Chris Lattner | d28b0d7 | 2004-06-25 04:24:22 +0000 | [diff] [blame] | 1 | //===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===// |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by the LLVM research group and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines a very simple implementation of Andersen's interprocedural |
| 11 | // alias analysis. This implementation does not include any of the fancy |
| 12 | // features that make Andersen's reasonably efficient (like cycle elimination or |
| 13 | // variable substitution), but it should be useful for getting precision |
| 14 | // numbers and can be extended in the future. |
| 15 | // |
| 16 | // In pointer analysis terms, this is a subset-based, flow-insensitive, |
| 17 | // field-insensitive, and context-insensitive algorithm pointer algorithm. |
| 18 | // |
| 19 | // This algorithm is implemented as three stages: |
| 20 | // 1. Object identification. |
| 21 | // 2. Inclusion constraint identification. |
| 22 | // 3. Inclusion constraint solving. |
| 23 | // |
| 24 | // The object identification stage identifies all of the memory objects in the |
| 25 | // program, which includes globals, heap allocated objects, and stack allocated |
| 26 | // objects. |
| 27 | // |
| 28 | // The inclusion constraint identification stage finds all inclusion constraints |
| 29 | // in the program by scanning the program, looking for pointer assignments and |
| 30 | // other statements that effect the points-to graph. For a statement like "A = |
| 31 | // B", this statement is processed to indicate that A can point to anything that |
| 32 | // B can point to. Constraints can handle copies, loads, and stores. |
| 33 | // |
| 34 | // The inclusion constraint solving phase iteratively propagates the inclusion |
| 35 | // constraints until a fixed point is reached. This is an O(N^3) algorithm. |
| 36 | // |
| 37 | // In the initial pass, all indirect function calls are completely ignored. As |
| 38 | // the analysis discovers new targets of function pointers, it iteratively |
| 39 | // resolves a precise (and conservative) call graph. Also related, this |
| 40 | // analysis initially assumes that all internal functions have known incoming |
| 41 | // pointers. If we find that an internal function's address escapes outside of |
| 42 | // the program, we update this assumption. |
| 43 | // |
Chris Lattner | c7ca32b | 2004-06-05 20:12:36 +0000 | [diff] [blame] | 44 | // Future Improvements: |
| 45 | // This implementation of Andersen's algorithm is extremely slow. To make it |
| 46 | // scale reasonably well, the inclusion constraints could be sorted (easy), |
| 47 | // offline variable substitution would be a huge win (straight-forward), and |
| 48 | // online cycle elimination (trickier) might help as well. |
| 49 | // |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 50 | //===----------------------------------------------------------------------===// |
| 51 | |
| 52 | #define DEBUG_TYPE "anders-aa" |
| 53 | #include "llvm/Constants.h" |
| 54 | #include "llvm/DerivedTypes.h" |
| 55 | #include "llvm/Instructions.h" |
| 56 | #include "llvm/Module.h" |
| 57 | #include "llvm/Pass.h" |
| 58 | #include "llvm/Support/InstIterator.h" |
| 59 | #include "llvm/Support/InstVisitor.h" |
| 60 | #include "llvm/Analysis/AliasAnalysis.h" |
Jeff Cohen | 534927d | 2005-01-08 22:01:16 +0000 | [diff] [blame] | 61 | #include "llvm/Analysis/Passes.h" |
Reid Spencer | 551ccae | 2004-09-01 22:55:40 +0000 | [diff] [blame] | 62 | #include "llvm/Support/Debug.h" |
| 63 | #include "llvm/ADT/Statistic.h" |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 64 | #include <set> |
| 65 | using namespace llvm; |
| 66 | |
| 67 | namespace { |
| 68 | Statistic<> |
| 69 | NumIters("anders-aa", "Number of iterations to reach convergence"); |
| 70 | Statistic<> |
| 71 | NumConstraints("anders-aa", "Number of constraints"); |
| 72 | Statistic<> |
| 73 | NumNodes("anders-aa", "Number of nodes"); |
| 74 | Statistic<> |
| 75 | NumEscapingFunctions("anders-aa", "Number of internal functions that escape"); |
| 76 | Statistic<> |
| 77 | NumIndirectCallees("anders-aa", "Number of indirect callees found"); |
| 78 | |
Chris Lattner | b12914b | 2004-09-20 04:48:05 +0000 | [diff] [blame] | 79 | class Andersens : public ModulePass, public AliasAnalysis, |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 80 | private InstVisitor<Andersens> { |
| 81 | /// Node class - This class is used to represent a memory object in the |
| 82 | /// program, and is the primitive used to build the points-to graph. |
| 83 | class Node { |
| 84 | std::vector<Node*> Pointees; |
| 85 | Value *Val; |
| 86 | public: |
| 87 | Node() : Val(0) {} |
| 88 | Node *setValue(Value *V) { |
| 89 | assert(Val == 0 && "Value already set for this node!"); |
| 90 | Val = V; |
| 91 | return this; |
| 92 | } |
| 93 | |
| 94 | /// getValue - Return the LLVM value corresponding to this node. |
Chris Lattner | c3c9fd0 | 2005-03-28 04:03:52 +0000 | [diff] [blame] | 95 | /// |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 96 | Value *getValue() const { return Val; } |
| 97 | |
| 98 | typedef std::vector<Node*>::const_iterator iterator; |
| 99 | iterator begin() const { return Pointees.begin(); } |
| 100 | iterator end() const { return Pointees.end(); } |
| 101 | |
| 102 | /// addPointerTo - Add a pointer to the list of pointees of this node, |
| 103 | /// returning true if this caused a new pointer to be added, or false if |
| 104 | /// we already knew about the points-to relation. |
| 105 | bool addPointerTo(Node *N) { |
| 106 | std::vector<Node*>::iterator I = std::lower_bound(Pointees.begin(), |
| 107 | Pointees.end(), |
| 108 | N); |
| 109 | if (I != Pointees.end() && *I == N) |
| 110 | return false; |
| 111 | Pointees.insert(I, N); |
| 112 | return true; |
| 113 | } |
| 114 | |
| 115 | /// intersects - Return true if the points-to set of this node intersects |
| 116 | /// with the points-to set of the specified node. |
| 117 | bool intersects(Node *N) const; |
| 118 | |
| 119 | /// intersectsIgnoring - Return true if the points-to set of this node |
| 120 | /// intersects with the points-to set of the specified node on any nodes |
| 121 | /// except for the specified node to ignore. |
