blob: 25b1d7b748dcbb2c8eaa2595f76acce36968baa4 [file] [log] [blame]
Vikram S. Adve243dd452001-09-18 13:03:13 +00001// $Id$
Chris Lattner20b1ea02001-09-14 03:47:57 +00002//***************************************************************************
3// File:
4// SparcInstrSelection.cpp
5//
6// Purpose:
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00007// BURS instruction selection for SPARC V9 architecture.
Chris Lattner20b1ea02001-09-14 03:47:57 +00008//
9// History:
10// 7/02/01 - Vikram Adve - Created
11//**************************************************************************/
12
13#include "SparcInternals.h"
Vikram S. Adve8557b222001-10-10 20:56:33 +000014#include "llvm/CodeGen/InstrSelectionSupport.h"
Chris Lattner20b1ea02001-09-14 03:47:57 +000015#include "llvm/CodeGen/MachineInstr.h"
16#include "llvm/CodeGen/InstrForest.h"
17#include "llvm/CodeGen/InstrSelection.h"
18#include "llvm/Support/MathExtras.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/iTerminators.h"
21#include "llvm/iMemory.h"
22#include "llvm/iOther.h"
23#include "llvm/BasicBlock.h"
24#include "llvm/Method.h"
25#include "llvm/ConstPoolVals.h"
Chris Lattner749655f2001-10-13 06:54:30 +000026#include <math.h>
Chris Lattner20b1ea02001-09-14 03:47:57 +000027
28//******************** Internal Data Declarations ************************/
29
30// to be used later
31struct BranchPattern {
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000032 bool flipCondition; // should the sense of the test be reversed
33 BasicBlock* targetBB; // which basic block to branch to
Chris Lattner20b1ea02001-09-14 03:47:57 +000034 MachineInstr* extraBranch; // if neither branch is fall-through, then this
35 // BA must be inserted after the cond'l one
36};
37
38//************************* Forward Declarations ***************************/
39
40
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000041static void SetMemOperands_Internal (MachineInstr* minstr,
42 const InstructionNode* vmInstrNode,
43 Value* ptrVal,
44 Value* arrayOffsetVal,
45 const vector<ConstPoolVal*>& idxVec,
46 const TargetMachine& target);
Chris Lattner20b1ea02001-09-14 03:47:57 +000047
48
49//************************ Internal Functions ******************************/
50
51// Convenience function to get the value of an integer constant, for an
52// appropriate integer or non-integer type that can be held in an integer.
53// The type of the argument must be the following:
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000054// Signed or unsigned integer
55// Boolean
56// Pointer
Chris Lattner20b1ea02001-09-14 03:47:57 +000057//
58// isValidConstant is set to true if a valid constant was found.
59//
Vikram S. Adve243dd452001-09-18 13:03:13 +000060static int64_t
61GetConstantValueAsSignedInt(const Value *V,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000062 bool &isValidConstant)
Vikram S. Adve243dd452001-09-18 13:03:13 +000063{
Chris Lattner1d87bcf2001-10-01 20:11:19 +000064 if (!isa<ConstPoolVal>(V))
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000065 {
66 isValidConstant = false;
67 return 0;
68 }
69
Chris Lattner20b1ea02001-09-14 03:47:57 +000070 isValidConstant = true;
71
72 if (V->getType() == Type::BoolTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +000073 return (int64_t) ((ConstPoolBool*)V)->getValue();
74
75 if (V->getType()->isIntegral())
76 {
77 if (V->getType()->isSigned())
78 return ((ConstPoolSInt*)V)->getValue();
79
80 assert(V->getType()->isUnsigned());
81 uint64_t Val = ((ConstPoolUInt*)V)->getValue();
82 if (Val < INT64_MAX) // then safe to cast to signed
83 return (int64_t)Val;
84 }
Chris Lattner20b1ea02001-09-14 03:47:57 +000085
86 isValidConstant = false;
87 return 0;
88}
89
90
91
92//------------------------------------------------------------------------
93// External Function: ThisIsAChainRule
94//
95// Purpose:
96// Check if a given BURG rule is a chain rule.
97//------------------------------------------------------------------------
98
99extern bool
100ThisIsAChainRule(int eruleno)
101{
102 switch(eruleno)
103 {
104 case 111: // stmt: reg
Chris Lattner20b1ea02001-09-14 03:47:57 +0000105 case 113: // stmt: bool
Chris Lattner20b1ea02001-09-14 03:47:57 +0000106 case 123:
107 case 124:
108 case 125:
109 case 126:
110 case 127:
111 case 128:
112 case 129:
113 case 130:
114 case 131:
115 case 132:
Vikram S. Adve243dd452001-09-18 13:03:13 +0000116 case 133:
Vikram S. Adve243dd452001-09-18 13:03:13 +0000117 case 155:
118 case 221:
119 case 222:
Vikram S. Adve243dd452001-09-18 13:03:13 +0000120 case 241:
121 case 242:
122 case 243:
123 case 244:
124 return true; break;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000125
Vikram S. Adve243dd452001-09-18 13:03:13 +0000126 default:
127 return false; break;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000128 }
129}
130
131
132static inline MachineOpCode
133ChooseBprInstruction(const InstructionNode* instrNode)
134{
135 MachineOpCode opCode;
136
137 Instruction* setCCInstr =
138 ((InstructionNode*) instrNode->leftChild())->getInstruction();
139
140 switch(setCCInstr->getOpcode())
141 {
142 case Instruction::SetEQ: opCode = BRZ; break;
143 case Instruction::SetNE: opCode = BRNZ; break;
144 case Instruction::SetLE: opCode = BRLEZ; break;
145 case Instruction::SetGE: opCode = BRGEZ; break;
146 case Instruction::SetLT: opCode = BRLZ; break;
147 case Instruction::SetGT: opCode = BRGZ; break;
148 default:
149 assert(0 && "Unrecognized VM instruction!");
150 opCode = INVALID_OPCODE;
151 break;
152 }
153
154 return opCode;
155}
156
157
158static inline MachineOpCode
Chris Lattner20b1ea02001-09-14 03:47:57 +0000159ChooseBpccInstruction(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000160 const BinaryOperator* setCCInstr)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000161{
162 MachineOpCode opCode = INVALID_OPCODE;
163
164 bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
165
166 if (isSigned)
167 {
168 switch(setCCInstr->getOpcode())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000169 {
170 case Instruction::SetEQ: opCode = BE; break;
171 case Instruction::SetNE: opCode = BNE; break;
172 case Instruction::SetLE: opCode = BLE; break;
173 case Instruction::SetGE: opCode = BGE; break;
174 case Instruction::SetLT: opCode = BL; break;
175 case Instruction::SetGT: opCode = BG; break;
176 default:
177 assert(0 && "Unrecognized VM instruction!");
178 break;
179 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000180 }
181 else
182 {
183 switch(setCCInstr->getOpcode())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000184 {
185 case Instruction::SetEQ: opCode = BE; break;
186 case Instruction::SetNE: opCode = BNE; break;
187 case Instruction::SetLE: opCode = BLEU; break;
188 case Instruction::SetGE: opCode = BCC; break;
189 case Instruction::SetLT: opCode = BCS; break;
190 case Instruction::SetGT: opCode = BGU; break;
191 default:
192 assert(0 && "Unrecognized VM instruction!");
193 break;
194 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000195 }
196
197 return opCode;
198}
199
200static inline MachineOpCode
201ChooseBFpccInstruction(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000202 const BinaryOperator* setCCInstr)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000203{
204 MachineOpCode opCode = INVALID_OPCODE;
205
206 switch(setCCInstr->getOpcode())
207 {
208 case Instruction::SetEQ: opCode = FBE; break;
209 case Instruction::SetNE: opCode = FBNE; break;
210 case Instruction::SetLE: opCode = FBLE; break;
211 case Instruction::SetGE: opCode = FBGE; break;
212 case Instruction::SetLT: opCode = FBL; break;
213 case Instruction::SetGT: opCode = FBG; break;
214 default:
215 assert(0 && "Unrecognized VM instruction!");
216 break;
217 }
218
219 return opCode;
220}
221
222
223static inline MachineOpCode
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000224ChooseBccInstruction(const InstructionNode* instrNode,
225 bool& isFPBranch)
226{
227 InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
228 BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
229 const Type* setCCType = setCCInstr->getOperand(0)->getType();
230
231 isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy);
232
233 if (isFPBranch)
234 return ChooseBFpccInstruction(instrNode, setCCInstr);
235 else
236 return ChooseBpccInstruction(instrNode, setCCInstr);
237}
238
239
240static inline MachineOpCode
Chris Lattner20b1ea02001-09-14 03:47:57 +0000241ChooseMovFpccInstruction(const InstructionNode* instrNode)
242{
243 MachineOpCode opCode = INVALID_OPCODE;
244
245 switch(instrNode->getInstruction()->getOpcode())
246 {
247 case Instruction::SetEQ: opCode = MOVFE; break;
248 case Instruction::SetNE: opCode = MOVFNE; break;
249 case Instruction::SetLE: opCode = MOVFLE; break;
250 case Instruction::SetGE: opCode = MOVFGE; break;
251 case Instruction::SetLT: opCode = MOVFL; break;
252 case Instruction::SetGT: opCode = MOVFG; break;
253 default:
254 assert(0 && "Unrecognized VM instruction!");
255 break;
256 }
257
258 return opCode;
259}
260
261
262// Assumes that SUBcc v1, v2 -> v3 has been executed.
263// In most cases, we want to clear v3 and then follow it by instruction
264// MOVcc 1 -> v3.
265// Set mustClearReg=false if v3 need not be cleared before conditional move.
