*");
2869 Out << ")";
2870 }
2871
2872 writeOperand(I.getOperand(0));
2873
2874 if (I.isVolatile())
2875 Out << ')';
2876}
2877
2878void CWriter::visitStoreInst(StoreInst &I) {
2879 Out << '*';
2880 if (I.isVolatile()) {
2881 Out << "((";
2882 printType(Out, I.getOperand(0)->getType(), false, " volatile*");
2883 Out << ")";
2884 }
2885 writeOperand(I.getPointerOperand());
2886 if (I.isVolatile()) Out << ')';
2887 Out << " = ";
2888 Value *Operand = I.getOperand(0);
2889 Constant *BitMask = 0;
2890 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
2891 if (!ITy->isPowerOf2ByteWidth())
2892 // We have a bit width that doesn't match an even power-of-2 byte
2893 // size. Consequently we must & the value with the type's bit mask
2894 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
2895 if (BitMask)
2896 Out << "((";
2897 writeOperand(Operand);
2898 if (BitMask) {
2899 Out << ") & ";
2900 printConstant(BitMask);
2901 Out << ")";
2902 }
2903}
2904
2905void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
2906 Out << '&';
2907 printIndexingExpression(I.getPointerOperand(), gep_type_begin(I),
2908 gep_type_end(I));
2909}
2910
2911void CWriter::visitVAArgInst(VAArgInst &I) {
2912 Out << "va_arg(*(va_list*)";
2913 writeOperand(I.getOperand(0));
2914 Out << ", ";
2915 printType(Out, I.getType());
2916 Out << ");\n ";
2917}
2918
2919//===----------------------------------------------------------------------===//
2920// External Interface declaration
2921//===----------------------------------------------------------------------===//
2922
2923bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
2924 std::ostream &o,
2925 CodeGenFileType FileType,
2926 bool Fast) {
2927 if (FileType != TargetMachine::AssemblyFile) return true;
2928
2929 PM.add(createLowerGCPass());
2930 PM.add(createLowerAllocationsPass(true));
2931 PM.add(createLowerInvokePass());
2932 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
2933 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
2934 PM.add(new CWriter(o));
2935 return false;
2936}