blob: 83671d6eb92c64bd696b1f3d682b50acfbdf0046 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000031//
Chris Lattner53e677a2004-04-02 20:23:17 +000032// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
Chris Lattner53e677a2004-04-02 20:23:17 +000036// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
Chris Lattner3b27d682006-12-19 22:30:33 +000062#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000063#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000064#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000066#include "llvm/GlobalVariable.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
John Criswella1156432005-10-27 15:54:34 +000068#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000069#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000070#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000072#include "llvm/Target/TargetData.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Transforms/Scalar.h"
74#include "llvm/Support/CFG.h"
Chris Lattner95255282006-06-28 23:17:24 +000075#include "llvm/Support/CommandLine.h"
Chris Lattnerb3364092006-10-04 21:49:37 +000076#include "llvm/Support/Compiler.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000078#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000079#include "llvm/Support/InstIterator.h"
Chris Lattnerb3364092006-10-04 21:49:37 +000080#include "llvm/Support/ManagedStatic.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000081#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000082#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000083#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000084#include "llvm/ADT/STLExtras.h"
Bill Wendling6f81b512006-11-28 22:46:12 +000085#include <ostream>
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000086#include <algorithm>
Jeff Cohen97af7512006-12-02 02:22:01 +000087#include <cmath>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
102 "symbolically execute a constant derived loop"),
103 cl::init(100));
104
Dan Gohman844731a2008-05-13 00:00:25 +0000105static RegisterPass<ScalarEvolution>
106R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000107char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000108
109//===----------------------------------------------------------------------===//
110// SCEV class definitions
111//===----------------------------------------------------------------------===//
112
113//===----------------------------------------------------------------------===//
114// Implementation of the SCEV class.
115//
Chris Lattner53e677a2004-04-02 20:23:17 +0000116SCEV::~SCEV() {}
117void SCEV::dump() const {
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000118 print(errs());
119 errs() << '\n';
120}
121
122void SCEV::print(std::ostream &o) const {
123 raw_os_ostream OS(o);
124 print(OS);
Chris Lattner53e677a2004-04-02 20:23:17 +0000125}
126
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000127bool SCEV::isZero() const {
128 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
129 return SC->getValue()->isZero();
130 return false;
131}
132
Chris Lattner53e677a2004-04-02 20:23:17 +0000133
134SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
Dan Gohmanf8a8be82009-04-21 23:15:49 +0000135SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
137bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
138 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000139 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000140}
141
142const Type *SCEVCouldNotCompute::getType() const {
143 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000144 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000145}
146
147bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
148 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
149 return false;
150}
151
Chris Lattner4dc534c2005-02-13 04:37:18 +0000152SCEVHandle SCEVCouldNotCompute::
153replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman246b2562007-10-22 18:31:58 +0000154 const SCEVHandle &Conc,
155 ScalarEvolution &SE) const {
Chris Lattner4dc534c2005-02-13 04:37:18 +0000156 return this;
157}
158
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000159void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000160 OS << "***COULDNOTCOMPUTE***";
161}
162
163bool SCEVCouldNotCompute::classof(const SCEV *S) {
164 return S->getSCEVType() == scCouldNotCompute;
165}
166
167
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000168// SCEVConstants - Only allow the creation of one SCEVConstant for any
169// particular value. Don't use a SCEVHandle here, or else the object will
170// never be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000171static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000172
Chris Lattner53e677a2004-04-02 20:23:17 +0000173
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000174SCEVConstant::~SCEVConstant() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000175 SCEVConstants->erase(V);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000176}
Chris Lattner53e677a2004-04-02 20:23:17 +0000177
Dan Gohman246b2562007-10-22 18:31:58 +0000178SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
Chris Lattnerb3364092006-10-04 21:49:37 +0000179 SCEVConstant *&R = (*SCEVConstants)[V];
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000180 if (R == 0) R = new SCEVConstant(V);
181 return R;
182}
Chris Lattner53e677a2004-04-02 20:23:17 +0000183
Dan Gohman246b2562007-10-22 18:31:58 +0000184SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
185 return getConstant(ConstantInt::get(Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000186}
187
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000188const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000189
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000190void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000191 WriteAsOperand(OS, V, false);
192}
Chris Lattner53e677a2004-04-02 20:23:17 +0000193
Dan Gohman84923602009-04-21 01:25:57 +0000194SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
195 const SCEVHandle &op, const Type *ty)
196 : SCEV(SCEVTy), Op(op), Ty(ty) {}
197
198SCEVCastExpr::~SCEVCastExpr() {}
199
200bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
201 return Op->dominates(BB, DT);
202}
203
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000204// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
205// particular input. Don't use a SCEVHandle here, or else the object will
206// never be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000207static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
208 SCEVTruncateExpr*> > SCEVTruncates;
Chris Lattner53e677a2004-04-02 20:23:17 +0000209
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000210SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman84923602009-04-21 01:25:57 +0000211 : SCEVCastExpr(scTruncate, op, ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +0000212 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
213 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000214 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000215}
Chris Lattner53e677a2004-04-02 20:23:17 +0000216
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000217SCEVTruncateExpr::~SCEVTruncateExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000218 SCEVTruncates->erase(std::make_pair(Op, Ty));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
225// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
226// particular input. Don't use a SCEVHandle here, or else the object will never
227// be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000228static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
229 SCEVZeroExtendExpr*> > SCEVZeroExtends;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230
231SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman84923602009-04-21 01:25:57 +0000232 : SCEVCastExpr(scZeroExtend, op, ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +0000233 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
234 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000236}
237
238SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000239 SCEVZeroExtends->erase(std::make_pair(Op, Ty));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000240}
241
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000242void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000243 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000244}
245
Dan Gohmand19534a2007-06-15 14:38:12 +0000246// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
247// particular input. Don't use a SCEVHandle here, or else the object will never
248// be deleted!
249static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
250 SCEVSignExtendExpr*> > SCEVSignExtends;
251
252SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman84923602009-04-21 01:25:57 +0000253 : SCEVCastExpr(scSignExtend, op, ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +0000254 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
255 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000256 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000257}
258
259SCEVSignExtendExpr::~SCEVSignExtendExpr() {
260 SCEVSignExtends->erase(std::make_pair(Op, Ty));
261}
262
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000263void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000264 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000265}
266
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000267// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
268// particular input. Don't use a SCEVHandle here, or else the object will never
269// be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000270static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
271 SCEVCommutativeExpr*> > SCEVCommExprs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000272
273SCEVCommutativeExpr::~SCEVCommutativeExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000274 SCEVCommExprs->erase(std::make_pair(getSCEVType(),
275 std::vector<SCEV*>(Operands.begin(),
276 Operands.end())));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000277}
278
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000279void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000280 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
281 const char *OpStr = getOperationStr();
282 OS << "(" << *Operands[0];
283 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
284 OS << OpStr << *Operands[i];
285 OS << ")";
286}
287
Chris Lattner4dc534c2005-02-13 04:37:18 +0000288SCEVHandle SCEVCommutativeExpr::
289replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman246b2562007-10-22 18:31:58 +0000290 const SCEVHandle &Conc,
291 ScalarEvolution &SE) const {
Chris Lattner4dc534c2005-02-13 04:37:18 +0000292 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman246b2562007-10-22 18:31:58 +0000293 SCEVHandle H =
294 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000295 if (H != getOperand(i)) {
296 std::vector<SCEVHandle> NewOps;
297 NewOps.reserve(getNumOperands());
298 for (unsigned j = 0; j != i; ++j)
299 NewOps.push_back(getOperand(j));
300 NewOps.push_back(H);
301 for (++i; i != e; ++i)
302 NewOps.push_back(getOperand(i)->
Dan Gohman246b2562007-10-22 18:31:58 +0000303 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Chris Lattner4dc534c2005-02-13 04:37:18 +0000304
305 if (isa<SCEVAddExpr>(this))
Dan Gohman246b2562007-10-22 18:31:58 +0000306 return SE.getAddExpr(NewOps);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000307 else if (isa<SCEVMulExpr>(this))
Dan Gohman246b2562007-10-22 18:31:58 +0000308 return SE.getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +0000309 else if (isa<SCEVSMaxExpr>(this))
310 return SE.getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +0000311 else if (isa<SCEVUMaxExpr>(this))
312 return SE.getUMaxExpr(NewOps);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000313 else
314 assert(0 && "Unknown commutative expr!");
315 }
316 }
317 return this;
318}
319
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000320bool SCEVCommutativeExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
321 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
322 if (!getOperand(i)->dominates(BB, DT))
323 return false;
324 }
325 return true;
326}
327
Chris Lattner4dc534c2005-02-13 04:37:18 +0000328
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000329// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000330// input. Don't use a SCEVHandle here, or else the object will never be
331// deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000332static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000333 SCEVUDivExpr*> > SCEVUDivs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000334
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000335SCEVUDivExpr::~SCEVUDivExpr() {
336 SCEVUDivs->erase(std::make_pair(LHS, RHS));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000337}
338
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000339bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
340 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
341}
342
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000343void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000344 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345}
346
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000347const Type *SCEVUDivExpr::getType() const {
Reid Spencerc5b206b2006-12-31 05:48:39 +0000348 return LHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000349}
350
351// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
352// particular input. Don't use a SCEVHandle here, or else the object will never
353// be deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000354static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
355 SCEVAddRecExpr*> > SCEVAddRecExprs;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000356
357SCEVAddRecExpr::~SCEVAddRecExpr() {
Chris Lattnerb3364092006-10-04 21:49:37 +0000358 SCEVAddRecExprs->erase(std::make_pair(L,
359 std::vector<SCEV*>(Operands.begin(),
360 Operands.end())));
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000361}
362
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000363bool SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
364 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
365 if (!getOperand(i)->dominates(BB, DT))
366 return false;
367 }
368 return true;
369}
370
371
Chris Lattner4dc534c2005-02-13 04:37:18 +0000372SCEVHandle SCEVAddRecExpr::
373replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman246b2562007-10-22 18:31:58 +0000374 const SCEVHandle &Conc,
375 ScalarEvolution &SE) const {
Chris Lattner4dc534c2005-02-13 04:37:18 +0000376 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman246b2562007-10-22 18:31:58 +0000377 SCEVHandle H =
378 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000379 if (H != getOperand(i)) {
380 std::vector<SCEVHandle> NewOps;
381 NewOps.reserve(getNumOperands());
382 for (unsigned j = 0; j != i; ++j)
383 NewOps.push_back(getOperand(j));
384 NewOps.push_back(H);
385 for (++i; i != e; ++i)
386 NewOps.push_back(getOperand(i)->
Dan Gohman246b2562007-10-22 18:31:58 +0000387 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000388
Dan Gohman246b2562007-10-22 18:31:58 +0000389 return SE.getAddRecExpr(NewOps, L);
Chris Lattner4dc534c2005-02-13 04:37:18 +0000390 }
391 }
392 return this;
393}
394
395
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000396bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
397 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
Chris Lattnerff2006a2005-08-16 00:37:01 +0000398 // contain L and if the start is invariant.
399 return !QueryLoop->contains(L->getHeader()) &&
400 getOperand(0)->isLoopInvariant(QueryLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +0000401}
402
403
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000404void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000405 OS << "{" << *Operands[0];
406 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
407 OS << ",+," << *Operands[i];
408 OS << "}<" << L->getHeader()->getName() + ">";
409}
Chris Lattner53e677a2004-04-02 20:23:17 +0000410
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000411// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
412// value. Don't use a SCEVHandle here, or else the object will never be
413// deleted!
Chris Lattnerb3364092006-10-04 21:49:37 +0000414static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
Chris Lattner53e677a2004-04-02 20:23:17 +0000415
Chris Lattnerb3364092006-10-04 21:49:37 +0000416SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000417
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000418bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
419 // All non-instruction values are loop invariant. All instructions are loop
420 // invariant if they are not contained in the specified loop.
421 if (Instruction *I = dyn_cast<Instruction>(V))
422 return !L->contains(I->getParent());
423 return true;
424}
Chris Lattner53e677a2004-04-02 20:23:17 +0000425
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000426bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
427 if (Instruction *I = dyn_cast<Instruction>(getValue()))
428 return DT->dominates(I->getParent(), BB);
429 return true;
430}
431
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000432const Type *SCEVUnknown::getType() const {
433 return V->getType();
434}
Chris Lattner53e677a2004-04-02 20:23:17 +0000435
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000436void SCEVUnknown::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000437 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000438}
439
Chris Lattner8d741b82004-06-20 06:23:15 +0000440//===----------------------------------------------------------------------===//
441// SCEV Utilities
442//===----------------------------------------------------------------------===//
443
444namespace {
445 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
446 /// than the complexity of the RHS. This comparator is used to canonicalize
447 /// expressions.
Chris Lattner95255282006-06-28 23:17:24 +0000448 struct VISIBILITY_HIDDEN SCEVComplexityCompare {
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000449 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Chris Lattner8d741b82004-06-20 06:23:15 +0000450 return LHS->getSCEVType() < RHS->getSCEVType();
451 }
452 };
453}
454
455/// GroupByComplexity - Given a list of SCEV objects, order them by their
456/// complexity, and group objects of the same complexity together by value.
457/// When this routine is finished, we know that any duplicates in the vector are
458/// consecutive and that complexity is monotonically increasing.
459///
460/// Note that we go take special precautions to ensure that we get determinstic
461/// results from this routine. In other words, we don't want the results of
462/// this to depend on where the addresses of various SCEV objects happened to
463/// land in memory.
464///
465static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
466 if (Ops.size() < 2) return; // Noop
467 if (Ops.size() == 2) {
468 // This is the common case, which also happens to be trivially simple.
469 // Special case it.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000470 if (SCEVComplexityCompare()(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000471 std::swap(Ops[0], Ops[1]);
472 return;
473 }
474
475 // Do the rough sort by complexity.
476 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
477
478 // Now that we are sorted by complexity, group elements of the same
479 // complexity. Note that this is, at worst, N^2, but the vector is likely to
480 // be extremely short in practice. Note that we take this approach because we
481 // do not want to depend on the addresses of the objects we are grouping.
Chris Lattner2d584522004-06-20 17:01:44 +0000482 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000483 SCEV *S = Ops[i];
484 unsigned Complexity = S->getSCEVType();
485
486 // If there are any objects of the same complexity and same value as this
487 // one, group them.
488 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
489 if (Ops[j] == S) { // Found a duplicate.
490 // Move it to immediately after i'th element.
491 std::swap(Ops[i+1], Ops[j]);
492 ++i; // no need to rescan it.
Chris Lattner541ad5e2004-06-20 20:32:16 +0000493 if (i == e-2) return; // Done!
Chris Lattner8d741b82004-06-20 06:23:15 +0000494 }
495 }
496 }
497}
498
Chris Lattner53e677a2004-04-02 20:23:17 +0000499
Chris Lattner53e677a2004-04-02 20:23:17 +0000500
501//===----------------------------------------------------------------------===//
502// Simple SCEV method implementations
503//===----------------------------------------------------------------------===//
504
Eli Friedmanb42a6262008-08-04 23:49:06 +0000505/// BinomialCoefficient - Compute BC(It, K). The result has width W.
