blob: 0df00e2f942c1cd03535327bf6370250d40b46b9 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
Chris Lattner3e130a22003-01-13 00:32:26 +00003// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +00004//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
11#include "llvm/iTerminators.h"
Brian Gaeke1749d632002-11-07 17:59:21 +000012#include "llvm/iOperators.h"
Brian Gaekea1719c92002-10-31 23:03:59 +000013#include "llvm/iOther.h"
Chris Lattner51b49a92002-11-02 19:45:49 +000014#include "llvm/iPHINode.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "llvm/iMemory.h"
Chris Lattner72614082002-10-25 22:55:53 +000016#include "llvm/Type.h"
Brian Gaeke20244b72002-12-12 15:33:40 +000017#include "llvm/DerivedTypes.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000018#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000019#include "llvm/Pass.h"
Chris Lattner341a9372002-10-29 17:43:55 +000020#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000021#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000022#include "llvm/CodeGen/SSARegMap.h"
Chris Lattneraa09b752002-12-28 21:08:28 +000023#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner3e130a22003-01-13 00:32:26 +000024#include "llvm/CodeGen/MachineConstantPool.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000025#include "llvm/Target/TargetMachine.h"
Chris Lattner72614082002-10-25 22:55:53 +000026#include "llvm/Support/InstVisitor.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000027#include "llvm/Target/MRegisterInfo.h"
28#include <map>
Chris Lattner72614082002-10-25 22:55:53 +000029
Chris Lattner333b2fa2002-12-13 10:09:43 +000030/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000031/// instruction at as well as a basic block. This is the version for when you
32/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000033inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000034 MachineBasicBlock::iterator &I,
35 MachineOpCode Opcode,
36 unsigned NumOperands,
37 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000038 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000039 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000040 I = MBB->insert(I, MI)+1;
Chris Lattner333b2fa2002-12-13 10:09:43 +000041 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
42}
43
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000044/// BMI - A special BuildMI variant that takes an iterator to insert the
45/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000046inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000047 MachineBasicBlock::iterator &I,
48 MachineOpCode Opcode,
49 unsigned NumOperands) {
Chris Lattner8bdd1292003-04-25 21:58:54 +000050 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000051 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000052 I = MBB->insert(I, MI)+1;
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000053 return MachineInstrBuilder(MI);
54}
55
Chris Lattner333b2fa2002-12-13 10:09:43 +000056
Chris Lattner72614082002-10-25 22:55:53 +000057namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000058 struct ISel : public FunctionPass, InstVisitor<ISel> {
59 TargetMachine &TM;
Chris Lattner341a9372002-10-29 17:43:55 +000060 MachineFunction *F; // The function we are compiling into
61 MachineBasicBlock *BB; // The current MBB we are compiling
Chris Lattner72614082002-10-25 22:55:53 +000062
Chris Lattner72614082002-10-25 22:55:53 +000063 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
64
Chris Lattner333b2fa2002-12-13 10:09:43 +000065 // MBBMap - Mapping between LLVM BB -> Machine BB
66 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
67
Chris Lattner3e130a22003-01-13 00:32:26 +000068 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000069
70 /// runOnFunction - Top level implementation of instruction selection for
71 /// the entire function.
72 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000073 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000074 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000075
Chris Lattner065faeb2002-12-28 20:24:02 +000076 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000077 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
78 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
79
Chris Lattner14aa7fe2002-12-16 22:54:46 +000080 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000081
Chris Lattnerdbd73722003-05-06 21:32:22 +000082 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000083 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000084
Chris Lattner333b2fa2002-12-13 10:09:43 +000085 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000086 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000087
88 // Select the PHI nodes
89 SelectPHINodes();
90
Chris Lattner72614082002-10-25 22:55:53 +000091 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +000092 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000093 F = 0;
Chris Lattner72614082002-10-25 22:55:53 +000094 return false; // We never modify the LLVM itself.
95 }
96
Chris Lattnerf0eb7be2002-12-15 21:13:40 +000097 virtual const char *getPassName() const {
98 return "X86 Simple Instruction Selection";
99 }
100
Chris Lattner72614082002-10-25 22:55:53 +0000101 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000102 /// block. This simply creates a new MachineBasicBlock to emit code into
103 /// and adds it to the current MachineFunction. Subsequent visit* for
104 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000105 ///
106 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000107 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000108 }
109
Chris Lattner065faeb2002-12-28 20:24:02 +0000110 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
111 /// from the stack into virtual registers.
112 ///
113 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000114
115 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
116 /// because we have to generate our sources into the source basic blocks,
117 /// not the current one.
118 ///
119 void SelectPHINodes();
120
Chris Lattner72614082002-10-25 22:55:53 +0000121 // Visitation methods for various instructions. These methods simply emit
122 // fixed X86 code for each instruction.
123 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000124
125 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000126 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000127 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000128
129 struct ValueRecord {
130 unsigned Reg;
131 const Type *Ty;
132 ValueRecord(unsigned R, const Type *T) : Reg(R), Ty(T) {}
133 };
134 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
135 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000136 void visitCallInst(CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000137
138 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000139 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000140 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
141 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000142 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000143 unsigned DestReg, const Type *DestTy,
144 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000145 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000146
Chris Lattnerf01729e2002-11-02 20:54:46 +0000147 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
148 void visitRem(BinaryOperator &B) { visitDivRem(B); }
149 void visitDivRem(BinaryOperator &B);
150
Chris Lattnere2954c82002-11-02 20:04:26 +0000151 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000152 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
153 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
154 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000155
Chris Lattner6d40c192003-01-16 16:43:00 +0000156 // Comparison operators...
157 void visitSetCondInst(SetCondInst &I);
158 bool EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000159
160 // Memory Instructions
Chris Lattner3e130a22003-01-13 00:32:26 +0000161 MachineInstr *doFPLoad(MachineBasicBlock *MBB,
162 MachineBasicBlock::iterator &MBBI,
163 const Type *Ty, unsigned DestReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000164 void visitLoadInst(LoadInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000165 void doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000166 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000167 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000168 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000169 void visitMallocInst(MallocInst &I);
170 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000171
Chris Lattnere2954c82002-11-02 20:04:26 +0000172 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000173 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000174 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000175 void visitCastInst(CastInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000176
177 void visitInstruction(Instruction &I) {
178 std::cerr << "Cannot instruction select: " << I;
179 abort();
180 }
181
Brian Gaeke95780cc2002-12-13 07:56:18 +0000182 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000183 ///
184 void promote32(unsigned targetReg, const ValueRecord &VR);
185
186 /// EmitByteSwap - Byteswap SrcReg into DestReg.
187 ///
188 void EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class);
Brian Gaeke95780cc2002-12-13 07:56:18 +0000189
Chris Lattner3e130a22003-01-13 00:32:26 +0000190 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
191 /// constant expression GEP support.
192 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000193 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000194 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000195 User::op_iterator IdxEnd, unsigned TargetReg);
196
Chris Lattner548f61d2003-04-23 17:22:12 +0000197 /// emitCastOperation - Common code shared between visitCastInst and
198 /// constant expression cast support.
199 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
200 Value *Src, const Type *DestTy, unsigned TargetReg);
201
Chris Lattnerc5291f52002-10-27 21:16:59 +0000202 /// copyConstantToRegister - Output the instructions required to put the
203 /// specified constant into the specified register.
204 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000205 void copyConstantToRegister(MachineBasicBlock *MBB,
206 MachineBasicBlock::iterator &MBBI,
207 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000208
Chris Lattner3e130a22003-01-13 00:32:26 +0000209 /// makeAnotherReg - This method returns the next register number we haven't
210 /// yet used.
211 ///
212 /// Long values are handled somewhat specially. They are always allocated
213 /// as pairs of 32 bit integer values. The register number returned is the
214 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
215 /// of the long value.
216 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000217 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000218 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
219 const TargetRegisterClass *RC =
220 TM.getRegisterInfo()->getRegClassForType(Type::IntTy);
221 // Create the lower part
222 F->getSSARegMap()->createVirtualRegister(RC);
223 // Create the upper part.