| 122 | bool intersectsIgnoring(Node *N, Node *Ignoring) const; |
| 123 | |
| 124 | // Constraint application methods. |
| 125 | bool copyFrom(Node *N); |
| 126 | bool loadFrom(Node *N); |
| 127 | bool storeThrough(Node *N); |
| 128 | }; |
| 129 | |
| 130 | /// GraphNodes - This vector is populated as part of the object |
| 131 | /// identification stage of the analysis, which populates this vector with a |
| 132 | /// node for each memory object and fills in the ValueNodes map. |
| 133 | std::vector<Node> GraphNodes; |
| 134 | |
| 135 | /// ValueNodes - This map indicates the Node that a particular Value* is |
| 136 | /// represented by. This contains entries for all pointers. |
| 137 | std::map<Value*, unsigned> ValueNodes; |
| 138 | |
| 139 | /// ObjectNodes - This map contains entries for each memory object in the |
| 140 | /// program: globals, alloca's and mallocs. |
| 141 | std::map<Value*, unsigned> ObjectNodes; |
| 142 | |
| 143 | /// ReturnNodes - This map contains an entry for each function in the |
| 144 | /// program that returns a value. |
| 145 | std::map<Function*, unsigned> ReturnNodes; |
| 146 | |
| 147 | /// VarargNodes - This map contains the entry used to represent all pointers |
| 148 | /// passed through the varargs portion of a function call for a particular |
| 149 | /// function. An entry is not present in this map for functions that do not |
| 150 | /// take variable arguments. |
| 151 | std::map<Function*, unsigned> VarargNodes; |
| 152 | |
| 153 | /// Constraint - Objects of this structure are used to represent the various |
| 154 | /// constraints identified by the algorithm. The constraints are 'copy', |
| 155 | /// for statements like "A = B", 'load' for statements like "A = *B", and |
| 156 | /// 'store' for statements like "*A = B". |
| 157 | struct Constraint { |
| 158 | enum ConstraintType { Copy, Load, Store } Type; |
| 159 | Node *Dest, *Src; |
| 160 | |
| 161 | Constraint(ConstraintType Ty, Node *D, Node *S) |
| 162 | : Type(Ty), Dest(D), Src(S) {} |
| 163 | }; |
| 164 | |
| 165 | /// Constraints - This vector contains a list of all of the constraints |
| 166 | /// identified by the program. |
| 167 | std::vector<Constraint> Constraints; |
| 168 | |
| 169 | /// EscapingInternalFunctions - This set contains all of the internal |
| 170 | /// functions that are found to escape from the program. If the address of |
| 171 | /// an internal function is passed to an external function or otherwise |
| 172 | /// escapes from the analyzed portion of the program, we must assume that |
| 173 | /// any pointer arguments can alias the universal node. This set keeps |
| 174 | /// track of those functions we are assuming to escape so far. |
| 175 | std::set<Function*> EscapingInternalFunctions; |
| 176 | |
| 177 | /// IndirectCalls - This contains a list of all of the indirect call sites |
| 178 | /// in the program. Since the call graph is iteratively discovered, we may |
| 179 | /// need to add constraints to our graph as we find new targets of function |
| 180 | /// pointers. |
| 181 | std::vector<CallSite> IndirectCalls; |
| 182 | |
| 183 | /// IndirectCallees - For each call site in the indirect calls list, keep |
| 184 | /// track of the callees that we have discovered so far. As the analysis |
| 185 | /// proceeds, more callees are discovered, until the call graph finally |
| 186 | /// stabilizes. |
| 187 | std::map<CallSite, std::vector<Function*> > IndirectCallees; |
| 188 | |
| 189 | /// This enum defines the GraphNodes indices that correspond to important |
| 190 | /// fixed sets. |
| 191 | enum { |
| 192 | UniversalSet = 0, |
| 193 | NullPtr = 1, |
| 194 | NullObject = 2, |
| 195 | }; |
| 196 | |
| 197 | public: |
Chris Lattner | b12914b | 2004-09-20 04:48:05 +0000 | [diff] [blame] | 198 | bool runOnModule(Module &M) { |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 199 | InitializeAliasAnalysis(this); |
| 200 | IdentifyObjects(M); |
| 201 | CollectConstraints(M); |
| 202 | DEBUG(PrintConstraints()); |
| 203 | SolveConstraints(); |
| 204 | DEBUG(PrintPointsToGraph()); |
| 205 | |
| 206 | // Free the constraints list, as we don't need it to respond to alias |
| 207 | // requests. |
| 208 | ObjectNodes.clear(); |
| 209 | ReturnNodes.clear(); |
| 210 | VarargNodes.clear(); |
| 211 | EscapingInternalFunctions.clear(); |
| 212 | std::vector<Constraint>().swap(Constraints); |
| 213 | return false; |
| 214 | } |
| 215 | |
| 216 | void releaseMemory() { |
| 217 | // FIXME: Until we have transitively required passes working correctly, |
| 218 | // this cannot be enabled! Otherwise, using -count-aa with the pass |
| 219 | // causes memory to be freed too early. :( |
| 220 | #if 0 |
| 221 | // The memory objects and ValueNodes data structures at the only ones that |
| 222 | // are still live after construction. |
| 223 | std::vector<Node>().swap(GraphNodes); |
| 224 | ValueNodes.clear(); |
| 225 | #endif |
| 226 | } |
| 227 | |
| 228 | virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| 229 | AliasAnalysis::getAnalysisUsage(AU); |
| 230 | AU.setPreservesAll(); // Does not transform code |
| 231 | } |
| 232 | |
| 233 | //------------------------------------------------ |
| 234 | // Implement the AliasAnalysis API |
| 235 | // |
| 236 | AliasResult alias(const Value *V1, unsigned V1Size, |
| 237 | const Value *V2, unsigned V2Size); |
| 238 | void getMustAliases(Value *P, std::vector<Value*> &RetVals); |
| 239 | bool pointsToConstantMemory(const Value *P); |
| 240 | |
| 241 | virtual void deleteValue(Value *V) { |
| 242 | ValueNodes.erase(V); |
| 243 | getAnalysis<AliasAnalysis>().deleteValue(V); |
| 244 | } |
| 245 | |
| 246 | virtual void copyValue(Value *From, Value *To) { |
| 247 | ValueNodes[To] = ValueNodes[From]; |
| 248 | getAnalysis<AliasAnalysis>().copyValue(From, To); |
| 249 | } |
| 250 | |
| 251 | private: |
| 252 | /// getNode - Return the node corresponding to the specified pointer scalar. |
| 253 | /// |
| 254 | Node *getNode(Value *V) { |
| 255 | if (Constant *C = dyn_cast<Constant>(V)) |
Chris Lattner | df9b7bc | 2004-08-16 05:38:02 +0000 | [diff] [blame] | 256 | if (!isa<GlobalValue>(C)) |
| 257 | return getNodeForConstantPointer(C); |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 258 | |