506// Assume, K > 0.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000507static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
Eli Friedmanb42a6262008-08-04 23:49:06 +0000508 ScalarEvolution &SE,
Dan Gohman2d1be872009-04-16 03:18:22 +0000509 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000510 // Handle the simplest case efficiently.
511 if (K == 1)
512 return SE.getTruncateOrZeroExtend(It, ResultTy);
513
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000514 // We are using the following formula for BC(It, K):
515 //
516 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
517 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000518 // Suppose, W is the bitwidth of the return value. We must be prepared for
519 // overflow. Hence, we must assure that the result of our computation is
520 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
521 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000522 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000523 // However, this code doesn't use exactly that formula; the formula it uses
524 // is something like the following, where T is the number of factors of 2 in
525 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
526 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000527 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000528 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000529 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000530 // This formula is trivially equivalent to the previous formula. However,
531 // this formula can be implemented much more efficiently. The trick is that
532 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
533 // arithmetic. To do exact division in modular arithmetic, all we have
534 // to do is multiply by the inverse. Therefore, this step can be done at
535 // width W.
536 //
537 // The next issue is how to safely do the division by 2^T. The way this
538 // is done is by doing the multiplication step at a width of at least W + T
539 // bits. This way, the bottom W+T bits of the product are accurate. Then,
540 // when we perform the division by 2^T (which is equivalent to a right shift
541 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
542 // truncated out after the division by 2^T.
543 //
544 // In comparison to just directly using the first formula, this technique
545 // is much more efficient; using the first formula requires W * K bits,
546 // but this formula less than W + K bits. Also, the first formula requires
547 // a division step, whereas this formula only requires multiplies and shifts.
548 //
549 // It doesn't matter whether the subtraction step is done in the calculation
550 // width or the input iteration count's width; if the subtraction overflows,
551 // the result must be zero anyway. We prefer here to do it in the width of
552 // the induction variable because it helps a lot for certain cases; CodeGen
553 // isn't smart enough to ignore the overflow, which leads to much less
554 // efficient code if the width of the subtraction is wider than the native
555 // register width.
556 //
557 // (It's possible to not widen at all by pulling out factors of 2 before
558 // the multiplication; for example, K=2 can be calculated as
559 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
560 // extra arithmetic, so it's not an obvious win, and it gets
561 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000562
Eli Friedmanb42a6262008-08-04 23:49:06 +0000563 // Protection from insane SCEVs; this bound is conservative,
564 // but it probably doesn't matter.
565 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000566 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000567
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000568 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000569
Eli Friedmanb42a6262008-08-04 23:49:06 +0000570 // Calculate K! / 2^T and T; we divide out the factors of two before
571 // multiplying for calculating K! / 2^T to avoid overflow.
572 // Other overflow doesn't matter because we only care about the bottom
573 // W bits of the result.
574 APInt OddFactorial(W, 1);
575 unsigned T = 1;
576 for (unsigned i = 3; i <= K; ++i) {
577 APInt Mult(W, i);
578 unsigned TwoFactors = Mult.countTrailingZeros();
579 T += TwoFactors;
580 Mult = Mult.lshr(TwoFactors);
581 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000582 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000583
Eli Friedmanb42a6262008-08-04 23:49:06 +0000584 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000585 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000586
587 // Calcuate 2^T, at width T+W.
588 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
589
590 // Calculate the multiplicative inverse of K! / 2^T;
591 // this multiplication factor will perform the exact division by
592 // K! / 2^T.
593 APInt Mod = APInt::getSignedMinValue(W+1);
594 APInt MultiplyFactor = OddFactorial.zext(W+1);
595 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
596 MultiplyFactor = MultiplyFactor.trunc(W);
597
598 // Calculate the product, at width T+W
599 const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
600 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
601 for (unsigned i = 1; i != K; ++i) {
602 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
603 Dividend = SE.getMulExpr(Dividend,
604 SE.getTruncateOrZeroExtend(S, CalculationTy));
605 }
606
607 // Divide by 2^T
608 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
609
610 // Truncate the result, and divide by K! / 2^T.
611
612 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
613 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000614}
615
Chris Lattner53e677a2004-04-02 20:23:17 +0000616/// evaluateAtIteration - Return the value of this chain of recurrences at
617/// the specified iteration number. We can evaluate this recurrence by
618/// multiplying each element in the chain by the binomial coefficient
619/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
620///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000621/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000622///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000623/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000624///
Dan Gohman246b2562007-10-22 18:31:58 +0000625SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
626 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000627 SCEVHandle Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000628 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000629 // The computation is correct in the face of overflow provided that the
630 // multiplication is performed _after_ the evaluation of the binomial
631 // coefficient.
Dan Gohman2d1be872009-04-16 03:18:22 +0000632 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000633 if (isa<SCEVCouldNotCompute>(Coeff))
634 return Coeff;
635
636 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000637 }
638 return Result;
639}
640
Chris Lattner53e677a2004-04-02 20:23:17 +0000641//===----------------------------------------------------------------------===//
642// SCEV Expression folder implementations
643//===----------------------------------------------------------------------===//
644
Dan Gohman99243b32009-05-01 16:44:56 +0000645SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
646 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000647 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000648 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000649 assert(isSCEVable(Ty) &&
650 "This is not a conversion to a SCEVable type!");
651 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000652
Dan Gohman622ed672009-05-04 22:02:23 +0000653 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman246b2562007-10-22 18:31:58 +0000654 return getUnknown(
Reid Spencer315d0552006-12-05 22:39:58 +0000655 ConstantExpr::getTrunc(SC->getValue(), Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000656
Dan Gohman20900ca2009-04-22 16:20:48 +0000657 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000658 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000659 return getTruncateExpr(ST->getOperand(), Ty);
660
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000661 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000662 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000663 return getTruncateOrSignExtend(SS->getOperand(), Ty);
664
665 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000666 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000667 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
668
Chris Lattner53e677a2004-04-02 20:23:17 +0000669 // If the input value is a chrec scev made out of constants, truncate
670 // all of the constants.
Dan Gohman622ed672009-05-04 22:02:23 +0000671 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000672 std::vector<SCEVHandle> Operands;
673 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
674 // FIXME: This should allow truncation of other expression types!
675 if (isa<SCEVConstant>(AddRec->getOperand(i)))
Dan Gohman246b2562007-10-22 18:31:58 +0000676 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Chris Lattner53e677a2004-04-02 20:23:17 +0000677 else
678 break;
679 if (Operands.size() == AddRec->getNumOperands())
Dan Gohman246b2562007-10-22 18:31:58 +0000680 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000681 }
682
Chris Lattnerb3364092006-10-04 21:49:37 +0000683 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
Chris Lattner53e677a2004-04-02 20:23:17 +0000684 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
685 return Result;
686}
687
Dan Gohman8170a682009-04-16 19:25:55 +0000688SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
689 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000690 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000691 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000692 assert(isSCEVable(Ty) &&
693 "This is not a conversion to a SCEVable type!");
694 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000695
Dan Gohman622ed672009-05-04 22:02:23 +0000696 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000697 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000698 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
699 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
700 return getUnknown(C);
701 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000702
Dan Gohman20900ca2009-04-22 16:20:48 +0000703 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000704 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000705 return getZeroExtendExpr(SZ->getOperand(), Ty);
706
Dan Gohman01ecca22009-04-27 20:16:15 +0000707 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000708 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000709 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000710 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000711 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000712 if (AR->isAffine()) {
713 // Check whether the backedge-taken count is SCEVCouldNotCompute.
714 // Note that this serves two purposes: It filters out loops that are
715 // simply not analyzable, and it covers the case where this code is
716 // being called from within backedge-taken count analysis, such that
717 // attempting to ask for the backedge-taken count would likely result
718 // in infinite recursion. In the later case, the analysis code will
719 // cope with a conservative value, and it will take care to purge
720 // that value once it has finished.
Dan Gohmana1af7572009-04-30 20:47:05 +0000721 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
722 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000723 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000724 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000725 SCEVHandle Start = AR->getStart();
726 SCEVHandle Step = AR->getStepRecurrence(*this);
727
728 // Check whether the backedge-taken count can be losslessly casted to
729 // the addrec's type. The count is always unsigned.
Dan Gohmana1af7572009-04-30 20:47:05 +0000730 SCEVHandle CastedMaxBECount =
731 getTruncateOrZeroExtend(MaxBECount, Start->getType());
732 if (MaxBECount ==
733 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
Dan Gohman01ecca22009-04-27 20:16:15 +0000734 const Type *WideTy =
735 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000736 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000737 SCEVHandle ZMul =
Dan Gohmana1af7572009-04-30 20:47:05 +0000738 getMulExpr(CastedMaxBECount,
Dan Gohman01ecca22009-04-27 20:16:15 +0000739 getTruncateOrZeroExtend(Step, Start->getType()));
Dan Gohmanac70cea2009-04-29 22:28:28 +0000740 SCEVHandle Add = getAddExpr(Start, ZMul);
741 if (getZeroExtendExpr(Add, WideTy) ==
742 getAddExpr(getZeroExtendExpr(Start, WideTy),
Dan Gohmana1af7572009-04-30 20:47:05 +0000743 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
Dan Gohmanac70cea2009-04-29 22:28:28 +0000744 getZeroExtendExpr(Step, WideTy))))
745 // Return the expression with the addrec on the outside.
746 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
747 getZeroExtendExpr(Step, Ty),
748 AR->getLoop());
Dan Gohman01ecca22009-04-27 20:16:15 +0000749
750 // Similar to above, only this time treat the step value as signed.
751 // This covers loops that count down.
752 SCEVHandle SMul =
Dan Gohmana1af7572009-04-30 20:47:05 +0000753 getMulExpr(CastedMaxBECount,
Dan Gohman01ecca22009-04-27 20:16:15 +0000754 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohmanac70cea2009-04-29 22:28:28 +0000755 Add = getAddExpr(Start, SMul);
756 if (getZeroExtendExpr(Add, WideTy) ==
757 getAddExpr(getZeroExtendExpr(Start, WideTy),
Dan Gohmana1af7572009-04-30 20:47:05 +0000758 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
Dan Gohmanac70cea2009-04-29 22:28:28 +0000759 getSignExtendExpr(Step, WideTy))))
760 // Return the expression with the addrec on the outside.
761 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
762 getSignExtendExpr(Step, Ty),
763 AR->getLoop());
Dan Gohman01ecca22009-04-27 20:16:15 +0000764 }
765 }
766 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000767
Chris Lattnerb3364092006-10-04 21:49:37 +0000768 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
Chris Lattner53e677a2004-04-02 20:23:17 +0000769 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
770 return Result;
771}
772
Dan Gohman01ecca22009-04-27 20:16:15 +0000773SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
774 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000775 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000776 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000777 assert(isSCEVable(Ty) &&
778 "This is not a conversion to a SCEVable type!");
779 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000780
Dan Gohman622ed672009-05-04 22:02:23 +0000781 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000782 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000783 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
784 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
785 return getUnknown(C);
786 }
Dan Gohmand19534a2007-06-15 14:38:12 +0000787
Dan Gohman20900ca2009-04-22 16:20:48 +0000788 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000789 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000790 return getSignExtendExpr(SS->getOperand(), Ty);
791
Dan Gohman01ecca22009-04-27 20:16:15 +0000792 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +0000793 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000794 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +0000795 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000796 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000797 if (AR->isAffine()) {
798 // Check whether the backedge-taken count is SCEVCouldNotCompute.
799 // Note that this serves two purposes: It filters out loops that are
800 // simply not analyzable, and it covers the case where this code is
801 // being called from within backedge-taken count analysis, such that
802 // attempting to ask for the backedge-taken count would likely result
803 // in infinite recursion. In the later case, the analysis code will
804 // cope with a conservative value, and it will take care to purge
805 // that value once it has finished.
Dan Gohmana1af7572009-04-30 20:47:05 +0000806 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
807 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000808 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000809 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000810 SCEVHandle Start = AR->getStart();
811 SCEVHandle Step = AR->getStepRecurrence(*this);
812
813 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +0000814 // the addrec's type. The count is always unsigned.
Dan Gohmana1af7572009-04-30 20:47:05 +0000815 SCEVHandle CastedMaxBECount =
816 getTruncateOrZeroExtend(MaxBECount, Start->getType());
817 if (MaxBECount ==
818 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
Dan Gohman01ecca22009-04-27 20:16:15 +0000819 const Type *WideTy =
820 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000821 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000822 SCEVHandle SMul =
Dan Gohmana1af7572009-04-30 20:47:05 +0000823 getMulExpr(CastedMaxBECount,
Dan Gohman01ecca22009-04-27 20:16:15 +0000824 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohmanac70cea2009-04-29 22:28:28 +0000825 SCEVHandle Add = getAddExpr(Start, SMul);
826 if (getSignExtendExpr(Add, WideTy) ==
827 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohmana1af7572009-04-30 20:47:05 +0000828 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
Dan Gohmanac70cea2009-04-29 22:28:28 +0000829 getSignExtendExpr(Step, WideTy))))
830 // Return the expression with the addrec on the outside.
831 return getAddRecExpr(getSignExtendExpr(Start, Ty),
832 getSignExtendExpr(Step, Ty),
833 AR->getLoop());
Dan Gohman01ecca22009-04-27 20:16:15 +0000834 }
835 }
836 }
Dan Gohmand19534a2007-06-15 14:38:12 +0000837
838 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
839 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
840 return Result;
841}
842
Chris Lattner53e677a2004-04-02 20:23:17 +0000843// get - Get a canonical add expression, or something simpler if possible.
Dan Gohman246b2562007-10-22 18:31:58 +0000844SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000845 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +0000846 if (Ops.size() == 1) return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +0000847
848 // Sort by complexity, this groups all similar expression types together.
Chris Lattner8d741b82004-06-20 06:23:15 +0000849 GroupByComplexity(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000850
851 // If there are any constants, fold them together.
852 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +0000853 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000854 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +0000855 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +0000856 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000857 // We found two constants, fold them together!
Nick Lewycky3e630762008-02-20 06:48:22 +0000858 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
859 RHSC->getValue()->getValue());
860 Ops[0] = getConstant(Fold);
861 Ops.erase(Ops.begin()+1); // Erase the folded element
862 if (Ops.size() == 1) return Ops[0];
863 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000864 }
865
866 // If we are left with a constant zero being added, strip it off.
Reid Spencercae57542007-03-02 00:28:52 +0000867 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000868 Ops.erase(Ops.begin());
869 --Idx;
870 }
871 }
872
Chris Lattner627018b2004-04-07 16:16:11 +0000873 if (Ops.size() == 1) return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000874
Chris Lattner53e677a2004-04-02 20:23:17 +0000875 // Okay, check to see if the same value occurs in the operand list twice. If
876 // so, merge them together into an multiply expression. Since we sorted the
877 // list, these values are required to be adjacent.
878 const Type *Ty = Ops[0]->getType();
879 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
880 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
881 // Found a match, merge the two values into a multiply, and add any
882 // remaining values to the result.
Dan Gohman246b2562007-10-22 18:31:58 +0000883 SCEVHandle Two = getIntegerSCEV(2, Ty);
884 SCEVHandle Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +0000885 if (Ops.size() == 2)
886 return Mul;
887 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
888 Ops.push_back(Mul);
Dan Gohman246b2562007-10-22 18:31:58 +0000889 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000890 }
891
Dan Gohmanf50cd742007-06-18 19:30:09 +0000892 // Now we know the first non-constant operand. Skip past any cast SCEVs.