224 return F->getSSARegMap()->createVirtualRegister(RC)-1;
225 }
226
Chris Lattnerc0812d82002-12-13 06:56:29 +0000227 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner94af4142002-12-25 05:13:53 +0000228 const TargetRegisterClass *RC =
229 TM.getRegisterInfo()->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000230 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000231 }
232
Chris Lattner72614082002-10-25 22:55:53 +0000233 /// getReg - This method turns an LLVM value into a register number. This
234 /// is guaranteed to produce the same register number for a particular value
235 /// every time it is queried.
236 ///
237 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000238 unsigned getReg(Value *V) {
239 // Just append to the end of the current bb.
240 MachineBasicBlock::iterator It = BB->end();
241 return getReg(V, BB, It);
242 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000243 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000244 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000245 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000246 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000247 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000248 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000249 }
Chris Lattner72614082002-10-25 22:55:53 +0000250
Chris Lattner6f8fd252002-10-27 21:23:43 +0000251 // If this operand is a constant, emit the code to copy the constant into
252 // the register here...
253 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000254 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000255 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000256 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000257 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
258 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000259 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000260 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000261 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000262
Chris Lattner72614082002-10-25 22:55:53 +0000263 return Reg;
264 }
Chris Lattner72614082002-10-25 22:55:53 +0000265 };
266}
267
Chris Lattner43189d12002-11-17 20:07:45 +0000268/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
269/// Representation.
270///
271enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000272 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000273};
274
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000275/// getClass - Turn a primitive type into a "class" number which is based on the
276/// size of the type, and whether or not it is floating point.
277///
Chris Lattner43189d12002-11-17 20:07:45 +0000278static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000279 switch (Ty->getPrimitiveID()) {
280 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000281 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000282 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000283 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000284 case Type::IntTyID:
285 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000286 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000287
Chris Lattner94af4142002-12-25 05:13:53 +0000288 case Type::FloatTyID:
289 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000290
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000291 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000292 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000293 default:
294 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000295 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000296 }
297}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000298
Chris Lattner6b993cc2002-12-15 08:02:15 +0000299// getClassB - Just like getClass, but treat boolean values as bytes.
300static inline TypeClass getClassB(const Type *Ty) {
301 if (Ty == Type::BoolTy) return cByte;
302 return getClass(Ty);
303}
304
Chris Lattner06925362002-11-17 21:56:38 +0000305
Chris Lattnerc5291f52002-10-27 21:16:59 +0000306/// copyConstantToRegister - Output the instructions required to put the
307/// specified constant into the specified register.
308///
Chris Lattner8a307e82002-12-16 19:32:50 +0000309void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
310 MachineBasicBlock::iterator &IP,
311 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000312 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
313 if (CE->getOpcode() == Instruction::GetElementPtr) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000314 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000315 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000316 return;
Chris Lattner548f61d2003-04-23 17:22:12 +0000317 } else if (CE->getOpcode() == Instruction::Cast) {
318 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000319 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000320 }
321
Brian Gaeke20244b72002-12-12 15:33:40 +0000322 std::cerr << "Offending expr: " << C << "\n";
Chris Lattner94af4142002-12-25 05:13:53 +0000323 assert(0 && "Constant expressions not yet handled!\n");
Brian Gaeke20244b72002-12-12 15:33:40 +0000324 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000325
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000326 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000327 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000328
329 if (Class == cLong) {
330 // Copy the value into the register pair.
331 uint64_t Val;
332 if (C->getType()->isSigned())
333 Val = cast<ConstantSInt>(C)->getValue();
334 else
335 Val = cast<ConstantUInt>(C)->getValue();
336
337 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
338 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
339 return;
340 }
341
Chris Lattner94af4142002-12-25 05:13:53 +0000342 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000343
344 static const unsigned IntegralOpcodeTab[] = {
345 X86::MOVir8, X86::MOVir16, X86::MOVir32
346 };
347
Chris Lattner6b993cc2002-12-15 08:02:15 +0000348 if (C->getType() == Type::BoolTy) {
349 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
350 } else if (C->getType()->isSigned()) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000351 ConstantSInt *CSI = cast<ConstantSInt>(C);
Chris Lattner3e130a22003-01-13 00:32:26 +0000352 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CSI->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000353 } else {
354 ConstantUInt *CUI = cast<ConstantUInt>(C);
Brian Gaeke71794c02002-12-13 11:22:48 +0000355 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000356 }
Chris Lattner94af4142002-12-25 05:13:53 +0000357 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
358 double Value = CFP->getValue();
359 if (Value == +0.0)
360 BMI(MBB, IP, X86::FLD0, 0, R);
361 else if (Value == +1.0)
362 BMI(MBB, IP, X86::FLD1, 0, R);
363 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000364 // Otherwise we need to spill the constant to memory...
365 MachineConstantPool *CP = F->getConstantPool();
366 unsigned CPI = CP->getConstantPoolIndex(CFP);
367 addConstantPoolReference(doFPLoad(MBB, IP, CFP->getType(), R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000368 }
369
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000370 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000371 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000372 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000373 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000374 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000375 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000376 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000377 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000378 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000379 }
380}
381
Chris Lattner065faeb2002-12-28 20:24:02 +0000382/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
383/// the stack into virtual registers.
384///
385void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
386 // Emit instructions to load the arguments... On entry to a function on the
387 // X86, the stack frame looks like this:
388 //
389 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000390 // [ESP + 4] -- first argument (leftmost lexically)
391 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000392 // ...
393 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000394 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000395 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000396
397 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
398 unsigned Reg = getReg(*I);
399
Chris Lattner065faeb2002-12-28 20:24:02 +0000400 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000401 switch (getClassB(I->getType())) {
402 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000403 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000404 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
405 break;
406 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000407 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000408 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
409 break;
410 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000411 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000412 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
413 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000414 case cLong:
415 FI = MFI->CreateFixedObject(8, ArgOffset);
416 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
417 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
418 ArgOffset += 4; // longs require 4 additional bytes
419 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000420 case cFP:
421 unsigned Opcode;
422 if (I->getType() == Type::FloatTy) {
423 Opcode = X86::FLDr32;
Chris Lattneraa09b752002-12-28 21:08:28 +0000424 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000425 } else {
426 Opcode = X86::FLDr64;
Chris Lattneraa09b752002-12-28 21:08:28 +0000427 FI = MFI->CreateFixedObject(8, ArgOffset);
Chris Lattner3e130a22003-01-13 00:32:26 +0000428 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000429 }
430 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
431 break;
432 default:
433 assert(0 && "Unhandled argument type!");
434 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000435 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000436 }
437}
438
439
Chris Lattner333b2fa2002-12-13 10:09:43 +0000440/// SelectPHINodes - Insert machine code to generate phis. This is tricky
441/// because we have to generate our sources into the source basic blocks, not
442/// the current one.
443///
444void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000445 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000446 const Function &LF = *F->getFunction(); // The LLVM function...
447 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
448 const BasicBlock *BB = I;
449 MachineBasicBlock *MBB = MBBMap[I];
450
451 // Loop over all of the PHI nodes in the LLVM basic block...
452 unsigned NumPHIs = 0;
453 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattner548f61d2003-04-23 17:22:12 +0000454 PHINode *PN = (PHINode*)dyn_cast<PHINode>(I); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000455
Chris Lattner333b2fa2002-12-13 10:09:43 +0000456 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000457 unsigned PHIReg = getReg(*PN);
458 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
459 MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
460
461 MachineInstr *LongPhiMI = 0;
462 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
463 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
464 MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
465 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000466
467 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
468 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
469
470 // Get the incoming value into a virtual register. If it is not already
471 // available in a virtual register, insert the computation code into
472 // PredMBB
Chris Lattner92053632002-12-13 11:52:34 +0000473 //
Chris Lattner3e130a22003-01-13 00:32:26 +0000474 MachineBasicBlock::iterator PI = PredMBB->end();
475 while (PI != PredMBB->begin() &&
Chris Lattner3501fea2003-01-14 22:00:31 +0000476 TII.isTerminatorInstr((*(PI-1))->getOpcode()))
Chris Lattner3e130a22003-01-13 00:32:26 +0000477 --PI;
478 unsigned ValReg = getReg(PN->getIncomingValue(i), PredMBB, PI);
479 PhiMI->addRegOperand(ValReg);
480 PhiMI->addMachineBasicBlockOperand(PredMBB);
481 if (LongPhiMI) {
482 LongPhiMI->addRegOperand(ValReg+1);
483 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
484 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000485 }
486 }
487 }
488}
489
Chris Lattner6d40c192003-01-16 16:43:00 +0000490// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
491// the conditional branch instruction which is the only user of the cc
492// instruction. This is the case if the conditional branch is the only user of
493// the setcc, and if the setcc is in the same basic block as the conditional
494// branch. We also don't handle long arguments below, so we reject them here as
495// well.