| 259 | std::map<Value*, unsigned>::iterator I = ValueNodes.find(V); |
| 260 | if (I == ValueNodes.end()) { |
| 261 | V->dump(); |
| 262 | assert(I != ValueNodes.end() && |
| 263 | "Value does not have a node in the points-to graph!"); |
| 264 | } |
| 265 | return &GraphNodes[I->second]; |
| 266 | } |
| 267 | |
| 268 | /// getObject - Return the node corresponding to the memory object for the |
| 269 | /// specified global or allocation instruction. |
| 270 | Node *getObject(Value *V) { |
| 271 | std::map<Value*, unsigned>::iterator I = ObjectNodes.find(V); |
| 272 | assert(I != ObjectNodes.end() && |
| 273 | "Value does not have an object in the points-to graph!"); |
| 274 | return &GraphNodes[I->second]; |
| 275 | } |
| 276 | |
| 277 | /// getReturnNode - Return the node representing the return value for the |
| 278 | /// specified function. |
| 279 | Node *getReturnNode(Function *F) { |
| 280 | std::map<Function*, unsigned>::iterator I = ReturnNodes.find(F); |
| 281 | assert(I != ReturnNodes.end() && "Function does not return a value!"); |
| 282 | return &GraphNodes[I->second]; |
| 283 | } |
| 284 | |
| 285 | /// getVarargNode - Return the node representing the variable arguments |
| 286 | /// formal for the specified function. |
| 287 | Node *getVarargNode(Function *F) { |
| 288 | std::map<Function*, unsigned>::iterator I = VarargNodes.find(F); |
| 289 | assert(I != VarargNodes.end() && "Function does not take var args!"); |
| 290 | return &GraphNodes[I->second]; |
| 291 | } |
| 292 | |
| 293 | /// getNodeValue - Get the node for the specified LLVM value and set the |
| 294 | /// value for it to be the specified value. |
| 295 | Node *getNodeValue(Value &V) { |
| 296 | return getNode(&V)->setValue(&V); |
| 297 | } |
| 298 | |
| 299 | void IdentifyObjects(Module &M); |
| 300 | void CollectConstraints(Module &M); |
| 301 | void SolveConstraints(); |
| 302 | |
| 303 | Node *getNodeForConstantPointer(Constant *C); |
| 304 | Node *getNodeForConstantPointerTarget(Constant *C); |
| 305 | void AddGlobalInitializerConstraints(Node *N, Constant *C); |
Chris Lattner | c3c9fd0 | 2005-03-28 04:03:52 +0000 | [diff] [blame] | 306 | |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 307 | void AddConstraintsForNonInternalLinkage(Function *F); |
Chris Lattner | c3c9fd0 | 2005-03-28 04:03:52 +0000 | [diff] [blame] | 308 | bool AddConstraintsForExternalFunction(Function *F); |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 309 | void AddConstraintsForCall(CallSite CS, Function *F); |
| 310 | |
| 311 | |
| 312 | void PrintNode(Node *N); |
| 313 | void PrintConstraints(); |
| 314 | void PrintPointsToGraph(); |
| 315 | |
| 316 | //===------------------------------------------------------------------===// |
| 317 | // Instruction visitation methods for adding constraints |
| 318 | // |
| 319 | friend class InstVisitor<Andersens>; |
| 320 | void visitReturnInst(ReturnInst &RI); |
| 321 | void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); } |
| 322 | void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); } |
| 323 | void visitCallSite(CallSite CS); |
| 324 | void visitAllocationInst(AllocationInst &AI); |
| 325 | void visitLoadInst(LoadInst &LI); |
| 326 | void visitStoreInst(StoreInst &SI); |
| 327 | void visitGetElementPtrInst(GetElementPtrInst &GEP); |
| 328 | void visitPHINode(PHINode &PN); |
| 329 | void visitCastInst(CastInst &CI); |
| 330 | void visitSelectInst(SelectInst &SI); |
| 331 | void visitVANext(VANextInst &I); |
| 332 | void visitVAArg(VAArgInst &I); |
| 333 | void visitInstruction(Instruction &I); |
| 334 | }; |
| 335 | |
| 336 | RegisterOpt<Andersens> X("anders-aa", |
| 337 | "Andersen's Interprocedural Alias Analysis"); |
| 338 | RegisterAnalysisGroup<AliasAnalysis, Andersens> Y; |
| 339 | } |
| 340 | |
Jeff Cohen | 534927d | 2005-01-08 22:01:16 +0000 | [diff] [blame] | 341 | ModulePass *llvm::createAndersensPass() { return new Andersens(); } |
| 342 | |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 343 | //===----------------------------------------------------------------------===// |
| 344 | // AliasAnalysis Interface Implementation |
| 345 | //===----------------------------------------------------------------------===// |
| 346 | |
| 347 | AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size, |
| 348 | const Value *V2, unsigned V2Size) { |
| 349 | Node *N1 = getNode((Value*)V1); |
| 350 | Node *N2 = getNode((Value*)V2); |
| 351 | |
| 352 | // Check to see if the two pointers are known to not alias. They don't alias |
| 353 | // if their points-to sets do not intersect. |
| 354 | if (!N1->intersectsIgnoring(N2, &GraphNodes[NullObject])) |
| 355 | return NoAlias; |
| 356 | |
| 357 | return AliasAnalysis::alias(V1, V1Size, V2, V2Size); |
| 358 | } |
| 359 | |
Chris Lattner | c3c9fd0 | 2005-03-28 04:03:52 +0000 | [diff] [blame] | 360 | |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 361 | /// getMustAlias - We can provide must alias information if we know that a |
| 362 | /// pointer can only point to a specific function or the null pointer. |
| 363 | /// Unfortunately we cannot determine must-alias information for global |
| 364 | /// variables or any other memory memory objects because we do not track whether |
| 365 | /// a pointer points to the beginning of an object or a field of it. |
| 366 | void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) { |
| 367 | Node *N = getNode(P); |
| 368 | Node::iterator I = N->begin(); |
| 369 | if (I != N->end()) { |
| 370 | // If there is exactly one element in the points-to set for the object... |
| 371 | ++I; |
| 372 | if (I == N->end()) { |
| 373 | Node *Pointee = *N->begin(); |
| 374 | |
| 375 | // If a function is the only object in the points-to set, then it must be |
| 376 | // the destination. Note that we can't handle global variables here, |
| 377 | // because we don't know if the pointer is actually pointing to a field of |
| 378 | // the global or to the beginning of it. |
| 379 | if (Value *V = Pointee->getValue()) { |
| 380 | if (Function *F = dyn_cast<Function>(V)) |
| 381 | RetVals.push_back(F); |
| 382 | } else { |
| 383 | // If the object in the points-to set is the null object, then the null |
| 384 | // pointer is a must alias. |
| 385 | if (Pointee == &GraphNodes[NullObject]) |