893 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
894 ++Idx;
895
896 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +0000897 if (Idx < Ops.size()) {
898 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +0000899 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000900 // If we have an add, expand the add operands onto the end of the operands
901 // list.
902 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
903 Ops.erase(Ops.begin()+Idx);
904 DeletedAdd = true;
905 }
906
907 // If we deleted at least one add, we added operands to the end of the list,
908 // and they are not necessarily sorted. Recurse to resort and resimplify
909 // any operands we just aquired.
910 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +0000911 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000912 }
913
914 // Skip over the add expression until we get to a multiply.
915 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
916 ++Idx;
917
918 // If we are adding something to a multiply expression, make sure the
919 // something is not already an operand of the multiply. If so, merge it into
920 // the multiply.
921 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
922 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
923 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
924 SCEV *MulOpSCEV = Mul->getOperand(MulOp);
925 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Chris Lattner6a1a78a2004-12-04 20:54:32 +0000926 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
Chris Lattner53e677a2004-04-02 20:23:17 +0000927 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
928 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
929 if (Mul->getNumOperands() != 2) {
930 // If the multiply has more than two operands, we must get the
931 // Y*Z term.
932 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
933 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +0000934 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +0000935 }
Dan Gohman246b2562007-10-22 18:31:58 +0000936 SCEVHandle One = getIntegerSCEV(1, Ty);
937 SCEVHandle AddOne = getAddExpr(InnerMul, One);
938 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +0000939 if (Ops.size() == 2) return OuterMul;
940 if (AddOp < Idx) {
941 Ops.erase(Ops.begin()+AddOp);
942 Ops.erase(Ops.begin()+Idx-1);
943 } else {
944 Ops.erase(Ops.begin()+Idx);
945 Ops.erase(Ops.begin()+AddOp-1);
946 }
947 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +0000948 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000949 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000950
Chris Lattner53e677a2004-04-02 20:23:17 +0000951 // Check this multiply against other multiplies being added together.
952 for (unsigned OtherMulIdx = Idx+1;
953 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
954 ++OtherMulIdx) {
955 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
956 // If MulOp occurs in OtherMul, we can fold the two multiplies
957 // together.
958 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
959 OMulOp != e; ++OMulOp)
960 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
961 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
962 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
963 if (Mul->getNumOperands() != 2) {
964 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
965 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +0000966 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +0000967 }
968 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
969 if (OtherMul->getNumOperands() != 2) {
970 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
971 OtherMul->op_end());
972 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +0000973 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +0000974 }
Dan Gohman246b2562007-10-22 18:31:58 +0000975 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
976 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +0000977 if (Ops.size() == 2) return OuterMul;
978 Ops.erase(Ops.begin()+Idx);
979 Ops.erase(Ops.begin()+OtherMulIdx-1);
980 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +0000981 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +0000982 }
983 }
984 }
985 }
986
987 // If there are any add recurrences in the operands list, see if any other
988 // added values are loop invariant. If so, we can fold them into the
989 // recurrence.
990 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
991 ++Idx;
992
993 // Scan over all recurrences, trying to fold loop invariants into them.
994 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
995 // Scan all of the other operands to this add and add them to the vector if
996 // they are loop invariant w.r.t. the recurrence.
997 std::vector<SCEVHandle> LIOps;
998 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
999 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1000 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1001 LIOps.push_back(Ops[i]);
1002 Ops.erase(Ops.begin()+i);
1003 --i; --e;
1004 }
1005
1006 // If we found some loop invariants, fold them into the recurrence.
1007 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001008 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001009 LIOps.push_back(AddRec->getStart());
1010
1011 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001012 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001013
Dan Gohman246b2562007-10-22 18:31:58 +00001014 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001015 // If all of the other operands were loop invariant, we are done.
1016 if (Ops.size() == 1) return NewRec;
1017
1018 // Otherwise, add the folded AddRec by the non-liv parts.
1019 for (unsigned i = 0;; ++i)
1020 if (Ops[i] == AddRec) {
1021 Ops[i] = NewRec;
1022 break;
1023 }
Dan Gohman246b2562007-10-22 18:31:58 +00001024 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001025 }
1026
1027 // Okay, if there weren't any loop invariants to be folded, check to see if
1028 // there are multiple AddRec's with the same loop induction variable being
1029 // added together. If so, we can fold them.
1030 for (unsigned OtherIdx = Idx+1;
1031 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1032 if (OtherIdx != Idx) {
1033 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1034 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1035 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
1036 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1037 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1038 if (i >= NewOps.size()) {
1039 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1040 OtherAddRec->op_end());
1041 break;
1042 }
Dan Gohman246b2562007-10-22 18:31:58 +00001043 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001044 }
Dan Gohman246b2562007-10-22 18:31:58 +00001045 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001046
1047 if (Ops.size() == 2) return NewAddRec;
1048
1049 Ops.erase(Ops.begin()+Idx);
1050 Ops.erase(Ops.begin()+OtherIdx-1);
1051 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001052 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001053 }
1054 }
1055
1056 // Otherwise couldn't fold anything into this recurrence. Move onto the
1057 // next one.
1058 }
1059
1060 // Okay, it looks like we really DO need an add expr. Check to see if we
1061 // already have one, otherwise create a new one.
1062 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
Chris Lattnerb3364092006-10-04 21:49:37 +00001063 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1064 SCEVOps)];
Chris Lattner53e677a2004-04-02 20:23:17 +00001065 if (Result == 0) Result = new SCEVAddExpr(Ops);
1066 return Result;
1067}
1068
1069
Dan Gohman246b2562007-10-22 18:31:58 +00001070SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001071 assert(!Ops.empty() && "Cannot get empty mul!");
1072
1073 // Sort by complexity, this groups all similar expression types together.
Chris Lattner8d741b82004-06-20 06:23:15 +00001074 GroupByComplexity(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001075
1076 // If there are any constants, fold them together.
1077 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001078 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001079
1080 // C1*(C2+V) -> C1*C2 + C1*V
1081 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001082 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001083 if (Add->getNumOperands() == 2 &&
1084 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001085 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1086 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001087
1088
1089 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001090 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001091 // We found two constants, fold them together!
Nick Lewycky3e630762008-02-20 06:48:22 +00001092 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1093 RHSC->getValue()->getValue());
1094 Ops[0] = getConstant(Fold);
1095 Ops.erase(Ops.begin()+1); // Erase the folded element
1096 if (Ops.size() == 1) return Ops[0];
1097 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001098 }
1099
1100 // If we are left with a constant one being multiplied, strip it off.
1101 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1102 Ops.erase(Ops.begin());
1103 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001104 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001105 // If we have a multiply of zero, it will always be zero.
1106 return Ops[0];
1107 }
1108 }
1109
1110 // Skip over the add expression until we get to a multiply.
1111 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1112 ++Idx;
1113
1114 if (Ops.size() == 1)
1115 return Ops[0];
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001116
Chris Lattner53e677a2004-04-02 20:23:17 +00001117 // If there are mul operands inline them all into this expression.
1118 if (Idx < Ops.size()) {
1119 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001120 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001121 // If we have an mul, expand the mul operands onto the end of the operands
1122 // list.
1123 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1124 Ops.erase(Ops.begin()+Idx);
1125 DeletedMul = true;
1126 }
1127
1128 // If we deleted at least one mul, we added operands to the end of the list,
1129 // and they are not necessarily sorted. Recurse to resort and resimplify
1130 // any operands we just aquired.
1131 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001132 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001133 }
1134
1135 // If there are any add recurrences in the operands list, see if any other
1136 // added values are loop invariant. If so, we can fold them into the
1137 // recurrence.
1138 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1139 ++Idx;
1140
1141 // Scan over all recurrences, trying to fold loop invariants into them.
1142 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1143 // Scan all of the other operands to this mul and add them to the vector if
1144 // they are loop invariant w.r.t. the recurrence.
1145 std::vector<SCEVHandle> LIOps;
1146 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1147 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1148 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1149 LIOps.push_back(Ops[i]);
1150 Ops.erase(Ops.begin()+i);
1151 --i; --e;
1152 }
1153
1154 // If we found some loop invariants, fold them into the recurrence.
1155 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001156 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001157 std::vector<SCEVHandle> NewOps;
1158 NewOps.reserve(AddRec->getNumOperands());
1159 if (LIOps.size() == 1) {
1160 SCEV *Scale = LIOps[0];
1161 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman246b2562007-10-22 18:31:58 +00001162 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001163 } else {
1164 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1165 std::vector<SCEVHandle> MulOps(LIOps);
1166 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman246b2562007-10-22 18:31:58 +00001167 NewOps.push_back(getMulExpr(MulOps));
Chris Lattner53e677a2004-04-02 20:23:17 +00001168 }
1169 }
1170
Dan Gohman246b2562007-10-22 18:31:58 +00001171 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001172
1173 // If all of the other operands were loop invariant, we are done.
1174 if (Ops.size() == 1) return NewRec;
1175
1176 // Otherwise, multiply the folded AddRec by the non-liv parts.
1177 for (unsigned i = 0;; ++i)
1178 if (Ops[i] == AddRec) {
1179 Ops[i] = NewRec;
1180 break;
1181 }
Dan Gohman246b2562007-10-22 18:31:58 +00001182 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001183 }
1184
1185 // Okay, if there weren't any loop invariants to be folded, check to see if
1186 // there are multiple AddRec's with the same loop induction variable being
1187 // multiplied together. If so, we can fold them.
1188 for (unsigned OtherIdx = Idx+1;
1189 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1190 if (OtherIdx != Idx) {
1191 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1192 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1193 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
1194 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman246b2562007-10-22 18:31:58 +00001195 SCEVHandle NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001196 G->getStart());
Dan Gohman246b2562007-10-22 18:31:58 +00001197 SCEVHandle B = F->getStepRecurrence(*this);
1198 SCEVHandle D = G->getStepRecurrence(*this);
1199 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1200 getMulExpr(G, B),
1201 getMulExpr(B, D));
1202 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1203 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001204 if (Ops.size() == 2) return NewAddRec;
1205
1206 Ops.erase(Ops.begin()+Idx);
1207 Ops.erase(Ops.begin()+OtherIdx-1);
1208 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001209 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001210 }
1211 }
1212
1213 // Otherwise couldn't fold anything into this recurrence. Move onto the
1214 // next one.
1215 }
1216
1217 // Okay, it looks like we really DO need an mul expr. Check to see if we
1218 // already have one, otherwise create a new one.
1219 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
Chris Lattnerb3364092006-10-04 21:49:37 +00001220 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1221 SCEVOps)];
Chris Lattner6a1a78a2004-12-04 20:54:32 +00001222 if (Result == 0)
1223 Result = new SCEVMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001224 return Result;
1225}
1226
Dan Gohmanbf2176a2009-05-04 22:23:18 +00001227SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS,
1228 const SCEVHandle &RHS) {
Dan Gohman622ed672009-05-04 22:02:23 +00001229 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001230 if (RHSC->getValue()->equalsInt(1))
Nick Lewycky789558d2009-01-13 09:18:58 +00001231 return LHS; // X udiv 1 --> x
Chris Lattner53e677a2004-04-02 20:23:17 +00001232
Dan Gohman622ed672009-05-04 22:02:23 +00001233 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001234 Constant *LHSCV = LHSC->getValue();
1235 Constant *RHSCV = RHSC->getValue();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +00001236 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
Chris Lattner53e677a2004-04-02 20:23:17 +00001237 }
1238 }
1239
Nick Lewycky789558d2009-01-13 09:18:58 +00001240 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1241
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +00001242 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1243 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00001244 return Result;
1245}
1246
1247
1248/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1249/// specified loop. Simplify the expression as much as possible.
Dan Gohman246b2562007-10-22 18:31:58 +00001250SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
Chris Lattner53e677a2004-04-02 20:23:17 +00001251 const SCEVHandle &Step, const Loop *L) {
1252 std::vector<SCEVHandle> Operands;
1253 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001254 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001255 if (StepChrec->getLoop() == L) {
1256 Operands.insert(Operands.end(), StepChrec->op_begin(),
1257 StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001258 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001259 }
1260
1261 Operands.push_back(Step);
Dan Gohman246b2562007-10-22 18:31:58 +00001262 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001263}
1264
1265/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1266/// specified loop. Simplify the expression as much as possible.
Dan Gohman246b2562007-10-22 18:31:58 +00001267SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00001268 const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001269 if (Operands.size() == 1) return Operands[0];
1270
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001271 if (Operands.back()->isZero()) {
1272 Operands.pop_back();
Dan Gohman8dae1382008-09-14 17:21:12 +00001273 return getAddRecExpr(Operands, L); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001274 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001275
Dan Gohmand9cc7492008-08-08 18:33:12 +00001276 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00001277 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmand9cc7492008-08-08 18:33:12 +00001278 const Loop* NestedLoop = NestedAR->getLoop();
1279 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1280 std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1281 NestedAR->op_end());
1282 SCEVHandle NestedARHandle(NestedAR);
1283 Operands[0] = NestedAR->getStart();
1284 NestedOperands[0] = getAddRecExpr(Operands, L);
1285 return getAddRecExpr(NestedOperands, NestedLoop);
1286 }
1287 }
1288
Chris Lattner53e677a2004-04-02 20:23:17 +00001289 SCEVAddRecExpr *&Result =
Chris Lattnerb3364092006-10-04 21:49:37 +00001290 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1291 Operands.end()))];
Chris Lattner53e677a2004-04-02 20:23:17 +00001292 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1293 return Result;
1294}
1295
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001296SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1297 const SCEVHandle &RHS) {
1298 std::vector<SCEVHandle> Ops;
1299 Ops.push_back(LHS);
1300 Ops.push_back(RHS);
1301 return getSMaxExpr(Ops);
1302}
1303
1304SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1305 assert(!Ops.empty() && "Cannot get empty smax!");
1306 if (Ops.size() == 1) return Ops[0];
1307
1308 // Sort by complexity, this groups all similar expression types together.
1309 GroupByComplexity(Ops);
1310
1311 // If there are any constants, fold them together.
1312 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001313 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001314 ++Idx;
1315 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001316 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001317 // We found two constants, fold them together!
Nick Lewycky3e630762008-02-20 06:48:22 +00001318 ConstantInt *Fold = ConstantInt::get(
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001319 APIntOps::smax(LHSC->getValue()->getValue(),
1320 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00001321 Ops[0] = getConstant(Fold);
1322 Ops.erase(Ops.begin()+1); // Erase the folded element
1323 if (Ops.size() == 1) return Ops[0];
1324 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001325 }
1326
1327 // If we are left with a constant -inf, strip it off.
1328 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1329 Ops.erase(Ops.begin());
1330 --Idx;
1331 }
1332 }
1333
1334 if (Ops.size() == 1) return Ops[0];
1335
1336 // Find the first SMax
1337 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1338 ++Idx;
1339
1340 // Check to see if one of the operands is an SMax. If so, expand its operands
1341 // onto our operand list, and recurse to simplify.