266// Set valueToMove=0 if we want to conditionally move 0 instead of 1
267// (i.e., we want to test inverse of a condition)
Vikram S. Adve243dd452001-09-18 13:03:13 +0000268// (The latter two cases do not seem to arise because SetNE needs nothing.)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000269//
270static MachineOpCode
271ChooseMovpccAfterSub(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000272 bool& mustClearReg,
273 int& valueToMove)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000274{
275 MachineOpCode opCode = INVALID_OPCODE;
276 mustClearReg = true;
277 valueToMove = 1;
278
279 switch(instrNode->getInstruction()->getOpcode())
280 {
Vikram S. Adve243dd452001-09-18 13:03:13 +0000281 case Instruction::SetEQ: opCode = MOVE; break;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000282 case Instruction::SetLE: opCode = MOVLE; break;
283 case Instruction::SetGE: opCode = MOVGE; break;
284 case Instruction::SetLT: opCode = MOVL; break;
285 case Instruction::SetGT: opCode = MOVG; break;
Vikram S. Adve243dd452001-09-18 13:03:13 +0000286 case Instruction::SetNE: assert(0 && "No move required!"); break;
287 default: assert(0 && "Unrecognized VM instr!"); break;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000288 }
289
290 return opCode;
291}
292
Chris Lattner20b1ea02001-09-14 03:47:57 +0000293static inline MachineOpCode
294ChooseConvertToFloatInstr(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000295 const Type* opType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000296{
297 MachineOpCode opCode = INVALID_OPCODE;
298
299 switch(instrNode->getOpLabel())
300 {
301 case ToFloatTy:
302 if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000303 opCode = FITOS;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000304 else if (opType == Type::LongTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000305 opCode = FXTOS;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000306 else if (opType == Type::DoubleTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000307 opCode = FDTOS;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000308 else if (opType == Type::FloatTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000309 ;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000310 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000311 assert(0 && "Cannot convert this type to FLOAT on SPARC");
Chris Lattner20b1ea02001-09-14 03:47:57 +0000312 break;
313
314 case ToDoubleTy:
315 if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000316 opCode = FITOD;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000317 else if (opType == Type::LongTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000318 opCode = FXTOD;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000319 else if (opType == Type::FloatTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000320 opCode = FSTOD;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000321 else if (opType == Type::DoubleTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000322 ;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000323 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000324 assert(0 && "Cannot convert this type to DOUBLE on SPARC");
Chris Lattner20b1ea02001-09-14 03:47:57 +0000325 break;
326
327 default:
328 break;
329 }
330
331 return opCode;
332}
333
334static inline MachineOpCode
335ChooseConvertToIntInstr(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000336 const Type* opType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000337{
338 MachineOpCode opCode = INVALID_OPCODE;;
339
340 int instrType = (int) instrNode->getOpLabel();
341
342 if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy)
343 {
344 switch (opType->getPrimitiveID())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000345 {
Chris Lattner20b1ea02001-09-14 03:47:57 +0000346 case Type::FloatTyID: opCode = FSTOI; break;
347 case Type::DoubleTyID: opCode = FDTOI; break;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000348 default:
349 assert(0 && "Non-numeric non-bool type cannot be converted to Int");
350 break;
351 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000352 }
353 else if (instrType == ToLongTy)
354 {
355 switch (opType->getPrimitiveID())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000356 {
Chris Lattner20b1ea02001-09-14 03:47:57 +0000357 case Type::FloatTyID: opCode = FSTOX; break;
358 case Type::DoubleTyID: opCode = FDTOX; break;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000359 default:
360 assert(0 && "Non-numeric non-bool type cannot be converted to Long");
361 break;
362 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000363 }
364 else
365 assert(0 && "Should not get here, Mo!");
366
367 return opCode;
368}
369
370
371static inline MachineOpCode
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000372ChooseAddInstructionByType(const Type* resultType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000373{
374 MachineOpCode opCode = INVALID_OPCODE;
375
Chris Lattner20b1ea02001-09-14 03:47:57 +0000376 if (resultType->isIntegral() ||
Chris Lattner1d87bcf2001-10-01 20:11:19 +0000377 isa<PointerType>(resultType) ||
378 isa<MethodType>(resultType) ||
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000379 resultType->isLabelType() ||
380 resultType == Type::BoolTy)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000381 {
382 opCode = ADD;
383 }
384 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000385 switch(resultType->getPrimitiveID())
386 {
387 case Type::FloatTyID: opCode = FADDS; break;
388 case Type::DoubleTyID: opCode = FADDD; break;
389 default: assert(0 && "Invalid type for ADD instruction"); break;
390 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000391
392 return opCode;
393}
394
395
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000396static inline MachineOpCode
397ChooseAddInstruction(const InstructionNode* instrNode)
398{
399 return ChooseAddInstructionByType(instrNode->getInstruction()->getType());
400}
401
402
Chris Lattner20b1ea02001-09-14 03:47:57 +0000403static inline MachineInstr*
404CreateMovFloatInstruction(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000405 const Type* resultType)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000406{
407 MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000408 ? FMOVS : FMOVD);
Chris Lattner20b1ea02001-09-14 03:47:57 +0000409 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000410 instrNode->leftChild()->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000411 minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000412 instrNode->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000413 return minstr;
414}
415
416static inline MachineInstr*
417CreateAddConstInstruction(const InstructionNode* instrNode)
418{
419 MachineInstr* minstr = NULL;
420
421 Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
Chris Lattner1d87bcf2001-10-01 20:11:19 +0000422 assert(isa<ConstPoolVal>(constOp));
Chris Lattner20b1ea02001-09-14 03:47:57 +0000423
424 // Cases worth optimizing are:
425 // (1) Add with 0 for float or double: use an FMOV of appropriate type,
426 // instead of an FADD (1 vs 3 cycles). There is no integer MOV.
427 //
428 const Type* resultType = instrNode->getInstruction()->getType();
429
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000430 if (resultType == Type::FloatTy ||
431 resultType == Type::DoubleTy)
432 {
433 double dval = ((ConstPoolFP*) constOp)->getValue();
434 if (dval == 0.0)
435 minstr = CreateMovFloatInstruction(instrNode, resultType);
436 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000437
438 return minstr;
439}
440
441
442static inline MachineOpCode
443ChooseSubInstruction(const InstructionNode* instrNode)
444{
445 MachineOpCode opCode = INVALID_OPCODE;
446
447 const Type* resultType = instrNode->getInstruction()->getType();
448
449 if (resultType->isIntegral() ||
450 resultType->isPointerType())
451 {
452 opCode = SUB;
453 }
454 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000455 switch(resultType->getPrimitiveID())
456 {
457 case Type::FloatTyID: opCode = FSUBS; break;
458 case Type::DoubleTyID: opCode = FSUBD; break;
459 default: assert(0 && "Invalid type for SUB instruction"); break;
460 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000461
462 return opCode;
463}
464
465
466static inline MachineInstr*
467CreateSubConstInstruction(const InstructionNode* instrNode)
468{
469 MachineInstr* minstr = NULL;
470
471 Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
Chris Lattner1d87bcf2001-10-01 20:11:19 +0000472 assert(isa<ConstPoolVal>(constOp));
Chris Lattner20b1ea02001-09-14 03:47:57 +0000473
474 // Cases worth optimizing are:
475 // (1) Sub with 0 for float or double: use an FMOV of appropriate type,
476 // instead of an FSUB (1 vs 3 cycles). There is no integer MOV.
477 //
478 const Type* resultType = instrNode->getInstruction()->getType();
479
480 if (resultType == Type::FloatTy ||
481 resultType == Type::DoubleTy)
482 {
483 double dval = ((ConstPoolFP*) constOp)->getValue();
484 if (dval == 0.0)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000485 minstr = CreateMovFloatInstruction(instrNode, resultType);
Chris Lattner20b1ea02001-09-14 03:47:57 +0000486 }
487
488 return minstr;
489}
490
491
492static inline MachineOpCode
493ChooseFcmpInstruction(const InstructionNode* instrNode)
494{
495 MachineOpCode opCode = INVALID_OPCODE;
496
497 Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
498 switch(operand->getType()->getPrimitiveID()) {
499 case Type::FloatTyID: opCode = FCMPS; break;
500 case Type::DoubleTyID: opCode = FCMPD; break;
501 default: assert(0 && "Invalid type for FCMP instruction"); break;
502 }
503
504 return opCode;
505}
506
507
508// Assumes that leftArg and rightArg are both cast instructions.
