blob: 758ed495c47bf82945e2ccf05faa77099239c5d3 [file] [log] [blame]
Misha Brukman91b5ca82004-07-26 18:45:48 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Chris Lattner847df252004-01-30 22:25:18 +000011// virtual registers into register stack instructions. This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code. In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges. Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet. The stackifier pass only works on local
27// basic blocks.
Chris Lattnera960d952003-01-13 01:01:59 +000028//
29//===----------------------------------------------------------------------===//
30
Chris Lattner95b2c7d2006-12-19 22:59:26 +000031#define DEBUG_TYPE "x86-codegen"
Chris Lattnera960d952003-01-13 01:01:59 +000032#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner84bc5422007-12-31 04:13:23 +000036#include "llvm/CodeGen/MachineRegisterInfo.h"
Alkis Evlogimenos359b65f2003-12-13 05:36:22 +000037#include "llvm/CodeGen/Passes.h"
Chris Lattner3501fea2003-01-14 22:00:31 +000038#include "llvm/Target/TargetInstrInfo.h"
Chris Lattnera960d952003-01-13 01:01:59 +000039#include "llvm/Target/TargetMachine.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000040#include "llvm/Support/Debug.h"
Chris Lattnera4f0b3a2006-08-27 12:54:02 +000041#include "llvm/Support/Compiler.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000042#include "llvm/ADT/DepthFirstIterator.h"
Owen Andersoneaa009d2008-08-14 21:01:00 +000043#include "llvm/ADT/SmallPtrSet.h"
Evan Chengddd2a452006-11-15 20:56:39 +000044#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000045#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/STLExtras.h"
Chris Lattnera960d952003-01-13 01:01:59 +000047#include <algorithm>
Chris Lattnerf2e49d42003-12-20 09:58:55 +000048using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000049
Chris Lattner95b2c7d2006-12-19 22:59:26 +000050STATISTIC(NumFXCH, "Number of fxch instructions inserted");
51STATISTIC(NumFP , "Number of floating point instructions");
Chris Lattnera960d952003-01-13 01:01:59 +000052
Chris Lattner95b2c7d2006-12-19 22:59:26 +000053namespace {
Chris Lattner2c79de82006-06-28 23:27:49 +000054 struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
Devang Patel19974732007-05-03 01:11:54 +000055 static char ID;
Dan Gohmanae73dc12008-09-04 17:05:41 +000056 FPS() : MachineFunctionPass(&ID) {}
Devang Patel794fd752007-05-01 21:15:47 +000057
Evan Chengbbeeb2a2008-09-22 20:58:04 +000058 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
59 AU.setPreservesAll();
60 MachineFunctionPass::getAnalysisUsage(AU);
61 }
62
Chris Lattnera960d952003-01-13 01:01:59 +000063 virtual bool runOnMachineFunction(MachineFunction &MF);
64
65 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
66
Chris Lattnera960d952003-01-13 01:01:59 +000067 private:
Evan Cheng32644ac2006-12-01 10:11:51 +000068 const TargetInstrInfo *TII; // Machine instruction info.
Evan Cheng32644ac2006-12-01 10:11:51 +000069 MachineBasicBlock *MBB; // Current basic block
70 unsigned Stack[8]; // FP<n> Registers in each stack slot...
71 unsigned RegMap[8]; // Track which stack slot contains each register
72 unsigned StackTop; // The current top of the FP stack.
Chris Lattnera960d952003-01-13 01:01:59 +000073
74 void dumpStack() const {
Bill Wendlingf5da1332006-12-07 22:21:48 +000075 cerr << "Stack contents:";
Chris Lattnera960d952003-01-13 01:01:59 +000076 for (unsigned i = 0; i != StackTop; ++i) {
Bill Wendlingf5da1332006-12-07 22:21:48 +000077 cerr << " FP" << Stack[i];
Misha Brukman0e0a7a452005-04-21 23:38:14 +000078 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
Chris Lattnera960d952003-01-13 01:01:59 +000079 }
Bill Wendlingf5da1332006-12-07 22:21:48 +000080 cerr << "\n";
Chris Lattnera960d952003-01-13 01:01:59 +000081 }
82 private:
Chris Lattner447ff682008-03-11 03:23:40 +000083 /// isStackEmpty - Return true if the FP stack is empty.
84 bool isStackEmpty() const {
85 return StackTop == 0;
86 }
87
Chris Lattnera960d952003-01-13 01:01:59 +000088 // getSlot - Return the stack slot number a particular register number is
Chris Lattner447ff682008-03-11 03:23:40 +000089 // in.
Chris Lattnera960d952003-01-13 01:01:59 +000090 unsigned getSlot(unsigned RegNo) const {
91 assert(RegNo < 8 && "Regno out of range!");
92 return RegMap[RegNo];
93 }
94
Chris Lattner447ff682008-03-11 03:23:40 +000095 // getStackEntry - Return the X86::FP<n> register in register ST(i).
Chris Lattnera960d952003-01-13 01:01:59 +000096 unsigned getStackEntry(unsigned STi) const {
97 assert(STi < StackTop && "Access past stack top!");
98 return Stack[StackTop-1-STi];
99 }
100
101 // getSTReg - Return the X86::ST(i) register which contains the specified
Chris Lattner447ff682008-03-11 03:23:40 +0000102 // FP<RegNo> register.
Chris Lattnera960d952003-01-13 01:01:59 +0000103 unsigned getSTReg(unsigned RegNo) const {
Brian Gaeked0fde302003-11-11 22:41:34 +0000104 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +0000105 }
106
Chris Lattner447ff682008-03-11 03:23:40 +0000107 // pushReg - Push the specified FP<n> register onto the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000108 void pushReg(unsigned Reg) {
109 assert(Reg < 8 && "Register number out of range!");
110 assert(StackTop < 8 && "Stack overflow!");
111 Stack[StackTop] = Reg;
112 RegMap[Reg] = StackTop++;
113 }
114
115 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattner447ff682008-03-11 03:23:40 +0000116 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
117 if (isAtTop(RegNo)) return;
118
119 unsigned STReg = getSTReg(RegNo);
120 unsigned RegOnTop = getStackEntry(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000121
Chris Lattner447ff682008-03-11 03:23:40 +0000122 // Swap the slots the regs are in.
123 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Chris Lattnera960d952003-01-13 01:01:59 +0000124
Chris Lattner447ff682008-03-11 03:23:40 +0000125 // Swap stack slot contents.