496//
497static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
498 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
499 if (SCI->use_size() == 1 && isa<BranchInst>(SCI->use_back()) &&
500 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
501 const Type *Ty = SCI->getOperand(0)->getType();
502 if (Ty != Type::LongTy && Ty != Type::ULongTy)
503 return SCI;
504 }
505 return 0;
506}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000507
Chris Lattner6d40c192003-01-16 16:43:00 +0000508// Return a fixed numbering for setcc instructions which does not depend on the
509// order of the opcodes.
510//
511static unsigned getSetCCNumber(unsigned Opcode) {
512 switch(Opcode) {
513 default: assert(0 && "Unknown setcc instruction!");
514 case Instruction::SetEQ: return 0;
515 case Instruction::SetNE: return 1;
516 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000517 case Instruction::SetGE: return 3;
518 case Instruction::SetGT: return 4;
519 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000520 }
521}
Chris Lattner06925362002-11-17 21:56:38 +0000522
Chris Lattner6d40c192003-01-16 16:43:00 +0000523// LLVM -> X86 signed X86 unsigned
524// ----- ---------- ------------
525// seteq -> sete sete
526// setne -> setne setne
527// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000528// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000529// setgt -> setg seta
530// setle -> setle setbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000531static const unsigned SetCCOpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000532 {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr},
533 {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr},
Chris Lattner6d40c192003-01-16 16:43:00 +0000534};
535
536bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1) {
537
Brian Gaeke1749d632002-11-07 17:59:21 +0000538 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000539 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000540 bool isSigned = CompTy->isSigned();
Chris Lattner6d40c192003-01-16 16:43:00 +0000541 unsigned reg1 = getReg(Op0);
542 unsigned reg2 = getReg(Op1);
Chris Lattner05093a52002-11-21 15:52:38 +0000543
Chris Lattner3e130a22003-01-13 00:32:26 +0000544 unsigned Class = getClassB(CompTy);
545 switch (Class) {
546 default: assert(0 && "Unknown type class!");
547 // Emit: cmp <var1>, <var2> (do the comparison). We can
548 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
549 // 32-bit.
550 case cByte:
551 BuildMI(BB, X86::CMPrr8, 2).addReg(reg1).addReg(reg2);
552 break;
553 case cShort:
554 BuildMI(BB, X86::CMPrr16, 2).addReg(reg1).addReg(reg2);
555 break;
556 case cInt:
557 BuildMI(BB, X86::CMPrr32, 2).addReg(reg1).addReg(reg2);
558 break;
559 case cFP:
560 BuildMI(BB, X86::FpUCOM, 2).addReg(reg1).addReg(reg2);
561 BuildMI(BB, X86::FNSTSWr8, 0);
562 BuildMI(BB, X86::SAHF, 1);
563 isSigned = false; // Compare with unsigned operators
564 break;
565
566 case cLong:
567 if (OpNum < 2) { // seteq, setne
568 unsigned LoTmp = makeAnotherReg(Type::IntTy);
569 unsigned HiTmp = makeAnotherReg(Type::IntTy);
570 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
571 BuildMI(BB, X86::XORrr32, 2, LoTmp).addReg(reg1).addReg(reg2);
572 BuildMI(BB, X86::XORrr32, 2, HiTmp).addReg(reg1+1).addReg(reg2+1);
573 BuildMI(BB, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
574 break; // Allow the sete or setne to be generated from flags set by OR
575 } else {
576 // Emit a sequence of code which compares the high and low parts once
577 // each, then uses a conditional move to handle the overflow case. For
578 // example, a setlt for long would generate code like this:
579 //
580 // AL = lo(op1) < lo(op2) // Signedness depends on operands
581 // BL = hi(op1) < hi(op2) // Always unsigned comparison
582 // dest = hi(op1) == hi(op2) ? AL : BL;
583 //
584
Chris Lattner6d40c192003-01-16 16:43:00 +0000585 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000586 // classes! Until then, hardcode registers so that we can deal with their
587 // aliases (because we don't have conditional byte moves).
588 //
589 BuildMI(BB, X86::CMPrr32, 2).addReg(reg1).addReg(reg2);
Chris Lattner6d40c192003-01-16 16:43:00 +0000590 BuildMI(BB, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
Chris Lattner3e130a22003-01-13 00:32:26 +0000591 BuildMI(BB, X86::CMPrr32, 2).addReg(reg1+1).addReg(reg2+1);
Chris Lattner6d40c192003-01-16 16:43:00 +0000592 BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, X86::BL);
Chris Lattner3e130a22003-01-13 00:32:26 +0000593 BuildMI(BB, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000594 // NOTE: visitSetCondInst knows that the value is dumped into the BL
595 // register at this point for long values...
596 return isSigned;
Chris Lattner3e130a22003-01-13 00:32:26 +0000597 }
598 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000599 return isSigned;
600}
Chris Lattner3e130a22003-01-13 00:32:26 +0000601
Chris Lattner6d40c192003-01-16 16:43:00 +0000602
603/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
604/// register, then move it to wherever the result should be.
605///
606void ISel::visitSetCondInst(SetCondInst &I) {
607 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
608
609 unsigned OpNum = getSetCCNumber(I.getOpcode());
610 unsigned DestReg = getReg(I);
611 bool isSigned = EmitComparisonGetSignedness(OpNum, I.getOperand(0),
612 I.getOperand(1));
613
614 if (getClassB(I.getOperand(0)->getType()) != cLong || OpNum < 2) {
615 // Handle normal comparisons with a setcc instruction...
616 BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, DestReg);
617 } else {
618 // Handle long comparisons by copying the value which is already in BL into
619 // the register we want...
620 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(X86::BL);
621 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000622}
Chris Lattner51b49a92002-11-02 19:45:49 +0000623
Brian Gaekec2505982002-11-30 11:57:28 +0000624/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
625/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000626void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
627 bool isUnsigned = VR.Ty->isUnsigned();
628 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000629 case cByte:
630 // Extend value into target register (8->32)
631 if (isUnsigned)
Chris Lattner3e130a22003-01-13 00:32:26 +0000632 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000633 else
Chris Lattner3e130a22003-01-13 00:32:26 +0000634 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000635 break;
636 case cShort:
637 // Extend value into target register (16->32)
638 if (isUnsigned)
Chris Lattner3e130a22003-01-13 00:32:26 +0000639 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000640 else
Chris Lattner3e130a22003-01-13 00:32:26 +0000641 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000642 break;
643 case cInt:
644 // Move value into target register (32->32)
Chris Lattner3e130a22003-01-13 00:32:26 +0000645 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000646 break;
647 default:
648 assert(0 && "Unpromotable operand class in promote32");
649 }
Brian Gaekec2505982002-11-30 11:57:28 +0000650}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000651
Chris Lattner72614082002-10-25 22:55:53 +0000652/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
653/// we have the following possibilities:
654///
655/// ret void: No return value, simply emit a 'ret' instruction
656/// ret sbyte, ubyte : Extend value into EAX and return
657/// ret short, ushort: Extend value into EAX and return
658/// ret int, uint : Move value into EAX and return
659/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000660/// ret long, ulong : Move value into EAX/EDX and return
661/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000662///
Chris Lattner3e130a22003-01-13 00:32:26 +0000663void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000664 if (I.getNumOperands() == 0) {
665 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
666 return;
667 }
668
669 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000670 unsigned RetReg = getReg(RetVal);
671 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000672 case cByte: // integral return values: extend or move into EAX and return
673 case cShort:
674 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000675 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000676 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000677 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000678 break;
679 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000680 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000681 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000682 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000683 break;
684 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000685 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
686 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000687 // Declare that EAX & EDX are live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000688 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX).addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000689 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000690 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000691 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000692 }
Chris Lattner43189d12002-11-17 20:07:45 +0000693 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +0000694 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000695}
696
Chris Lattner55f6fab2003-01-16 18:07:23 +0000697// getBlockAfter - Return the basic block which occurs lexically after the
698// specified one.