1342 if (Idx < Ops.size()) {
1343 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001344 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001345 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1346 Ops.erase(Ops.begin()+Idx);
1347 DeletedSMax = true;
1348 }
1349
1350 if (DeletedSMax)
1351 return getSMaxExpr(Ops);
1352 }
1353
1354 // Okay, check to see if the same value occurs in the operand list twice. If
1355 // so, delete one. Since we sorted the list, these values are required to
1356 // be adjacent.
1357 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1358 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1359 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1360 --i; --e;
1361 }
1362
1363 if (Ops.size() == 1) return Ops[0];
1364
1365 assert(!Ops.empty() && "Reduced smax down to nothing!");
1366
Nick Lewycky3e630762008-02-20 06:48:22 +00001367 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001368 // already have one, otherwise create a new one.
1369 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1370 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1371 SCEVOps)];
1372 if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1373 return Result;
1374}
1375
Nick Lewycky3e630762008-02-20 06:48:22 +00001376SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1377 const SCEVHandle &RHS) {
1378 std::vector<SCEVHandle> Ops;
1379 Ops.push_back(LHS);
1380 Ops.push_back(RHS);
1381 return getUMaxExpr(Ops);
1382}
1383
1384SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1385 assert(!Ops.empty() && "Cannot get empty umax!");
1386 if (Ops.size() == 1) return Ops[0];
1387
1388 // Sort by complexity, this groups all similar expression types together.
1389 GroupByComplexity(Ops);
1390
1391 // If there are any constants, fold them together.
1392 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001393 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00001394 ++Idx;
1395 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001396 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00001397 // We found two constants, fold them together!
1398 ConstantInt *Fold = ConstantInt::get(
1399 APIntOps::umax(LHSC->getValue()->getValue(),
1400 RHSC->getValue()->getValue()));
1401 Ops[0] = getConstant(Fold);
1402 Ops.erase(Ops.begin()+1); // Erase the folded element
1403 if (Ops.size() == 1) return Ops[0];
1404 LHSC = cast<SCEVConstant>(Ops[0]);
1405 }
1406
1407 // If we are left with a constant zero, strip it off.
1408 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1409 Ops.erase(Ops.begin());
1410 --Idx;
1411 }
1412 }
1413
1414 if (Ops.size() == 1) return Ops[0];
1415
1416 // Find the first UMax
1417 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1418 ++Idx;
1419
1420 // Check to see if one of the operands is a UMax. If so, expand its operands
1421 // onto our operand list, and recurse to simplify.
1422 if (Idx < Ops.size()) {
1423 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001424 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00001425 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1426 Ops.erase(Ops.begin()+Idx);
1427 DeletedUMax = true;
1428 }
1429
1430 if (DeletedUMax)
1431 return getUMaxExpr(Ops);
1432 }
1433
1434 // Okay, check to see if the same value occurs in the operand list twice. If
1435 // so, delete one. Since we sorted the list, these values are required to
1436 // be adjacent.
1437 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1438 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
1439 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1440 --i; --e;
1441 }
1442
1443 if (Ops.size() == 1) return Ops[0];
1444
1445 assert(!Ops.empty() && "Reduced umax down to nothing!");
1446
1447 // Okay, it looks like we really DO need a umax expr. Check to see if we
1448 // already have one, otherwise create a new one.
1449 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1450 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1451 SCEVOps)];
1452 if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1453 return Result;
1454}
1455
Dan Gohman246b2562007-10-22 18:31:58 +00001456SCEVHandle ScalarEvolution::getUnknown(Value *V) {
Chris Lattner0a7f98c2004-04-15 15:07:24 +00001457 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Dan Gohman246b2562007-10-22 18:31:58 +00001458 return getConstant(CI);
Dan Gohman2d1be872009-04-16 03:18:22 +00001459 if (isa<ConstantPointerNull>(V))
1460 return getIntegerSCEV(0, V->getType());
Chris Lattnerb3364092006-10-04 21:49:37 +00001461 SCEVUnknown *&Result = (*SCEVUnknowns)[V];
Chris Lattner0a7f98c2004-04-15 15:07:24 +00001462 if (Result == 0) Result = new SCEVUnknown(V);
1463 return Result;
1464}
1465
Chris Lattner53e677a2004-04-02 20:23:17 +00001466//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00001467// Basic SCEV Analysis and PHI Idiom Recognition Code
1468//
1469
Dan Gohmanf9a77b72009-05-03 05:46:20 +00001470/// deleteValueFromRecords - This method should be called by the
1471/// client before it removes an instruction from the program, to make sure
1472/// that no dangling references are left around.
1473void ScalarEvolution::deleteValueFromRecords(Value *V) {
1474 SmallVector<Value *, 16> Worklist;
1475
1476 if (Scalars.erase(V)) {
1477 if (PHINode *PN = dyn_cast<PHINode>(V))
1478 ConstantEvolutionLoopExitValue.erase(PN);
1479 Worklist.push_back(V);
1480 }
1481
1482 while (!Worklist.empty()) {
1483 Value *VV = Worklist.back();
1484 Worklist.pop_back();
1485
1486 for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end();
1487 UI != UE; ++UI) {
1488 Instruction *Inst = cast<Instruction>(*UI);
1489 if (Scalars.erase(Inst)) {
1490 if (PHINode *PN = dyn_cast<PHINode>(VV))
1491 ConstantEvolutionLoopExitValue.erase(PN);
1492 Worklist.push_back(Inst);
1493 }
1494 }
1495 }
1496}
1497
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001498/// isSCEVable - Test if values of the given type are analyzable within
1499/// the SCEV framework. This primarily includes integer types, and it
1500/// can optionally include pointer types if the ScalarEvolution class
1501/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001502bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001503 // Integers are always SCEVable.
1504 if (Ty->isInteger())
1505 return true;
1506
1507 // Pointers are SCEVable if TargetData information is available
1508 // to provide pointer size information.
1509 if (isa<PointerType>(Ty))
1510 return TD != NULL;
1511
1512 // Otherwise it's not SCEVable.
1513 return false;
1514}
1515
1516/// getTypeSizeInBits - Return the size in bits of the specified type,
1517/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001518uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001519 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1520
1521 // If we have a TargetData, use it!
1522 if (TD)
1523 return TD->getTypeSizeInBits(Ty);
1524
1525 // Otherwise, we support only integer types.
1526 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1527 return Ty->getPrimitiveSizeInBits();
1528}
1529
1530/// getEffectiveSCEVType - Return a type with the same bitwidth as
1531/// the given type and which represents how SCEV will treat the given
1532/// type, for which isSCEVable must return true. For pointer types,
1533/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001534const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001535 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1536
1537 if (Ty->isInteger())
1538 return Ty;
1539
1540 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1541 return TD->getIntPtrType();
Dan Gohman2d1be872009-04-16 03:18:22 +00001542}
Chris Lattner53e677a2004-04-02 20:23:17 +00001543
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001544SCEVHandle ScalarEvolution::getCouldNotCompute() {
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00001545 return UnknownValue;
1546}
1547
Dan Gohman92fa56e2009-05-04 22:20:30 +00001548/// hasSCEV - Return true if the SCEV for this value has already been
Torok Edwine3d12852009-05-01 08:33:47 +00001549/// computed.
1550bool ScalarEvolution::hasSCEV(Value *V) const {
1551 return Scalars.count(V);
1552}
1553
Chris Lattner53e677a2004-04-02 20:23:17 +00001554/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1555/// expression and create a new one.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001556SCEVHandle ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001557 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00001558
Dan Gohmanf9a77b72009-05-03 05:46:20 +00001559 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00001560 if (I != Scalars.end()) return I->second;
1561 SCEVHandle S = createSCEV(V);
Dan Gohmanf9a77b72009-05-03 05:46:20 +00001562 Scalars.insert(std::make_pair(V, S));
Chris Lattner53e677a2004-04-02 20:23:17 +00001563 return S;
1564}
1565
Dan Gohman2d1be872009-04-16 03:18:22 +00001566/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1567/// specified signed integer value and return a SCEV for the constant.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001568SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1569 Ty = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00001570 Constant *C;
1571 if (Val == 0)
1572 C = Constant::getNullValue(Ty);
1573 else if (Ty->isFloatingPoint())
1574 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1575 APFloat::IEEEdouble, Val));
1576 else
1577 C = ConstantInt::get(Ty, Val);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001578 return getUnknown(C);
Dan Gohman2d1be872009-04-16 03:18:22 +00001579}
1580
1581/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1582///
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001583SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
Dan Gohman622ed672009-05-04 22:02:23 +00001584 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001585 return getUnknown(ConstantExpr::getNeg(VC->getValue()));
Dan Gohman2d1be872009-04-16 03:18:22 +00001586
1587 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001588 Ty = getEffectiveSCEVType(Ty);
1589 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00001590}
1591
1592/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001593SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
Dan Gohman622ed672009-05-04 22:02:23 +00001594 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001595 return getUnknown(ConstantExpr::getNot(VC->getValue()));
Dan Gohman2d1be872009-04-16 03:18:22 +00001596
1597 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001598 Ty = getEffectiveSCEVType(Ty);
1599 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
Dan Gohman2d1be872009-04-16 03:18:22 +00001600 return getMinusSCEV(AllOnes, V);
1601}
1602
1603/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1604///
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001605SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00001606 const SCEVHandle &RHS) {
Dan Gohman2d1be872009-04-16 03:18:22 +00001607 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001608 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00001609}
1610
1611/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1612/// input value to the specified type. If the type must be extended, it is zero
1613/// extended.
1614SCEVHandle
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001615ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00001616 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00001617 const Type *SrcTy = V->getType();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001618 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1619 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00001620 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001621 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00001622 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001623 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001624 return getTruncateExpr(V, Ty);
1625 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00001626}
1627
1628/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1629/// input value to the specified type. If the type must be extended, it is sign
1630/// extended.
1631SCEVHandle
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001632ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00001633 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00001634 const Type *SrcTy = V->getType();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001635 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1636 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00001637 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001638 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00001639 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001640 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001641 return getTruncateExpr(V, Ty);
1642 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00001643}
1644
Chris Lattner4dc534c2005-02-13 04:37:18 +00001645/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1646/// the specified instruction and replaces any references to the symbolic value
1647/// SymName with the specified value. This is used during PHI resolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001648void ScalarEvolution::
Chris Lattner4dc534c2005-02-13 04:37:18 +00001649ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1650 const SCEVHandle &NewVal) {
Dan Gohmanf9a77b72009-05-03 05:46:20 +00001651 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001652 if (SI == Scalars.end()) return;
Chris Lattner53e677a2004-04-02 20:23:17 +00001653
Chris Lattner4dc534c2005-02-13 04:37:18 +00001654 SCEVHandle NV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001655 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
Chris Lattner4dc534c2005-02-13 04:37:18 +00001656 if (NV == SI->second) return; // No change.
1657
1658 SI->second = NV; // Update the scalars map!
1659
1660 // Any instruction values that use this instruction might also need to be
1661 // updated!
1662 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1663 UI != E; ++UI)
1664 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1665}
Chris Lattner53e677a2004-04-02 20:23:17 +00001666
1667/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1668/// a loop header, making it a potential recurrence, or it doesn't.
1669///
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001670SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001671 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001672 if (const Loop *L = LI->getLoopFor(PN->getParent()))
Chris Lattner53e677a2004-04-02 20:23:17 +00001673 if (L->getHeader() == PN->getParent()) {
1674 // If it lives in the loop header, it has two incoming values, one
1675 // from outside the loop, and one from inside.
1676 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1677 unsigned BackEdge = IncomingEdge^1;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001678
Chris Lattner53e677a2004-04-02 20:23:17 +00001679 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001680 SCEVHandle SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00001681 assert(Scalars.find(PN) == Scalars.end() &&
1682 "PHI node already processed?");
Dan Gohmanf9a77b72009-05-03 05:46:20 +00001683 Scalars.insert(std::make_pair(PN, SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00001684
1685 // Using this symbolic name for the PHI, analyze the value coming around
1686 // the back-edge.
1687 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1688
1689 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1690 // has a special value for the first iteration of the loop.
1691
1692 // If the value coming around the backedge is an add with the symbolic
1693 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00001694 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001695 // If there is a single occurrence of the symbolic value, replace it
1696 // with a recurrence.
1697 unsigned FoundIndex = Add->getNumOperands();
1698 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1699 if (Add->getOperand(i) == SymbolicName)
1700 if (FoundIndex == e) {
1701 FoundIndex = i;
1702 break;
1703 }
1704
1705 if (FoundIndex != Add->getNumOperands()) {
1706 // Create an add with everything but the specified operand.
1707 std::vector<SCEVHandle> Ops;
1708 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1709 if (i != FoundIndex)
1710 Ops.push_back(Add->getOperand(i));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001711 SCEVHandle Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001712
1713 // This is not a valid addrec if the step amount is varying each
1714 // loop iteration, but is not itself an addrec in this loop.
1715 if (Accum->isLoopInvariant(L) ||
1716 (isa<SCEVAddRecExpr>(Accum) &&
1717 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1718 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001719 SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001720
1721 // Okay, for the entire analysis of this edge we assumed the PHI
1722 // to be symbolic. We now need to go back and update all of the
1723 // entries for the scalars that use the PHI (except for the PHI
1724 // itself) to use the new analyzed value instead of the "symbolic"
1725 // value.
Chris Lattner4dc534c2005-02-13 04:37:18 +00001726 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001727 return PHISCEV;
1728 }
1729 }
Dan Gohman622ed672009-05-04 22:02:23 +00001730 } else if (const SCEVAddRecExpr *AddRec =
1731 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00001732 // Otherwise, this could be a loop like this:
1733 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
1734 // In this case, j = {1,+,1} and BEValue is j.
1735 // Because the other in-value of i (0) fits the evolution of BEValue
1736 // i really is an addrec evolution.
1737 if (AddRec->getLoop() == L && AddRec->isAffine()) {
1738 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1739
1740 // If StartVal = j.start - j.stride, we can use StartVal as the
1741 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001742 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman246b2562007-10-22 18:31:58 +00001743 AddRec->getOperand(1))) {
Chris Lattner97156e72006-04-26 18:34:07 +00001744 SCEVHandle PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001745 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00001746
1747 // Okay, for the entire analysis of this edge we assumed the PHI
1748 // to be symbolic. We now need to go back and update all of the
1749 // entries for the scalars that use the PHI (except for the PHI
1750 // itself) to use the new analyzed value instead of the "symbolic"
1751 // value.