509//
510static inline bool
511BothFloatToDouble(const InstructionNode* instrNode)
512{
513 InstrTreeNode* leftArg = instrNode->leftChild();
514 InstrTreeNode* rightArg = instrNode->rightChild();
515 InstrTreeNode* leftArgArg = leftArg->leftChild();
516 InstrTreeNode* rightArgArg = rightArg->leftChild();
517 assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
518
519 // Check if both arguments are floats cast to double
520 return (leftArg->getValue()->getType() == Type::DoubleTy &&
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000521 leftArgArg->getValue()->getType() == Type::FloatTy &&
522 rightArgArg->getValue()->getType() == Type::FloatTy);
Chris Lattner20b1ea02001-09-14 03:47:57 +0000523}
524
525
526static inline MachineOpCode
527ChooseMulInstruction(const InstructionNode* instrNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000528 bool checkCasts)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000529{
530 MachineOpCode opCode = INVALID_OPCODE;
531
532 if (checkCasts && BothFloatToDouble(instrNode))
533 {
534 return opCode = FSMULD;
535 }
536 // else fall through and use the regular multiply instructions
537
538 const Type* resultType = instrNode->getInstruction()->getType();
539
540 if (resultType->isIntegral())
541 {
542 opCode = MULX;
543 }
544 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000545 switch(resultType->getPrimitiveID())
546 {
547 case Type::FloatTyID: opCode = FMULS; break;
548 case Type::DoubleTyID: opCode = FMULD; break;
549 default: assert(0 && "Invalid type for MUL instruction"); break;
550 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000551
552 return opCode;
553}
554
555
556static inline MachineInstr*
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000557CreateIntNegInstruction(TargetMachine& target,
558 Value* vreg)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000559{
560 MachineInstr* minstr = new MachineInstr(SUB);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000561 minstr->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000562 minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, vreg);
563 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vreg);
564 return minstr;
565}
566
567
568static inline MachineInstr*
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000569CreateMulConstInstruction(TargetMachine &target,
570 const InstructionNode* instrNode,
571 MachineInstr*& getMinstr2)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000572{
573 MachineInstr* minstr = NULL;
574 getMinstr2 = NULL;
575 bool needNeg = false;
576
577 Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
Chris Lattner1d87bcf2001-10-01 20:11:19 +0000578 assert(isa<ConstPoolVal>(constOp));
Chris Lattner20b1ea02001-09-14 03:47:57 +0000579
580 // Cases worth optimizing are:
581 // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
582 // (2) Multiply by 2^x for integer types: replace with Shift
583 //
584 const Type* resultType = instrNode->getInstruction()->getType();
585
Vikram S. Adve243dd452001-09-18 13:03:13 +0000586 if (resultType->isIntegral() || resultType->isPointerType())
Chris Lattner20b1ea02001-09-14 03:47:57 +0000587 {
588 unsigned pow;
589 bool isValidConst;
590 int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
591 if (isValidConst)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000592 {
593 bool needNeg = false;
594 if (C < 0)
595 {
596 needNeg = true;
597 C = -C;
598 }
599
600 if (C == 0 || C == 1)
601 {
602 minstr = new MachineInstr(ADD);
603
604 if (C == 0)
605 minstr->SetMachineOperand(0,
606 target.getRegInfo().getZeroRegNum());
607 else
608 minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
609 instrNode->leftChild()->getValue());
610 minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum());
611 }
612 else if (IsPowerOf2(C, pow))
613 {
614 minstr = new MachineInstr((resultType == Type::LongTy)
615 ? SLLX : SLL);
616 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
617 instrNode->leftChild()->getValue());
618 minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
619 pow);
620 }
621
622 if (minstr && needNeg)
623 { // insert <reg = SUB 0, reg> after the instr to flip the sign
624 getMinstr2 = CreateIntNegInstruction(target,
625 instrNode->getValue());
626 }
627 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000628 }
629 else
630 {
631 if (resultType == Type::FloatTy ||
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000632 resultType == Type::DoubleTy)
633 {
634 bool isValidConst;
635 double dval = ((ConstPoolFP*) constOp)->getValue();
636
637 if (isValidConst)
638 {
639 if (dval == 0)
640 {
641 minstr = new MachineInstr((resultType == Type::FloatTy)
642 ? FITOS : FITOD);
643 minstr->SetMachineOperand(0,
644 target.getRegInfo().getZeroRegNum());
645 }
646 else if (fabs(dval) == 1)
647 {
648 bool needNeg = (dval < 0);
649
650 MachineOpCode opCode = needNeg
651 ? (resultType == Type::FloatTy? FNEGS : FNEGD)
652 : (resultType == Type::FloatTy? FMOVS : FMOVD);
653
654 minstr = new MachineInstr(opCode);
655 minstr->SetMachineOperand(0,
656 MachineOperand::MO_VirtualRegister,
657 instrNode->leftChild()->getValue());
658 }
659 }
660 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000661 }
662
663 if (minstr != NULL)
664 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000665 instrNode->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000666
667 return minstr;
668}
669
670
671static inline MachineOpCode
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000672ChooseDivInstruction(TargetMachine &target,
673 const InstructionNode* instrNode)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000674{
675 MachineOpCode opCode = INVALID_OPCODE;
676
677 const Type* resultType = instrNode->getInstruction()->getType();
678
679 if (resultType->isIntegral())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000680 opCode = resultType->isSigned()? SDIVX : UDIVX;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000681 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000682 switch(resultType->getPrimitiveID())
683 {
684 case Type::FloatTyID: opCode = FDIVS; break;
685 case Type::DoubleTyID: opCode = FDIVD; break;
686 default: assert(0 && "Invalid type for DIV instruction"); break;
687 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000688
689 return opCode;
690}
691
692
693static inline MachineInstr*
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000694CreateDivConstInstruction(TargetMachine &target,
695 const InstructionNode* instrNode,
696 MachineInstr*& getMinstr2)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000697{
698 MachineInstr* minstr = NULL;
699 getMinstr2 = NULL;
700
701 Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
Chris Lattner1d87bcf2001-10-01 20:11:19 +0000702 assert(isa<ConstPoolVal>(constOp));
Chris Lattner20b1ea02001-09-14 03:47:57 +0000703
704 // Cases worth optimizing are:
705 // (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
706 // (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
707 //
708 const Type* resultType = instrNode->getInstruction()->getType();
709
710 if (resultType->isIntegral())
711 {
712 unsigned pow;
713 bool isValidConst;
714 int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
715 if (isValidConst)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000716 {
717 bool needNeg = false;
718 if (C < 0)
719 {
720 needNeg = true;
721 C = -C;
722 }
723
724 if (C == 1)
725 {
726 minstr = new MachineInstr(ADD);
727 minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
728 instrNode->leftChild()->getValue());
729 minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum());
730 }
731 else if (IsPowerOf2(C, pow))
732 {
733 MachineOpCode opCode= ((resultType->isSigned())
734 ? (resultType==Type::LongTy)? SRAX : SRA
735 : (resultType==Type::LongTy)? SRLX : SRL);
736 minstr = new MachineInstr(opCode);
737 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
738 instrNode->leftChild()->getValue());
739 minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
740 pow);
741 }
742
743 if (minstr && needNeg)
744 { // insert <reg = SUB 0, reg> after the instr to flip the sign
745 getMinstr2 = CreateIntNegInstruction(target,
746 instrNode->getValue());
747 }
748 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000749 }
750 else
751 {
752 if (resultType == Type::FloatTy ||
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000753 resultType == Type::DoubleTy)
754 {
755 bool isValidConst;
756 double dval = ((ConstPoolFP*) constOp)->getValue();
757
758 if (isValidConst && fabs(dval) == 1)
759 {
760 bool needNeg = (dval < 0);
761
762 MachineOpCode opCode = needNeg
763 ? (resultType == Type::FloatTy? FNEGS : FNEGD)
764 : (resultType == Type::FloatTy? FMOVS : FMOVD);
765
766 minstr = new MachineInstr(opCode);
767 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
768 instrNode->leftChild()->getValue());
769 }
770 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000771 }
772
773 if (minstr != NULL)
774 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000775 instrNode->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000776
777 return minstr;
778}
779
780
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000781static inline MachineOpCode
782ChooseLoadInstruction(const Type *DestTy)
783{
Chris Lattner71634472001-09-14 20:00:02 +0000784 switch (DestTy->getPrimitiveID()) {
785 case Type::BoolTyID:
786 case Type::UByteTyID: return LDUB;
787 case Type::SByteTyID: return LDSB;
788 case Type::UShortTyID: return LDUH;
789 case Type::ShortTyID: return LDSH;
790 case Type::UIntTyID: return LDUW;
791 case Type::IntTyID: return LDSW;
792 case Type::PointerTyID:
793 case Type::ULongTyID:
794 case Type::LongTyID: return LDX;
795 case Type::FloatTyID: return LD;
796 case Type::DoubleTyID: return LDD;
797 default: assert(0 && "Invalid type for Load instruction");
798 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000799
Chris Lattner71634472001-09-14 20:00:02 +0000800 return 0;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000801}
802
803
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000804static inline MachineOpCode
805ChooseStoreInstruction(const Type *DestTy)
806{
Chris Lattner71634472001-09-14 20:00:02 +0000807 switch (DestTy->getPrimitiveID()) {
808 case Type::BoolTyID:
809 case Type::UByteTyID:
810 case Type::SByteTyID: return STB;
811 case Type::UShortTyID:
812 case Type::ShortTyID: return STH;
813 case Type::UIntTyID:
814 case Type::IntTyID: return STW;
815 case Type::PointerTyID:
816 case Type::ULongTyID:
817 case Type::LongTyID: return STX;
818 case Type::FloatTyID: return ST;
819 case Type::DoubleTyID: return STD;
820 default: assert(0 && "Invalid type for Store instruction");
821 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000822
Chris Lattner71634472001-09-14 20:00:02 +0000823 return 0;
Chris Lattner20b1ea02001-09-14 03:47:57 +0000824}
825
826
827//------------------------------------------------------------------------
828// Function SetOperandsForMemInstr
829//
830// Choose addressing mode for the given load or store instruction.
831// Use [reg+reg] if it is an indexed reference, and the index offset is
832// not a constant or if it cannot fit in the offset field.
833// Use [reg+offset] in all other cases.
834//
835// This assumes that all array refs are "lowered" to one of these forms:
836// %x = load (subarray*) ptr, constant ; single constant offset
837// %x = load (subarray*) ptr, offsetVal ; single non-constant offset
838// Generally, this should happen via strength reduction + LICM.
839// Also, strength reduction should take care of using the same register for
840// the loop index variable and an array index, when that is profitable.
841//------------------------------------------------------------------------
842
843static void
844SetOperandsForMemInstr(MachineInstr* minstr,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000845 const InstructionNode* vmInstrNode,
846 const TargetMachine& target)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000847{
848 MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
849
850 // Variables to hold the index vector, ptr value, and offset value.
851 // The major work here is to extract these for all 3 instruction types
852 // and then call the common function SetMemOperands_Internal().
853 //
854 const vector<ConstPoolVal*>* idxVec = & memInst->getIndexVec();
855 vector<ConstPoolVal*>* newIdxVec = NULL;
856 Value* ptrVal;
857 Value* arrayOffsetVal = NULL;
858
859 // Test if a GetElemPtr instruction is being folded into this mem instrn.
860 // If so, it will be in the left child for Load and GetElemPtr,
861 // and in the right child for Store instructions.
862 //
863 InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000864 ? vmInstrNode->rightChild()
865 : vmInstrNode->leftChild());
Chris Lattner20b1ea02001-09-14 03:47:57 +0000866
867 if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
868 ptrChild->getOpLabel() == GetElemPtrIdx)
869 {
870 // There is a GetElemPtr instruction and there may be a chain of
871 // more than one. Use the pointer value of the last one in the chain.
872 // Fold the index vectors from the entire chain and from the mem
873 // instruction into one single index vector.
874 // Finally, we never fold for an array instruction so make that NULL.
875
876 newIdxVec = new vector<ConstPoolVal*>;
877 ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec);
878
879 newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end());
880 idxVec = newIdxVec;
881
882 assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType()
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000883 && "GetElemPtr cannot be folded into array refs in selection");
Chris Lattner20b1ea02001-09-14 03:47:57 +0000884 }
885 else
886 {
887 // There is no GetElemPtr instruction.
888 // Use the pointer value and the index vector from the Mem instruction.
889 // If it is an array reference, get the array offset value.