699static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
700 Function::iterator I = BB; ++I; // Get iterator to next block
701 return I != BB->getParent()->end() ? &*I : 0;
702}
703
Chris Lattner51b49a92002-11-02 19:45:49 +0000704/// visitBranchInst - Handle conditional and unconditional branches here. Note
705/// that since code layout is frozen at this point, that if we are trying to
706/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000707/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000708///
Chris Lattner94af4142002-12-25 05:13:53 +0000709void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000710 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
711
712 if (!BI.isConditional()) { // Unconditional branch?
713 if (BI.getSuccessor(0) != NextBB)
714 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +0000715 return;
716 }
717
718 // See if we can fold the setcc into the branch itself...
719 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
720 if (SCI == 0) {
721 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
722 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000723 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000724 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000725 if (BI.getSuccessor(1) == NextBB) {
726 if (BI.getSuccessor(0) != NextBB)
727 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
728 } else {
729 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
730
731 if (BI.getSuccessor(0) != NextBB)
732 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
733 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000734 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000735 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000736
737 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
738 bool isSigned = EmitComparisonGetSignedness(OpNum, SCI->getOperand(0),
739 SCI->getOperand(1));
740
741 // LLVM -> X86 signed X86 unsigned
742 // ----- ---------- ------------
743 // seteq -> je je
744 // setne -> jne jne
745 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000746 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000747 // setgt -> jg ja
748 // setle -> jle jbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000749 static const unsigned OpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000750 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE },
751 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE },
Chris Lattner6d40c192003-01-16 16:43:00 +0000752 };
753
Chris Lattner55f6fab2003-01-16 18:07:23 +0000754 if (BI.getSuccessor(0) != NextBB) {
755 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
756 if (BI.getSuccessor(1) != NextBB)
757 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
758 } else {
759 // Change to the inverse condition...
760 if (BI.getSuccessor(1) != NextBB) {
761 OpNum ^= 1;
762 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
763 }
764 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000765}
766
Chris Lattner3e130a22003-01-13 00:32:26 +0000767
768/// doCall - This emits an abstract call instruction, setting up the arguments
769/// and the return value as appropriate. For the actual function call itself,
770/// it inserts the specified CallMI instruction into the stream.
771///
772void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
773 const std::vector<ValueRecord> &Args) {
774
Chris Lattner065faeb2002-12-28 20:24:02 +0000775 // Count how many bytes are to be pushed on the stack...
776 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000777
Chris Lattner3e130a22003-01-13 00:32:26 +0000778 if (!Args.empty()) {
779 for (unsigned i = 0, e = Args.size(); i != e; ++i)
780 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000781 case cByte: case cShort: case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000782 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000783 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000784 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000785 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000786 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
Chris Lattner065faeb2002-12-28 20:24:02 +0000787 break;
788 default: assert(0 && "Unknown class!");
789 }
790
791 // Adjust the stack pointer for the new arguments...
792 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
793
794 // Arguments go on the stack in reverse order, as specified by the ABI.
795 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +0000796 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
797 unsigned ArgReg = Args[i].Reg;
798 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000799 case cByte:
800 case cShort: {
801 // Promote arg to 32 bits wide into a temporary register...
802 unsigned R = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +0000803 promote32(R, Args[i]);
Chris Lattner065faeb2002-12-28 20:24:02 +0000804 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
805 X86::ESP, ArgOffset).addReg(R);
806 break;
807 }
808 case cInt:
809 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000810 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000811 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000812 case cLong:
813 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
814 X86::ESP, ArgOffset).addReg(ArgReg);
815 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
816 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
817 ArgOffset += 4; // 8 byte entry, not 4.
818 break;
819
Chris Lattner065faeb2002-12-28 20:24:02 +0000820 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000821 if (Args[i].Ty == Type::FloatTy) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000822 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000823 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000824 } else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000825 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
826 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
827 X86::ESP, ArgOffset).addReg(ArgReg);
828 ArgOffset += 4; // 8 byte entry, not 4.
Chris Lattner065faeb2002-12-28 20:24:02 +0000829 }
830 break;
831
Chris Lattner3e130a22003-01-13 00:32:26 +0000832 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +0000833 }
834 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +0000835 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000836 } else {
837 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +0000838 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +0000839
Chris Lattner3e130a22003-01-13 00:32:26 +0000840 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000841
Chris Lattner065faeb2002-12-28 20:24:02 +0000842 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +0000843
844 // If there is a return value, scavenge the result from the location the call
845 // leaves it in...
846 //
Chris Lattner3e130a22003-01-13 00:32:26 +0000847 if (Ret.Ty != Type::VoidTy) {
848 unsigned DestClass = getClassB(Ret.Ty);
849 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000850 case cByte:
851 case cShort:
852 case cInt: {
853 // Integral results are in %eax, or the appropriate portion
854 // thereof.
855 static const unsigned regRegMove[] = {
856 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
857 };
858 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +0000859 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000860 break;
Brian Gaeke20244b72002-12-12 15:33:40 +0000861 }
Chris Lattner94af4142002-12-25 05:13:53 +0000862 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000863 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000864 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000865 case cLong: // Long values are left in EDX:EAX
866 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
867 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
868 break;
869 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000870 }
Chris Lattnera3243642002-12-04 23:45:28 +0000871 }
Brian Gaekefa8d5712002-11-22 11:07:01 +0000872}
Chris Lattner2df035b2002-11-02 19:27:56 +0000873
Chris Lattner3e130a22003-01-13 00:32:26 +0000874
875/// visitCallInst - Push args on stack and do a procedure call instruction.
876void ISel::visitCallInst(CallInst &CI) {
877 MachineInstr *TheCall;
878 if (Function *F = CI.getCalledFunction()) {
879 // Emit a CALL instruction with PC-relative displacement.
880 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
881 } else { // Emit an indirect call...
882 unsigned Reg = getReg(CI.getCalledValue());
883 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
884 }
885
886 std::vector<ValueRecord> Args;
887 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
888 Args.push_back(ValueRecord(getReg(CI.getOperand(i)),
889 CI.getOperand(i)->getType()));
890
891 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
892 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
893}
894
895
Chris Lattner68aad932002-11-02 20:13:22 +0000896/// visitSimpleBinary - Implement simple binary operators for integral types...
897/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
898/// 4 for Xor.
899///
900void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000901 unsigned Class = getClassB(B.getType());
Chris Lattnere2954c82002-11-02 20:04:26 +0000902
903 static const unsigned OpcodeTab[][4] = {
Chris Lattner68aad932002-11-02 20:13:22 +0000904 // Arithmetic operators
Chris Lattner94af4142002-12-25 05:13:53 +0000905 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
906 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
Chris Lattner68aad932002-11-02 20:13:22 +0000907
908 // Bitwise operators
Chris Lattnere2954c82002-11-02 20:04:26 +0000909 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
910 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
911 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
912 };
Chris Lattner3e130a22003-01-13 00:32:26 +0000913
914 bool isLong = false;
915 if (Class == cLong) {
916 isLong = true;
917 Class = cInt; // Bottom 32 bits are handled just like ints
918 }
Chris Lattnere2954c82002-11-02 20:04:26 +0000919
920 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner94af4142002-12-25 05:13:53 +0000921 assert(Opcode && "Floating point arguments to logical inst?");
Chris Lattnere2954c82002-11-02 20:04:26 +0000922 unsigned Op0r = getReg(B.getOperand(0));
923 unsigned Op1r = getReg(B.getOperand(1));
Chris Lattner3e130a22003-01-13 00:32:26 +0000924 unsigned DestReg = getReg(B);
925 BuildMI(BB, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
926
927 if (isLong) { // Handle the upper 32 bits of long values...
928 static const unsigned TopTab[] = {
929 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
930 };
931 BuildMI(BB, TopTab[OperatorClass], 2,
932 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
933 }
Chris Lattnere2954c82002-11-02 20:04:26 +0000934}
935
Chris Lattner3e130a22003-01-13 00:32:26 +0000936/// doMultiply - Emit appropriate instructions to multiply together the
937/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
938/// result should be given as DestTy.