1752 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1753 return PHISCEV;
1754 }
1755 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001756 }
1757
1758 return SymbolicName;
1759 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001760
Chris Lattner53e677a2004-04-02 20:23:17 +00001761 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001762 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00001763}
1764
Nick Lewycky83bb0052007-11-22 07:59:40 +00001765/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1766/// guaranteed to end in (at every loop iteration). It is, at the same time,
1767/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
1768/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001769static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
Dan Gohman622ed672009-05-04 22:02:23 +00001770 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00001771 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00001772
Dan Gohman622ed672009-05-04 22:02:23 +00001773 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001774 return std::min(GetMinTrailingZeros(T->getOperand(), SE),
1775 (uint32_t)SE.getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00001776
Dan Gohman622ed672009-05-04 22:02:23 +00001777 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001778 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1779 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1780 SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00001781 }
1782
Dan Gohman622ed672009-05-04 22:02:23 +00001783 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001784 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1785 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1786 SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00001787 }
1788
Dan Gohman622ed672009-05-04 22:02:23 +00001789 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00001790 // The result is the min of all operands results.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001791 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
Nick Lewycky83bb0052007-11-22 07:59:40 +00001792 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001793 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
Nick Lewycky83bb0052007-11-22 07:59:40 +00001794 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00001795 }
1796
Dan Gohman622ed672009-05-04 22:02:23 +00001797 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00001798 // The result is the sum of all operands results.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001799 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1800 uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00001801 for (unsigned i = 1, e = M->getNumOperands();
1802 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001803 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
Nick Lewycky83bb0052007-11-22 07:59:40 +00001804 BitWidth);
1805 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00001806 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00001807
Dan Gohman622ed672009-05-04 22:02:23 +00001808 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00001809 // The result is the min of all operands results.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001810 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
Nick Lewycky83bb0052007-11-22 07:59:40 +00001811 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001812 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
Nick Lewycky83bb0052007-11-22 07:59:40 +00001813 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00001814 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00001815
Dan Gohman622ed672009-05-04 22:02:23 +00001816 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001817 // The result is the min of all operands results.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001818 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001819 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001820 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001821 return MinOpRes;
1822 }
1823
Dan Gohman622ed672009-05-04 22:02:23 +00001824 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00001825 // The result is the min of all operands results.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001826 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
Nick Lewycky3e630762008-02-20 06:48:22 +00001827 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001828 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
Nick Lewycky3e630762008-02-20 06:48:22 +00001829 return MinOpRes;
1830 }
1831
Nick Lewycky789558d2009-01-13 09:18:58 +00001832 // SCEVUDivExpr, SCEVUnknown
Nick Lewycky83bb0052007-11-22 07:59:40 +00001833 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00001834}
Chris Lattner53e677a2004-04-02 20:23:17 +00001835
1836/// createSCEV - We know that there is no SCEV for the specified value.
1837/// Analyze the expression.
1838///
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001839SCEVHandle ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001840 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001841 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00001842
Dan Gohman6c459a22008-06-22 19:56:46 +00001843 unsigned Opcode = Instruction::UserOp1;
1844 if (Instruction *I = dyn_cast<Instruction>(V))
1845 Opcode = I->getOpcode();
1846 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1847 Opcode = CE->getOpcode();
1848 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001849 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00001850
Dan Gohman6c459a22008-06-22 19:56:46 +00001851 User *U = cast<User>(V);
1852 switch (Opcode) {
1853 case Instruction::Add:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001854 return getAddExpr(getSCEV(U->getOperand(0)),
1855 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00001856 case Instruction::Mul:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001857 return getMulExpr(getSCEV(U->getOperand(0)),
1858 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00001859 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001860 return getUDivExpr(getSCEV(U->getOperand(0)),
1861 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00001862 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001863 return getMinusSCEV(getSCEV(U->getOperand(0)),
1864 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00001865 case Instruction::And:
1866 // For an expression like x&255 that merely masks off the high bits,
1867 // use zext(trunc(x)) as the SCEV expression.
1868 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00001869 if (CI->isNullValue())
1870 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00001871 if (CI->isAllOnesValue())
1872 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00001873 const APInt &A = CI->getValue();
1874 unsigned Ones = A.countTrailingOnes();
1875 if (APIntOps::isMask(Ones, A))
1876 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001877 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
1878 IntegerType::get(Ones)),
1879 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00001880 }
1881 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00001882 case Instruction::Or:
1883 // If the RHS of the Or is a constant, we may have something like:
1884 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
1885 // optimizations will transparently handle this case.
1886 //
1887 // In order for this transformation to be safe, the LHS must be of the
1888 // form X*(2^n) and the Or constant must be less than 2^n.
1889 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1890 SCEVHandle LHS = getSCEV(U->getOperand(0));
1891 const APInt &CIVal = CI->getValue();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001892 if (GetMinTrailingZeros(LHS, *this) >=
Dan Gohman6c459a22008-06-22 19:56:46 +00001893 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001894 return getAddExpr(LHS, getSCEV(U->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001895 }
Dan Gohman6c459a22008-06-22 19:56:46 +00001896 break;
1897 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00001898 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00001899 // If the RHS of the xor is a signbit, then this is just an add.
1900 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00001901 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001902 return getAddExpr(getSCEV(U->getOperand(0)),
1903 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00001904
1905 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman6c459a22008-06-22 19:56:46 +00001906 else if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001907 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6c459a22008-06-22 19:56:46 +00001908 }
1909 break;
1910
1911 case Instruction::Shl:
1912 // Turn shift left of a constant amount into a multiply.
1913 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1914 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1915 Constant *X = ConstantInt::get(
1916 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001917 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00001918 }
1919 break;
1920
Nick Lewycky01eaf802008-07-07 06:15:49 +00001921 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00001922 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00001923 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1924 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1925 Constant *X = ConstantInt::get(
1926 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001927 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00001928 }
1929 break;
1930
Dan Gohman4ee29af2009-04-21 02:26:00 +00001931 case Instruction::AShr:
1932 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
1933 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
1934 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
1935 if (L->getOpcode() == Instruction::Shl &&
1936 L->getOperand(1) == U->getOperand(1)) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00001937 unsigned BitWidth = getTypeSizeInBits(U->getType());
1938 uint64_t Amt = BitWidth - CI->getZExtValue();
1939 if (Amt == BitWidth)
1940 return getSCEV(L->getOperand(0)); // shift by zero --> noop
1941 if (Amt > BitWidth)
1942 return getIntegerSCEV(0, U->getType()); // value is undefined
Dan Gohman4ee29af2009-04-21 02:26:00 +00001943 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001944 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohman2c73d5f2009-04-25 17:05:40 +00001945 IntegerType::get(Amt)),
Dan Gohman4ee29af2009-04-21 02:26:00 +00001946 U->getType());
1947 }
1948 break;
1949
Dan Gohman6c459a22008-06-22 19:56:46 +00001950 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001951 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00001952
1953 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001954 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00001955
1956 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001957 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00001958
1959 case Instruction::BitCast:
1960 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001961 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00001962 return getSCEV(U->getOperand(0));
1963 break;
1964
Dan Gohman2d1be872009-04-16 03:18:22 +00001965 case Instruction::IntToPtr:
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001966 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman2d1be872009-04-16 03:18:22 +00001967 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001968 TD->getIntPtrType());
Dan Gohman2d1be872009-04-16 03:18:22 +00001969
1970 case Instruction::PtrToInt:
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001971 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman2d1be872009-04-16 03:18:22 +00001972 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
1973 U->getType());
1974
1975 case Instruction::GetElementPtr: {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001976 if (!TD) break; // Without TD we can't analyze pointers.
1977 const Type *IntPtrTy = TD->getIntPtrType();
Dan Gohman2d1be872009-04-16 03:18:22 +00001978 Value *Base = U->getOperand(0);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001979 SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohman2d1be872009-04-16 03:18:22 +00001980 gep_type_iterator GTI = gep_type_begin(U);
1981 for (GetElementPtrInst::op_iterator I = next(U->op_begin()),
1982 E = U->op_end();
1983 I != E; ++I) {
1984 Value *Index = *I;
1985 // Compute the (potentially symbolic) offset in bytes for this index.
1986 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
1987 // For a struct, add the member offset.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001988 const StructLayout &SL = *TD->getStructLayout(STy);
Dan Gohman2d1be872009-04-16 03:18:22 +00001989 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
1990 uint64_t Offset = SL.getElementOffset(FieldNo);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00001991 TotalOffset = getAddExpr(TotalOffset,
1992 getIntegerSCEV(Offset, IntPtrTy));
Dan Gohman2d1be872009-04-16 03:18:22 +00001993 } else {
1994 // For an array, add the element offset, explicitly scaled.
1995 SCEVHandle LocalOffset = getSCEV(Index);
1996 if (!isa<PointerType>(LocalOffset->getType()))
1997 // Getelementptr indicies are signed.
1998 LocalOffset = getTruncateOrSignExtend(LocalOffset,
1999 IntPtrTy);
2000 LocalOffset =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002001 getMulExpr(LocalOffset,
2002 getIntegerSCEV(TD->getTypePaddedSize(*GTI),
2003 IntPtrTy));
2004 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman2d1be872009-04-16 03:18:22 +00002005 }
2006 }
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002007 return getAddExpr(getSCEV(Base), TotalOffset);
Dan Gohman2d1be872009-04-16 03:18:22 +00002008 }
2009
Dan Gohman6c459a22008-06-22 19:56:46 +00002010 case Instruction::PHI:
2011 return createNodeForPHI(cast<PHINode>(U));
2012
2013 case Instruction::Select:
2014 // This could be a smax or umax that was lowered earlier.
2015 // Try to recover it.
2016 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2017 Value *LHS = ICI->getOperand(0);
2018 Value *RHS = ICI->getOperand(1);
2019 switch (ICI->getPredicate()) {
2020 case ICmpInst::ICMP_SLT:
2021 case ICmpInst::ICMP_SLE:
2022 std::swap(LHS, RHS);
2023 // fall through
2024 case ICmpInst::ICMP_SGT:
2025 case ICmpInst::ICMP_SGE:
2026 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002027 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00002028 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Eli Friedman1fbffe02008-07-30 04:36:32 +00002029 // ~smax(~x, ~y) == smin(x, y).
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002030 return getNotSCEV(getSMaxExpr(
2031 getNotSCEV(getSCEV(LHS)),
2032 getNotSCEV(getSCEV(RHS))));
Dan Gohman6c459a22008-06-22 19:56:46 +00002033 break;
2034 case ICmpInst::ICMP_ULT:
2035 case ICmpInst::ICMP_ULE:
2036 std::swap(LHS, RHS);
2037 // fall through
2038 case ICmpInst::ICMP_UGT:
2039 case ICmpInst::ICMP_UGE:
2040 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002041 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman6c459a22008-06-22 19:56:46 +00002042 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2043 // ~umax(~x, ~y) == umin(x, y)
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002044 return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2045 getNotSCEV(getSCEV(RHS))));
Dan Gohman6c459a22008-06-22 19:56:46 +00002046 break;
2047 default:
2048 break;
2049 }
2050 }
2051
2052 default: // We cannot analyze this expression.
2053 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00002054 }
2055
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002056 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002057}
2058
2059
2060
2061//===----------------------------------------------------------------------===//
2062// Iteration Count Computation Code
2063//
2064
Dan Gohman46bdfb02009-02-24 18:55:53 +00002065/// getBackedgeTakenCount - If the specified loop has a predictable
2066/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2067/// object. The backedge-taken count is the number of times the loop header
2068/// will be branched to from within the loop. This is one less than the
2069/// trip count of the loop, since it doesn't count the first iteration,
2070/// when the header is branched to from outside the loop.
2071///
2072/// Note that it is not valid to call this method on a loop without a
2073/// loop-invariant backedge-taken count (see
2074/// hasLoopInvariantBackedgeTakenCount).
2075///
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002076SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00002077 return getBackedgeTakenInfo(L).Exact;
2078}
2079
2080/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2081/// return the least SCEV value that is known never to be less than the
2082/// actual backedge taken count.
2083SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2084 return getBackedgeTakenInfo(L).Max;
2085}
2086
2087const ScalarEvolution::BackedgeTakenInfo &
2088ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00002089 // Initially insert a CouldNotCompute for this loop. If the insertion
2090 // succeeds, procede to actually compute a backedge-taken count and
2091 // update the value. The temporary CouldNotCompute value tells SCEV
2092 // code elsewhere that it shouldn't attempt to request a new
2093 // backedge-taken count, which could result in infinite recursion.
Dan Gohmana1af7572009-04-30 20:47:05 +00002094 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00002095 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2096 if (Pair.second) {
Dan Gohmana1af7572009-04-30 20:47:05 +00002097 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2098 if (ItCount.Exact != UnknownValue) {
2099 assert(ItCount.Exact->isLoopInvariant(L) &&
2100 ItCount.Max->isLoopInvariant(L) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002101 "Computed trip count isn't loop invariant for loop!");
2102 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00002103
Dan Gohman01ecca22009-04-27 20:16:15 +00002104 // Update the value in the map.
2105 Pair.first->second = ItCount;
Chris Lattner53e677a2004-04-02 20:23:17 +00002106 } else if (isa<PHINode>(L->getHeader()->begin())) {
2107 // Only count loops that have phi nodes as not being computable.
2108 ++NumTripCountsNotComputed;
2109 }
Dan Gohmana1af7572009-04-30 20:47:05 +00002110
2111 // Now that we know more about the trip count for this loop, forget any
2112 // existing SCEV values for PHI nodes in this loop since they are only
2113 // conservative estimates made without the benefit
2114 // of trip count information.
2115 if (ItCount.hasAnyInfo())
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00002116 forgetLoopPHIs(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002117 }
Dan Gohman01ecca22009-04-27 20:16:15 +00002118 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00002119}
2120
Dan Gohman46bdfb02009-02-24 18:55:53 +00002121/// forgetLoopBackedgeTakenCount - This method should be called by the
Dan Gohman60f8a632009-02-17 20:49:49 +00002122/// client when it has changed a loop in a way that may effect
Dan Gohman46bdfb02009-02-24 18:55:53 +00002123/// ScalarEvolution's ability to compute a trip count, or if the loop
2124/// is deleted.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002125void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00002126 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00002127 forgetLoopPHIs(L);
2128}
2129
2130/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2131/// PHI nodes in the given loop. This is used when the trip count of
2132/// the loop may have changed.
2133void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
2134 for (BasicBlock::iterator I = L->getHeader()->begin();
2135 PHINode *PN = dyn_cast<PHINode>(I); ++I)
Dan Gohmanf9a77b72009-05-03 05:46:20 +00002136 deleteValueFromRecords(PN);
Dan Gohman60f8a632009-02-17 20:49:49 +00002137}
2138
Dan Gohman46bdfb02009-02-24 18:55:53 +00002139/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2140/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00002141ScalarEvolution::BackedgeTakenInfo
2142ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002143 // If the loop has a non-one exit block count, we can't analyze it.
Devang Patelb7211a22007-08-21 00:31:24 +00002144 SmallVector<BasicBlock*, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00002145 L->getExitBlocks(ExitBlocks);
2146 if (ExitBlocks.size() != 1) return UnknownValue;
Chris Lattner53e677a2004-04-02 20:23:17 +00002147
2148 // Okay, there is one exit block. Try to find the condition that causes the
2149 // loop to be exited.
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00002150 BasicBlock *ExitBlock = ExitBlocks[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00002151
2152 BasicBlock *ExitingBlock = 0;
2153 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2154 PI != E; ++PI)
2155 if (L->contains(*PI)) {
2156 if (ExitingBlock == 0)
2157 ExitingBlock = *PI;
2158 else
2159 return UnknownValue; // More than one block exiting!
2160 }
2161 assert(ExitingBlock && "No exits from loop, something is broken!");
2162
2163 // Okay, we've computed the exiting block. See what condition causes us to
2164 // exit.
2165 //
2166 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00002167 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2168 if (ExitBr == 0) return UnknownValue;
2169 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Chris Lattner8b0e3602007-01-07 02:24:26 +00002170
2171 // At this point, we know we have a conditional branch that determines whether
2172 // the loop is exited. However, we don't know if the branch is executed each
2173 // time through the loop. If not, then the execution count of the branch will
2174 // not be equal to the trip count of the loop.