126 assert(RegMap[RegOnTop] < StackTop);
127 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Chris Lattnera960d952003-01-13 01:01:59 +0000128
Chris Lattner447ff682008-03-11 03:23:40 +0000129 // Emit an fxch to update the runtime processors version of the state.
130 BuildMI(*MBB, I, TII->get(X86::XCH_F)).addReg(STReg);
131 NumFXCH++;
Chris Lattnera960d952003-01-13 01:01:59 +0000132 }
133
Chris Lattner0526f012004-04-01 04:06:09 +0000134 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
Chris Lattnera960d952003-01-13 01:01:59 +0000135 unsigned STReg = getSTReg(RegNo);
136 pushReg(AsReg); // New register on top of stack
137
Dale Johannesene377d4d2007-07-04 21:07:47 +0000138 BuildMI(*MBB, I, TII->get(X86::LD_Frr)).addReg(STReg);
Chris Lattnera960d952003-01-13 01:01:59 +0000139 }
140
141 // popStackAfter - Pop the current value off of the top of the FP stack
142 // after the specified instruction.
143 void popStackAfter(MachineBasicBlock::iterator &I);
144
Chris Lattner0526f012004-04-01 04:06:09 +0000145 // freeStackSlotAfter - Free the specified register from the register stack,
146 // so that it is no longer in a register. If the register is currently at
147 // the top of the stack, we just pop the current instruction, otherwise we
148 // store the current top-of-stack into the specified slot, then pop the top
149 // of stack.
150 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
151
Chris Lattnera960d952003-01-13 01:01:59 +0000152 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
153
154 void handleZeroArgFP(MachineBasicBlock::iterator &I);
155 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner4a06f352004-02-02 19:23:15 +0000156 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000157 void handleTwoArgFP(MachineBasicBlock::iterator &I);
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000158 void handleCompareFP(MachineBasicBlock::iterator &I);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000159 void handleCondMovFP(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000160 void handleSpecialFP(MachineBasicBlock::iterator &I);
161 };
Devang Patel19974732007-05-03 01:11:54 +0000162 char FPS::ID = 0;
Chris Lattnera960d952003-01-13 01:01:59 +0000163}
164
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000165FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000166
Chris Lattner3cc83842008-01-14 06:41:29 +0000167/// getFPReg - Return the X86::FPx register number for the specified operand.
168/// For example, this returns 3 for X86::FP3.
169static unsigned getFPReg(const MachineOperand &MO) {
170 assert(MO.isRegister() && "Expected an FP register!");
171 unsigned Reg = MO.getReg();
172 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
173 return Reg - X86::FP0;
174}
175
176
Chris Lattnera960d952003-01-13 01:01:59 +0000177/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
178/// register references into FP stack references.
179///
180bool FPS::runOnMachineFunction(MachineFunction &MF) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000181 // We only need to run this pass if there are any FP registers used in this
182 // function. If it is all integer, there is nothing for us to do!
Chris Lattner42e25b32005-01-23 23:13:59 +0000183 bool FPIsUsed = false;
184
185 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
186 for (unsigned i = 0; i <= 6; ++i)
Chris Lattner84bc5422007-12-31 04:13:23 +0000187 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000188 FPIsUsed = true;
189 break;
190 }
191
192 // Early exit.
193 if (!FPIsUsed) return false;
194
Evan Cheng32644ac2006-12-01 10:11:51 +0000195 TII = MF.getTarget().getInstrInfo();
Chris Lattnera960d952003-01-13 01:01:59 +0000196 StackTop = 0;
197
Chris Lattner847df252004-01-30 22:25:18 +0000198 // Process the function in depth first order so that we process at least one
199 // of the predecessors for every reachable block in the function.
Owen Andersoneaa009d2008-08-14 21:01:00 +0000200 SmallPtrSet<MachineBasicBlock*, 8> Processed;
Chris Lattner22686842004-05-01 21:27:53 +0000201 MachineBasicBlock *Entry = MF.begin();
Chris Lattner847df252004-01-30 22:25:18 +0000202
203 bool Changed = false;
Owen Andersoneaa009d2008-08-14 21:01:00 +0000204 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
Chris Lattner847df252004-01-30 22:25:18 +0000205 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
206 I != E; ++I)
Chris Lattner22686842004-05-01 21:27:53 +0000207 Changed |= processBasicBlock(MF, **I);
Chris Lattner847df252004-01-30 22:25:18 +0000208
Chris Lattnera960d952003-01-13 01:01:59 +0000209 return Changed;
210}
211
212/// processBasicBlock - Loop over all of the instructions in the basic block,
213/// transforming FP instructions into their stack form.
214///
215bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
Chris Lattnera960d952003-01-13 01:01:59 +0000216 bool Changed = false;
217 MBB = &BB;
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000218
Chris Lattnera960d952003-01-13 01:01:59 +0000219 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000220 MachineInstr *MI = I;
Chris Lattner749c6f62008-01-07 07:27:27 +0000221 unsigned Flags = MI->getDesc().TSFlags;
Chris Lattnere12ecf22008-03-11 19:50:13 +0000222
223 unsigned FPInstClass = Flags & X86II::FPTypeMask;
224 if (MI->getOpcode() == TargetInstrInfo::INLINEASM)
225 FPInstClass = X86II::SpecialFP;
226
227 if (FPInstClass == X86II::NotFP)
Chris Lattner847df252004-01-30 22:25:18 +0000228 continue; // Efficiently ignore non-fp insts!
Chris Lattnera960d952003-01-13 01:01:59 +0000229
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000230 MachineInstr *PrevMI = 0;
Alkis Evlogimenosf81af212004-02-14 01:18:34 +0000231 if (I != BB.begin())
Chris Lattner6fa2f9c2008-03-09 07:05:32 +0000232 PrevMI = prior(I);
Chris Lattnera960d952003-01-13 01:01:59 +0000233
234 ++NumFP; // Keep track of # of pseudo instrs
Chris Lattnerc5f8e4f2006-12-08 05:41:26 +0000235 DOUT << "\nFPInst:\t" << *MI;
Chris Lattnera960d952003-01-13 01:01:59 +0000236
237 // Get dead variables list now because the MI pointer may be deleted as part
238 // of processing!