890 //
891 ptrVal = memInst->getPtrOperand();
892
893 const Type* opType =
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000894 ((const PointerType*) ptrVal->getType())->getValueType();
Chris Lattner20b1ea02001-09-14 03:47:57 +0000895 if (opType->isArrayType())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000896 {
897 assert((memInst->getNumOperands()
898 == (unsigned) 1 + memInst->getFirstOffsetIdx())
899 && "Array refs must be lowered before Instruction Selection");
900
901 arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx());
902 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000903 }
904
905 SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000906 *idxVec, target);
Chris Lattner20b1ea02001-09-14 03:47:57 +0000907
908 if (newIdxVec != NULL)
909 delete newIdxVec;
910}
911
912
913static void
914SetMemOperands_Internal(MachineInstr* minstr,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000915 const InstructionNode* vmInstrNode,
916 Value* ptrVal,
917 Value* arrayOffsetVal,
918 const vector<ConstPoolVal*>& idxVec,
919 const TargetMachine& target)
Chris Lattner20b1ea02001-09-14 03:47:57 +0000920{
921 MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
922
923 // Initialize so we default to storing the offset in a register.
924 int64_t smallConstOffset;
925 Value* valueForRegOffset = NULL;
926 MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister;
927
928 // Check if there is an index vector and if so, if it translates to
929 // a small enough constant to fit in the immediate-offset field.
930 //
931 if (idxVec.size() > 0)
932 {
933 bool isConstantOffset = false;
934 unsigned offset;
935
936 const PointerType* ptrType = (PointerType*) ptrVal->getType();
937
938 if (ptrType->getValueType()->isStructType())
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000939 {
940 // the offset is always constant for structs
941 isConstantOffset = true;
942
943 // Compute the offset value using the index vector
944 offset = target.DataLayout.getIndexedOffset(ptrType, idxVec);
945 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000946 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000947 {
948 // It must be an array ref. Check if the offset is a constant,
949 // and that the indexing has been lowered to a single offset.
950 //
951 assert(ptrType->getValueType()->isArrayType());
952 assert(arrayOffsetVal != NULL
953 && "Expect to be given Value* for array offsets");
954
Chris Lattner1d87bcf2001-10-01 20:11:19 +0000955 if (ConstPoolVal *CPV = dyn_cast<ConstPoolVal>(arrayOffsetVal))
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000956 {
957 isConstantOffset = true; // always constant for structs
958 assert(arrayOffsetVal->getType()->isIntegral());
959 offset = (CPV->getType()->isSigned()
960 ? ((ConstPoolSInt*)CPV)->getValue()
961 : (int64_t) ((ConstPoolUInt*)CPV)->getValue());
962 }
963 else
964 {
965 valueForRegOffset = arrayOffsetVal;
966 }
967 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000968
969 if (isConstantOffset)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000970 {
971 // create a virtual register for the constant
972 valueForRegOffset = ConstPoolSInt::get(Type::IntTy, offset);
973 }
Chris Lattner20b1ea02001-09-14 03:47:57 +0000974 }
975 else
976 {
977 offsetOpType = MachineOperand::MO_SignExtendedImmed;
978 smallConstOffset = 0;
979 }
980
981 // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR
982 // It is the left child in the instruction tree in all cases.
983 Value* leftVal = vmInstrNode->leftChild()->getValue();
984 minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal);
985
986 // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
Vikram S. Adve4cecdd22001-10-01 00:12:53 +0000987 // Operand 2 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
Chris Lattner20b1ea02001-09-14 03:47:57 +0000988 //
989 unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
990 if (offsetOpType == MachineOperand::MO_VirtualRegister)
991 {
992 assert(valueForRegOffset != NULL);
993 minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset);
994 }
995 else
996 minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset);
997
998 if (memInst->getOpcode() == Instruction::Store)
999 minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal);
1000 else
1001 minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001002 vmInstrNode->getValue());
Chris Lattner20b1ea02001-09-14 03:47:57 +00001003}
1004
1005
1006static inline MachineInstr*
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001007CreateIntSetInstruction(int64_t C, bool isSigned, Value* dest)
Chris Lattner20b1ea02001-09-14 03:47:57 +00001008{
1009 MachineInstr* minstr;
1010 if (isSigned)
1011 {
1012 minstr = new MachineInstr(SETSW);
1013 minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, C);
1014 }
1015 else
1016 {
1017 minstr = new MachineInstr(SETUW);
1018 minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed, C);
1019 }
1020
1021 minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, dest);
1022
1023 return minstr;
1024}
1025
1026
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001027// Create an instruction sequence to load a constant into a register.
1028// This always creates either one or two instructions.
1029// If two instructions are created, the second one is returned in getMinstr2
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001030//
Chris Lattner20b1ea02001-09-14 03:47:57 +00001031static MachineInstr*
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001032CreateLoadConstInstr(const TargetMachine &target,
1033 Instruction* vmInstr,
1034 Value* val,
1035 Instruction* dest,
1036 MachineInstr*& getMinstr2)
Chris Lattner20b1ea02001-09-14 03:47:57 +00001037{
Chris Lattner1d87bcf2001-10-01 20:11:19 +00001038 assert(isa<ConstPoolVal>(val));
Chris Lattner20b1ea02001-09-14 03:47:57 +00001039
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001040 MachineInstr* minstr1 = NULL;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001041
1042 getMinstr2 = NULL;
1043
Chris Lattner20b1ea02001-09-14 03:47:57 +00001044 // Use a "set" instruction for known constants that can go in an integer reg.
1045 // Use a "set" instruction followed by a int-to-float conversion for known
1046 // constants that must go in a floating point reg but have an integer value.
1047 // Use a "load" instruction for all other constants, in particular,
1048 // floating point constants.
1049 //
1050 const Type* valType = val->getType();
1051
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001052 if (valType->isIntegral() || valType == Type::BoolTy)
Chris Lattner20b1ea02001-09-14 03:47:57 +00001053 {
1054 bool isValidConstant;
1055 int64_t C = GetConstantValueAsSignedInt(val, isValidConstant);
1056 assert(isValidConstant && "Unrecognized constant");
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001057 minstr1 = CreateIntSetInstruction(C, valType->isSigned(), dest);
Chris Lattner20b1ea02001-09-14 03:47:57 +00001058 }
1059 else
1060 {
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001061
1062#undef MOVE_INT_TO_FP_REG_AVAILABLE
1063#ifdef MOVE_INT_TO_FP_REG_AVAILABLE
1064 //
1065 // This code was written to generate the following sequence:
1066 // SET[SU]W <int-const> <int-reg>
1067 // FITO[SD] <int-reg> <fp-reg>
1068 // (it really should have moved the int-reg to an fp-reg and then FITOS).
1069 // But for now the only way to move a value from an int-reg to an fp-reg
1070 // is via memory. Leave this code here but unused.
1071 //
Chris Lattner20b1ea02001-09-14 03:47:57 +00001072 assert(valType == Type::FloatTy || valType == Type::DoubleTy);
1073 double dval = ((ConstPoolFP*) val)->getValue();
1074 if (dval == (int64_t) dval)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001075 {
1076 // The constant actually has an integer value, so use a
1077 // [set; int-to-float] sequence instead of a load instruction.
1078 //
Vikram S. Adve8557b222001-10-10 20:56:33 +00001079 TmpInstruction* addrReg = NULL;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001080 if (dval != 0.0)
1081 { // First, create an integer constant of the same value as dval
1082 ConstPoolSInt* ival = ConstPoolSInt::get(Type::IntTy,
1083 (int64_t) dval);
1084 // Create another TmpInstruction for the hidden integer register
Vikram S. Adve8557b222001-10-10 20:56:33 +00001085 addrReg = new TmpInstruction(Instruction::UserOp1, ival, NULL);
1086 vmInstr->getMachineInstrVec().addTempValue(addrReg);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001087
1088 // Create the `SET' instruction
Vikram S. Adve8557b222001-10-10 20:56:33 +00001089 minstr1 = CreateIntSetInstruction((int64_t)dval, true, addrReg);
1090 addrReg->addMachineInstruction(minstr1);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001091 }
1092
1093 // In which variable do we put the second instruction?
1094 MachineInstr*& instr2 = (minstr1)? getMinstr2 : minstr1;
1095
1096 // Create the int-to-float instruction
1097 instr2 = new MachineInstr(valType == Type::FloatTy? FITOS : FITOD);
1098
1099 if (dval == 0.0)
1100 instr2->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
1101 else
1102 instr2->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
Vikram S. Adve8557b222001-10-10 20:56:33 +00001103 addrReg);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001104
1105 instr2->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
1106 dest);
1107 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00001108 else
Chris Lattner749655f2001-10-13 06:54:30 +00001109#endif /*MOVE_INT_TO_FP_REG_AVAILABLE*/
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001110
1111 {
1112 // Make an instruction sequence to load the constant, viz:
Vikram S. Adve8557b222001-10-10 20:56:33 +00001113 // SETSW <addr-of-constant>, addrReg
1114 // LOAD /*addr*/ addrReg, /*offset*/ 0, dest
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001115 // set the offset field to 0.
1116 //
1117 int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0
1118
1119 // Create another TmpInstruction for the hidden integer register
Vikram S. Adve8557b222001-10-10 20:56:33 +00001120 TmpInstruction* addrReg =
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001121 new TmpInstruction(Instruction::UserOp1, val, NULL);
Vikram S. Adve8557b222001-10-10 20:56:33 +00001122 vmInstr->getMachineInstrVec().addTempValue(addrReg);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001123
1124 minstr1 = new MachineInstr(SETUW);
1125 minstr1->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,val);
1126 minstr1->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
Vikram S. Adve8557b222001-10-10 20:56:33 +00001127 addrReg);
1128 addrReg->addMachineInstruction(minstr1);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001129
1130 getMinstr2 = new MachineInstr(ChooseLoadInstruction(val->getType()));
1131 getMinstr2->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
Vikram S. Adve8557b222001-10-10 20:56:33 +00001132 addrReg);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001133 getMinstr2->SetMachineOperand(1,MachineOperand::MO_SignExtendedImmed,
1134 zeroOffset);
1135 getMinstr2->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,
1136 dest);
1137 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00001138 }
1139
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001140 assert(minstr1);
1141 return minstr1;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001142}
1143
Vikram S. Adve8557b222001-10-10 20:56:33 +00001144
1145TmpInstruction*
1146InsertCodeToLoadConstant(ConstPoolVal* opValue,
1147 Instruction* vmInstr,
Vikram S. Adve137b62c2001-10-14 18:10:33 +00001148 vector<MachineInstr*>& loadConstVec,
Vikram S. Adve8557b222001-10-10 20:56:33 +00001149 TargetMachine& target)
1150{
1151 // value is constant and must be loaded into a register.