939///
940/// FIXME: doMultiply should use one of the two address IMUL instructions!
941///
Chris Lattner8a307e82002-12-16 19:32:50 +0000942void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000943 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +0000944 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000945 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +0000946 switch (Class) {
947 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +0000948 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000949 return;
950 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000951 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +0000952 case cByte:
953 case cShort:
954 case cInt: // Small integerals, handled below...
955 break;
956 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000957
958 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +0000959 static const unsigned MulOpcode[]={ X86::MULr8 , X86::MULr16 , X86::MULr32 };
Brian Gaeke20244b72002-12-12 15:33:40 +0000960 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
961 unsigned Reg = Regs[Class];
962
963 // Emit a MOV to put the first operand into the appropriately-sized
964 // subreg of EAX.
Chris Lattner3e130a22003-01-13 00:32:26 +0000965 BMI(MBB, MBBI, MovOpcode[Class], 1, Reg).addReg(op0Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000966
967 // Emit the appropriate multiply instruction.
Chris Lattner3e130a22003-01-13 00:32:26 +0000968 BMI(MBB, MBBI, MulOpcode[Class], 1).addReg(op1Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000969
970 // Emit another MOV to put the result into the destination register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000971 BMI(MBB, MBBI, MovOpcode[Class], 1, DestReg).addReg(Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000972}
973
Chris Lattnerca9671d2002-11-02 20:28:58 +0000974/// visitMul - Multiplies are not simple binary operators because they must deal
975/// with the EAX register explicitly.
976///
977void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +0000978 unsigned Op0Reg = getReg(I.getOperand(0));
979 unsigned Op1Reg = getReg(I.getOperand(1));
Chris Lattner3e130a22003-01-13 00:32:26 +0000980 unsigned DestReg = getReg(I);
981
982 // Simple scalar multiply?
983 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
984 MachineBasicBlock::iterator MBBI = BB->end();
985 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
986 } else {
987 // Long value. We have to do things the hard way...
988 // Multiply the two low parts... capturing carry into EDX
989 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
990 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
991
992 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
993 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
994 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
995
996 MachineBasicBlock::iterator MBBI = BB->end();
997 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
998 doMultiply(BB, MBBI, AHBLReg, Type::UIntTy, Op0Reg+1, Op1Reg); // AH*BL
999
1000 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1001 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
1002 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1003
1004 MBBI = BB->end();
1005 unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
1006 doMultiply(BB, MBBI, ALBHReg, Type::UIntTy, Op0Reg, Op1Reg+1); // AL*BH
1007
1008 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1009 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1010 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001011}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001012
Chris Lattner06925362002-11-17 21:56:38 +00001013
Chris Lattnerf01729e2002-11-02 20:54:46 +00001014/// visitDivRem - Handle division and remainder instructions... these
1015/// instruction both require the same instructions to be generated, they just
1016/// select the result from a different register. Note that both of these
1017/// instructions work differently for signed and unsigned operands.
1018///
1019void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001020 unsigned Class = getClass(I.getType());
1021 unsigned Op0Reg = getReg(I.getOperand(0));
1022 unsigned Op1Reg = getReg(I.getOperand(1));
1023 unsigned ResultReg = getReg(I);
1024
1025 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001026 case cFP: // Floating point divide
Chris Lattner94af4142002-12-25 05:13:53 +00001027 if (I.getOpcode() == Instruction::Div)
1028 BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001029 else { // Floating point remainder...
1030 MachineInstr *TheCall =
1031 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
1032 std::vector<ValueRecord> Args;
1033 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1034 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
1035 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1036 }
Chris Lattner94af4142002-12-25 05:13:53 +00001037 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001038 case cLong: {
1039 static const char *FnName[] =
1040 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1041
1042 unsigned NameIdx = I.getType()->isUnsigned()*2;
1043 NameIdx += I.getOpcode() == Instruction::Div;
1044 MachineInstr *TheCall =
1045 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1046
1047 std::vector<ValueRecord> Args;
1048 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1049 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
1050 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1051 return;
1052 }
1053 case cByte: case cShort: case cInt:
1054 break; // Small integerals, handled below...
1055 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001056 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001057
1058 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1059 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Brian Gaeke6559bb92002-11-14 22:32:30 +00001060 static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001061 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
1062 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1063
1064 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001065 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1066 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001067 };
1068
1069 bool isSigned = I.getType()->isSigned();
1070 unsigned Reg = Regs[Class];
1071 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001072
1073 // Put the first operand into one of the A registers...
1074 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
1075
1076 if (isSigned) {
1077 // Emit a sign extension instruction...
Chris Lattnera4978cc2002-12-01 23:24:58 +00001078 BuildMI(BB, ExtOpcode[Class], 0);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001079 } else {
1080 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
1081 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
1082 }
1083
Chris Lattner06925362002-11-17 21:56:38 +00001084 // Emit the appropriate divide or remainder instruction...
Chris Lattner92845e32002-11-21 18:54:29 +00001085 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001086
Chris Lattnerf01729e2002-11-02 20:54:46 +00001087 // Figure out which register we want to pick the result out of...
1088 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
1089
Chris Lattnerf01729e2002-11-02 20:54:46 +00001090 // Put the result into the destination register...
Chris Lattner94af4142002-12-25 05:13:53 +00001091 BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001092}
Chris Lattnere2954c82002-11-02 20:04:26 +00001093
Chris Lattner06925362002-11-17 21:56:38 +00001094
Brian Gaekea1719c92002-10-31 23:03:59 +00001095/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1096/// for constant immediate shift values, and for constant immediate
1097/// shift values equal to 1. Even the general case is sort of special,
1098/// because the shift amount has to be in CL, not just any old register.
1099///
Chris Lattner3e130a22003-01-13 00:32:26 +00001100void ISel::visitShiftInst(ShiftInst &I) {
1101 unsigned SrcReg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +00001102 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +00001103 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner3e130a22003-01-13 00:32:26 +00001104 bool isSigned = I.getType()->isSigned();
1105 unsigned Class = getClass(I.getType());
1106
1107 static const unsigned ConstantOperand[][4] = {
1108 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1109 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1110 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1111 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1112 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001113
Chris Lattner3e130a22003-01-13 00:32:26 +00001114 static const unsigned NonConstantOperand[][4] = {
1115 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1116 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1117 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1118 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1119 };
Chris Lattner796df732002-11-02 00:44:25 +00001120
Chris Lattner3e130a22003-01-13 00:32:26 +00001121 // Longs, as usual, are handled specially...
1122 if (Class == cLong) {
1123 // If we have a constant shift, we can generate much more efficient code
1124 // than otherwise...
1125 //
1126 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1127 unsigned Amount = CUI->getValue();
1128 if (Amount < 32) {
1129 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1130 if (isLeftShift) {
1131 BuildMI(BB, Opc[3], 3,
1132 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1133 BuildMI(BB, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
1134 } else {
1135 BuildMI(BB, Opc[3], 3,
1136 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1137 BuildMI(BB, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
1138 }
1139 } else { // Shifting more than 32 bits
1140 Amount -= 32;
1141 if (isLeftShift) {
1142 BuildMI(BB, X86::SHLir32, 2,DestReg+1).addReg(SrcReg).addZImm(Amount);
1143 BuildMI(BB, X86::MOVir32, 1,DestReg ).addZImm(0);
1144 } else {
1145 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
1146 BuildMI(BB, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1147 BuildMI(BB, X86::MOVir32, 1, DestReg+1).addZImm(0);
1148 }
1149 }
1150 } else {
1151 visitInstruction(I); // FIXME: Implement long shift by non-constant
Brian Gaekea1719c92002-10-31 23:03:59 +00001152 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001153 return;
1154 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001155
Chris Lattner3e130a22003-01-13 00:32:26 +00001156 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1157 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1158 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001159
Chris Lattner3e130a22003-01-13 00:32:26 +00001160 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1161 BuildMI(BB, Opc[Class], 2, DestReg).addReg(SrcReg).addZImm(CUI->getValue());
1162 } else { // The shift amount is non-constant.