| 386 | RetVals.push_back(Constant::getNullValue(P->getType())); |
| 387 | } |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | AliasAnalysis::getMustAliases(P, RetVals); |
| 392 | } |
| 393 | |
| 394 | /// pointsToConstantMemory - If we can determine that this pointer only points |
| 395 | /// to constant memory, return true. In practice, this means that if the |
| 396 | /// pointer can only point to constant globals, functions, or the null pointer, |
| 397 | /// return true. |
| 398 | /// |
| 399 | bool Andersens::pointsToConstantMemory(const Value *P) { |
| 400 | Node *N = getNode((Value*)P); |
| 401 | for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) { |
| 402 | if (Value *V = (*I)->getValue()) { |
| 403 | if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) && |
| 404 | !cast<GlobalVariable>(V)->isConstant())) |
| 405 | return AliasAnalysis::pointsToConstantMemory(P); |
| 406 | } else { |
| 407 | if (*I != &GraphNodes[NullObject]) |
| 408 | return AliasAnalysis::pointsToConstantMemory(P); |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | return true; |
| 413 | } |
| 414 | |
| 415 | //===----------------------------------------------------------------------===// |
| 416 | // Object Identification Phase |
| 417 | //===----------------------------------------------------------------------===// |
| 418 | |
| 419 | /// IdentifyObjects - This stage scans the program, adding an entry to the |
| 420 | /// GraphNodes list for each memory object in the program (global stack or |
| 421 | /// heap), and populates the ValueNodes and ObjectNodes maps for these objects. |
| 422 | /// |
| 423 | void Andersens::IdentifyObjects(Module &M) { |
| 424 | unsigned NumObjects = 0; |
| 425 | |
| 426 | // Object #0 is always the universal set: the object that we don't know |
| 427 | // anything about. |
| 428 | assert(NumObjects == UniversalSet && "Something changed!"); |
| 429 | ++NumObjects; |
| 430 | |
| 431 | // Object #1 always represents the null pointer. |
| 432 | assert(NumObjects == NullPtr && "Something changed!"); |
| 433 | ++NumObjects; |
| 434 | |
| 435 | // Object #2 always represents the null object (the object pointed to by null) |
| 436 | assert(NumObjects == NullObject && "Something changed!"); |
| 437 | ++NumObjects; |
| 438 | |
| 439 | // Add all the globals first. |
Chris Lattner | 493f636 | 2005-03-27 22:03:46 +0000 | [diff] [blame] | 440 | for (Module::global_iterator I = M.global_begin(), E = M.global_end(); |
| 441 | I != E; ++I) { |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 442 | ObjectNodes[I] = NumObjects++; |
| 443 | ValueNodes[I] = NumObjects++; |
| 444 | } |
| 445 | |
| 446 | // Add nodes for all of the functions and the instructions inside of them. |
| 447 | for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { |
| 448 | // The function itself is a memory object. |
| 449 | ValueNodes[F] = NumObjects++; |
| 450 | ObjectNodes[F] = NumObjects++; |
| 451 | if (isa<PointerType>(F->getFunctionType()->getReturnType())) |
| 452 | ReturnNodes[F] = NumObjects++; |
| 453 | if (F->getFunctionType()->isVarArg()) |
| 454 | VarargNodes[F] = NumObjects++; |
| 455 | |
| 456 | // Add nodes for all of the incoming pointer arguments. |
Chris Lattner | 493f636 | 2005-03-27 22:03:46 +0000 | [diff] [blame] | 457 | for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); |
| 458 | I != E; ++I) |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 459 | if (isa<PointerType>(I->getType())) |
| 460 | ValueNodes[I] = NumObjects++; |
| 461 | |
| 462 | // Scan the function body, creating a memory object for each heap/stack |
| 463 | // allocation in the body of the function and a node to represent all |
| 464 | // pointer values defined by instructions and used as operands. |
| 465 | for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { |
| 466 | // If this is an heap or stack allocation, create a node for the memory |
| 467 | // object. |
| 468 | if (isa<PointerType>(II->getType())) { |
| 469 | ValueNodes[&*II] = NumObjects++; |
| 470 | if (AllocationInst *AI = dyn_cast<AllocationInst>(&*II)) |
| 471 | ObjectNodes[AI] = NumObjects++; |
| 472 | } |
| 473 | } |
| 474 | } |
| 475 | |
| 476 | // Now that we know how many objects to create, make them all now! |
| 477 | GraphNodes.resize(NumObjects); |
| 478 | NumNodes += NumObjects; |
| 479 | } |
| 480 | |
| 481 | //===----------------------------------------------------------------------===// |
| 482 | // Constraint Identification Phase |
| 483 | //===----------------------------------------------------------------------===// |
| 484 | |
| 485 | /// getNodeForConstantPointer - Return the node corresponding to the constant |
| 486 | /// pointer itself. |
| 487 | Andersens::Node *Andersens::getNodeForConstantPointer(Constant *C) { |
| 488 | assert(isa<PointerType>(C->getType()) && "Not a constant pointer!"); |
| 489 | |
Chris Lattner | 267a1b0 | 2005-03-27 18:58:23 +0000 | [diff] [blame] | 490 | if (isa<ConstantPointerNull>(C) || isa<UndefValue>(C)) |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 491 | return &GraphNodes[NullPtr]; |
Reid Spencer | e840434 | 2004-07-18 00:18:30 +0000 | [diff] [blame] | 492 | else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) |
| 493 | return getNode(GV); |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 494 | else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| 495 | switch (CE->getOpcode()) { |
| 496 | case Instruction::GetElementPtr: |
| 497 | return getNodeForConstantPointer(CE->getOperand(0)); |
| 498 | case Instruction::Cast: |
| 499 | if (isa<PointerType>(CE->getOperand(0)->getType())) |
| 500 | return getNodeForConstantPointer(CE->getOperand(0)); |
| 501 | else |
| 502 | return &GraphNodes[UniversalSet]; |
| 503 | default: |
| 504 | std::cerr << "Constant Expr not yet handled: " << *CE << "\n"; |
| 505 | assert(0); |
| 506 | } |
| 507 | } else { |
| 508 | assert(0 && "Unknown constant pointer!"); |
| 509 | } |
Chris Lattner | 1fc3739 | 2004-05-27 20:57:01 +0000 | [diff] [blame] | 510 | return 0; |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 511 | } |
| 512 | |
| 513 | /// getNodeForConstantPointerTarget - Return the node POINTED TO by the |
| 514 | /// specified constant pointer. |