1152 // First, create a tmp virtual register (TmpInstruction)
1153 // to hold the constant.
1154 // This will replace the constant operand in `minstr'.
1155 TmpInstruction* tmpReg =
1156 new TmpInstruction(Instruction::UserOp1, opValue, NULL);
1157 vmInstr->getMachineInstrVec().addTempValue(tmpReg);
1158
1159 MachineInstr *minstr1, *minstr2;
1160 minstr1 = CreateLoadConstInstr(target, vmInstr,
1161 opValue, tmpReg, minstr2);
1162
1163 loadConstVec.push_back(minstr1);
1164 if (minstr2 != NULL)
1165 loadConstVec.push_back(minstr2);
1166
1167 tmpReg->addMachineInstruction(loadConstVec.back());
1168
1169 return tmpReg;
1170}
1171
1172
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001173// Special handling for constant operands:
1174// -- if the constant is 0, use the hardwired 0 register, if any;
1175// -- if the constant is of float or double type but has an integer value,
1176// use int-to-float conversion instruction instead of generating a load;
1177// -- if the constant fits in the IMMEDIATE field, use that field;
1178// -- else insert instructions to put the constant into a register, either
1179// directly or by loading explicitly from the constant pool.
1180//
1181static unsigned
1182FixConstantOperands(const InstructionNode* vmInstrNode,
1183 MachineInstr** mvec,
1184 unsigned numInstr,
1185 TargetMachine& target)
1186{
Vikram S. Adve8557b222001-10-10 20:56:33 +00001187 vector<MachineInstr*> loadConstVec;
1188 loadConstVec.reserve(MAX_INSTR_PER_VMINSTR);
1189
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001190 Instruction* vmInstr = vmInstrNode->getInstruction();
1191
1192 for (unsigned i=0; i < numInstr; i++)
1193 {
1194 MachineInstr* minstr = mvec[i];
1195 const MachineInstrDescriptor& instrDesc =
1196 target.getInstrInfo().getDescriptor(minstr->getOpCode());
1197
1198 for (unsigned op=0; op < minstr->getNumOperands(); op++)
1199 {
1200 const MachineOperand& mop = minstr->getOperand(op);
1201
1202 // skip the result position (for efficiency below) and any other
1203 // positions already marked as not a virtual register
1204 if (instrDesc.resultPos == (int) op ||
1205 mop.getOperandType() != MachineOperand::MO_VirtualRegister ||
1206 mop.getVRegValue() == NULL)
1207 {
1208 continue;
1209 }
1210
1211 Value* opValue = mop.getVRegValue();
1212
Chris Lattner1d87bcf2001-10-01 20:11:19 +00001213 if (isa<ConstPoolVal>(opValue))
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001214 {
1215 unsigned int machineRegNum;
1216 int64_t immedValue;
1217 MachineOperand::MachineOperandType opType =
1218 ChooseRegOrImmed(opValue, minstr->getOpCode(), target,
1219 /*canUseImmed*/ (op == 1),
1220 machineRegNum, immedValue);
1221
1222 if (opType == MachineOperand::MO_MachineRegister)
1223 minstr->SetMachineOperand(op, machineRegNum);
1224 else if (opType == MachineOperand::MO_VirtualRegister)
1225 {
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001226 TmpInstruction* tmpReg =
Vikram S. Adve8557b222001-10-10 20:56:33 +00001227 InsertCodeToLoadConstant((ConstPoolVal*) opValue,
1228 vmInstr, loadConstVec, target);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001229 minstr->SetMachineOperand(op, opType, tmpReg);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001230 }
1231 else
1232 minstr->SetMachineOperand(op, opType, immedValue);
1233 }
1234 }
Vikram S. Adve8557b222001-10-10 20:56:33 +00001235
Vikram S. Advea995e602001-10-11 04:23:19 +00001236 //
1237 // Also, check for implicit operands used (not those defined) by the
1238 // machine instruction. These include:
1239 // -- arguments to a Call
1240 // -- return value of a Return
1241 // Any such operand that is a constant value needs to be fixed also.
1242 // The current instructions with implicit refs (viz., Call and Return)
1243 // have no immediate fields, so the constant always needs to be loaded
1244 // into a register.
1245 //
Vikram S. Adve137b62c2001-10-14 18:10:33 +00001246 for (unsigned i=0, N=minstr->getNumImplicitRefs(); i < N; ++i)
Vikram S. Advea995e602001-10-11 04:23:19 +00001247 if (isa<ConstPoolVal>(minstr->getImplicitRef(i)))
Vikram S. Adve8557b222001-10-10 20:56:33 +00001248 {
Vikram S. Advea995e602001-10-11 04:23:19 +00001249 TmpInstruction* tmpReg = InsertCodeToLoadConstant((ConstPoolVal*)
1250 minstr->getImplicitRef(i),
1251 vmInstr, loadConstVec, target);
1252 minstr->setImplicitRef(i, tmpReg);
Vikram S. Adve8557b222001-10-10 20:56:33 +00001253 }
1254 }
1255
1256 //
1257 // Finally, inserted the generated instructions in the vector
1258 // to be returned.
1259 //
1260 unsigned numNew = loadConstVec.size();
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001261 if (numNew > 0)
1262 {
1263 // Insert the new instructions *before* the old ones by moving
1264 // the old ones over `numNew' positions (last-to-first, of course!).
1265 // We do check *after* returning that we did not exceed the vector mvec.
1266 for (int i=numInstr-1; i >= 0; i--)
1267 mvec[i+numNew] = mvec[i];
1268
1269 for (unsigned i=0; i < numNew; i++)
1270 mvec[i] = loadConstVec[i];
1271 }
1272
1273 return (numInstr + numNew);
1274}
1275
1276
Chris Lattner20b1ea02001-09-14 03:47:57 +00001277//
1278// Substitute operand `operandNum' of the instruction in node `treeNode'
Vikram S. Advec025fc12001-10-14 23:28:43 +00001279// in place of the use(s) of that instruction in node `parent'.
1280// Check both explicit and implicit operands!
Chris Lattner20b1ea02001-09-14 03:47:57 +00001281//
1282static void
1283ForwardOperand(InstructionNode* treeNode,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001284 InstrTreeNode* parent,
1285 int operandNum)
Chris Lattner20b1ea02001-09-14 03:47:57 +00001286{
Vikram S. Adve243dd452001-09-18 13:03:13 +00001287 assert(treeNode && parent && "Invalid invocation of ForwardOperand");
1288
Chris Lattner20b1ea02001-09-14 03:47:57 +00001289 Instruction* unusedOp = treeNode->getInstruction();
1290 Value* fwdOp = unusedOp->getOperand(operandNum);
Vikram S. Adve243dd452001-09-18 13:03:13 +00001291
1292 // The parent itself may be a list node, so find the real parent instruction
1293 while (parent->getNodeType() != InstrTreeNode::NTInstructionNode)
1294 {
1295 parent = parent->parent();
1296 assert(parent && "ERROR: Non-instruction node has no parent in tree.");
1297 }
1298 InstructionNode* parentInstrNode = (InstructionNode*) parent;
1299
1300 Instruction* userInstr = parentInstrNode->getInstruction();
Chris Lattner20b1ea02001-09-14 03:47:57 +00001301 MachineCodeForVMInstr& mvec = userInstr->getMachineInstrVec();
1302 for (unsigned i=0, N=mvec.size(); i < N; i++)
1303 {
1304 MachineInstr* minstr = mvec[i];
Vikram S. Advec025fc12001-10-14 23:28:43 +00001305
1306 for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001307 {
1308 const MachineOperand& mop = minstr->getOperand(i);
1309 if (mop.getOperandType() == MachineOperand::MO_VirtualRegister &&
1310 mop.getVRegValue() == unusedOp)
1311 {
1312 minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister,
1313 fwdOp);
1314 }
1315 }
Vikram S. Advec025fc12001-10-14 23:28:43 +00001316
1317 for (unsigned i=0, numOps=minstr->getNumImplicitRefs(); i < numOps; ++i)
1318 if (minstr->getImplicitRef(i) == unusedOp)
1319 minstr->setImplicitRef(i, fwdOp, minstr->implicitRefIsDefined(i));
Chris Lattner20b1ea02001-09-14 03:47:57 +00001320 }
1321}
1322
1323
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001324MachineInstr*
1325CreateCopyInstructionsByType(const TargetMachine& target,
1326 Value* src,
1327 Instruction* dest,
1328 MachineInstr*& getMinstr2)
1329{
1330 getMinstr2 = NULL; // initialize second return value
1331
1332 MachineInstr* minstr1 = NULL;
1333
1334 const Type* resultType = dest->getType();
1335
1336 MachineOpCode opCode = ChooseAddInstructionByType(resultType);
1337 if (opCode == INVALID_OPCODE)
1338 {
1339 assert(0 && "Unsupported result type in CreateCopyInstructionsByType()");
1340 return NULL;
1341 }
1342
1343 // if `src' is a constant that doesn't fit in the immed field, generate
1344 // a load instruction instead of an add
Chris Lattner1d87bcf2001-10-01 20:11:19 +00001345 if (isa<ConstPoolVal>(src))
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001346 {
1347 unsigned int machineRegNum;
1348 int64_t immedValue;
1349 MachineOperand::MachineOperandType opType =
1350 ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true,
1351 machineRegNum, immedValue);
1352
1353 if (opType == MachineOperand::MO_VirtualRegister)
1354 { // value is constant and cannot fit in immed field for the ADD
1355 minstr1 = CreateLoadConstInstr(target, dest, src, dest, getMinstr2);
1356 }
1357 }
1358
1359 if (minstr1 == NULL)
1360 { // Create the appropriate add instruction.
1361 // Make `src' the second operand, in case it is a constant
1362 // Use (unsigned long) 0 for a NULL pointer value.