Evan Chengddd2a452006-11-15 20:56:39 +0000239 SmallVector<unsigned, 8> DeadRegs;
240 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
241 const MachineOperand &MO = MI->getOperand(i);
Dan Gohman92dfe202007-09-14 20:33:02 +0000242 if (MO.isRegister() && MO.isDead())
Evan Chengddd2a452006-11-15 20:56:39 +0000243 DeadRegs.push_back(MO.getReg());
244 }
Chris Lattnera960d952003-01-13 01:01:59 +0000245
Chris Lattnere12ecf22008-03-11 19:50:13 +0000246 switch (FPInstClass) {
Chris Lattner4a06f352004-02-02 19:23:15 +0000247 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000248 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
Chris Lattner4a06f352004-02-02 19:23:15 +0000249 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
Evan Cheng5cd3e9f2006-11-11 10:21:44 +0000250 case X86II::TwoArgFP: handleTwoArgFP(I); break;
Chris Lattnerab8decc2004-06-11 04:41:24 +0000251 case X86II::CompareFP: handleCompareFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000252 case X86II::CondMovFP: handleCondMovFP(I); break;
Chris Lattner4a06f352004-02-02 19:23:15 +0000253 case X86II::SpecialFP: handleSpecialFP(I); break;
Chris Lattnera960d952003-01-13 01:01:59 +0000254 default: assert(0 && "Unknown FP Type!");
255 }
256
257 // Check to see if any of the values defined by this instruction are dead
258 // after definition. If so, pop them.
Evan Chengddd2a452006-11-15 20:56:39 +0000259 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
260 unsigned Reg = DeadRegs[i];
Chris Lattnera960d952003-01-13 01:01:59 +0000261 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
Bill Wendlingf5da1332006-12-07 22:21:48 +0000262 DOUT << "Register FP#" << Reg-X86::FP0 << " is dead!\n";
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000263 freeStackSlotAfter(I, Reg-X86::FP0);
Chris Lattnera960d952003-01-13 01:01:59 +0000264 }
265 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000266
Chris Lattnera960d952003-01-13 01:01:59 +0000267 // Print out all of the instructions expanded to if -debug
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000268 DEBUG(
269 MachineBasicBlock::iterator PrevI(PrevMI);
270 if (I == PrevI) {
Bill Wendlingf5da1332006-12-07 22:21:48 +0000271 cerr << "Just deleted pseudo instruction\n";
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000272 } else {
273 MachineBasicBlock::iterator Start = I;
274 // Rewind to first instruction newly inserted.
275 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
Bill Wendlingf5da1332006-12-07 22:21:48 +0000276 cerr << "Inserted instructions:\n\t";
277 Start->print(*cerr.stream(), &MF.getTarget());
Duncan Sands49c23932007-09-11 12:30:25 +0000278 while (++Start != next(I)) {}
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000279 }
280 dumpStack();
281 );
Chris Lattnera960d952003-01-13 01:01:59 +0000282
283 Changed = true;
284 }
285
Chris Lattner447ff682008-03-11 03:23:40 +0000286 assert(isStackEmpty() && "Stack not empty at end of basic block?");
Chris Lattnera960d952003-01-13 01:01:59 +0000287 return Changed;
288}
289
290//===----------------------------------------------------------------------===//
291// Efficient Lookup Table Support
292//===----------------------------------------------------------------------===//
293
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000294namespace {
295 struct TableEntry {
296 unsigned from;
297 unsigned to;
298 bool operator<(const TableEntry &TE) const { return from < TE.from; }
Jeff Cohen9471c8a2006-01-26 20:41:32 +0000299 friend bool operator<(const TableEntry &TE, unsigned V) {
300 return TE.from < V;
301 }
302 friend bool operator<(unsigned V, const TableEntry &TE) {
303 return V < TE.from;
304 }
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000305 };
306}
Chris Lattnera960d952003-01-13 01:01:59 +0000307
Evan Chenga022bdf2008-07-21 20:02:45 +0000308#ifndef NDEBUG
Chris Lattnera960d952003-01-13 01:01:59 +0000309static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
310 for (unsigned i = 0; i != NumEntries-1; ++i)
311 if (!(Table[i] < Table[i+1])) return false;
312 return true;
313}
Evan Chenga022bdf2008-07-21 20:02:45 +0000314#endif
Chris Lattnera960d952003-01-13 01:01:59 +0000315
316static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
317 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
318 if (I != Table+N && I->from == Opcode)
319 return I->to;
320 return -1;
321}
322
Chris Lattnera960d952003-01-13 01:01:59 +0000323#ifdef NDEBUG
324#define ASSERT_SORTED(TABLE)
325#else
326#define ASSERT_SORTED(TABLE) \
327 { static bool TABLE##Checked = false; \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000328 if (!TABLE##Checked) { \
Owen Anderson718cb662007-09-07 04:06:50 +0000329 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Chris Lattnera960d952003-01-13 01:01:59 +0000330 "All lookup tables must be sorted for efficient access!"); \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000331 TABLE##Checked = true; \
332 } \
Chris Lattnera960d952003-01-13 01:01:59 +0000333 }
334#endif
335
Chris Lattner58fe4592005-12-21 07:47:04 +0000336//===----------------------------------------------------------------------===//
337// Register File -> Register Stack Mapping Methods
338//===----------------------------------------------------------------------===//
339
340// OpcodeTable - Sorted map of register instructions to their stack version.
341// The first element is an register file pseudo instruction, the second is the
342// concrete X86 instruction which uses the register stack.