| 515 | Andersens::Node *Andersens::getNodeForConstantPointerTarget(Constant *C) { |
| 516 | assert(isa<PointerType>(C->getType()) && "Not a constant pointer!"); |
| 517 | |
| 518 | if (isa<ConstantPointerNull>(C)) |
| 519 | return &GraphNodes[NullObject]; |
Reid Spencer | e840434 | 2004-07-18 00:18:30 +0000 | [diff] [blame] | 520 | else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) |
| 521 | return getObject(GV); |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 522 | else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| 523 | switch (CE->getOpcode()) { |
| 524 | case Instruction::GetElementPtr: |
| 525 | return getNodeForConstantPointerTarget(CE->getOperand(0)); |
| 526 | case Instruction::Cast: |
| 527 | if (isa<PointerType>(CE->getOperand(0)->getType())) |
| 528 | return getNodeForConstantPointerTarget(CE->getOperand(0)); |
| 529 | else |
| 530 | return &GraphNodes[UniversalSet]; |
| 531 | default: |
| 532 | std::cerr << "Constant Expr not yet handled: " << *CE << "\n"; |
| 533 | assert(0); |
| 534 | } |
| 535 | } else { |
| 536 | assert(0 && "Unknown constant pointer!"); |
| 537 | } |
Chris Lattner | 1fc3739 | 2004-05-27 20:57:01 +0000 | [diff] [blame] | 538 | return 0; |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 539 | } |
| 540 | |
| 541 | /// AddGlobalInitializerConstraints - Add inclusion constraints for the memory |
| 542 | /// object N, which contains values indicated by C. |
| 543 | void Andersens::AddGlobalInitializerConstraints(Node *N, Constant *C) { |
| 544 | if (C->getType()->isFirstClassType()) { |
| 545 | if (isa<PointerType>(C->getType())) |
| 546 | N->addPointerTo(getNodeForConstantPointer(C)); |
| 547 | } else if (C->isNullValue()) { |
| 548 | N->addPointerTo(&GraphNodes[NullObject]); |
| 549 | return; |
| 550 | } else { |
| 551 | // If this is an array or struct, include constraints for each element. |
| 552 | assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C)); |
| 553 | for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) |
| 554 | AddGlobalInitializerConstraints(N, cast<Constant>(C->getOperand(i))); |
| 555 | } |
| 556 | } |
| 557 | |
Chris Lattner | c3c9fd0 | 2005-03-28 04:03:52 +0000 | [diff] [blame] | 558 | /// AddConstraintsForNonInternalLinkage - If this function does not have |
| 559 | /// internal linkage, realize that we can't trust anything passed into or |
| 560 | /// returned by this function. |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 561 | void Andersens::AddConstraintsForNonInternalLinkage(Function *F) { |
Chris Lattner | e4d5c44 | 2005-03-15 04:54:21 +0000 | [diff] [blame] | 562 | for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 563 | if (isa<PointerType>(I->getType())) |
| 564 | // If this is an argument of an externally accessible function, the |
| 565 | // incoming pointer might point to anything. |
| 566 | Constraints.push_back(Constraint(Constraint::Copy, getNode(I), |
| 567 | &GraphNodes[UniversalSet])); |
| 568 | } |
| 569 | |
Chris Lattner | c3c9fd0 | 2005-03-28 04:03:52 +0000 | [diff] [blame] | 570 | /// AddConstraintsForExternalFunction - If this is a call to a "known" function, |
Misha Brukman | be5e2f4 | 2005-03-28 04:32:12 +0000 | [diff] [blame^] | 571 | /// add the constraints and return false. If this is a call to an unknown |
Chris Lattner | c3c9fd0 | 2005-03-28 04:03:52 +0000 | [diff] [blame] | 572 | /// function, return true. |
| 573 | bool Andersens::AddConstraintsForExternalFunction(Function *F) { |
| 574 | assert(F->isExternal() && "Not an external function!"); |
| 575 | |
| 576 | // These functions don't induce any points-to constraints. |
| 577 | if (F->getName() == "printf" || F->getName() == "fprintf" || |
| 578 | F->getName() == "open" || F->getName() == "fopen" || |
| 579 | F->getName() == "atoi" || |
| 580 | F->getName() == "llvm.memset" || F->getName() == "memcmp" || |
| 581 | F->getName() == "read" || F->getName() == "write") |
| 582 | return false; |
| 583 | |
| 584 | // These functions do induce points-to edges. |
| 585 | if (F->getName() == "llvm.memcpy" || F->getName() == "llvm.memmove") { |
| 586 | Function::arg_iterator Dst = F->arg_begin(), Src = Dst; |
| 587 | // Note: this is a poor approximation, this says Dest = Src, instead of |
| 588 | // *Dest = *Src. |
| 589 | ++Src; |
| 590 | Constraints.push_back(Constraint(Constraint::Copy, getNode(Dst), |
| 591 | getNode(Src))); |
| 592 | return false; |
| 593 | } |
| 594 | |
| 595 | return true; |
| 596 | } |
| 597 | |
| 598 | |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 599 | |
| 600 | /// CollectConstraints - This stage scans the program, adding a constraint to |
| 601 | /// the Constraints list for each instruction in the program that induces a |
| 602 | /// constraint, and setting up the initial points-to graph. |
| 603 | /// |
| 604 | void Andersens::CollectConstraints(Module &M) { |
| 605 | // First, the universal set points to itself. |
| 606 | GraphNodes[UniversalSet].addPointerTo(&GraphNodes[UniversalSet]); |
| 607 | |
| 608 | // Next, the null pointer points to the null object. |
| 609 | GraphNodes[NullPtr].addPointerTo(&GraphNodes[NullObject]); |
| 610 | |
| 611 | // Next, add any constraints on global variables and their initializers. |
Chris Lattner | 493f636 | 2005-03-27 22:03:46 +0000 | [diff] [blame] | 612 | for (Module::global_iterator I = M.global_begin(), E = M.global_end(); |
| 613 | I != E; ++I) { |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 614 | // Associate the address of the global object as pointing to the memory for |
| 615 | // the global: &G = <G memory> |
| 616 | Node *Object = getObject(I); |
| 617 | Object->setValue(I); |
| 618 | getNodeValue(*I)->addPointerTo(Object); |
| 619 | |
| 620 | if (I->hasInitializer()) { |
| 621 | AddGlobalInitializerConstraints(Object, I->getInitializer()); |
| 622 | } else { |
| 623 | // If it doesn't have an initializer (i.e. it's defined in another |
| 624 | // translation unit), it points to the universal set. |
| 625 | Constraints.push_back(Constraint(Constraint::Copy, Object, |
| 626 | &GraphNodes[UniversalSet])); |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { |
| 631 | // Make the function address point to the function object. |
| 632 | getNodeValue(*F)->addPointerTo(getObject(F)->setValue(F)); |
| 633 | |