1163 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001164
Chris Lattner3e130a22003-01-13 00:32:26 +00001165 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
1166 BuildMI(BB, Opc[Class], 1, DestReg).addReg(SrcReg);
1167 }
1168}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001169
Chris Lattner3e130a22003-01-13 00:32:26 +00001170
1171/// doFPLoad - This method is used to load an FP value from memory using the
1172/// current endianness. NOTE: This method returns a partially constructed load
1173/// instruction which needs to have the memory source filled in still.
1174///
1175MachineInstr *ISel::doFPLoad(MachineBasicBlock *MBB,
1176 MachineBasicBlock::iterator &MBBI,
1177 const Type *Ty, unsigned DestReg) {
1178 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1179 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
1180
1181 if (TM.getTargetData().isLittleEndian()) // fast path...
1182 return BMI(MBB, MBBI, LoadOpcode, 4, DestReg);
1183
1184 // If we are big-endian, start by creating an LEA instruction to represent the
1185 // address of the memory location to load from...
1186 //
1187 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1188 MachineInstr *Result = BMI(MBB, MBBI, X86::LEAr32, 5, SrcAddrReg);
1189
1190 // Allocate a temporary stack slot to transform the value into...
1191 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1192
1193 // Perform the bswaps 32 bits at a time...
1194 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1195 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1196 addDirectMem(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1197 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1198 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1199 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32, 5),
1200 FrameIdx, Offset).addReg(TmpReg2);
1201
1202 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1203 TmpReg1 = makeAnotherReg(Type::UIntTy);
1204 TmpReg2 = makeAnotherReg(Type::UIntTy);
1205
1206 addRegOffset(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1207 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1208 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1209 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32,5), FrameIdx).addReg(TmpReg2);
1210 }
1211
1212 // Now we can reload the final byteswapped result into the final destination.
1213 addFrameReference(BMI(MBB, MBBI, LoadOpcode, 4, DestReg), FrameIdx);
1214 return Result;
1215}
1216
1217/// EmitByteSwap - Byteswap SrcReg into DestReg.
1218///
1219void ISel::EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class) {
1220 // Emit the byte swap instruction...
1221 switch (Class) {
1222 case cByte:
Misha Brukmanbaf06072003-04-22 17:54:23 +00001223 // No byteswap necessary for 8 bit value...
Chris Lattner3e130a22003-01-13 00:32:26 +00001224 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(SrcReg);
1225 break;
1226 case cInt:
1227 // Use the 32 bit bswap instruction to do a 32 bit swap...
1228 BuildMI(BB, X86::BSWAPr32, 1, DestReg).addReg(SrcReg);
1229 break;
1230
1231 case cShort:
1232 // For 16 bit we have to use an xchg instruction, because there is no
Misha Brukmanbaf06072003-04-22 17:54:23 +00001233 // 16-bit bswap. XCHG is necessarily not in SSA form, so we force things
Chris Lattner3e130a22003-01-13 00:32:26 +00001234 // into AX to do the xchg.
1235 //
1236 BuildMI(BB, X86::MOVrr16, 1, X86::AX).addReg(SrcReg);
1237 BuildMI(BB, X86::XCHGrr8, 2).addReg(X86::AL, MOTy::UseAndDef)
1238 .addReg(X86::AH, MOTy::UseAndDef);
1239 BuildMI(BB, X86::MOVrr16, 1, DestReg).addReg(X86::AX);
1240 break;
1241 default: assert(0 && "Cannot byteswap this class!");
1242 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001243}
1244
Chris Lattner06925362002-11-17 21:56:38 +00001245
Chris Lattner6fc3c522002-11-17 21:11:55 +00001246/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001247/// instruction. The load and store instructions are the only place where we
1248/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001249///
1250void ISel::visitLoadInst(LoadInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001251 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1252 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner94af4142002-12-25 05:13:53 +00001253 unsigned SrcAddrReg = getReg(I.getOperand(0));
1254 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001255
Chris Lattner6fc3c522002-11-17 21:11:55 +00001256 unsigned Class = getClass(I.getType());
Chris Lattner94af4142002-12-25 05:13:53 +00001257 switch (Class) {
Chris Lattner94af4142002-12-25 05:13:53 +00001258 case cFP: {
Chris Lattner3e130a22003-01-13 00:32:26 +00001259 MachineBasicBlock::iterator MBBI = BB->end();
1260 addDirectMem(doFPLoad(BB, MBBI, I.getType(), DestReg), SrcAddrReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001261 return;
1262 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001263 case cLong: case cInt: case cShort: case cByte:
1264 break; // Integers of various sizes handled below
1265 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001266 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001267
Chris Lattnere8f0d922002-12-24 00:03:11 +00001268 // We need to adjust the input pointer if we are emulating a big-endian
1269 // long-pointer target. On these systems, the pointer that we are interested
1270 // in is in the upper part of the eight byte memory image of the pointer. It
1271 // also happens to be byte-swapped, but this will be handled later.
1272 //
1273 if (!isLittleEndian && hasLongPointers && isa<PointerType>(I.getType())) {
1274 unsigned R = makeAnotherReg(Type::UIntTy);
1275 BuildMI(BB, X86::ADDri32, 2, R).addReg(SrcAddrReg).addZImm(4);
1276 SrcAddrReg = R;
1277 }
Chris Lattner94af4142002-12-25 05:13:53 +00001278
Chris Lattnere8f0d922002-12-24 00:03:11 +00001279 unsigned IReg = DestReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001280 if (!isLittleEndian) // If big endian we need an intermediate stage
1281 DestReg = makeAnotherReg(Class != cLong ? I.getType() : Type::UIntTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001282
Chris Lattner3e130a22003-01-13 00:32:26 +00001283 static const unsigned Opcode[] = {
1284 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, 0, X86::MOVmr32
1285 };
Chris Lattnere8f0d922002-12-24 00:03:11 +00001286 addDirectMem(BuildMI(BB, Opcode[Class], 4, DestReg), SrcAddrReg);
1287
Chris Lattner3e130a22003-01-13 00:32:26 +00001288 // Handle long values now...
1289 if (Class == cLong) {
1290 if (isLittleEndian) {
1291 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
1292 } else {
1293 EmitByteSwap(IReg+1, DestReg, cInt);
1294 unsigned TempReg = makeAnotherReg(Type::IntTy);
1295 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TempReg), SrcAddrReg, 4);
1296 EmitByteSwap(IReg, TempReg, cInt);
Chris Lattner94af4142002-12-25 05:13:53 +00001297 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001298 return;
1299 }
1300
1301 if (!isLittleEndian)
1302 EmitByteSwap(IReg, DestReg, Class);
1303}
1304
1305
1306/// doFPStore - This method is used to store an FP value to memory using the
1307/// current endianness.
1308///
1309void ISel::doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg) {
1310 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1311 unsigned StoreOpcode = Ty == Type::FloatTy ? X86::FSTr32 : X86::FSTr64;
1312
1313 if (TM.getTargetData().isLittleEndian()) { // fast path...
1314 addDirectMem(BuildMI(BB, StoreOpcode,5), DestAddrReg).addReg(SrcReg);
1315 return;
1316 }
1317
1318 // Allocate a temporary stack slot to transform the value into...
1319 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1320 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1321 addFrameReference(BuildMI(BB, X86::LEAr32, 5, SrcAddrReg), FrameIdx);
1322
1323 // Store the value into a temporary stack slot...
1324 addDirectMem(BuildMI(BB, StoreOpcode, 5), SrcAddrReg).addReg(SrcReg);
1325
1326 // Perform the bswaps 32 bits at a time...
1327 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1328 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1329 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1330 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1331 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1332 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1333 DestAddrReg, Offset).addReg(TmpReg2);
1334
1335 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1336 TmpReg1 = makeAnotherReg(Type::UIntTy);
1337 TmpReg2 = makeAnotherReg(Type::UIntTy);
1338
1339 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1340 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1341 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1342 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), DestAddrReg).addReg(TmpReg2);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001343 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001344}
1345
Chris Lattner06925362002-11-17 21:56:38 +00001346
Chris Lattner6fc3c522002-11-17 21:11:55 +00001347/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1348/// instruction.