343//
344static const TableEntry OpcodeTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000345 { X86::ABS_Fp32 , X86::ABS_F },
346 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000347 { X86::ABS_Fp80 , X86::ABS_F },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000348 { X86::ADD_Fp32m , X86::ADD_F32m },
349 { X86::ADD_Fp64m , X86::ADD_F64m },
350 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000351 { X86::ADD_Fp80m32 , X86::ADD_F32m },
352 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000353 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
354 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000355 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000356 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
357 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000358 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000359 { X86::CHS_Fp32 , X86::CHS_F },
360 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000361 { X86::CHS_Fp80 , X86::CHS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000362 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
363 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000364 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000365 { X86::CMOVB_Fp32 , X86::CMOVB_F },
366 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000367 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000368 { X86::CMOVE_Fp32 , X86::CMOVE_F },
369 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000370 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000371 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
372 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000373 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000374 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
375 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000376 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000377 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
378 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000379 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000380 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
381 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000382 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000383 { X86::CMOVP_Fp32 , X86::CMOVP_F },
384 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000385 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000386 { X86::COS_Fp32 , X86::COS_F },
387 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000388 { X86::COS_Fp80 , X86::COS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000389 { X86::DIVR_Fp32m , X86::DIVR_F32m },
390 { X86::DIVR_Fp64m , X86::DIVR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000391 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000392 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
393 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000394 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
395 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000396 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000397 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
398 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000399 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000400 { X86::DIV_Fp32m , X86::DIV_F32m },
401 { X86::DIV_Fp64m , X86::DIV_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000402 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000403 { X86::DIV_Fp80m32 , X86::DIV_F32m },
404 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000405 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
406 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000407 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000408 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
409 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000410 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000411 { X86::ILD_Fp16m32 , X86::ILD_F16m },
412 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000413 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000414 { X86::ILD_Fp32m32 , X86::ILD_F32m },
415 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000416 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000417 { X86::ILD_Fp64m32 , X86::ILD_F64m },
418 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000419 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000420 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
421 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesena996d522007-08-07 01:17:37 +0000422 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000423 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
424 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesena996d522007-08-07 01:17:37 +0000425 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000426 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
427 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesena996d522007-08-07 01:17:37 +0000428 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000429 { X86::IST_Fp16m32 , X86::IST_F16m },
430 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000431 { X86::IST_Fp16m80 , X86::IST_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000432 { X86::IST_Fp32m32 , X86::IST_F32m },
433 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000434 { X86::IST_Fp32m80 , X86::IST_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000435 { X86::IST_Fp64m32 , X86::IST_FP64m },
436 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000437 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000438 { X86::LD_Fp032 , X86::LD_F0 },
439 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000440 { X86::LD_Fp080 , X86::LD_F0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000441 { X86::LD_Fp132 , X86::LD_F1 },
442 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000443 { X86::LD_Fp180 , X86::LD_F1 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000444 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000445 { X86::LD_Fp32m64 , X86::LD_F32m },
446 { X86::LD_Fp32m80 , X86::LD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000447 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000448 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000449 { X86::LD_Fp80m , X86::LD_F80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000450 { X86::MUL_Fp32m , X86::MUL_F32m },
451 { X86::MUL_Fp64m , X86::MUL_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000452 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000453 { X86::MUL_Fp80m32 , X86::MUL_F32m },
454 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000455 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
456 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000457 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000458 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
459 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000460 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000461 { X86::SIN_Fp32 , X86::SIN_F },
462 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000463 { X86::SIN_Fp80 , X86::SIN_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000464 { X86::SQRT_Fp32 , X86::SQRT_F },
465 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000466 { X86::SQRT_Fp80 , X86::SQRT_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000467 { X86::ST_Fp32m , X86::ST_F32m },
468 { X86::ST_Fp64m , X86::ST_F64m },
469 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000470 { X86::ST_Fp80m32 , X86::ST_F32m },
471 { X86::ST_Fp80m64 , X86::ST_F64m },
472 { X86::ST_FpP80m , X86::ST_FP80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000473 { X86::SUBR_Fp32m , X86::SUBR_F32m },
474 { X86::SUBR_Fp64m , X86::SUBR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000475 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000476 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
477 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000478 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
479 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000480 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000481 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
482 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000483 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000484 { X86::SUB_Fp32m , X86::SUB_F32m },
485 { X86::SUB_Fp64m , X86::SUB_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000486 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000487 { X86::SUB_Fp80m32 , X86::SUB_F32m },
488 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000489 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
490 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000491 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000492 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
493 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000494 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000495 { X86::TST_Fp32 , X86::TST_F },
496 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000497 { X86::TST_Fp80 , X86::TST_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000498 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
499 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000500 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000501 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
502 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000503 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Chris Lattner58fe4592005-12-21 07:47:04 +0000504};
505
506static unsigned getConcreteOpcode(unsigned Opcode) {
507 ASSERT_SORTED(OpcodeTable);
Owen Anderson718cb662007-09-07 04:06:50 +0000508 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Chris Lattner58fe4592005-12-21 07:47:04 +0000509 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
510 return Opc;
511}
Chris Lattnera960d952003-01-13 01:01:59 +0000512
513//===----------------------------------------------------------------------===//
514// Helper Methods
515//===----------------------------------------------------------------------===//
516
517// PopTable - Sorted map of instructions to their popping version. The first
518// element is an instruction, the second is the version which pops.
519//
520static const TableEntry PopTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000521 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000522
Dale Johannesene377d4d2007-07-04 21:07:47 +0000523 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
524 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000525
Dale Johannesene377d4d2007-07-04 21:07:47 +0000526 { X86::IST_F16m , X86::IST_FP16m },
527 { X86::IST_F32m , X86::IST_FP32m },
Chris Lattnera960d952003-01-13 01:01:59 +0000528
Dale Johannesene377d4d2007-07-04 21:07:47 +0000529 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000530
Dale Johannesene377d4d2007-07-04 21:07:47 +0000531 { X86::ST_F32m , X86::ST_FP32m },
532 { X86::ST_F64m , X86::ST_FP64m },
533 { X86::ST_Frr , X86::ST_FPrr },
Chris Lattner113455b2003-08-03 21:56:36 +0000534
Dale Johannesene377d4d2007-07-04 21:07:47 +0000535 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
536 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000537
Dale Johannesene377d4d2007-07-04 21:07:47 +0000538 { X86::UCOM_FIr , X86::UCOM_FIPr },
Chris Lattnerc040bca2004-04-12 01:39:15 +0000539
Dale Johannesene377d4d2007-07-04 21:07:47 +0000540 { X86::UCOM_FPr , X86::UCOM_FPPr },
541 { X86::UCOM_Fr , X86::UCOM_FPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000542};
543
544/// popStackAfter - Pop the current value off of the top of the FP stack after
545/// the specified instruction. This attempts to be sneaky and combine the pop
546/// into the instruction itself if possible. The iterator is left pointing to
547/// the last instruction, be it a new pop instruction inserted, or the old
548/// instruction if it was modified in place.
549///
550void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
551 ASSERT_SORTED(PopTable);
552 assert(StackTop > 0 && "Cannot pop empty stack!");
553 RegMap[Stack[--StackTop]] = ~0; // Update state
554
555 // Check to see if there is a popping version of this instruction...