1363 //
1364 const Type* nullValueType =
1365 (resultType->getPrimitiveID() == Type::PointerTyID)? Type::ULongTy
1366 : resultType;
1367 minstr1 = new MachineInstr(opCode);
1368 minstr1->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1369 ConstPoolVal::getNullConstant(nullValueType));
1370 minstr1->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, src);
1371 minstr1->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, dest);
1372 }
1373
1374 return minstr1;
1375}
1376
1377
Chris Lattner20b1ea02001-09-14 03:47:57 +00001378// This function is currently unused and incomplete but will be
1379// used if we have a linear layout of basic blocks in LLVM code.
1380// It decides which branch should fall-through, and whether an
1381// extra unconditional branch is needed (when neither falls through).
1382//
1383void
1384ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern)
1385{
1386 BranchInst* brInstr = (BranchInst*) vmInstr;
1387
1388 brPattern.flipCondition = false;
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001389 brPattern.targetBB = brInstr->getSuccessor(0);
Chris Lattner20b1ea02001-09-14 03:47:57 +00001390 brPattern.extraBranch = NULL;
1391
1392 assert(brInstr->getNumSuccessors() > 1 &&
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001393 "Unnecessary analysis for unconditional branch");
Chris Lattner20b1ea02001-09-14 03:47:57 +00001394
1395 assert(0 && "Fold branches in peephole optimization");
1396}
1397
1398
1399//******************* Externally Visible Functions *************************/
1400
1401
1402//------------------------------------------------------------------------
1403// External Function: GetInstructionsByRule
1404//
1405// Purpose:
1406// Choose machine instructions for the SPARC according to the
1407// patterns chosen by the BURG-generated parser.
1408//------------------------------------------------------------------------
1409
1410unsigned
1411GetInstructionsByRule(InstructionNode* subtreeRoot,
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001412 int ruleForNode,
1413 short* nts,
1414 TargetMachine &target,
1415 MachineInstr** mvec)
Chris Lattner20b1ea02001-09-14 03:47:57 +00001416{
1417 int numInstr = 1; // initialize for common case
1418 bool checkCast = false; // initialize here to use fall-through
1419 Value *leftVal, *rightVal;
1420 const Type* opType;
1421 int nextRule;
1422 int forwardOperandNum = -1;
Vikram S. Adve8557b222001-10-10 20:56:33 +00001423 int64_t s0=0, s8=8; // variables holding constants to avoid
1424 uint64_t u0=0; // overloading ambiguities below
Chris Lattner20b1ea02001-09-14 03:47:57 +00001425
1426 mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL; // just for safety
1427
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001428 //
1429 // Let's check for chain rules outside the switch so that we don't have
1430 // to duplicate the list of chain rule production numbers here again
1431 //
1432 if (ThisIsAChainRule(ruleForNode))
Chris Lattner20b1ea02001-09-14 03:47:57 +00001433 {
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001434 // Chain rules have a single nonterminal on the RHS.
1435 // Get the rule that matches the RHS non-terminal and use that instead.
1436 //
1437 assert(nts[0] && ! nts[1]
1438 && "A chain rule should have only one RHS non-terminal!");
1439 nextRule = burm_rule(subtreeRoot->state, nts[0]);
1440 nts = burm_nts[nextRule];
1441 numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec);
Chris Lattner20b1ea02001-09-14 03:47:57 +00001442 }
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001443 else
Chris Lattner20b1ea02001-09-14 03:47:57 +00001444 {
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001445 switch(ruleForNode) {
1446 case 1: // stmt: Ret
1447 case 2: // stmt: RetValue(reg)
1448 // NOTE: Prepass of register allocation is responsible
1449 // for moving return value to appropriate register.
1450 // Mark the return-address register as a hidden virtual reg.
Vikram S. Advea995e602001-10-11 04:23:19 +00001451 // Mark the return value register as an implicit ref of
1452 // the machine instruction.
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001453 {
1454 ReturnInst* returnInstr = (ReturnInst*) subtreeRoot->getInstruction();
1455 assert(returnInstr->getOpcode() == Instruction::Ret);
1456
1457 Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
1458 returnInstr, NULL);
1459 returnInstr->getMachineInstrVec().addTempValue(returnReg);
Chris Lattner20b1ea02001-09-14 03:47:57 +00001460
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001461 mvec[0] = new MachineInstr(RETURN);
1462 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1463 returnReg);
Vikram S. Adve8557b222001-10-10 20:56:33 +00001464 mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,s8);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001465
Vikram S. Advea995e602001-10-11 04:23:19 +00001466 if (returnInstr->getReturnValue() != NULL)
1467 mvec[0]->addImplicitRef(returnInstr->getReturnValue());
1468
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001469 returnReg->addMachineInstruction(mvec[0]);
1470
1471 mvec[numInstr++] = new MachineInstr(NOP); // delay slot
1472 break;
1473 }
1474
1475 case 3: // stmt: Store(reg,reg)
1476 case 4: // stmt: Store(reg,ptrreg)
1477 mvec[0] = new MachineInstr(
1478 ChooseStoreInstruction(
1479 subtreeRoot->leftChild()->getValue()->getType()));
1480 SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
1481 break;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001482
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001483 case 5: // stmt: BrUncond
1484 mvec[0] = new MachineInstr(BA);
1485 mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1486 (Value*)NULL);
1487 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1488 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
1489
1490 // delay slot
1491 mvec[numInstr++] = new MachineInstr(NOP);
1492 break;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001493
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001494 case 206: // stmt: BrCond(setCCconst)
1495 // setCCconst => boolean was computed with `%b = setCC type reg1 const'
1496 // If the constant is ZERO, we can use the branch-on-integer-register
1497 // instructions and avoid the SUBcc instruction entirely.
1498 // Otherwise this is just the same as case 5, so just fall through.
1499 {
1500 InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
1501 assert(constNode &&
1502 constNode->getNodeType() ==InstrTreeNode::NTConstNode);
1503 ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue();
1504 bool isValidConst;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001505
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001506 if ((constVal->getType()->isIntegral()
1507 || constVal->getType()->isPointerType())
1508 && GetConstantValueAsSignedInt(constVal, isValidConst) == 0
1509 && isValidConst)
1510 {
1511 // That constant is a zero after all...
1512 // Use the left child of setCC as the first argument!
1513 mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
1514 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1515 subtreeRoot->leftChild()->leftChild()->getValue());
1516 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1517 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
Chris Lattner20b1ea02001-09-14 03:47:57 +00001518
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001519 // delay slot
1520 mvec[numInstr++] = new MachineInstr(NOP);
1521
1522 // false branch
1523 int n = numInstr++;
1524 mvec[n] = new MachineInstr(BA);
1525 mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1526 (Value*) NULL);
1527 mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1528 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
1529
1530 // delay slot
1531 mvec[numInstr++] = new MachineInstr(NOP);
1532
1533 break;
1534 }
1535 // ELSE FALL THROUGH
1536 }
1537
1538 case 6: // stmt: BrCond(bool)
1539 // bool => boolean was computed with some boolean operator
1540 // (SetCC, Not, ...). We need to check whether the type was a FP,
1541 // signed int or unsigned int, and check the branching condition in
1542 // order to choose the branch to use.
1543 //
1544 {
1545 bool isFPBranch;
1546 mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot,
1547 isFPBranch));
1548 mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1549 subtreeRoot->leftChild()->getValue());
1550 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1551 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
1552
1553 // delay slot
1554 mvec[numInstr++] = new MachineInstr(NOP);
1555
1556 // false branch
1557 int n = numInstr++;
1558 mvec[n] = new MachineInstr(BA);
1559 mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1560 (Value*) NULL);
1561 mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1562 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
1563
1564 // delay slot
1565 mvec[numInstr++] = new MachineInstr(NOP);
1566 break;
1567 }
1568
1569 case 208: // stmt: BrCond(boolconst)
1570 {
1571 // boolconst => boolean is a constant; use BA to first or second label
Chris Lattnercfe26c92001-10-01 18:26:53 +00001572 ConstPoolVal* constVal =
1573 cast<ConstPoolVal>(subtreeRoot->leftChild()->getValue());
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001574 unsigned dest = ((ConstPoolBool*) constVal)->getValue()? 0 : 1;
1575
1576 mvec[0] = new MachineInstr(BA);
1577 mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1578 (Value*) NULL);
1579 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1580 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(dest));
1581
1582 // delay slot
1583 mvec[numInstr++] = new MachineInstr(NOP);
1584 break;
1585 }
1586
1587 case 8: // stmt: BrCond(boolreg)
1588 // boolreg => boolean is stored in an existing register.
1589 // Just use the branch-on-integer-register instruction!
1590 //
1591 {
1592 mvec[0] = new MachineInstr(BRNZ);
1593 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1594 subtreeRoot->leftChild()->getValue());
1595 mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1596 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
1597
1598 // delay slot
1599 mvec[numInstr++] = new MachineInstr(NOP); // delay slot
1600
1601 // false branch
1602 int n = numInstr++;
1603 mvec[n] = new MachineInstr(BA);
1604 mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1605 (Value*) NULL);
1606 mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
1607 ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
1608
1609 // delay slot
1610 mvec[numInstr++] = new MachineInstr(NOP);
1611 break;
1612 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00001613
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001614 case 9: // stmt: Switch(reg)
1615 assert(0 && "*** SWITCH instruction is not implemented yet.");
1616 numInstr = 0;
1617 break;
Chris Lattner20b1ea02001-09-14 03:47:57 +00001618
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00001619 case 10: // reg: VRegList(reg, reg)
1620 assert(0 && "VRegList should never be the topmost non-chain rule");
1621 break;
1622
1623 case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0
1624 mvec[0] = new MachineInstr(XNOR);
1625 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
1626 subtreeRoot->leftChild()->getValue());
1627 mvec[0]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
1628 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
1629 subtreeRoot->getValue());
1630 break;
1631
1632 case 322: // reg: ToBoolTy(bool):
1633 case 22: // reg: ToBoolTy(reg):
1634 opType = subtreeRoot->leftChild()->getValue()->getType();
1635 assert(opType->isIntegral() || opType == Type::BoolTy);
1636 numInstr = 0;
1637 forwardOperandNum = 0;
1638 break;
1639
1640 case 23: // reg: ToUByteTy(reg)
1641 case 25: // reg: ToUShortTy(reg)
1642 case 27: // reg: ToUIntTy(reg)
1643 case 29: // reg: ToULongTy(reg)
1644 opType = subtreeRoot->leftChild()->getValue()->getType();
1645 assert(opType->isIntegral() ||
1646 opType->isPointerType() ||
1647 opType == Type::BoolTy && "Cast is illegal for other types");
1648 numInstr = 0;
1649 forwardOperandNum = 0;
1650 break;
1651
1652 case 24: // reg: ToSByteTy(reg)
1653 case 26: // reg: ToShortTy(reg)
1654 case 28: // reg: ToIntTy(reg)
1655 case 30: // reg: ToLongTy(reg)
1656 opType = subtreeRoot->leftChild()->getValue()->getType();
1657 if (opType->isIntegral() || opType == Type::BoolTy)
1658 {
1659 numInstr = 0;
1660 forwardOperandNum = 0;
1661 }
1662 else
1663 {
1664 mvec[0] = new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,
1665 opType));
1666 Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
1667 }
1668 break;
1669
1670 case 31: // reg: ToFloatTy(reg):
1671 case 32: // reg: ToDoubleTy(reg):
1672 case 232: // reg: ToDoubleTy(Constant):
1673
1674 // If this instruction has a parent (a user) in the tree
1675 // and the user is translated as an FsMULd instruction,
1676 // then the cast is unnecessary. So check that first.