2175 //
2176 // Currently we check for this by checking to see if the Exit branch goes to
2177 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00002178 // times as the loop. We also handle the case where the exit block *is* the
2179 // loop header. This is common for un-rotated loops. More extensive analysis
2180 // could be done to handle more cases here.
Chris Lattner8b0e3602007-01-07 02:24:26 +00002181 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00002182 ExitBr->getSuccessor(1) != L->getHeader() &&
2183 ExitBr->getParent() != L->getHeader())
Chris Lattner8b0e3602007-01-07 02:24:26 +00002184 return UnknownValue;
2185
Reid Spencere4d87aa2006-12-23 06:05:41 +00002186 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2187
Nick Lewycky3b711652008-02-21 08:34:02 +00002188 // If it's not an integer comparison then compute it the hard way.
Reid Spencere4d87aa2006-12-23 06:05:41 +00002189 // Note that ICmpInst deals with pointer comparisons too so we must check
2190 // the type of the operand.
Chris Lattner8b0e3602007-01-07 02:24:26 +00002191 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
Dan Gohman46bdfb02009-02-24 18:55:53 +00002192 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
Chris Lattner7980fb92004-04-17 18:36:24 +00002193 ExitBr->getSuccessor(0) == ExitBlock);
Chris Lattner53e677a2004-04-02 20:23:17 +00002194
Reid Spencere4d87aa2006-12-23 06:05:41 +00002195 // If the condition was exit on true, convert the condition to exit on false
2196 ICmpInst::Predicate Cond;
Chris Lattner673e02b2004-10-12 01:49:27 +00002197 if (ExitBr->getSuccessor(1) == ExitBlock)
Reid Spencere4d87aa2006-12-23 06:05:41 +00002198 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00002199 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00002200 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00002201
2202 // Handle common loops like: for (X = "string"; *X; ++X)
2203 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2204 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2205 SCEVHandle ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00002206 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Chris Lattner673e02b2004-10-12 01:49:27 +00002207 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2208 }
2209
Chris Lattner53e677a2004-04-02 20:23:17 +00002210 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2211 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2212
2213 // Try to evaluate any dependencies out of the loop.
2214 SCEVHandle Tmp = getSCEVAtScope(LHS, L);
2215 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
2216 Tmp = getSCEVAtScope(RHS, L);
2217 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
2218
Reid Spencere4d87aa2006-12-23 06:05:41 +00002219 // At this point, we would like to compute how many iterations of the
2220 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00002221 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2222 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00002223 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00002224 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00002225 }
2226
Chris Lattner53e677a2004-04-02 20:23:17 +00002227 // If we have a comparison of a chrec against a constant, try to use value
2228 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00002229 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2230 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00002231 if (AddRec->getLoop() == L) {
2232 // Form the comparison range using the constant of the correct type so
2233 // that the ConstantRange class knows to do a signed or unsigned
2234 // comparison.
2235 ConstantInt *CompVal = RHSC->getValue();
2236 const Type *RealTy = ExitCond->getOperand(0)->getType();
Reid Spencer4da49122006-12-12 05:05:00 +00002237 CompVal = dyn_cast<ConstantInt>(
Reid Spencerb6ba3e62006-12-12 09:17:50 +00002238 ConstantExpr::getBitCast(CompVal, RealTy));
Chris Lattner53e677a2004-04-02 20:23:17 +00002239 if (CompVal) {
2240 // Form the constant range.
Reid Spencerc6aedf72007-02-28 22:03:51 +00002241 ConstantRange CompRange(
2242 ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002243
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002244 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00002245 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
2246 }
2247 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002248
Chris Lattner53e677a2004-04-02 20:23:17 +00002249 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00002250 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00002251 // Convert to: while (X-Y != 0)
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002252 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
Reid Spencere4d87aa2006-12-23 06:05:41 +00002253 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00002254 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00002255 }
2256 case ICmpInst::ICMP_EQ: {
Chris Lattner53e677a2004-04-02 20:23:17 +00002257 // Convert to: while (X-Y == 0) // while (X == Y)
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002258 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
Reid Spencere4d87aa2006-12-23 06:05:41 +00002259 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
Chris Lattner53e677a2004-04-02 20:23:17 +00002260 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00002261 }
2262 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00002263 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
2264 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00002265 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00002266 }
2267 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00002268 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2269 getNotSCEV(RHS), L, true);
2270 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00002271 break;
2272 }
2273 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00002274 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
2275 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00002276 break;
2277 }
2278 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00002279 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2280 getNotSCEV(RHS), L, false);
2281 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00002282 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00002283 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002284 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002285#if 0
Dan Gohmanb7ef7292009-04-21 00:47:46 +00002286 errs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00002287 if (ExitCond->getOperand(0)->getType()->isUnsigned())
Dan Gohmanb7ef7292009-04-21 00:47:46 +00002288 errs() << "[unsigned] ";
2289 errs() << *LHS << " "
Reid Spencere4d87aa2006-12-23 06:05:41 +00002290 << Instruction::getOpcodeName(Instruction::ICmp)
2291 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002292#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00002293 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00002294 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00002295 return
2296 ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2297 ExitBr->getSuccessor(0) == ExitBlock);
Chris Lattner7980fb92004-04-17 18:36:24 +00002298}
2299
Chris Lattner673e02b2004-10-12 01:49:27 +00002300static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00002301EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2302 ScalarEvolution &SE) {
2303 SCEVHandle InVal = SE.getConstant(C);
2304 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00002305 assert(isa<SCEVConstant>(Val) &&
2306 "Evaluation of SCEV at constant didn't fold correctly?");
2307 return cast<SCEVConstant>(Val)->getValue();
2308}
2309
2310/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2311/// and a GEP expression (missing the pointer index) indexing into it, return
2312/// the addressed element of the initializer or null if the index expression is
2313/// invalid.
2314static Constant *
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002315GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00002316 const std::vector<ConstantInt*> &Indices) {
2317 Constant *Init = GV->getInitializer();
2318 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00002319 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00002320 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2321 assert(Idx < CS->getNumOperands() && "Bad struct index!");
2322 Init = cast<Constant>(CS->getOperand(Idx));
2323 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2324 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
2325 Init = cast<Constant>(CA->getOperand(Idx));
2326 } else if (isa<ConstantAggregateZero>(Init)) {
2327 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2328 assert(Idx < STy->getNumElements() && "Bad struct index!");
2329 Init = Constant::getNullValue(STy->getElementType(Idx));
2330 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2331 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
2332 Init = Constant::getNullValue(ATy->getElementType());
2333 } else {
2334 assert(0 && "Unknown constant aggregate type!");
2335 }
2336 return 0;
2337 } else {
2338 return 0; // Unknown initializer type
2339 }
2340 }
2341 return Init;
2342}
2343
Dan Gohman46bdfb02009-02-24 18:55:53 +00002344/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2345/// 'icmp op load X, cst', try to see if we can compute the backedge
2346/// execution count.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002347SCEVHandle ScalarEvolution::
Dan Gohman46bdfb02009-02-24 18:55:53 +00002348ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2349 const Loop *L,
2350 ICmpInst::Predicate predicate) {
Chris Lattner673e02b2004-10-12 01:49:27 +00002351 if (LI->isVolatile()) return UnknownValue;
2352
2353 // Check to see if the loaded pointer is a getelementptr of a global.
2354 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2355 if (!GEP) return UnknownValue;
2356
2357 // Make sure that it is really a constant global we are gepping, with an
2358 // initializer, and make sure the first IDX is really 0.
2359 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2360 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2361 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2362 !cast<Constant>(GEP->getOperand(1))->isNullValue())
2363 return UnknownValue;
2364
2365 // Okay, we allow one non-constant index into the GEP instruction.
2366 Value *VarIdx = 0;
2367 std::vector<ConstantInt*> Indexes;
2368 unsigned VarIdxNum = 0;
2369 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2370 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2371 Indexes.push_back(CI);
2372 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2373 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
2374 VarIdx = GEP->getOperand(i);
2375 VarIdxNum = i-2;
2376 Indexes.push_back(0);
2377 }
2378
2379 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2380 // Check to see if X is a loop variant variable value now.
2381 SCEVHandle Idx = getSCEV(VarIdx);
2382 SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2383 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2384
2385 // We can only recognize very limited forms of loop index expressions, in
2386 // particular, only affine AddRec's like {C1,+,C2}.
2387 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2388 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2389 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2390 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2391 return UnknownValue;
2392
2393 unsigned MaxSteps = MaxBruteForceIterations;
2394 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Reid Spencerb83eb642006-10-20 07:07:24 +00002395 ConstantInt *ItCst =
Reid Spencerc5b206b2006-12-31 05:48:39 +00002396 ConstantInt::get(IdxExpr->getType(), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002397 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00002398
2399 // Form the GEP offset.
2400 Indexes[VarIdxNum] = Val;
2401
2402 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2403 if (Result == 0) break; // Cannot compute!
2404
2405 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00002406 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002407 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00002408 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00002409#if 0
Dan Gohmanb7ef7292009-04-21 00:47:46 +00002410 errs() << "\n***\n*** Computed loop count " << *ItCst
2411 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2412 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00002413#endif
2414 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002415 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00002416 }
2417 }
2418 return UnknownValue;
2419}
2420
2421
Chris Lattner3221ad02004-04-17 22:58:41 +00002422/// CanConstantFold - Return true if we can constant fold an instruction of the
2423/// specified type, assuming that all operands were constants.
2424static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00002425 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00002426 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2427 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002428
Chris Lattner3221ad02004-04-17 22:58:41 +00002429 if (const CallInst *CI = dyn_cast<CallInst>(I))
2430 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00002431 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00002432 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00002433}
2434
Chris Lattner3221ad02004-04-17 22:58:41 +00002435/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2436/// in the loop that V is derived from. We allow arbitrary operations along the
2437/// way, but the operands of an operation must either be constants or a value
2438/// derived from a constant PHI. If this expression does not fit with these
2439/// constraints, return null.
2440static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2441 // If this is not an instruction, or if this is an instruction outside of the
2442 // loop, it can't be derived from a loop PHI.
2443 Instruction *I = dyn_cast<Instruction>(V);
2444 if (I == 0 || !L->contains(I->getParent())) return 0;
2445
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00002446 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00002447 if (L->getHeader() == I->getParent())
2448 return PN;
2449 else
2450 // We don't currently keep track of the control flow needed to evaluate
2451 // PHIs, so we cannot handle PHIs inside of loops.
2452 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00002453 }
Chris Lattner3221ad02004-04-17 22:58:41 +00002454
2455 // If we won't be able to constant fold this expression even if the operands
2456 // are constants, return early.
2457 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002458
Chris Lattner3221ad02004-04-17 22:58:41 +00002459 // Otherwise, we can evaluate this instruction if all of its operands are
2460 // constant or derived from a PHI node themselves.
2461 PHINode *PHI = 0;
2462 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2463 if (!(isa<Constant>(I->getOperand(Op)) ||
2464 isa<GlobalValue>(I->getOperand(Op)))) {
2465 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2466 if (P == 0) return 0; // Not evolving from PHI
2467 if (PHI == 0)
2468 PHI = P;
2469 else if (PHI != P)
2470 return 0; // Evolving from multiple different PHIs.
2471 }
2472
2473 // This is a expression evolving from a constant PHI!
2474 return PHI;
2475}
2476
2477/// EvaluateExpression - Given an expression that passes the
2478/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2479/// in the loop has the value PHIVal. If we can't fold this expression for some
2480/// reason, return null.
2481static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2482 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00002483 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman2d1be872009-04-16 03:18:22 +00002484 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Chris Lattner3221ad02004-04-17 22:58:41 +00002485 Instruction *I = cast<Instruction>(V);
2486
2487 std::vector<Constant*> Operands;
2488 Operands.resize(I->getNumOperands());
2489
2490 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2491 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2492 if (Operands[i] == 0) return 0;
2493 }
2494
Chris Lattnerf286f6f2007-12-10 22:53:04 +00002495 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2496 return ConstantFoldCompareInstOperands(CI->getPredicate(),
2497 &Operands[0], Operands.size());
2498 else
2499 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2500 &Operands[0], Operands.size());
Chris Lattner3221ad02004-04-17 22:58:41 +00002501}
2502
2503/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2504/// in the header of its containing loop, we know the loop executes a
2505/// constant number of times, and the PHI node is just a recurrence
2506/// involving constants, fold it.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002507Constant *ScalarEvolution::
Dan Gohman46bdfb02009-02-24 18:55:53 +00002508getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
Chris Lattner3221ad02004-04-17 22:58:41 +00002509 std::map<PHINode*, Constant*>::iterator I =
2510 ConstantEvolutionLoopExitValue.find(PN);
2511 if (I != ConstantEvolutionLoopExitValue.end())
2512 return I->second;
2513
Dan Gohman46bdfb02009-02-24 18:55:53 +00002514 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
Chris Lattner3221ad02004-04-17 22:58:41 +00002515 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
2516
2517 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2518
2519 // Since the loop is canonicalized, the PHI node must have two entries. One
2520 // entry must be a constant (coming in from outside of the loop), and the
2521 // second must be derived from the same PHI.
2522 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2523 Constant *StartCST =
2524 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2525 if (StartCST == 0)
2526 return RetVal = 0; // Must be a constant.
2527
2528 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2529 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2530 if (PN2 != PN)
2531 return RetVal = 0; // Not derived from same PHI.
2532
2533 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00002534 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00002535 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00002536
Dan Gohman46bdfb02009-02-24 18:55:53 +00002537 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00002538 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00002539 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2540 if (IterationNum == NumIterations)
2541 return RetVal = PHIVal; // Got exit value!
2542
2543 // Compute the value of the PHI node for the next iteration.
2544 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2545 if (NextPHI == PHIVal)
2546 return RetVal = NextPHI; // Stopped evolving!
2547 if (NextPHI == 0)
2548 return 0; // Couldn't evaluate!
2549 PHIVal = NextPHI;
2550 }
2551}
2552
Dan Gohman46bdfb02009-02-24 18:55:53 +00002553/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00002554/// constant number of times (the condition evolves only from constants),
2555/// try to evaluate a few iterations of the loop until we get the exit
2556/// condition gets a value of ExitWhen (true or false). If we cannot
2557/// evaluate the trip count of the loop, return UnknownValue.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002558SCEVHandle ScalarEvolution::
Dan Gohman46bdfb02009-02-24 18:55:53 +00002559ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00002560 PHINode *PN = getConstantEvolvingPHI(Cond, L);
2561 if (PN == 0) return UnknownValue;
2562
2563 // Since the loop is canonicalized, the PHI node must have two entries. One
2564 // entry must be a constant (coming in from outside of the loop), and the
2565 // second must be derived from the same PHI.
2566 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2567 Constant *StartCST =
2568 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2569 if (StartCST == 0) return UnknownValue; // Must be a constant.
2570
2571 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2572 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2573 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
2574
2575 // Okay, we find a PHI node that defines the trip count of this loop. Execute
2576 // the loop symbolically to determine when the condition gets a value of
2577 // "ExitWhen".
2578 unsigned IterationNum = 0;
2579 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
2580 for (Constant *PHIVal = StartCST;
2581 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002582 ConstantInt *CondVal =
2583 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
Chris Lattner3221ad02004-04-17 22:58:41 +00002584
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002585 // Couldn't symbolically evaluate.