| 634 | // Set up the return value node. |
| 635 | if (isa<PointerType>(F->getFunctionType()->getReturnType())) |
| 636 | getReturnNode(F)->setValue(F); |
| 637 | if (F->getFunctionType()->isVarArg()) |
| 638 | getVarargNode(F)->setValue(F); |
| 639 | |
| 640 | // Set up incoming argument nodes. |
Chris Lattner | 493f636 | 2005-03-27 22:03:46 +0000 | [diff] [blame] | 641 | for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); |
| 642 | I != E; ++I) |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 643 | if (isa<PointerType>(I->getType())) |
| 644 | getNodeValue(*I); |
| 645 | |
| 646 | if (!F->hasInternalLinkage()) |
| 647 | AddConstraintsForNonInternalLinkage(F); |
| 648 | |
| 649 | if (!F->isExternal()) { |
| 650 | // Scan the function body, creating a memory object for each heap/stack |
| 651 | // allocation in the body of the function and a node to represent all |
| 652 | // pointer values defined by instructions and used as operands. |
| 653 | visit(F); |
Chris Lattner | c3c9fd0 | 2005-03-28 04:03:52 +0000 | [diff] [blame] | 654 | } else if (AddConstraintsForExternalFunction(F)) { |
| 655 | // If we don't "know" about this function, assume the worst. |
| 656 | |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 657 | // External functions that return pointers return the universal set. |
| 658 | if (isa<PointerType>(F->getFunctionType()->getReturnType())) |
| 659 | Constraints.push_back(Constraint(Constraint::Copy, |
| 660 | getReturnNode(F), |
| 661 | &GraphNodes[UniversalSet])); |
| 662 | |
| 663 | // Any pointers that are passed into the function have the universal set |
| 664 | // stored into them. |
Chris Lattner | 493f636 | 2005-03-27 22:03:46 +0000 | [diff] [blame] | 665 | for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); |
| 666 | I != E; ++I) |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 667 | if (isa<PointerType>(I->getType())) { |
| 668 | // Pointers passed into external functions could have anything stored |
| 669 | // through them. |
| 670 | Constraints.push_back(Constraint(Constraint::Store, getNode(I), |
| 671 | &GraphNodes[UniversalSet])); |
| 672 | // Memory objects passed into external function calls can have the |
| 673 | // universal set point to them. |
| 674 | Constraints.push_back(Constraint(Constraint::Copy, |
| 675 | &GraphNodes[UniversalSet], |
| 676 | getNode(I))); |
| 677 | } |
| 678 | |
| 679 | // If this is an external varargs function, it can also store pointers |
| 680 | // into any pointers passed through the varargs section. |
| 681 | if (F->getFunctionType()->isVarArg()) |
| 682 | Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F), |
| 683 | &GraphNodes[UniversalSet])); |
| 684 | } |
| 685 | } |
| 686 | NumConstraints += Constraints.size(); |
| 687 | } |
| 688 | |
| 689 | |
| 690 | void Andersens::visitInstruction(Instruction &I) { |
| 691 | #ifdef NDEBUG |
| 692 | return; // This function is just a big assert. |
| 693 | #endif |
| 694 | if (isa<BinaryOperator>(I)) |
| 695 | return; |
| 696 | // Most instructions don't have any effect on pointer values. |
| 697 | switch (I.getOpcode()) { |
| 698 | case Instruction::Br: |
| 699 | case Instruction::Switch: |
| 700 | case Instruction::Unwind: |
Chris Lattner | c17edbd | 2004-10-16 18:16:19 +0000 | [diff] [blame] | 701 | case Instruction::Unreachable: |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 702 | case Instruction::Free: |
| 703 | case Instruction::Shl: |
| 704 | case Instruction::Shr: |
| 705 | return; |
| 706 | default: |
| 707 | // Is this something we aren't handling yet? |
| 708 | std::cerr << "Unknown instruction: " << I; |
| 709 | abort(); |
| 710 | } |
| 711 | } |
| 712 | |
| 713 | void Andersens::visitAllocationInst(AllocationInst &AI) { |
| 714 | getNodeValue(AI)->addPointerTo(getObject(&AI)->setValue(&AI)); |
| 715 | } |
| 716 | |
| 717 | void Andersens::visitReturnInst(ReturnInst &RI) { |
| 718 | if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType())) |
| 719 | // return V --> <Copy/retval{F}/v> |
| 720 | Constraints.push_back(Constraint(Constraint::Copy, |
| 721 | getReturnNode(RI.getParent()->getParent()), |
| 722 | getNode(RI.getOperand(0)))); |
| 723 | } |
| 724 | |
| 725 | void Andersens::visitLoadInst(LoadInst &LI) { |
| 726 | if (isa<PointerType>(LI.getType())) |
| 727 | // P1 = load P2 --> <Load/P1/P2> |
| 728 | Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI), |
| 729 | getNode(LI.getOperand(0)))); |
| 730 | } |
| 731 | |
| 732 | void Andersens::visitStoreInst(StoreInst &SI) { |
| 733 | if (isa<PointerType>(SI.getOperand(0)->getType())) |
| 734 | // store P1, P2 --> <Store/P2/P1> |
| 735 | Constraints.push_back(Constraint(Constraint::Store, |
| 736 | getNode(SI.getOperand(1)), |
| 737 | getNode(SI.getOperand(0)))); |
| 738 | } |
| 739 | |
| 740 | void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) { |
| 741 | // P1 = getelementptr P2, ... --> <Copy/P1/P2> |
| 742 | Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP), |
| 743 | getNode(GEP.getOperand(0)))); |
| 744 | } |
| 745 | |
| 746 | void Andersens::visitPHINode(PHINode &PN) { |
| 747 | if (isa<PointerType>(PN.getType())) { |
| 748 | Node *PNN = getNodeValue(PN); |
| 749 | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) |
| 750 | // P1 = phi P2, P3 --> <Copy/P1/P2>, <Copy/P1/P3>, ... |
| 751 | Constraints.push_back(Constraint(Constraint::Copy, PNN, |
| 752 | getNode(PN.getIncomingValue(i)))); |
| 753 | } |
| 754 | } |
| 755 | |
| 756 | void Andersens::visitCastInst(CastInst &CI) { |
| 757 | Value *Op = CI.getOperand(0); |
| 758 | if (isa<PointerType>(CI.getType())) { |
| 759 | if (isa<PointerType>(Op->getType())) { |
| 760 | // P1 = cast P2 --> <Copy/P1/P2> |
| 761 | Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI), |
| 762 | getNode(CI.getOperand(0)))); |
| 763 | } else { |
| 764 | // P1 = cast int --> <Copy/P1/Univ> |
| 765 | Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI), |
| 766 | &GraphNodes[UniversalSet])); |
| 767 | } |
| 768 | } else if (isa<PointerType>(Op->getType())) { |
| 769 | // int = cast P1 --> <Copy/Univ/P1> |
| 770 | Constraints.push_back(Constraint(Constraint::Copy, |
| 771 | &GraphNodes[UniversalSet], |
| 772 | getNode(CI.getOperand(0)))); |
| 773 | } |
| 774 | } |
| 775 | |
| 776 | void Andersens::visitSelectInst(SelectInst &SI) { |