1677 // In the future, we'll want to do the same for the FdMULq instruction,
1678 // so do the check here instead of only for ToFloatTy(reg).
1679 //
1680 if (subtreeRoot->parent() != NULL &&
1681 ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD)
1682 {
1683 numInstr = 0;
1684 forwardOperandNum = 0;
1685 }
1686 else
1687 {
1688 opType = subtreeRoot->leftChild()->getValue()->getType();
1689 MachineOpCode opCode=ChooseConvertToFloatInstr(subtreeRoot,opType);
1690 if (opCode == INVALID_OPCODE) // no conversion needed
1691 {
1692 numInstr = 0;
1693 forwardOperandNum = 0;
1694 }
1695 else
1696 {
1697 mvec[0] = new MachineInstr(opCode);
1698 Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
1699 }
1700 }
1701 break;
1702
1703 case 19: // reg: ToArrayTy(reg):
1704 case 20: // reg: ToPointerTy(reg):
1705 numInstr = 0;
1706 forwardOperandNum = 0;
1707 break;
1708
1709 case 233: // reg: Add(reg, Constant)
1710 mvec[0] = CreateAddConstInstruction(subtreeRoot);
1711 if (mvec[0] != NULL)
1712 break;
1713 // ELSE FALL THROUGH
1714
1715 case 33: // reg: Add(reg, reg)
1716 mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
1717 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1718 break;
1719
1720 case 234: // reg: Sub(reg, Constant)
1721 mvec[0] = CreateSubConstInstruction(subtreeRoot);
1722 if (mvec[0] != NULL)
1723 break;
1724 // ELSE FALL THROUGH
1725
1726 case 34: // reg: Sub(reg, reg)
1727 mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot));
1728 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1729 break;
1730
1731 case 135: // reg: Mul(todouble, todouble)
1732 checkCast = true;
1733 // FALL THROUGH
1734
1735 case 35: // reg: Mul(reg, reg)
1736 mvec[0] =new MachineInstr(ChooseMulInstruction(subtreeRoot,checkCast));
1737 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1738 break;
1739
1740 case 335: // reg: Mul(todouble, todoubleConst)
1741 checkCast = true;
1742 // FALL THROUGH
1743
1744 case 235: // reg: Mul(reg, Constant)
1745 mvec[0] = CreateMulConstInstruction(target, subtreeRoot, mvec[1]);
1746 if (mvec[0] == NULL)
1747 {
1748 mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot,
1749 checkCast));
1750 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1751 }
1752 else
1753 if (mvec[1] != NULL)
1754 ++numInstr;
1755 break;
1756
1757 case 236: // reg: Div(reg, Constant)
1758 mvec[0] = CreateDivConstInstruction(target, subtreeRoot, mvec[1]);
1759 if (mvec[0] != NULL)
1760 {
1761 if (mvec[1] != NULL)
1762 ++numInstr;
1763 }
1764 else
1765 // ELSE FALL THROUGH
1766
1767 case 36: // reg: Div(reg, reg)
1768 mvec[0] = new MachineInstr(ChooseDivInstruction(target, subtreeRoot));
1769 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1770 break;
1771
1772 case 37: // reg: Rem(reg, reg)
1773 case 237: // reg: Rem(reg, Constant)
1774 assert(0 && "REM instruction unimplemented for the SPARC.");
1775 break;
1776
1777 case 38: // reg: And(reg, reg)
1778 case 238: // reg: And(reg, Constant)
1779 mvec[0] = new MachineInstr(AND);
1780 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1781 break;
1782
1783 case 138: // reg: And(reg, not)
1784 mvec[0] = new MachineInstr(ANDN);
1785 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1786 break;
1787
1788 case 39: // reg: Or(reg, reg)
1789 case 239: // reg: Or(reg, Constant)
1790 mvec[0] = new MachineInstr(ORN);
1791 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1792 break;
1793
1794 case 139: // reg: Or(reg, not)
1795 mvec[0] = new MachineInstr(ORN);
1796 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1797 break;
1798
1799 case 40: // reg: Xor(reg, reg)
1800 case 240: // reg: Xor(reg, Constant)
1801 mvec[0] = new MachineInstr(XOR);
1802 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1803 break;
1804
1805 case 140: // reg: Xor(reg, not)
1806 mvec[0] = new MachineInstr(XNOR);
1807 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
1808 break;
1809
1810 case 41: // boolconst: SetCC(reg, Constant)
1811 // Check if this is an integer comparison, and
1812 // there is a parent, and the parent decided to use
1813 // a branch-on-integer-register instead of branch-on-condition-code.
1814 // If so, the SUBcc instruction is not required.
1815 // (However, we must still check for constants to be loaded from
1816 // the constant pool so that such a load can be associated with
1817 // this instruction.)
1818 //
1819 // Otherwise this is just the same as case 42, so just fall through.
1820 //
1821 if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() &&
1822 subtreeRoot->parent() != NULL)
1823 {
1824 InstructionNode* parent = (InstructionNode*) subtreeRoot->parent();
1825 assert(parent->getNodeType() == InstrTreeNode::NTInstructionNode);
1826 const vector<MachineInstr*>&
1827 minstrVec = parent->getInstruction()->getMachineInstrVec();
1828 MachineOpCode parentOpCode;
1829 if (parent->getInstruction()->getOpcode() == Instruction::Br &&
1830 (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
1831 parentOpCode <= BRGEZ)
1832 {
1833 numInstr = 0; // don't forward the operand!
1834 break;
1835 }
1836 }
1837 // ELSE FALL THROUGH
1838
1839 case 42: // bool: SetCC(reg, reg):
1840 {
1841 // If result of the SetCC is only used for a single branch, we can
1842 // discard the result. Otherwise, the boolean value must go into
1843 // an integer register.
1844 //
1845 bool keepBoolVal = (subtreeRoot->parent() == NULL ||
1846 ((InstructionNode*) subtreeRoot->parent())
1847 ->getInstruction()->getOpcode() !=Instruction::Br);
1848 bool subValIsBoolVal =
1849 subtreeRoot->getInstruction()->getOpcode() == Instruction::SetNE;
1850 bool keepSubVal = keepBoolVal && subValIsBoolVal;
1851 bool computeBoolVal = keepBoolVal && ! subValIsBoolVal;
1852
1853 bool mustClearReg;
1854 int valueToMove;
1855 MachineOpCode movOpCode;
1856
1857 if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() ||
1858 subtreeRoot->leftChild()->getValue()->getType()->isPointerType())
1859 {
1860 // Integer condition: dest. should be %g0 or an integer register.
1861 // If result must be saved but condition is not SetEQ then we need
1862 // a separate instruction to compute the bool result, so discard
1863 // result of SUBcc instruction anyway.
1864 //
1865 mvec[0] = new MachineInstr(SUBcc);
1866 Set3OperandsFromInstr(mvec[0], subtreeRoot, target, ! keepSubVal);
1867
1868 // mark the 4th operand as being a CC register, and a "result"
1869 mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister,
1870 subtreeRoot->getValue(),/*def*/true);
1871
1872 if (computeBoolVal)
1873 { // recompute bool using the integer condition codes
1874 movOpCode =
1875 ChooseMovpccAfterSub(subtreeRoot,mustClearReg,valueToMove);
1876 }
1877 }
1878 else
1879 {
1880 // FP condition: dest of FCMP should be some FCCn register
1881 mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
1882 mvec[0]->SetMachineOperand(0,MachineOperand::MO_CCRegister,
1883 subtreeRoot->getValue());
1884 mvec[0]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister,
1885 subtreeRoot->leftChild()->getValue());
1886 mvec[0]->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,
1887 subtreeRoot->rightChild()->getValue());
1888
1889 if (computeBoolVal)
1890 {// recompute bool using the FP condition codes
1891 mustClearReg = true;
1892 valueToMove = 1;
1893 movOpCode = ChooseMovFpccInstruction(subtreeRoot);
1894 }
1895 }
1896
1897 if (computeBoolVal)
1898 {
1899 if (mustClearReg)
1900 {// Unconditionally set register to 0
1901 int n = numInstr++;
1902 mvec[n] = new MachineInstr(SETHI);
1903 mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,
1904 s0);
1905 mvec[n]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister,
1906 subtreeRoot->getValue());
1907 }
1908
1909 // Now conditionally move `valueToMove' (0 or 1) into the register
1910 int n = numInstr++;
1911 mvec[n] = new MachineInstr(movOpCode);
1912 mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
1913 subtreeRoot->getValue());
1914 mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
1915 valueToMove);
1916 mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
1917 subtreeRoot->getValue());
1918 }
1919 break;
1920 }
1921
1922 case 43: // boolreg: VReg
1923 case 44: // boolreg: Constant
1924 numInstr = 0;
1925 break;
1926
1927 case 51: // reg: Load(reg)
1928 case 52: // reg: Load(ptrreg)
1929 case 53: // reg: LoadIdx(reg,reg)
1930 case 54: // reg: LoadIdx(ptrreg,reg)
1931 mvec[0] = new MachineInstr(ChooseLoadInstruction(
1932 subtreeRoot->getValue()->getType()));
1933 SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
1934 break;
1935
1936 case 55: // reg: GetElemPtr(reg)
1937 case 56: // reg: GetElemPtrIdx(reg,reg)
1938 if (subtreeRoot->parent() != NULL)
1939 {
1940 // Check if the parent was an array access.