Owen Anderson718cb662007-09-07 04:06:50 +0000556 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000557 if (Opcode != -1) {
Chris Lattner5080f4d2008-01-11 18:10:50 +0000558 I->setDesc(TII->get(Opcode));
Dale Johannesene377d4d2007-07-04 21:07:47 +0000559 if (Opcode == X86::UCOM_FPPr)
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000560 I->RemoveOperand(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000561 } else { // Insert an explicit pop
Dale Johannesene377d4d2007-07-04 21:07:47 +0000562 I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
Chris Lattnera960d952003-01-13 01:01:59 +0000563 }
564}
565
Chris Lattner0526f012004-04-01 04:06:09 +0000566/// freeStackSlotAfter - Free the specified register from the register stack, so
567/// that it is no longer in a register. If the register is currently at the top
568/// of the stack, we just pop the current instruction, otherwise we store the
569/// current top-of-stack into the specified slot, then pop the top of stack.
570void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
571 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
572 popStackAfter(I);
573 return;
574 }
575
576 // Otherwise, store the top of stack into the dead slot, killing the operand
577 // without having to add in an explicit xchg then pop.
578 //
579 unsigned STReg = getSTReg(FPRegNo);
580 unsigned OldSlot = getSlot(FPRegNo);
581 unsigned TopReg = Stack[StackTop-1];
582 Stack[OldSlot] = TopReg;
583 RegMap[TopReg] = OldSlot;
584 RegMap[FPRegNo] = ~0;
585 Stack[--StackTop] = ~0;
Dale Johannesene377d4d2007-07-04 21:07:47 +0000586 I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(STReg);
Chris Lattner0526f012004-04-01 04:06:09 +0000587}
588
589
Chris Lattnera960d952003-01-13 01:01:59 +0000590//===----------------------------------------------------------------------===//
591// Instruction transformation implementation
592//===----------------------------------------------------------------------===//
593
594/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner4a06f352004-02-02 19:23:15 +0000595///
Chris Lattnera960d952003-01-13 01:01:59 +0000596void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000597 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000598 unsigned DestReg = getFPReg(MI->getOperand(0));
Chris Lattnera960d952003-01-13 01:01:59 +0000599
Chris Lattner58fe4592005-12-21 07:47:04 +0000600 // Change from the pseudo instruction to the concrete instruction.
601 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000602 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +0000603
604 // Result gets pushed on the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000605 pushReg(DestReg);
606}
607
Chris Lattner4a06f352004-02-02 19:23:15 +0000608/// handleOneArgFP - fst <mem>, ST(0)
609///
Chris Lattnera960d952003-01-13 01:01:59 +0000610void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000611 MachineInstr *MI = I;
Chris Lattner749c6f62008-01-07 07:27:27 +0000612 unsigned NumOps = MI->getDesc().getNumOperands();
Evan Cheng171d09e2006-11-10 01:28:43 +0000613 assert((NumOps == 5 || NumOps == 1) &&
Chris Lattnerb97046a2004-02-03 07:27:34 +0000614 "Can only handle fst* & ftst instructions!");
Chris Lattnera960d952003-01-13 01:01:59 +0000615
Chris Lattner4a06f352004-02-02 19:23:15 +0000616 // Is this the last use of the source register?
Evan Cheng171d09e2006-11-10 01:28:43 +0000617 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000618 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattnera960d952003-01-13 01:01:59 +0000619
Evan Cheng2b152712006-02-18 02:36:28 +0000620 // FISTP64m is strange because there isn't a non-popping versions.
Chris Lattnera960d952003-01-13 01:01:59 +0000621 // If we have one _and_ we don't want to pop the operand, duplicate the value
622 // on the stack instead of moving it. This ensure that popping the value is
623 // always ok.
Dale Johannesenca8035e2007-09-17 20:15:38 +0000624 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Chris Lattnera960d952003-01-13 01:01:59 +0000625 //
Evan Cheng2b152712006-02-18 02:36:28 +0000626 if (!KillsSrc &&
Dale Johannesene377d4d2007-07-04 21:07:47 +0000627 (MI->getOpcode() == X86::IST_Fp64m32 ||
628 MI->getOpcode() == X86::ISTT_Fp16m32 ||
629 MI->getOpcode() == X86::ISTT_Fp32m32 ||
630 MI->getOpcode() == X86::ISTT_Fp64m32 ||
631 MI->getOpcode() == X86::IST_Fp64m64 ||
632 MI->getOpcode() == X86::ISTT_Fp16m64 ||
633 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen59a58732007-08-05 18:49:15 +0000634 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen41de4362007-09-20 01:27:54 +0000635 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesena996d522007-08-07 01:17:37 +0000636 MI->getOpcode() == X86::ISTT_Fp16m80 ||
637 MI->getOpcode() == X86::ISTT_Fp32m80 ||
638 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen59a58732007-08-05 18:49:15 +0000639 MI->getOpcode() == X86::ST_FpP80m)) {
Chris Lattnera960d952003-01-13 01:01:59 +0000640 duplicateToTop(Reg, 7 /*temp register*/, I);
641 } else {
642 moveToTop(Reg, I); // Move to the top of the stack...
643 }
Chris Lattner58fe4592005-12-21 07:47:04 +0000644
645 // Convert from the pseudo instruction to the concrete instruction.
Evan Cheng171d09e2006-11-10 01:28:43 +0000646 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000647 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000648
Dale Johannesene377d4d2007-07-04 21:07:47 +0000649 if (MI->getOpcode() == X86::IST_FP64m ||
650 MI->getOpcode() == X86::ISTT_FP16m ||
651 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesen88835732007-08-06 19:50:32 +0000652 MI->getOpcode() == X86::ISTT_FP64m ||
653 MI->getOpcode() == X86::ST_FP80m) {
Chris Lattnera960d952003-01-13 01:01:59 +0000654 assert(StackTop > 0 && "Stack empty??");
655 --StackTop;
656 } else if (KillsSrc) { // Last use of operand?
657 popStackAfter(I);
658 }
659}
660
Chris Lattner4a06f352004-02-02 19:23:15 +0000661
Chris Lattner4cf15e72004-04-11 20:21:06 +0000662/// handleOneArgFPRW: Handle instructions that read from the top of stack and
663/// replace the value with a newly computed value. These instructions may have
664/// non-fp operands after their FP operands.