1349///
1350void ISel::visitStoreInst(StoreInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001351 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1352 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner3e130a22003-01-13 00:32:26 +00001353 unsigned ValReg = getReg(I.getOperand(0));
1354 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattnere8f0d922002-12-24 00:03:11 +00001355
Chris Lattner94af4142002-12-25 05:13:53 +00001356 unsigned Class = getClass(I.getOperand(0)->getType());
1357 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001358 case cLong:
1359 if (isLittleEndian) {
1360 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1361 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4),
1362 AddressReg, 4).addReg(ValReg+1);
1363 } else {
1364 unsigned T1 = makeAnotherReg(Type::IntTy);
1365 unsigned T2 = makeAnotherReg(Type::IntTy);
1366 EmitByteSwap(T1, ValReg , cInt);
1367 EmitByteSwap(T2, ValReg+1, cInt);
1368 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(T2);
1369 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg, 4).addReg(T1);
1370 }
Chris Lattner94af4142002-12-25 05:13:53 +00001371 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001372 case cFP:
1373 doFPStore(I.getOperand(0)->getType(), AddressReg, ValReg);
1374 return;
1375 case cInt: case cShort: case cByte:
1376 break; // Integers of various sizes handled below
1377 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001378 }
1379
1380 if (!isLittleEndian && hasLongPointers &&
1381 isa<PointerType>(I.getOperand(0)->getType())) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001382 unsigned R = makeAnotherReg(Type::UIntTy);
1383 BuildMI(BB, X86::ADDri32, 2, R).addReg(AddressReg).addZImm(4);
1384 AddressReg = R;
1385 }
1386
Chris Lattner94af4142002-12-25 05:13:53 +00001387 if (!isLittleEndian && Class != cByte) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001388 unsigned R = makeAnotherReg(I.getOperand(0)->getType());
1389 EmitByteSwap(R, ValReg, Class);
1390 ValReg = R;
Chris Lattnere8f0d922002-12-24 00:03:11 +00001391 }
1392
Chris Lattner94af4142002-12-25 05:13:53 +00001393 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner6fc3c522002-11-17 21:11:55 +00001394 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
1395}
1396
1397
Brian Gaekec11232a2002-11-26 10:43:30 +00001398/// visitCastInst - Here we have various kinds of copying with or without
1399/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001400void ISel::visitCastInst(CastInst &CI) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001401 unsigned DestReg = getReg(CI);
1402 MachineBasicBlock::iterator MI = BB->end();
1403 emitCastOperation(BB, MI, CI.getOperand(0), CI.getType(), DestReg);
1404}
1405
1406/// emitCastOperation - Common code shared between visitCastInst and
1407/// constant expression cast support.
1408void ISel::emitCastOperation(MachineBasicBlock *BB,
1409 MachineBasicBlock::iterator &IP,
1410 Value *Src, const Type *DestTy,
1411 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001412 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001413 const Type *SrcTy = Src->getType();
1414 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001415 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001416
Chris Lattner3e130a22003-01-13 00:32:26 +00001417 // Implement casts to bool by using compare on the operand followed by set if
1418 // not zero on the result.
1419 if (DestTy == Type::BoolTy) {
1420 if (SrcClass == cFP || SrcClass == cLong)
Chris Lattner548f61d2003-04-23 17:22:12 +00001421 abort(); // FIXME: implement cast (long & FP) to bool
Chris Lattner3e130a22003-01-13 00:32:26 +00001422
Chris Lattner548f61d2003-04-23 17:22:12 +00001423 BMI(BB, IP, X86::CMPri8, 2).addReg(SrcReg).addZImm(0);
1424 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001425 return;
1426 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001427
1428 static const unsigned RegRegMove[] = {
1429 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1430 };
1431
1432 // Implement casts between values of the same type class (as determined by
1433 // getClass) by using a register-to-register move.
1434 if (SrcClass == DestClass) {
1435 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001436 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001437 } else if (SrcClass == cFP) {
1438 if (SrcTy == Type::FloatTy) { // double -> float
1439 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001440 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001441 } else { // float -> double
1442 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1443 "Unknown cFP member!");
1444 // Truncate from double to float by storing to memory as short, then
1445 // reading it back.
1446 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
1447 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Chris Lattner548f61d2003-04-23 17:22:12 +00001448 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1449 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001450 }
1451 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001452 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1453 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001454 } else {
Chris Lattner548f61d2003-04-23 17:22:12 +00001455 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001456 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001457 return;
1458 }
1459
1460 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1461 // or zero extension, depending on whether the source type was signed.
1462 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1463 SrcClass < DestClass) {
1464 bool isLong = DestClass == cLong;
1465 if (isLong) DestClass = cInt;
1466
1467 static const unsigned Opc[][4] = {
1468 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1469 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1470 };
1471
1472 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001473 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1474 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001475
1476 if (isLong) { // Handle upper 32 bits as appropriate...
1477 if (isUnsigned) // Zero out top bits...
Chris Lattner548f61d2003-04-23 17:22:12 +00001478 BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001479 else // Sign extend bottom half...
Chris Lattner548f61d2003-04-23 17:22:12 +00001480 BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001481 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001482 return;
1483 }
1484
1485 // Special case long -> int ...
1486 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001487 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001488 return;
1489 }
1490
1491 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1492 // move out of AX or AL.
1493 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1494 && SrcClass > DestClass) {
1495 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00001496 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1497 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00001498 return;
1499 }
1500
1501 // Handle casts from integer to floating point now...
1502 if (DestClass == cFP) {
1503 // unsigned int -> load as 64 bit int.
1504 // unsigned long long -> more complex
1505 if (SrcTy->isUnsigned() && SrcTy != Type::UByteTy)
Chris Lattner548f61d2003-04-23 17:22:12 +00001506 abort(); // don't handle unsigned src yet!
Chris Lattner3e130a22003-01-13 00:32:26 +00001507
1508 // We don't have the facilities for directly loading byte sized data from
1509 // memory. Promote it to 16 bits.
1510 if (SrcClass == cByte) {
1511 unsigned TmpReg = makeAnotherReg(Type::ShortTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00001512 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
1513 1, TmpReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001514 SrcTy = Type::ShortTy; // Pretend the short is our input now!
1515 SrcClass = cShort;
1516 SrcReg = TmpReg;
1517 }
1518
1519 // Spill the integer to memory and reload it from there...
1520 int FrameIdx =
1521 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
1522
1523 if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001524 if (SrcTy == Type::ULongTy) abort(); // FIXME: Handle ulong -> FP
1525 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
1526 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001527 FrameIdx, 4).addReg(SrcReg+1);
1528 } else {
1529 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001530 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001531 }
1532
1533 static const unsigned Op2[] =
1534 { 0, X86::FILDr16, X86::FILDr32, 0, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001535 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001536 return;
1537 }
1538
1539 // Handle casts from floating point to integer now...
1540 if (SrcClass == cFP) {
1541 // Change the floating point control register to use "round towards zero"
1542 // mode when truncating to an integer value.
1543 //
1544 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00001545 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001546
1547 // Load the old value of the high byte of the control word...
1548 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00001549 addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001550
1551 // Set the high part to be round to zero...
Chris Lattner548f61d2003-04-23 17:22:12 +00001552 addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00001553
1554 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001555 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001556
1557 // Restore the memory image of control word to original value
Chris Lattner548f61d2003-04-23 17:22:12 +00001558 addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001559 CWFrameIdx, 1).addReg(HighPartOfCW);
1560
1561 // We don't have the facilities for directly storing byte sized data to
1562 // memory. Promote it to 16 bits. We also must promote unsigned values to
1563 // larger classes because we only have signed FP stores.
1564 unsigned StoreClass = DestClass;
1565 const Type *StoreTy = DestTy;
1566 if (StoreClass == cByte || DestTy->isUnsigned())
1567 switch (StoreClass) {
1568 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
1569 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
1570 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner548f61d2003-04-23 17:22:12 +00001571 case cLong: abort(); // FIXME: unsigned long long -> more complex
Chris Lattner3e130a22003-01-13 00:32:26 +00001572 default: assert(0 && "Unknown store class!");
1573 }
1574
1575 // Spill the integer to memory and reload it from there...