Chris Lattneref3baf02007-01-12 18:28:58 +00002586 if (!CondVal) return UnknownValue;
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002587
Reid Spencere8019bb2007-03-01 07:25:48 +00002588 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00002589 ConstantEvolutionLoopExitValue[PN] = PHIVal;
Chris Lattner7980fb92004-04-17 18:36:24 +00002590 ++NumBruteForceTripCountsComputed;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002591 return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
Chris Lattner7980fb92004-04-17 18:36:24 +00002592 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002593
Chris Lattner3221ad02004-04-17 22:58:41 +00002594 // Compute the value of the PHI node for the next iteration.
2595 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2596 if (NextPHI == 0 || NextPHI == PHIVal)
Chris Lattner7980fb92004-04-17 18:36:24 +00002597 return UnknownValue; // Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00002598 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00002599 }
2600
2601 // Too many iterations were needed to evaluate.
Chris Lattner53e677a2004-04-02 20:23:17 +00002602 return UnknownValue;
2603}
2604
2605/// getSCEVAtScope - Compute the value of the specified expression within the
2606/// indicated loop (which may be null to indicate in no loop). If the
2607/// expression cannot be evaluated, return UnknownValue.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002608SCEVHandle ScalarEvolution::getSCEVAtScope(SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002609 // FIXME: this should be turned into a virtual method on SCEV!
2610
Chris Lattner3221ad02004-04-17 22:58:41 +00002611 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002612
Nick Lewycky3e630762008-02-20 06:48:22 +00002613 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00002614 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00002615 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00002616 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002617 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00002618 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
2619 if (PHINode *PN = dyn_cast<PHINode>(I))
2620 if (PN->getParent() == LI->getHeader()) {
2621 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00002622 // to see if the loop that contains it has a known backedge-taken
2623 // count. If so, we may be able to force computation of the exit
2624 // value.
2625 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00002626 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00002627 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00002628 // Okay, we know how many times the containing loop executes. If
2629 // this is a constant evolving PHI node, get the final value at
2630 // the specified iteration number.
2631 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00002632 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00002633 LI);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002634 if (RV) return getUnknown(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00002635 }
2636 }
2637
Reid Spencer09906f32006-12-04 21:33:23 +00002638 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00002639 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00002640 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00002641 // result. This is particularly useful for computing loop exit values.
2642 if (CanConstantFold(I)) {
2643 std::vector<Constant*> Operands;
2644 Operands.reserve(I->getNumOperands());
2645 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2646 Value *Op = I->getOperand(i);
2647 if (Constant *C = dyn_cast<Constant>(Op)) {
2648 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00002649 } else {
Chris Lattner42b5e082007-11-23 08:46:22 +00002650 // If any of the operands is non-constant and if they are
Dan Gohman2d1be872009-04-16 03:18:22 +00002651 // non-integer and non-pointer, don't even try to analyze them
2652 // with scev techniques.
Dan Gohman4acd12a2009-04-30 16:40:30 +00002653 if (!isSCEVable(Op->getType()))
Chris Lattner42b5e082007-11-23 08:46:22 +00002654 return V;
Dan Gohman2d1be872009-04-16 03:18:22 +00002655
Chris Lattner3221ad02004-04-17 22:58:41 +00002656 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
Dan Gohman622ed672009-05-04 22:02:23 +00002657 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00002658 Constant *C = SC->getValue();
2659 if (C->getType() != Op->getType())
2660 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2661 Op->getType(),
2662 false),
2663 C, Op->getType());
2664 Operands.push_back(C);
Dan Gohman622ed672009-05-04 22:02:23 +00002665 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00002666 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
2667 if (C->getType() != Op->getType())
2668 C =
2669 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2670 Op->getType(),
2671 false),
2672 C, Op->getType());
2673 Operands.push_back(C);
2674 } else
Chris Lattner3221ad02004-04-17 22:58:41 +00002675 return V;
2676 } else {
2677 return V;
2678 }
2679 }
2680 }
Chris Lattnerf286f6f2007-12-10 22:53:04 +00002681
2682 Constant *C;
2683 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2684 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2685 &Operands[0], Operands.size());
2686 else
2687 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2688 &Operands[0], Operands.size());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002689 return getUnknown(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00002690 }
2691 }
2692
2693 // This is some other type of SCEVUnknown, just return it.
2694 return V;
2695 }
2696
Dan Gohman622ed672009-05-04 22:02:23 +00002697 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002698 // Avoid performing the look-up in the common case where the specified
2699 // expression has no loop-variant portions.
2700 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2701 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2702 if (OpAtScope != Comm->getOperand(i)) {
2703 if (OpAtScope == UnknownValue) return UnknownValue;
2704 // Okay, at least one of these operands is loop variant but might be
2705 // foldable. Build a new instance of the folded commutative expression.
Chris Lattner3221ad02004-04-17 22:58:41 +00002706 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00002707 NewOps.push_back(OpAtScope);
2708
2709 for (++i; i != e; ++i) {
2710 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2711 if (OpAtScope == UnknownValue) return UnknownValue;
2712 NewOps.push_back(OpAtScope);
2713 }
2714 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002715 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002716 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002717 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002718 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002719 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00002720 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002721 return getUMaxExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002722 assert(0 && "Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002723 }
2724 }
2725 // If we got here, all operands are loop invariant.
2726 return Comm;
2727 }
2728
Dan Gohman622ed672009-05-04 22:02:23 +00002729 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Nick Lewycky789558d2009-01-13 09:18:58 +00002730 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002731 if (LHS == UnknownValue) return LHS;
Nick Lewycky789558d2009-01-13 09:18:58 +00002732 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002733 if (RHS == UnknownValue) return RHS;
Nick Lewycky789558d2009-01-13 09:18:58 +00002734 if (LHS == Div->getLHS() && RHS == Div->getRHS())
2735 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002736 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00002737 }
2738
2739 // If this is a loop recurrence for a loop that does not contain L, then we
2740 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00002741 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002742 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2743 // To evaluate this recurrence, we need to know how many times the AddRec
2744 // loop iterates. Compute this now.
Dan Gohman46bdfb02009-02-24 18:55:53 +00002745 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
2746 if (BackedgeTakenCount == UnknownValue) return UnknownValue;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002747
Eli Friedmanb42a6262008-08-04 23:49:06 +00002748 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002749 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00002750 }
2751 return UnknownValue;
2752 }
2753
Dan Gohman622ed672009-05-04 22:02:23 +00002754 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmaneb3948b2009-04-29 22:29:01 +00002755 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2756 if (Op == UnknownValue) return Op;
2757 if (Op == Cast->getOperand())
2758 return Cast; // must be loop invariant
2759 return getZeroExtendExpr(Op, Cast->getType());
2760 }
2761
Dan Gohman622ed672009-05-04 22:02:23 +00002762 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmaneb3948b2009-04-29 22:29:01 +00002763 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2764 if (Op == UnknownValue) return Op;
2765 if (Op == Cast->getOperand())
2766 return Cast; // must be loop invariant
2767 return getSignExtendExpr(Op, Cast->getType());
2768 }
2769
Dan Gohman622ed672009-05-04 22:02:23 +00002770 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmaneb3948b2009-04-29 22:29:01 +00002771 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2772 if (Op == UnknownValue) return Op;
2773 if (Op == Cast->getOperand())
2774 return Cast; // must be loop invariant
2775 return getTruncateExpr(Op, Cast->getType());
2776 }
2777
2778 assert(0 && "Unknown SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002779}
2780
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002781/// getSCEVAtScope - Return a SCEV expression handle for the specified value
2782/// at the specified scope in the program. The L value specifies a loop
2783/// nest to evaluate the expression at, where null is the top-level or a
2784/// specified loop is immediately inside of the loop.
2785///
2786/// This method can be used to compute the exit value for a variable defined
2787/// in a loop by querying what the value will hold in the parent loop.
2788///
2789/// If this value is not computable at this scope, a SCEVCouldNotCompute
2790/// object is returned.
2791SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
2792 return getSCEVAtScope(getSCEV(V), L);
2793}
2794
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00002795/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
2796/// following equation:
2797///
2798/// A * X = B (mod N)
2799///
2800/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
2801/// A and B isn't important.
2802///
2803/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
2804static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
2805 ScalarEvolution &SE) {
2806 uint32_t BW = A.getBitWidth();
2807 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
2808 assert(A != 0 && "A must be non-zero.");
2809
2810 // 1. D = gcd(A, N)
2811 //
2812 // The gcd of A and N may have only one prime factor: 2. The number of
2813 // trailing zeros in A is its multiplicity
2814 uint32_t Mult2 = A.countTrailingZeros();
2815 // D = 2^Mult2
2816
2817 // 2. Check if B is divisible by D.
2818 //
2819 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
2820 // is not less than multiplicity of this prime factor for D.
2821 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002822 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00002823
2824 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
2825 // modulo (N / D).
2826 //
2827 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
2828 // bit width during computations.
2829 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
2830 APInt Mod(BW + 1, 0);
2831 Mod.set(BW - Mult2); // Mod = N / D
2832 APInt I = AD.multiplicativeInverse(Mod);
2833
2834 // 4. Compute the minimum unsigned root of the equation:
2835 // I * (B / D) mod (N / D)
2836 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
2837
2838 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
2839 // bits.
2840 return SE.getConstant(Result.trunc(BW));
2841}
Chris Lattner53e677a2004-04-02 20:23:17 +00002842
2843/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2844/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
2845/// might be the same) or two SCEVCouldNotCompute objects.
2846///
2847static std::pair<SCEVHandle,SCEVHandle>
Dan Gohman246b2562007-10-22 18:31:58 +00002848SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002849 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Reid Spencere8019bb2007-03-01 07:25:48 +00002850 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2851 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2852 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002853
Chris Lattner53e677a2004-04-02 20:23:17 +00002854 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00002855 if (!LC || !MC || !NC) {
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002856 SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00002857 return std::make_pair(CNC, CNC);
2858 }
2859
Reid Spencere8019bb2007-03-01 07:25:48 +00002860 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00002861 const APInt &L = LC->getValue()->getValue();
2862 const APInt &M = MC->getValue()->getValue();
2863 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00002864 APInt Two(BitWidth, 2);
2865 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002866
Reid Spencere8019bb2007-03-01 07:25:48 +00002867 {
2868 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00002869 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00002870 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2871 // The B coefficient is M-N/2
2872 APInt B(M);
2873 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002874
Reid Spencere8019bb2007-03-01 07:25:48 +00002875 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00002876 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00002877
Reid Spencere8019bb2007-03-01 07:25:48 +00002878 // Compute the B^2-4ac term.
2879 APInt SqrtTerm(B);
2880 SqrtTerm *= B;
2881 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00002882
Reid Spencere8019bb2007-03-01 07:25:48 +00002883 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2884 // integer value or else APInt::sqrt() will assert.
2885 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002886
Reid Spencere8019bb2007-03-01 07:25:48 +00002887 // Compute the two solutions for the quadratic formula.
2888 // The divisions must be performed as signed divisions.
2889 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00002890 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00002891 if (TwoA.isMinValue()) {
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002892 SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00002893 return std::make_pair(CNC, CNC);
2894 }
2895
Reid Spencere8019bb2007-03-01 07:25:48 +00002896 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2897 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002898
Dan Gohman246b2562007-10-22 18:31:58 +00002899 return std::make_pair(SE.getConstant(Solution1),
2900 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00002901 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00002902}
2903
2904/// HowFarToZero - Return the number of times a backedge comparing the specified
2905/// value to zero will execute. If not computable, return UnknownValue
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002906SCEVHandle ScalarEvolution::HowFarToZero(SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002907 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00002908 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002909 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00002910 if (C->getValue()->isZero()) return C;
Chris Lattner53e677a2004-04-02 20:23:17 +00002911 return UnknownValue; // Otherwise it will loop infinitely.
2912 }
2913
2914 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2915 if (!AddRec || AddRec->getLoop() != L)
2916 return UnknownValue;
2917
2918 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00002919 // If this is an affine expression, the execution count of this branch is
2920 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00002921 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00002922 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00002923 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00002924 // equivalent to:
2925 //
2926 // Step*N = -Start (mod 2^BW)
2927 //
2928 // where BW is the common bit width of Start and Step.
2929
Chris Lattner53e677a2004-04-02 20:23:17 +00002930 // Get the initial value for the loop.
2931 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
Chris Lattner4a2b23e2004-10-11 04:07:27 +00002932 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
Chris Lattner53e677a2004-04-02 20:23:17 +00002933
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00002934 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00002935
Dan Gohman622ed672009-05-04 22:02:23 +00002936 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00002937 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00002938
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00002939 // First, handle unitary steps.
2940 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002941 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00002942 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
2943 return Start; // N = Start (as unsigned)
2944
2945 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00002946 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00002947 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002948 -StartC->getValue()->getValue(),
2949 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00002950 }
Chris Lattner42a75512007-01-15 02:27:26 +00002951 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002952 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2953 // the quadratic equation to solve it.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002954 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
2955 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00002956 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2957 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2958 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002959#if 0
Dan Gohmanb7ef7292009-04-21 00:47:46 +00002960 errs() << "HFTZ: " << *V << " - sol#1: " << *R1
2961 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00002962#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002963 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00002964 if (ConstantInt *CB =
2965 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00002966 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00002967 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00002968 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002969
Chris Lattner53e677a2004-04-02 20:23:17 +00002970 // We can only use this value if the chrec ends up with an exact zero
2971 // value at this index. When solving for "X*X != 5", for example, we
2972 // should not accept a root of 2.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002973 SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002974 if (Val->isZero())
2975 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00002976 }
2977 }
2978 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002979
Chris Lattner53e677a2004-04-02 20:23:17 +00002980 return UnknownValue;
2981}
2982
2983/// HowFarToNonZero - Return the number of times a backedge checking the
2984/// specified value for nonzero will execute. If not computable, return
2985/// UnknownValue
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002986SCEVHandle ScalarEvolution::HowFarToNonZero(SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002987 // Loops that look like: while (X == 0) are very strange indeed. We don't
2988 // handle them yet except for the trivial case. This could be expanded in the
2989 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002990
Chris Lattner53e677a2004-04-02 20:23:17 +00002991 // If the value is a constant, check to see if it is known to be non-zero
2992 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00002993 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00002994 if (!C->getValue()->isNullValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002995 return getIntegerSCEV(0, C->getType());
Chris Lattner53e677a2004-04-02 20:23:17 +00002996 return UnknownValue; // Otherwise it will loop infinitely.
2997 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002998
Chris Lattner53e677a2004-04-02 20:23:17 +00002999 // We could implement others, but I really doubt anyone writes loops like
3000 // this, and if they did, they would already be constant folded.
3001 return UnknownValue;
3002}
3003
Dan Gohmanfd6edef2008-09-15 22:18:04 +00003004/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3005/// (which may not be an immediate predecessor) which has exactly one
3006/// successor from which BB is reachable, or null if no such block is
3007/// found.
3008///
3009BasicBlock *
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003010ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00003011 // If the block has a unique predecessor, then there is no path from the
3012 // predecessor to the block that does not go through the direct edge
3013 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00003014 if (BasicBlock *Pred = BB->getSinglePredecessor())
3015 return Pred;
3016
3017 // A loop's header is defined to be a block that dominates the loop.