665///
666/// Examples:
667/// R1 = fchs R2
668/// R1 = fadd R2, [mem]
Chris Lattner4a06f352004-02-02 19:23:15 +0000669///
670void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000671 MachineInstr *MI = I;
Evan Chenga022bdf2008-07-21 20:02:45 +0000672#ifndef NDEBUG
Chris Lattner749c6f62008-01-07 07:27:27 +0000673 unsigned NumOps = MI->getDesc().getNumOperands();
Evan Cheng171d09e2006-11-10 01:28:43 +0000674 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
Evan Chenga022bdf2008-07-21 20:02:45 +0000675#endif
Chris Lattner4a06f352004-02-02 19:23:15 +0000676
677 // Is this the last use of the source register?
678 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Cheng6130f662008-03-05 00:59:57 +0000679 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattner4a06f352004-02-02 19:23:15 +0000680
681 if (KillsSrc) {
682 // If this is the last use of the source register, just make sure it's on
683 // the top of the stack.
684 moveToTop(Reg, I);
685 assert(StackTop > 0 && "Stack cannot be empty!");
686 --StackTop;
687 pushReg(getFPReg(MI->getOperand(0)));
688 } else {
689 // If this is not the last use of the source register, _copy_ it to the top
690 // of the stack.
691 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
692 }
693
Chris Lattner58fe4592005-12-21 07:47:04 +0000694 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner4a06f352004-02-02 19:23:15 +0000695 MI->RemoveOperand(1); // Drop the source operand.
696 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner5080f4d2008-01-11 18:10:50 +0000697 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner4a06f352004-02-02 19:23:15 +0000698}
699
700
Chris Lattnera960d952003-01-13 01:01:59 +0000701//===----------------------------------------------------------------------===//
702// Define tables of various ways to map pseudo instructions
703//
704
705// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
706static const TableEntry ForwardST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000707 { X86::ADD_Fp32 , X86::ADD_FST0r },
708 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000709 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000710 { X86::DIV_Fp32 , X86::DIV_FST0r },
711 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000712 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000713 { X86::MUL_Fp32 , X86::MUL_FST0r },
714 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000715 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000716 { X86::SUB_Fp32 , X86::SUB_FST0r },
717 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000718 { X86::SUB_Fp80 , X86::SUB_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000719};
720
721// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
722static const TableEntry ReverseST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000723 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
724 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +0000725 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +0000726 { X86::DIV_Fp32 , X86::DIVR_FST0r },
727 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000728 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000729 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
730 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +0000731 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +0000732 { X86::SUB_Fp32 , X86::SUBR_FST0r },
733 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +0000734 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +0000735};
736
737// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
738static const TableEntry ForwardSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000739 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
740 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +0000741 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +0000742 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
743 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000744 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000745 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
746 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +0000747 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +0000748 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
749 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000750 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000751};
752
753// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
754static const TableEntry ReverseSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000755 { X86::ADD_Fp32 , X86::ADD_FrST0 },
756 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000757 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000758 { X86::DIV_Fp32 , X86::DIV_FrST0 },
759 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000760 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000761 { X86::MUL_Fp32 , X86::MUL_FrST0 },
762 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000763 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000764 { X86::SUB_Fp32 , X86::SUB_FrST0 },
765 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +0000766 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000767};
768
769
770/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
771/// instructions which need to be simplified and possibly transformed.
772///
773/// Result: ST(0) = fsub ST(0), ST(i)
774/// ST(i) = fsub ST(0), ST(i)
775/// ST(0) = fsubr ST(0), ST(i)
776/// ST(i) = fsubr ST(0), ST(i)
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000777///
Chris Lattnera960d952003-01-13 01:01:59 +0000778void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
779 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
780 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000781 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000782
Chris Lattner749c6f62008-01-07 07:27:27 +0000783 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000784 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
Chris Lattnera960d952003-01-13 01:01:59 +0000785 unsigned Dest = getFPReg(MI->getOperand(0));
786 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
787 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000788 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
789 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnera960d952003-01-13 01:01:59 +0000790
Chris Lattnera960d952003-01-13 01:01:59 +0000791 unsigned TOS = getStackEntry(0);
792
793 // One of our operands must be on the top of the stack. If neither is yet, we
794 // need to move one.
795 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
796 // We can choose to move either operand to the top of the stack. If one of
797 // the operands is killed by this instruction, we want that one so that we
798 // can update right on top of the old version.
799 if (KillsOp0) {
800 moveToTop(Op0, I); // Move dead operand to TOS.
801 TOS = Op0;
802 } else if (KillsOp1) {
803 moveToTop(Op1, I);
804 TOS = Op1;
805 } else {
806 // All of the operands are live after this instruction executes, so we
807 // cannot update on top of any operand. Because of this, we must
808 // duplicate one of the stack elements to the top. It doesn't matter
809 // which one we pick.
810 //
811 duplicateToTop(Op0, Dest, I);
812 Op0 = TOS = Dest;
813 KillsOp0 = true;
814 }
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000815 } else if (!KillsOp0 && !KillsOp1) {
Chris Lattnera960d952003-01-13 01:01:59 +0000816 // If we DO have one of our operands at the top of the stack, but we don't
817 // have a dead operand, we must duplicate one of the operands to a new slot
818 // on the stack.
819 duplicateToTop(Op0, Dest, I);
820 Op0 = TOS = Dest;
821 KillsOp0 = true;
822 }
823
824 // Now we know that one of our operands is on the top of the stack, and at
825 // least one of our operands is killed by this instruction.
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000826 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
827 "Stack conditions not set up right!");
Chris Lattnera960d952003-01-13 01:01:59 +0000828
829 // We decide which form to use based on what is on the top of the stack, and
830 // which operand is killed by this instruction.
831 const TableEntry *InstTable;
832 bool isForward = TOS == Op0;
833 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
834 if (updateST0) {
835 if (isForward)
836 InstTable = ForwardST0Table;
837 else
838 InstTable = ReverseST0Table;
839 } else {
840 if (isForward)
841 InstTable = ForwardSTiTable;
842 else
843 InstTable = ReverseSTiTable;
844 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000845
Owen Anderson718cb662007-09-07 04:06:50 +0000846 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
847 MI->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000848 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
849
850 // NotTOS - The register which is not on the top of stack...