| 777 | if (isa<PointerType>(SI.getType())) { |
| 778 | Node *SIN = getNodeValue(SI); |
| 779 | // P1 = select C, P2, P3 ---> <Copy/P1/P2>, <Copy/P1/P3> |
| 780 | Constraints.push_back(Constraint(Constraint::Copy, SIN, |
| 781 | getNode(SI.getOperand(1)))); |
| 782 | Constraints.push_back(Constraint(Constraint::Copy, SIN, |
| 783 | getNode(SI.getOperand(2)))); |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | void Andersens::visitVANext(VANextInst &I) { |
| 788 | // FIXME: Implement |
| 789 | assert(0 && "vanext not handled yet!"); |
| 790 | } |
| 791 | void Andersens::visitVAArg(VAArgInst &I) { |
| 792 | assert(0 && "vaarg not handled yet!"); |
| 793 | } |
| 794 | |
| 795 | /// AddConstraintsForCall - Add constraints for a call with actual arguments |
| 796 | /// specified by CS to the function specified by F. Note that the types of |
| 797 | /// arguments might not match up in the case where this is an indirect call and |
| 798 | /// the function pointer has been casted. If this is the case, do something |
| 799 | /// reasonable. |
| 800 | void Andersens::AddConstraintsForCall(CallSite CS, Function *F) { |
| 801 | if (isa<PointerType>(CS.getType())) { |
| 802 | Node *CSN = getNode(CS.getInstruction()); |
| 803 | if (isa<PointerType>(F->getFunctionType()->getReturnType())) { |
| 804 | Constraints.push_back(Constraint(Constraint::Copy, CSN, |
| 805 | getReturnNode(F))); |
| 806 | } else { |
| 807 | // If the function returns a non-pointer value, handle this just like we |
| 808 | // treat a nonpointer cast to pointer. |
| 809 | Constraints.push_back(Constraint(Constraint::Copy, CSN, |
| 810 | &GraphNodes[UniversalSet])); |
| 811 | } |
| 812 | } else if (isa<PointerType>(F->getFunctionType()->getReturnType())) { |
| 813 | Constraints.push_back(Constraint(Constraint::Copy, |
| 814 | &GraphNodes[UniversalSet], |
| 815 | getReturnNode(F))); |
| 816 | } |
| 817 | |
Chris Lattner | e4d5c44 | 2005-03-15 04:54:21 +0000 | [diff] [blame] | 818 | Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end(); |
Chris Lattner | e995a2a | 2004-05-23 21:00:47 +0000 | [diff] [blame] | 819 | CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end(); |
| 820 | for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI) |
| 821 | if (isa<PointerType>(AI->getType())) { |
| 822 | if (isa<PointerType>((*ArgI)->getType())) { |
| 823 | // Copy the actual argument into the formal argument. |
| 824 | Constraints.push_back(Constraint(Constraint::Copy, getNode(AI), |
| 825 | getNode(*ArgI))); |
| 826 | } else { |
| 827 | Constraints.push_back(Constraint(Constraint::Copy, getNode(AI), |
| 828 | &GraphNodes[UniversalSet])); |
| 829 | } |
| 830 | } else if (isa<PointerType>((*ArgI)->getType())) { |
| 831 | Constraints.push_back(Constraint(Constraint::Copy, |
| 832 | &GraphNodes[UniversalSet], |
| 833 | getNode(*ArgI))); |
| 834 | } |
| 835 | |
| 836 | // Copy all pointers passed through the varargs section to the varargs node. |
| 837 | if (F->getFunctionType()->isVarArg()) |
| 838 | for (; ArgI != ArgE; ++ArgI) |
| 839 | if (isa<PointerType>((*ArgI)->getType())) |
| 840 | Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F), |
| 841 | getNode(*ArgI))); |
| 842 | // If more arguments are passed in than we track, just drop them on the floor. |
| 843 | } |
| 844 | |
| 845 | void Andersens::visitCallSite(CallSite CS) { |
| 846 | if (isa<PointerType>(CS.getType())) |
| 847 | getNodeValue(*CS.getInstruction()); |
| 848 | |
| 849 | if (Function *F = CS.getCalledFunction()) { |
| 850 | AddConstraintsForCall(CS, F); |
| 851 | } else { |
| 852 | // We don't handle indirect call sites yet. Keep track of them for when we |
| 853 | // discover the call graph incrementally. |
| 854 | IndirectCalls.push_back(CS); |
| 855 | } |
| 856 | } |
| 857 | |
| 858 | //===----------------------------------------------------------------------===// |
| 859 | // Constraint Solving Phase |
| 860 | //===----------------------------------------------------------------------===// |
| 861 | |
| 862 | /// intersects - Return true if the points-to set of this node intersects |
| 863 | /// with the points-to set of the specified node. |
| 864 | bool Andersens::Node::intersects(Node *N) const { |
| 865 | iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end(); |
| 866 | while (I1 != E1 && I2 != E2) { |
| 867 | if (*I1 == *I2) return true; |
| 868 | if (*I1 < *I2) |
| 869 | ++I1; |
| 870 | else |
| 871 | ++I2; |
| 872 | } |
| 873 | return false; |
| 874 | } |
| 875 | |
| 876 | /// intersectsIgnoring - Return true if the points-to set of this node |
| 877 | /// intersects with the points-to set of the specified node on any nodes |
| 878 | /// except for the specified node to ignore. |
| 879 | bool Andersens::Node::intersectsIgnoring(Node *N, Node *Ignoring) const { |
| 880 | iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end(); |
| 881 | while (I1 != E1 && I2 != E2) { |
| 882 | if (*I1 == *I2) { |
| 883 | if (*I1 != Ignoring) return true; |
| 884 | ++I1; ++I2; |
| 885 | } else if (*I1 < *I2) |
| 886 | ++I1; |
| 887 | else |
| 888 | ++I2; |
| 889 | } |
| 890 | return false; |
| 891 | } |
| 892 | |
| 893 | // Copy constraint: all edges out of the source node get copied to the |
| 894 | // destination node. This returns true if a change is made. |
| 895 | bool Andersens::Node::copyFrom(Node *N) { |
| 896 | // Use a mostly linear-time merge since both of the lists are sorted. |
| 897 | bool Changed = false; |
| 898 | iterator I = N->begin(), E = N->end(); |
| 899 | unsigned i = 0; |
| 900 | while (I != E && i != Pointees.size()) { |
| 901 | if (Pointees[i] < *I) { |
| 902 | ++i; |
| 903 | } else if (Pointees[i] == *I) { |
| 904 | ++i; ++I; |
| 905 | } else { |
| 906 | // We found a new element to copy over. |
| 907 | Changed = true; |
| 908 | Pointees.insert(Pointees.begin()+i, *I); |
| 909 | ++i; ++I; |
| 910 | } |
| 911 | } |
| 912 | |
| 913 | if (I != E) { |
| 914 | Pointees.insert(Pointees.end(), I, E); |
| 915 | Changed = true; |
| 916 | } |
| 917 | |
| 918 | return Changed; |
| 919 | } |
| 920 | |
| 921 | bool Andersens::Node::loadFrom(Node *N) { |
| 922 | bool Changed = false; |
| 923 | for (iterator I = N->begin(), E = N->end(); I != E; ++I) |
| 924 | Changed |= copyFrom(*I); |
| 925 | return Changed; |