1576 int FrameIdx =
1577 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
1578
1579 static const unsigned Op1[] =
1580 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001581 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001582
1583 if (DestClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001584 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
1585 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00001586 } else {
1587 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001588 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001589 }
1590
1591 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001592 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001593 return;
1594 }
1595
Brian Gaeked474e9c2002-12-06 10:49:33 +00001596 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattner548f61d2003-04-23 17:22:12 +00001597 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00001598}
Brian Gaekea1719c92002-10-31 23:03:59 +00001599
Chris Lattner8a307e82002-12-16 19:32:50 +00001600// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1601// returns zero when the input is not exactly a power of two.
1602static unsigned ExactLog2(unsigned Val) {
1603 if (Val == 0) return 0;
1604 unsigned Count = 0;
1605 while (Val != 1) {
1606 if (Val & 1) return 0;
1607 Val >>= 1;
1608 ++Count;
1609 }
1610 return Count+1;
1611}
1612
Chris Lattner3e130a22003-01-13 00:32:26 +00001613void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
1614 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001615 MachineBasicBlock::iterator MI = BB->end();
1616 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00001617 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001618}
1619
Brian Gaeke71794c02002-12-13 11:22:48 +00001620void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001621 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00001622 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00001623 User::op_iterator IdxEnd, unsigned TargetReg) {
1624 const TargetData &TD = TM.getTargetData();
1625 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00001626 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001627
Brian Gaeke20244b72002-12-12 15:33:40 +00001628 // GEPs have zero or more indices; we must perform a struct access
1629 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00001630 for (GetElementPtrInst::op_iterator oi = IdxBegin,
1631 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001632 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00001633 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00001634 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001635 // It's a struct access. idx is the index into the structure,
1636 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00001637 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
1638 assert(CUI->getType() == Type::UByteTy
Brian Gaeke20244b72002-12-12 15:33:40 +00001639 && "Funny-looking structure index in GEP");
1640 // Use the TargetData structure to pick out what the layout of
1641 // the structure is in memory. Since the structure index must
1642 // be constant, we can get its value and use it to find the
1643 // right byte offset from the StructLayout class's list of
1644 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00001645 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001646 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
1647 if (FieldOff) {
1648 NextReg = makeAnotherReg(Type::UIntTy);
1649 // Emit an ADD to add FieldOff to the basePtr.
1650 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
1651 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001652 // The next type is the member of the structure selected by the
1653 // index.
Chris Lattner065faeb2002-12-28 20:24:02 +00001654 Ty = StTy->getElementTypes()[idxValue];
1655 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001656 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00001657
Brian Gaeke20244b72002-12-12 15:33:40 +00001658 // idx is the index into the array. Unlike with structure
1659 // indices, we may not know its actual value at code-generation
1660 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00001661 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
1662
Chris Lattner3e130a22003-01-13 00:32:26 +00001663 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00001664 // must find the size of the pointed-to type (Not coincidentally, the next
1665 // type is the type of the elements in the array).
1666 Ty = SqTy->getElementType();
1667 unsigned elementSize = TD.getTypeSize(Ty);
1668
1669 // If idxReg is a constant, we don't need to perform the multiply!
1670 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001671 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00001672 unsigned Offset = elementSize*CSI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001673 NextReg = makeAnotherReg(Type::UIntTy);
1674 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00001675 }
1676 } else if (elementSize == 1) {
1677 // If the element size is 1, we don't have to multiply, just add
1678 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001679 NextReg = makeAnotherReg(Type::UIntTy);
1680 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001681 } else {
1682 unsigned idxReg = getReg(idx, MBB, IP);
1683 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
1684 if (unsigned Shift = ExactLog2(elementSize)) {
1685 // If the element size is exactly a power of 2, use a shift to get it.
Chris Lattner8a307e82002-12-16 19:32:50 +00001686 BMI(MBB, IP, X86::SHLir32, 2,
1687 OffsetReg).addReg(idxReg).addZImm(Shift-1);
1688 } else {
1689 // Most general case, emit a multiply...
1690 unsigned elementSizeReg = makeAnotherReg(Type::LongTy);
1691 BMI(MBB, IP, X86::MOVir32, 1, elementSizeReg).addZImm(elementSize);
1692
1693 // Emit a MUL to multiply the register holding the index by
1694 // elementSize, putting the result in OffsetReg.
Chris Lattner3e130a22003-01-13 00:32:26 +00001695 doMultiply(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSizeReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001696 }
1697 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3e130a22003-01-13 00:32:26 +00001698 NextReg = makeAnotherReg(Type::UIntTy);
1699 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001700 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001701 }
1702 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00001703 // one, so we don't need to worry about BaseReg itself, anymore.
1704 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00001705 }
1706 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00001707 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00001708 // put the answer. A 32-bit move should do it, because we are in
1709 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00001710 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001711}
1712
1713
Chris Lattner065faeb2002-12-28 20:24:02 +00001714/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
1715/// frame manager, otherwise do it the hard way.
1716///
1717void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00001718 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00001719 const Type *Ty = I.getAllocatedType();
1720 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
1721
1722 // If this is a fixed size alloca in the entry block for the function,
1723 // statically stack allocate the space.
1724 //
1725 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
1726 if (I.getParent() == I.getParent()->getParent()->begin()) {
1727 TySize *= CUI->getValue(); // Get total allocated size...
1728 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
1729
1730 // Create a new stack object using the frame manager...
1731 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
1732 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
1733 return;
1734 }
1735 }
1736
1737 // Create a register to hold the temporary result of multiplying the type size
1738 // constant by the variable amount.
1739 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
1740 unsigned SrcReg1 = getReg(I.getArraySize());
1741 unsigned SizeReg = makeAnotherReg(Type::UIntTy);
1742 BuildMI(BB, X86::MOVir32, 1, SizeReg).addZImm(TySize);
1743
1744 // TotalSizeReg = mul <numelements>, <TypeSize>
1745 MachineBasicBlock::iterator MBBI = BB->end();
1746 doMultiply(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, SizeReg);
1747
1748 // AddedSize = add <TotalSizeReg>, 15
1749 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
1750 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
1751
1752 // AlignedSize = and <AddedSize>, ~15
1753 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
1754 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
1755
Brian Gaekee48ec012002-12-13 06:46:31 +00001756 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00001757 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00001758
Brian Gaekee48ec012002-12-13 06:46:31 +00001759 // Put a pointer to the space into the result register, by copying
1760 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00001761 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
1762
Misha Brukman48196b32003-05-03 02:18:17 +00001763 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00001764 // object.
1765 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00001766}
Chris Lattner3e130a22003-01-13 00:32:26 +00001767
1768/// visitMallocInst - Malloc instructions are code generated into direct calls
1769/// to the library malloc.
1770///
1771void ISel::visitMallocInst(MallocInst &I) {
1772 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
1773 unsigned Arg;
1774
1775 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
1776 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
1777 } else {
1778 Arg = makeAnotherReg(Type::UIntTy);
1779 unsigned Op0Reg = getReg(ConstantUInt::get(Type::UIntTy, AllocSize));
1780 unsigned Op1Reg = getReg(I.getOperand(0));
1781 MachineBasicBlock::iterator MBBI = BB->end();
1782 doMultiply(BB, MBBI, Arg, Type::UIntTy, Op0Reg, Op1Reg);
1783
1784
1785 }
1786
1787 std::vector<ValueRecord> Args;
1788 Args.push_back(ValueRecord(Arg, Type::UIntTy));
1789 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
1790 1).addExternalSymbol("malloc", true);
1791 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
1792}
1793
1794
1795/// visitFreeInst - Free instructions are code gen'd to call the free libc
1796/// function.
1797///
1798void ISel::visitFreeInst(FreeInst &I) {
1799 std::vector<ValueRecord> Args;
1800 Args.push_back(ValueRecord(getReg(I.getOperand(0)),
1801 I.getOperand(0)->getType()));
1802 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
1803 1).addExternalSymbol("free", true);
1804 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
1805}
1806
Brian Gaeke20244b72002-12-12 15:33:40 +00001807
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00001808/// createSimpleX86InstructionSelector - This pass converts an LLVM function
1809/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00001810/// generated code sucks but the implementation is nice and simple.
1811///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00001812Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
1813 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00001814}