851 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
852
853 // Replace the old instruction with a new instruction
Chris Lattnerc1bab322004-03-31 22:02:36 +0000854 MBB->remove(I++);
Evan Cheng12a44782006-11-30 07:12:03 +0000855 I = BuildMI(*MBB, I, TII->get(Opcode)).addReg(getSTReg(NotTOS));
Chris Lattnera960d952003-01-13 01:01:59 +0000856
857 // If both operands are killed, pop one off of the stack in addition to
858 // overwriting the other one.
859 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
860 assert(!updateST0 && "Should have updated other operand!");
861 popStackAfter(I); // Pop the top of stack
862 }
863
Chris Lattnera960d952003-01-13 01:01:59 +0000864 // Update stack information so that we know the destination register is now on
865 // the stack.
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000866 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
867 assert(UpdatedSlot < StackTop && Dest < 7);
868 Stack[UpdatedSlot] = Dest;
869 RegMap[Dest] = UpdatedSlot;
Dan Gohman8e5f2c62008-07-07 23:14:23 +0000870 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000871}
872
Chris Lattner0ca2c8e2004-06-11 04:49:02 +0000873/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000874/// register arguments and no explicit destinations.
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000875///
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000876void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
877 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
878 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
879 MachineInstr *MI = I;
880
Chris Lattner749c6f62008-01-07 07:27:27 +0000881 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattner0ca2c8e2004-06-11 04:49:02 +0000882 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000883 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
884 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000885 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
886 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000887
888 // Make sure the first operand is on the top of stack, the other one can be
889 // anywhere.
890 moveToTop(Op0, I);
891
Chris Lattner58fe4592005-12-21 07:47:04 +0000892 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner57790422004-06-11 05:22:44 +0000893 MI->getOperand(0).setReg(getSTReg(Op1));
894 MI->RemoveOperand(1);
Chris Lattner5080f4d2008-01-11 18:10:50 +0000895 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner57790422004-06-11 05:22:44 +0000896
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000897 // If any of the operands are killed by this instruction, free them.
898 if (KillsOp0) freeStackSlotAfter(I, Op0);
899 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
Chris Lattnera960d952003-01-13 01:01:59 +0000900}
901
Chris Lattnerc1bab322004-03-31 22:02:36 +0000902/// handleCondMovFP - Handle two address conditional move instructions. These
903/// instructions move a st(i) register to st(0) iff a condition is true. These
904/// instructions require that the first operand is at the top of the stack, but
905/// otherwise don't modify the stack at all.
906void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
907 MachineInstr *MI = I;
908
909 unsigned Op0 = getFPReg(MI->getOperand(0));
Chris Lattner6cdb1ea2006-09-05 20:27:32 +0000910 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Cheng6130f662008-03-05 00:59:57 +0000911 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000912
913 // The first operand *must* be on the top of the stack.
914 moveToTop(Op0, I);
915
916 // Change the second operand to the stack register that the operand is in.
Chris Lattner58fe4592005-12-21 07:47:04 +0000917 // Change from the pseudo instruction to the concrete instruction.
Chris Lattnerc1bab322004-03-31 22:02:36 +0000918 MI->RemoveOperand(0);
Chris Lattner6cdb1ea2006-09-05 20:27:32 +0000919 MI->RemoveOperand(1);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000920 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner5080f4d2008-01-11 18:10:50 +0000921 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +0000922
Chris Lattnerc1bab322004-03-31 22:02:36 +0000923 // If we kill the second operand, make sure to pop it from the stack.
Evan Chengddd2a452006-11-15 20:56:39 +0000924 if (Op0 != Op1 && KillsOp1) {
Chris Lattner76eb08b2005-08-23 22:49:55 +0000925 // Get this value off of the register stack.
926 freeStackSlotAfter(I, Op1);
927 }
Chris Lattnerc1bab322004-03-31 22:02:36 +0000928}
929
Chris Lattnera960d952003-01-13 01:01:59 +0000930
931/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +0000932/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +0000933/// instructions.
934///
935void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000936 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000937 switch (MI->getOpcode()) {
938 default: assert(0 && "Unknown SpecialFP instruction!");
Chris Lattner6fa2f9c2008-03-09 07:05:32 +0000939 case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
940 case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
941 case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
Chris Lattnera960d952003-01-13 01:01:59 +0000942 assert(StackTop == 0 && "Stack should be empty after a call!");
943 pushReg(getFPReg(MI->getOperand(0)));
944 break;
Chris Lattner24e0a542008-03-21 06:38:26 +0000945 case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
946 case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
947 case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
948 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
949 // The pattern we expect is:
950 // CALL
951 // FP1 = FpGET_ST0
952 // FP4 = FpGET_ST1
953 //
954 // At this point, we've pushed FP1 on the top of stack, so it should be
955 // present if it isn't dead. If it was dead, we already emitted a pop to
956 // remove it from the stack and StackTop = 0.
957
958 // Push FP4 as top of stack next.
959 pushReg(getFPReg(MI->getOperand(0)));
960
961 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
962 // dead. In this case, the ST(1) value is the only thing that is live, so
963 // it should be on the TOS (after the pop that was emitted) and is. Just
964 // continue in this case.
965 if (StackTop == 1)
966 break;
967
968 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
969 // elements so that our accounting is correct.
970 unsigned RegOnTop = getStackEntry(0);
971 unsigned RegNo = getStackEntry(1);
972
973 // Swap the slots the regs are in.
974 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
975
976 // Swap stack slot contents.
977 assert(RegMap[RegOnTop] < StackTop);
978 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
979 break;
980 }
Chris Lattnerafb23f42008-03-09 07:08:44 +0000981 case X86::FpSET_ST0_32:
982 case X86::FpSET_ST0_64:
983 case X86::FpSET_ST0_80:
Chris Lattnera960d952003-01-13 01:01:59 +0000984 assert(StackTop == 1 && "Stack should have one element on it to return!");
985 --StackTop; // "Forget" we have something on the top of stack!