| 926 | } |
| 927 | |
| 928 | bool Andersens::Node::storeThrough(Node *N) { |
| 929 | bool Changed = false; |
| 930 | for (iterator I = begin(), E = end(); I != E; ++I) |
| 931 | Changed |= (*I)->copyFrom(N); |
| 932 | return Changed; |
| 933 | } |
| 934 | |
| 935 | |
| 936 | /// SolveConstraints - This stage iteratively processes the constraints list |
| 937 | /// propagating constraints (adding edges to the Nodes in the points-to graph) |
| 938 | /// until a fixed point is reached. |
| 939 | /// |
| 940 | void Andersens::SolveConstraints() { |
| 941 | bool Changed = true; |
| 942 | unsigned Iteration = 0; |
| 943 | while (Changed) { |
| 944 | Changed = false; |
| 945 | ++NumIters; |
| 946 | DEBUG(std::cerr << "Starting iteration #" << Iteration++ << "!\n"); |
| 947 | |
| 948 | // Loop over all of the constraints, applying them in turn. |
| 949 | for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { |
| 950 | Constraint &C = Constraints[i]; |
| 951 | switch (C.Type) { |
| 952 | case Constraint::Copy: |
| 953 | Changed |= C.Dest->copyFrom(C.Src); |
| 954 | break; |
| 955 | case Constraint::Load: |
| 956 | Changed |= C.Dest->loadFrom(C.Src); |
| 957 | break; |
| 958 | case Constraint::Store: |
| 959 | Changed |= C.Dest->storeThrough(C.Src); |
| 960 | break; |
| 961 | default: |
| 962 | assert(0 && "Unknown constraint!"); |
| 963 | } |
| 964 | } |
| 965 | |
| 966 | if (Changed) { |
| 967 | // Check to see if any internal function's addresses have been passed to |
| 968 | // external functions. If so, we have to assume that their incoming |
| 969 | // arguments could be anything. If there are any internal functions in |
| 970 | // the universal node that we don't know about, we must iterate. |
| 971 | for (Node::iterator I = GraphNodes[UniversalSet].begin(), |
| 972 | E = GraphNodes[UniversalSet].end(); I != E; ++I) |
| 973 | if (Function *F = dyn_cast_or_null<Function>((*I)->getValue())) |
| 974 | if (F->hasInternalLinkage() && |
| 975 | EscapingInternalFunctions.insert(F).second) { |
| 976 | // We found a function that is just now escaping. Mark it as if it |
| 977 | // didn't have internal linkage. |
| 978 | AddConstraintsForNonInternalLinkage(F); |
| 979 | DEBUG(std::cerr << "Found escaping internal function: " |
| 980 | << F->getName() << "\n"); |
| 981 | ++NumEscapingFunctions; |
| 982 | } |
| 983 | |
| 984 | // Check to see if we have discovered any new callees of the indirect call |
| 985 | // sites. If so, add constraints to the analysis. |
| 986 | for (unsigned i = 0, e = IndirectCalls.size(); i != e; ++i) { |
| 987 | CallSite CS = IndirectCalls[i]; |
| 988 | std::vector<Function*> &KnownCallees = IndirectCallees[CS]; |
| 989 | Node *CN = getNode(CS.getCalledValue()); |
| 990 | |
| 991 | for (Node::iterator NI = CN->begin(), E = CN->end(); NI != E; ++NI) |
| 992 | if (Function *F = dyn_cast_or_null<Function>((*NI)->getValue())) { |
| 993 | std::vector<Function*>::iterator IP = |
| 994 | std::lower_bound(KnownCallees.begin(), KnownCallees.end(), F); |
| 995 | if (IP == KnownCallees.end() || *IP != F) { |
| 996 | // Add the constraints for the call now. |
| 997 | AddConstraintsForCall(CS, F); |
| 998 | DEBUG(std::cerr << "Found actual callee '" |
| 999 | << F->getName() << "' for call: " |
| 1000 | << *CS.getInstruction() << "\n"); |
| 1001 | ++NumIndirectCallees; |
| 1002 | KnownCallees.insert(IP, F); |
| 1003 | } |
| 1004 | } |
| 1005 | } |
| 1006 | } |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | |
| 1011 | |
| 1012 | //===----------------------------------------------------------------------===// |
| 1013 | // Debugging Output |
| 1014 | //===----------------------------------------------------------------------===// |
| 1015 | |
| 1016 | void Andersens::PrintNode(Node *N) { |
| 1017 | if (N == &GraphNodes[UniversalSet]) { |
| 1018 | std::cerr << "<universal>"; |
| 1019 | return; |
| 1020 | } else if (N == &GraphNodes[NullPtr]) { |
| 1021 | std::cerr << "<nullptr>"; |
| 1022 | return; |
| 1023 | } else if (N == &GraphNodes[NullObject]) { |
| 1024 | std::cerr << "<null>"; |
| 1025 | return; |
| 1026 | } |
| 1027 | |
| 1028 | assert(N->getValue() != 0 && "Never set node label!"); |
| 1029 | Value *V = N->getValue(); |
| 1030 | if (Function *F = dyn_cast<Function>(V)) { |
| 1031 | if (isa<PointerType>(F->getFunctionType()->getReturnType()) && |
| 1032 | N == getReturnNode(F)) { |
| 1033 | std::cerr << F->getName() << ":retval"; |
| 1034 | return; |
| 1035 | } else if (F->getFunctionType()->isVarArg() && N == getVarargNode(F)) { |
| 1036 | std::cerr << F->getName() << ":vararg"; |
| 1037 | return; |
| 1038 | } |
| 1039 | } |
| 1040 | |
| 1041 | if (Instruction *I = dyn_cast<Instruction>(V)) |
| 1042 | std::cerr << I->getParent()->getParent()->getName() << ":"; |
| 1043 | else if (Argument *Arg = dyn_cast<Argument>(V)) |
| 1044 | std::cerr << Arg->getParent()->getName() << ":"; |
| 1045 | |
| 1046 | if (V->hasName()) |
| 1047 | std::cerr << V->getName(); |
| 1048 | else |
| 1049 | std::cerr << "(unnamed)"; |
| 1050 | |
| 1051 | if (isa<GlobalValue>(V) || isa<AllocationInst>(V)) |
| 1052 | if (N == getObject(V)) |
| 1053 | std::cerr << "<mem>"; |
| 1054 | } |
| 1055 | |
| 1056 | void Andersens::PrintConstraints() { |
| 1057 | std::cerr << "Constraints:\n"; |
| 1058 | for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { |
| 1059 | std::cerr << " #" << i << ": "; |
| 1060 | Constraint &C = Constraints[i]; |
| 1061 | if (C.Type == Constraint::Store) |
| 1062 | std::cerr << "*"; |
| 1063 | PrintNode(C.Dest); |
| 1064 | std::cerr << " = "; |
| 1065 | if (C.Type == Constraint::Load) |
| 1066 | std::cerr << "*"; |
| 1067 | PrintNode(C.Src); |
| 1068 | std::cerr << "\n"; |
| 1069 | } |
| 1070 | } |
| 1071 | |
| 1072 | void Andersens::PrintPointsToGraph() { |
| 1073 | std::cerr << "Points-to graph:\n"; |
| 1074 | for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) { |
| 1075 | Node *N = &GraphNodes[i]; |
| 1076 | std::cerr << "[" << (N->end() - N->begin()) << "] "; |
| 1077 | PrintNode(N); |
| 1078 | std::cerr << "\t--> "; |
| 1079 | for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) { |
| 1080 | if (I != N->begin()) std::cerr << ", "; |
| 1081 | PrintNode(*I); |
| 1082 | } |
| 1083 | std::cerr << "\n"; |
| 1084 | } |
| 1085 | } |