3018 // If the loop has a preheader, it must be a block that has exactly
3019 // one successor that can reach BB. This is slightly more strict
3020 // than necessary, but works if critical edges are split.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003021 if (Loop *L = LI->getLoopFor(BB))
Dan Gohmanfd6edef2008-09-15 22:18:04 +00003022 return L->getLoopPreheader();
3023
3024 return 0;
3025}
3026
Dan Gohmanc2390b12009-02-12 22:19:27 +00003027/// isLoopGuardedByCond - Test whether entry to the loop is protected by
Dan Gohman3d739fe2009-04-30 20:48:53 +00003028/// a conditional between LHS and RHS. This is used to help avoid max
3029/// expressions in loop trip counts.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003030bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
Dan Gohman3d739fe2009-04-30 20:48:53 +00003031 ICmpInst::Predicate Pred,
3032 SCEV *LHS, SCEV *RHS) {
Nick Lewycky59cff122008-07-12 07:41:32 +00003033 BasicBlock *Preheader = L->getLoopPreheader();
3034 BasicBlock *PreheaderDest = L->getHeader();
Nick Lewycky59cff122008-07-12 07:41:32 +00003035
Dan Gohman38372182008-08-12 20:17:31 +00003036 // Starting at the preheader, climb up the predecessor chain, as long as
Dan Gohmanfd6edef2008-09-15 22:18:04 +00003037 // there are predecessors that can be found that have unique successors
3038 // leading to the original header.
3039 for (; Preheader;
3040 PreheaderDest = Preheader,
3041 Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) {
Dan Gohman38372182008-08-12 20:17:31 +00003042
3043 BranchInst *LoopEntryPredicate =
Nick Lewycky59cff122008-07-12 07:41:32 +00003044 dyn_cast<BranchInst>(Preheader->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00003045 if (!LoopEntryPredicate ||
3046 LoopEntryPredicate->isUnconditional())
3047 continue;
3048
3049 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3050 if (!ICI) continue;
3051
3052 // Now that we found a conditional branch that dominates the loop, check to
3053 // see if it is the comparison we are looking for.
3054 Value *PreCondLHS = ICI->getOperand(0);
3055 Value *PreCondRHS = ICI->getOperand(1);
3056 ICmpInst::Predicate Cond;
3057 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
3058 Cond = ICI->getPredicate();
3059 else
3060 Cond = ICI->getInversePredicate();
3061
Dan Gohmanc2390b12009-02-12 22:19:27 +00003062 if (Cond == Pred)
3063 ; // An exact match.
3064 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3065 ; // The actual condition is beyond sufficient.
3066 else
3067 // Check a few special cases.
3068 switch (Cond) {
3069 case ICmpInst::ICMP_UGT:
3070 if (Pred == ICmpInst::ICMP_ULT) {
3071 std::swap(PreCondLHS, PreCondRHS);
3072 Cond = ICmpInst::ICMP_ULT;
3073 break;
3074 }
3075 continue;
3076 case ICmpInst::ICMP_SGT:
3077 if (Pred == ICmpInst::ICMP_SLT) {
3078 std::swap(PreCondLHS, PreCondRHS);
3079 Cond = ICmpInst::ICMP_SLT;
3080 break;
3081 }
3082 continue;
3083 case ICmpInst::ICMP_NE:
3084 // Expressions like (x >u 0) are often canonicalized to (x != 0),
3085 // so check for this case by checking if the NE is comparing against
3086 // a minimum or maximum constant.
3087 if (!ICmpInst::isTrueWhenEqual(Pred))
3088 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3089 const APInt &A = CI->getValue();
3090 switch (Pred) {
3091 case ICmpInst::ICMP_SLT:
3092 if (A.isMaxSignedValue()) break;
3093 continue;
3094 case ICmpInst::ICMP_SGT:
3095 if (A.isMinSignedValue()) break;
3096 continue;
3097 case ICmpInst::ICMP_ULT:
3098 if (A.isMaxValue()) break;
3099 continue;
3100 case ICmpInst::ICMP_UGT:
3101 if (A.isMinValue()) break;
3102 continue;
3103 default:
3104 continue;
3105 }
3106 Cond = ICmpInst::ICMP_NE;
3107 // NE is symmetric but the original comparison may not be. Swap
3108 // the operands if necessary so that they match below.
3109 if (isa<SCEVConstant>(LHS))
3110 std::swap(PreCondLHS, PreCondRHS);
3111 break;
3112 }
3113 continue;
3114 default:
3115 // We weren't able to reconcile the condition.
3116 continue;
3117 }
Dan Gohman38372182008-08-12 20:17:31 +00003118
3119 if (!PreCondLHS->getType()->isInteger()) continue;
3120
3121 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3122 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3123 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003124 (LHS == getNotSCEV(PreCondRHSSCEV) &&
3125 RHS == getNotSCEV(PreCondLHSSCEV)))
Dan Gohman38372182008-08-12 20:17:31 +00003126 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00003127 }
3128
Dan Gohman38372182008-08-12 20:17:31 +00003129 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00003130}
3131
Chris Lattnerdb25de42005-08-15 23:33:51 +00003132/// HowManyLessThans - Return the number of times a backedge containing the
3133/// specified less-than comparison will execute. If not computable, return
3134/// UnknownValue.
Dan Gohmana1af7572009-04-30 20:47:05 +00003135ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
Nick Lewycky789558d2009-01-13 09:18:58 +00003136HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00003137 // Only handle: "ADDREC < LoopInvariant".
3138 if (!RHS->isLoopInvariant(L)) return UnknownValue;
3139
3140 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
3141 if (!AddRec || AddRec->getLoop() != L)
3142 return UnknownValue;
3143
3144 if (AddRec->isAffine()) {
Nick Lewycky789558d2009-01-13 09:18:58 +00003145 // FORNOW: We only support unit strides.
Dan Gohmana1af7572009-04-30 20:47:05 +00003146 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3147 SCEVHandle Step = AddRec->getStepRecurrence(*this);
3148 SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
3149
3150 // TODO: handle non-constant strides.
3151 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
3152 if (!CStep || CStep->isZero())
3153 return UnknownValue;
3154 if (CStep->getValue()->getValue() == 1) {
3155 // With unit stride, the iteration never steps past the limit value.
3156 } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
3157 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
3158 // Test whether a positive iteration iteration can step past the limit
3159 // value and past the maximum value for its type in a single step.
3160 if (isSigned) {
3161 APInt Max = APInt::getSignedMaxValue(BitWidth);
3162 if ((Max - CStep->getValue()->getValue())
3163 .slt(CLimit->getValue()->getValue()))
3164 return UnknownValue;
3165 } else {
3166 APInt Max = APInt::getMaxValue(BitWidth);
3167 if ((Max - CStep->getValue()->getValue())
3168 .ult(CLimit->getValue()->getValue()))
3169 return UnknownValue;
3170 }
3171 } else
3172 // TODO: handle non-constant limit values below.
3173 return UnknownValue;
3174 } else
3175 // TODO: handle negative strides below.
Chris Lattnerdb25de42005-08-15 23:33:51 +00003176 return UnknownValue;
3177
Dan Gohmana1af7572009-04-30 20:47:05 +00003178 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3179 // m. So, we count the number of iterations in which {n,+,s} < m is true.
3180 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00003181 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00003182
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00003183 // First, we get the value of the LHS in the first iteration: n
3184 SCEVHandle Start = AddRec->getOperand(0);
3185
Dan Gohmana1af7572009-04-30 20:47:05 +00003186 // Determine the minimum constant start value.
3187 SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
3188 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
3189 APInt::getMinValue(BitWidth));
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00003190
Dan Gohmana1af7572009-04-30 20:47:05 +00003191 // If we know that the condition is true in order to enter the loop,
3192 // then we know that it will run exactly (m-n)/s times. Otherwise, we
3193 // only know if will execute (max(m,n)-n)/s times. In both cases, the
3194 // division must round up.
3195 SCEVHandle End = RHS;
3196 if (!isLoopGuardedByCond(L,
3197 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3198 getMinusSCEV(Start, Step), RHS))
3199 End = isSigned ? getSMaxExpr(RHS, Start)
3200 : getUMaxExpr(RHS, Start);
3201
3202 // Determine the maximum constant end value.
3203 SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
3204 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
3205 APInt::getMaxValue(BitWidth));
3206
3207 // Finally, we subtract these two values and divide, rounding up, to get
3208 // the number of times the backedge is executed.
3209 SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
3210 getAddExpr(Step, NegOne)),
3211 Step);
3212
3213 // The maximum backedge count is similar, except using the minimum start
3214 // value and the maximum end value.
3215 SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
3216 MinStart),
3217 getAddExpr(Step, NegOne)),
3218 Step);
3219
3220 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00003221 }
3222
3223 return UnknownValue;
3224}
3225
Chris Lattner53e677a2004-04-02 20:23:17 +00003226/// getNumIterationsInRange - Return the number of iterations of this loop that
3227/// produce values in the specified constant range. Another way of looking at
3228/// this is that it returns the first iteration number where the value is not in
3229/// the condition, thus computing the exit count. If the iteration count can't
3230/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman246b2562007-10-22 18:31:58 +00003231SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3232 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00003233 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00003234 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003235
3236 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00003237 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00003238 if (!SC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003239 std::vector<SCEVHandle> Operands(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00003240 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3241 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00003242 if (const SCEVAddRecExpr *ShiftedAddRec =
3243 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00003244 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00003245 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00003246 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00003247 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003248 }
3249
3250 // The only time we can solve this is when we have all constant indices.
3251 // Otherwise, we cannot determine the overflow conditions.
3252 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3253 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00003254 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003255
3256
3257 // Okay at this point we know that all elements of the chrec are constants and
3258 // that the start element is zero.
3259
3260 // First check to see if the range contains zero. If not, the first
3261 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003262 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00003263 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman246b2562007-10-22 18:31:58 +00003264 return SE.getConstant(ConstantInt::get(getType(),0));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003265
Chris Lattner53e677a2004-04-02 20:23:17 +00003266 if (isAffine()) {
3267 // If this is an affine expression then we have this situation:
3268 // Solve {0,+,A} in Range === Ax in Range
3269
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00003270 // We know that zero is in the range. If A is positive then we know that
3271 // the upper value of the range must be the first possible exit value.
3272 // If A is negative then the lower of the range is the last possible loop
3273 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00003274 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00003275 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3276 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00003277
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00003278 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00003279 APInt ExitVal = (End + A).udiv(A);
Reid Spencerc7cd7a02007-03-01 19:32:33 +00003280 ConstantInt *ExitValue = ConstantInt::get(ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00003281
3282 // Evaluate at the exit value. If we really did fall out of the valid
3283 // range, then we computed our trip count, otherwise wrap around or other
3284 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00003285 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00003286 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00003287 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00003288
3289 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00003290 assert(Range.contains(
3291 EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00003292 ConstantInt::get(ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003293 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00003294 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00003295 } else if (isQuadratic()) {
3296 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3297 // quadratic equation to solve it. To do this, we must frame our problem in
3298 // terms of figuring out when zero is crossed, instead of when
3299 // Range.getUpper() is crossed.
3300 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00003301 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3302 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00003303
3304 // Next, solve the constructed addrec
3305 std::pair<SCEVHandle,SCEVHandle> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00003306 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00003307 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3308 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3309 if (R1) {
3310 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003311 if (ConstantInt *CB =
3312 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00003313 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00003314 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00003315 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003316
Chris Lattner53e677a2004-04-02 20:23:17 +00003317 // Make sure the root is not off by one. The returned iteration should
3318 // not be in the range, but the previous one should be. When solving
3319 // for "X*X < 5", for example, we should not return a root of 2.
3320 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00003321 R1->getValue(),
3322 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00003323 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003324 // The next iteration must be out of the range...
Dan Gohman9a6ae962007-07-09 15:25:17 +00003325 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003326
Dan Gohman246b2562007-10-22 18:31:58 +00003327 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00003328 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00003329 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00003330 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00003331 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003332
Chris Lattner53e677a2004-04-02 20:23:17 +00003333 // If R1 was not in the range, then it is a good return value. Make
3334 // sure that R1-1 WAS in the range though, just in case.
Dan Gohman9a6ae962007-07-09 15:25:17 +00003335 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00003336 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00003337 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00003338 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00003339 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00003340 }
3341 }
3342 }
3343
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00003344 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003345}
3346
3347
3348
3349//===----------------------------------------------------------------------===//
3350// ScalarEvolution Class Implementation
3351//===----------------------------------------------------------------------===//
3352
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003353ScalarEvolution::ScalarEvolution()
3354 : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
3355}
3356
Chris Lattner53e677a2004-04-02 20:23:17 +00003357bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003358 this->F = &F;
3359 LI = &getAnalysis<LoopInfo>();
3360 TD = getAnalysisIfAvailable<TargetData>();
Chris Lattner53e677a2004-04-02 20:23:17 +00003361 return false;
3362}
3363
3364void ScalarEvolution::releaseMemory() {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003365 Scalars.clear();
3366 BackedgeTakenCounts.clear();
3367 ConstantEvolutionLoopExitValue.clear();
Chris Lattner53e677a2004-04-02 20:23:17 +00003368}
3369
3370void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3371 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00003372 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00003373}
3374
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003375bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00003376 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00003377}
3378
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003379static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00003380 const Loop *L) {
3381 // Print all inner loops first
3382 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3383 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003384
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00003385 OS << "Loop " << L->getHeader()->getName() << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00003386
Devang Patelb7211a22007-08-21 00:31:24 +00003387 SmallVector<BasicBlock*, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00003388 L->getExitBlocks(ExitBlocks);
3389 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00003390 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00003391
Dan Gohman46bdfb02009-02-24 18:55:53 +00003392 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3393 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003394 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00003395 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00003396 }
3397
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00003398 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00003399}
3400
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003401void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003402 // ScalarEvolution's implementaiton of the print method is to print
3403 // out SCEV values of all instructions that are interesting. Doing
3404 // this potentially causes it to create new SCEV objects though,
3405 // which technically conflicts with the const qualifier. This isn't
3406 // observable from outside the class though (the hasSCEV function
3407 // notwithstanding), so casting away the const isn't dangerous.
3408 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00003409
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003410 OS << "Classifying expressions for: " << F->getName() << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00003411 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand9c1c852009-04-30 01:30:18 +00003412 if (isSCEVable(I->getType())) {
Chris Lattner6ffe5512004-04-27 15:13:33 +00003413 OS << *I;
Dan Gohman8dae1382008-09-14 17:21:12 +00003414 OS << " --> ";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003415 SCEVHandle SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00003416 SV->print(OS);
3417 OS << "\t\t";
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003418
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003419 if (const Loop *L = LI->getLoopFor((*I).getParent())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003420 OS << "Exits: ";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003421 SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00003422 if (isa<SCEVCouldNotCompute>(ExitValue)) {
3423 OS << "<<Unknown>>";
3424 } else {
3425 OS << *ExitValue;
3426 }
3427 }
3428
3429
3430 OS << "\n";
3431 }
3432
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003433 OS << "Determining loop execution counts for: " << F->getName() << "\n";
3434 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3435 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00003436}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003437
3438void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3439 raw_os_ostream OS(o);
3440 print(OS, M);
3441}