986 break;
Dale Johannesene377d4d2007-07-04 21:07:47 +0000987 case X86::MOV_Fp3232:
988 case X86::MOV_Fp3264:
989 case X86::MOV_Fp6432:
Dale Johannesen59a58732007-08-05 18:49:15 +0000990 case X86::MOV_Fp6464:
991 case X86::MOV_Fp3280:
992 case X86::MOV_Fp6480:
993 case X86::MOV_Fp8032:
994 case X86::MOV_Fp8064:
995 case X86::MOV_Fp8080: {
Chris Lattnera960d952003-01-13 01:01:59 +0000996 unsigned SrcReg = getFPReg(MI->getOperand(1));
997 unsigned DestReg = getFPReg(MI->getOperand(0));
Chris Lattnera960d952003-01-13 01:01:59 +0000998
Evan Cheng6130f662008-03-05 00:59:57 +0000999 if (MI->killsRegister(X86::FP0+SrcReg)) {
Chris Lattnera960d952003-01-13 01:01:59 +00001000 // If the input operand is killed, we can just change the owner of the
1001 // incoming stack slot into the result.
1002 unsigned Slot = getSlot(SrcReg);
1003 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1004 Stack[Slot] = DestReg;
1005 RegMap[DestReg] = Slot;
1006
1007 } else {
1008 // For FMOV we just duplicate the specified value to a new stack slot.
1009 // This could be made better, but would require substantial changes.
1010 duplicateToTop(SrcReg, DestReg, I);
1011 }
Nick Lewycky3c786972008-03-11 05:56:09 +00001012 }
Chris Lattnera960d952003-01-13 01:01:59 +00001013 break;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001014 case TargetInstrInfo::INLINEASM: {
1015 // The inline asm MachineInstr currently only *uses* FP registers for the
1016 // 'f' constraint. These should be turned into the current ST(x) register
1017 // in the machine instr. Also, any kills should be explicitly popped after
1018 // the inline asm.
1019 unsigned Kills[7];
1020 unsigned NumKills = 0;
1021 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1022 MachineOperand &Op = MI->getOperand(i);
Dan Gohman014278e2008-09-13 17:58:21 +00001023 if (!Op.isRegister() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattnere12ecf22008-03-11 19:50:13 +00001024 continue;
1025 assert(Op.isUse() && "Only handle inline asm uses right now");
1026
1027 unsigned FPReg = getFPReg(Op);
1028 Op.setReg(getSTReg(FPReg));
1029
1030 // If we kill this operand, make sure to pop it from the stack after the
1031 // asm. We just remember it for now, and pop them all off at the end in
1032 // a batch.
1033 if (Op.isKill())
1034 Kills[NumKills++] = FPReg;
1035 }
1036
1037 // If this asm kills any FP registers (is the last use of them) we must
1038 // explicitly emit pop instructions for them. Do this now after the asm has
1039 // executed so that the ST(x) numbers are not off (which would happen if we
1040 // did this inline with operand rewriting).
1041 //
1042 // Note: this might be a non-optimal pop sequence. We might be able to do
1043 // better by trying to pop in stack order or something.
1044 MachineBasicBlock::iterator InsertPt = MI;
1045 while (NumKills)
1046 freeStackSlotAfter(InsertPt, Kills[--NumKills]);
1047
1048 // Don't delete the inline asm!
1049 return;
1050 }
1051
Chris Lattner447ff682008-03-11 03:23:40 +00001052 case X86::RET:
1053 case X86::RETI:
1054 // If RET has an FP register use operand, pass the first one in ST(0) and
1055 // the second one in ST(1).
1056 if (isStackEmpty()) return; // Quick check to see if any are possible.
1057
1058 // Find the register operands.
1059 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1060
1061 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1062 MachineOperand &Op = MI->getOperand(i);
Dan Gohman014278e2008-09-13 17:58:21 +00001063 if (!Op.isRegister() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattner447ff682008-03-11 03:23:40 +00001064 continue;
Chris Lattner35831d02008-03-21 20:41:27 +00001065 // FP Register uses must be kills unless there are two uses of the same
1066 // register, in which case only one will be a kill.
1067 assert(Op.isUse() &&
1068 (Op.isKill() || // Marked kill.
1069 getFPReg(Op) == FirstFPRegOp || // Second instance.
1070 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1071 "Ret only defs operands, and values aren't live beyond it");
Chris Lattner447ff682008-03-11 03:23:40 +00001072
1073 if (FirstFPRegOp == ~0U)
1074 FirstFPRegOp = getFPReg(Op);
1075 else {
1076 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1077 SecondFPRegOp = getFPReg(Op);
1078 }
1079
1080 // Remove the operand so that later passes don't see it.
1081 MI->RemoveOperand(i);
1082 --i, --e;
1083 }
1084
1085 // There are only four possibilities here:
1086 // 1) we are returning a single FP value. In this case, it has to be in
1087 // ST(0) already, so just declare success by removing the value from the
1088 // FP Stack.
1089 if (SecondFPRegOp == ~0U) {
1090 // Assert that the top of stack contains the right FP register.
1091 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1092 "Top of stack not the right register for RET!");
1093
1094 // Ok, everything is good, mark the value as not being on the stack
1095 // anymore so that our assertion about the stack being empty at end of
1096 // block doesn't fire.
1097 StackTop = 0;
1098 return;
1099 }
1100
Chris Lattner447ff682008-03-11 03:23:40 +00001101 // Otherwise, we are returning two values:
1102 // 2) If returning the same value for both, we only have one thing in the FP
1103 // stack. Consider: RET FP1, FP1
1104 if (StackTop == 1) {
1105 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1106 "Stack misconfiguration for RET!");
1107
1108 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1109 // register to hold it.
1110 unsigned NewReg = (FirstFPRegOp+1)%7;
1111 duplicateToTop(FirstFPRegOp, NewReg, MI);
1112 FirstFPRegOp = NewReg;
1113 }
1114
1115 /// Okay we know we have two different FPx operands now:
1116 assert(StackTop == 2 && "Must have two values live!");
1117
1118 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1119 /// in ST(1). In this case, emit an fxch.
1120 if (getStackEntry(0) == SecondFPRegOp) {
1121 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1122 moveToTop(FirstFPRegOp, MI);
1123 }
1124
1125 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1126 /// ST(1). Just remove both from our understanding of the stack and return.
1127 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
Chris Lattner03535262008-03-21 05:57:20 +00001128 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
Chris Lattner447ff682008-03-11 03:23:40 +00001129 StackTop = 0;
1130 return;
Chris Lattnera960d952003-01-13 01:01:59 +00001131 }
Chris Lattnera960d952003-01-13 01:01:59 +00001132
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001133 I = MBB->erase(I); // Remove the pseudo instruction
1134 --I;
Chris Lattnera960d952003-01-13 01:01:59 +00001135}