1941 // If so, we still need to generate this instruction.
1942 MemAccessInst* memInst = (MemAccessInst*)
1943 subtreeRoot->getInstruction();
1944 const PointerType* ptrType =
1945 (const PointerType*) memInst->getPtrOperand()->getType();
1946 if (! ptrType->getValueType()->isArrayType())
1947 {// we don't need a separate instr
1948 numInstr = 0; // don't forward operand!
1949 break;
1950 }
1951 }
1952 // else in all other cases we need to a separate ADD instruction
1953 mvec[0] = new MachineInstr(ADD);
1954 SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
1955 break;
1956
1957 case 57: // reg: Alloca: Implement as 2 instructions:
1958 // sub %sp, tmp -> %sp
1959 { // add %sp, 0 -> result
1960 Instruction* instr = subtreeRoot->getInstruction();
1961 const PointerType* instrType = (const PointerType*) instr->getType();
1962 assert(instrType->isPointerType());
1963 int tsize = (int)
1964 target.findOptimalStorageSize(instrType->getValueType());
1965 assert(tsize != 0 && "Just to check when this can happen");
1966
1967 // Create a temporary Value to hold the constant type-size
1968 ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);
1969
1970 // Instruction 1: sub %sp, tsize -> %sp
1971 // tsize is always constant, but it may have to be put into a
1972 // register if it doesn't fit in the immediate field.
1973 //
1974 mvec[0] = new MachineInstr(SUB);
1975 mvec[0]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
1976 mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
1977 valueForTSize);
1978 mvec[0]->SetMachineOperand(2, /*regNum %sp=o6=r[14]*/(unsigned int)14);
1979
1980 // Instruction 2: add %sp, 0 -> result
1981 numInstr++;
1982 mvec[1] = new MachineInstr(ADD);
1983 mvec[1]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
1984 mvec[1]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
1985 mvec[1]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
1986 instr);
1987 break;
1988 }
1989
1990 case 58: // reg: Alloca(reg): Implement as 3 instructions:
1991 // mul num, typeSz -> tmp
1992 // sub %sp, tmp -> %sp
1993 { // add %sp, 0 -> result
1994 Instruction* instr = subtreeRoot->getInstruction();
1995 const PointerType* instrType = (const PointerType*) instr->getType();
1996 assert(instrType->isPointerType() &&
1997 instrType->getValueType()->isArrayType());
1998 const Type* eltType =
1999 ((ArrayType*) instrType->getValueType())->getElementType();
2000 int tsize = (int) target.findOptimalStorageSize(eltType);
2001
2002 assert(tsize != 0 && "Just to check when this can happen");
2003 // if (tsize == 0)
2004 // {
2005 // numInstr = 0;
2006 // break;
2007 // }
2008 //else go on to create the instructions needed...
2009
2010 // Create a temporary Value to hold the constant type-size
2011 ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);
2012
2013 // Create a temporary value to hold `tmp'
2014 Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1,
2015 subtreeRoot->leftChild()->getValue(),
2016 NULL /*could insert tsize here*/);
2017 subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);
2018
2019 // Instruction 1: mul numElements, typeSize -> tmp
2020 mvec[0] = new MachineInstr(MULX);
2021 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
2022 subtreeRoot->leftChild()->getValue());
2023 mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
2024 valueForTSize);
2025 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
2026 tmpInstr);
2027
2028 tmpInstr->addMachineInstruction(mvec[0]);
2029
2030 // Instruction 2: sub %sp, tmp -> %sp
2031 numInstr++;
2032 mvec[1] = new MachineInstr(SUB);
2033 mvec[1]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
2034 mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
2035 tmpInstr);
2036 mvec[1]->SetMachineOperand(2, /*regNum %sp=o6=r[14]*/(unsigned int)14);
2037
2038 // Instruction 3: add %sp, 0 -> result
2039 numInstr++;
2040 mvec[2] = new MachineInstr(ADD);
2041 mvec[2]->SetMachineOperand(0, /*regNum %sp=o6=r[14]*/(unsigned int)14);
2042 mvec[2]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
2043 mvec[2]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
2044 instr);
2045 break;
2046 }
2047
2048 case 61: // reg: Call
2049 // Generate a call-indirect (i.e., JMPL) for now to expose
2050 // the potential need for registers. If an absolute address
2051 // is available, replace this with a CALL instruction.
2052 // Mark both the indirection register and the return-address
2053 // register as hidden virtual registers.
Vikram S. Advea995e602001-10-11 04:23:19 +00002054 // Also, mark the operands of the Call and return value (if
2055 // any) as implicit operands of the CALL machine instruction.
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002056 {
Chris Lattnerb00c5822001-10-02 03:41:24 +00002057 CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction());
Chris Lattner749655f2001-10-13 06:54:30 +00002058 Value *callee = callInstr->getCalledValue();
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002059
2060 Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1,
2061 callee, NULL);
2062 Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1,
2063 callInstr, NULL);
Vikram S. Adve8557b222001-10-10 20:56:33 +00002064
Vikram S. Advea995e602001-10-11 04:23:19 +00002065 // Note temporary values in the machineInstrVec for the VM instr.
Vikram S. Adve8557b222001-10-10 20:56:33 +00002066 //
2067 // WARNING: Operands 0..N-1 must go in slots 0..N-1 of implicitUses.
2068 // The result value must go in slot N. This is assumed
2069 // in register allocation.
2070 //
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002071 callInstr->getMachineInstrVec().addTempValue(jmpAddrReg);
2072 callInstr->getMachineInstrVec().addTempValue(retAddrReg);
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002073
2074 // Generate the machine instruction and its operands
2075 mvec[0] = new MachineInstr(JMPL);
2076 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
2077 jmpAddrReg);
2078 mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
2079 (int64_t) 0);
2080 mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
2081 retAddrReg);
2082
Vikram S. Advea995e602001-10-11 04:23:19 +00002083 // Add the call operands and return value as implicit refs
2084 for (unsigned i=0, N=callInstr->getNumOperands(); i < N; ++i)
2085 if (callInstr->getOperand(i) != callee)
2086 mvec[0]->addImplicitRef(callInstr->getOperand(i));
2087
2088 if (callInstr->getCalledMethod()->getReturnType() != Type::VoidTy)
2089 mvec[0]->addImplicitRef(callInstr, /*isDef*/ true);
2090
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002091 // NOTE: jmpAddrReg will be loaded by a different instruction generated
2092 // by the final code generator, so we just mark the CALL instruction
2093 // as computing that value.
2094 // The retAddrReg is actually computed by the CALL instruction.
2095 //
2096 jmpAddrReg->addMachineInstruction(mvec[0]);
2097 retAddrReg->addMachineInstruction(mvec[0]);
2098
2099 mvec[numInstr++] = new MachineInstr(NOP); // delay slot
2100 break;
2101 }
2102
2103 case 62: // reg: Shl(reg, reg)
2104 opType = subtreeRoot->leftChild()->getValue()->getType();
2105 assert(opType->isIntegral()
2106 || opType == Type::BoolTy
2107 || opType->isPointerType()&& "Shl unsupported for other types");
2108 mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
2109 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
2110 break;
2111
2112 case 63: // reg: Shr(reg, reg)
2113 opType = subtreeRoot->leftChild()->getValue()->getType();
2114 assert(opType->isIntegral()
2115 || opType == Type::BoolTy
2116 || opType->isPointerType() &&"Shr unsupported for other types");
2117 mvec[0] = new MachineInstr((opType->isSigned()
2118 ? ((opType == Type::LongTy)? SRAX : SRA)
2119 : ((opType == Type::LongTy)? SRLX : SRL)));
2120 Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
2121 break;
2122
2123 case 64: // reg: Phi(reg,reg)
2124 { // This instruction has variable #operands, so resultPos is 0.
2125 Instruction* phi = subtreeRoot->getInstruction();
2126 mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands());
2127 mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
2128 subtreeRoot->getValue());
2129 for (unsigned i=0, N=phi->getNumOperands(); i < N; i++)
2130 mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister,
2131 phi->getOperand(i));
2132 break;
2133 }
2134 case 71: // reg: VReg
2135 case 72: // reg: Constant
2136 numInstr = 0; // don't forward the value
2137 break;
2138
2139 default:
2140 assert(0 && "Unrecognized BURG rule");
2141 numInstr = 0;
2142 break;
2143 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00002144 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00002145
2146 if (forwardOperandNum >= 0)
2147 { // We did not generate a machine instruction but need to use operand.
2148 // If user is in the same tree, replace Value in its machine operand.
2149 // If not, insert a copy instruction which should get coalesced away
2150 // by register allocation.
2151 if (subtreeRoot->parent() != NULL)
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002152 ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
Chris Lattner20b1ea02001-09-14 03:47:57 +00002153 else
Vikram S. Adve4cecdd22001-10-01 00:12:53 +00002154 {
2155 MachineInstr *minstr1 = NULL, *minstr2 = NULL;
2156 minstr1 = CreateCopyInstructionsByType(target,
2157 subtreeRoot->getInstruction()->getOperand(forwardOperandNum),
2158 subtreeRoot->getInstruction(), minstr2);
2159 assert(minstr1);
2160 mvec[numInstr++] = minstr1;
2161 if (minstr2 != NULL)
2162 mvec[numInstr++] = minstr2;
2163 }
Chris Lattner20b1ea02001-09-14 03:47:57 +00002164 }
2165
2166 if (! ThisIsAChainRule(ruleForNode))
2167 numInstr = FixConstantOperands(subtreeRoot, mvec, numInstr, target);
2168
2169 return numInstr;
2170}
2171
2172