blob: 6d07ec502a7b7bd9f46b75a863380e5a37547a39 [file] [log] [blame]
Chris Lattnera960d952003-01-13 01:01:59 +00001//===-- PeepholeOptimizer.cpp - X86 Peephole Optimizer --------------------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file contains a peephole optimizer for the X86.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
15#include "llvm/CodeGen/MachineFunctionPass.h"
16#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner45370762003-12-01 05:15:28 +000017#include "Support/Statistic.h"
Chris Lattnere1cc79f2003-11-30 06:13:25 +000018using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000019
Chris Lattnera960d952003-01-13 01:01:59 +000020namespace {
Chris Lattner45370762003-12-01 05:15:28 +000021 Statistic<> NumPHOpts("x86-peephole",
22 "Number of peephole optimization performed");
Chris Lattnera960d952003-01-13 01:01:59 +000023 struct PH : public MachineFunctionPass {
24 virtual bool runOnMachineFunction(MachineFunction &MF);
25
26 bool PeepholeOptimize(MachineBasicBlock &MBB,
27 MachineBasicBlock::iterator &I);
28
29 virtual const char *getPassName() const { return "X86 Peephole Optimizer"; }
30 };
31}
32
Chris Lattnere1cc79f2003-11-30 06:13:25 +000033FunctionPass *llvm::createX86PeepholeOptimizerPass() { return new PH(); }
Chris Lattnera960d952003-01-13 01:01:59 +000034
35bool PH::runOnMachineFunction(MachineFunction &MF) {
36 bool Changed = false;
37
38 for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
Chris Lattneree3e4352003-01-16 18:07:13 +000039 for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
Chris Lattner45370762003-12-01 05:15:28 +000040 if (PeepholeOptimize(*BI, I)) {
Chris Lattnera960d952003-01-13 01:01:59 +000041 Changed = true;
Chris Lattner45370762003-12-01 05:15:28 +000042 ++NumPHOpts;
43 } else
Chris Lattnera960d952003-01-13 01:01:59 +000044 ++I;
45
46 return Changed;
47}
48
49
50bool PH::PeepholeOptimize(MachineBasicBlock &MBB,
51 MachineBasicBlock::iterator &I) {
52 MachineInstr *MI = *I;
53 MachineInstr *Next = (I+1 != MBB.end()) ? *(I+1) : 0;
54 unsigned Size = 0;
55 switch (MI->getOpcode()) {
56 case X86::MOVrr8:
57 case X86::MOVrr16:
58 case X86::MOVrr32: // Destroy X = X copies...
59 if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
60 I = MBB.erase(I);
61 delete MI;
62 return true;
63 }
64 return false;
65
Chris Lattner43a5ff82003-10-20 05:53:31 +000066 // A large number of X86 instructions have forms which take an 8-bit
67 // immediate despite the fact that the operands are 16 or 32 bits. Because
68 // this can save three bytes of code size (and icache space), we want to
69 // shrink them if possible.
Chris Lattner43a5ff82003-10-20 05:53:31 +000070 case X86::IMULri16: case X86::IMULri32:
Chris Lattner43a5ff82003-10-20 05:53:31 +000071 assert(MI->getNumOperands() == 3 && "These should all have 3 operands!");
72 if (MI->getOperand(2).isImmediate()) {
73 int Val = MI->getOperand(2).getImmedValue();
74 // If the value is the same when signed extended from 8 bits...
75 if (Val == (signed int)(signed char)Val) {
76 unsigned Opcode;
77 switch (MI->getOpcode()) {
78 default: assert(0 && "Unknown opcode value!");
Alkis Evlogimenos14be6402004-02-04 22:17:40 +000079 case X86::IMULri16: Opcode = X86::IMULri16b; break;
80 case X86::IMULri32: Opcode = X86::IMULri32b; break;
81 }
82 unsigned R0 = MI->getOperand(0).getReg();
83 unsigned R1 = MI->getOperand(1).getReg();
84 *I = BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val);
85 delete MI;
86 return true;
87 }
88 }
89 return false;
90
91 case X86::ADDri16: case X86::ADDri32:
92 case X86::SUBri16: case X86::SUBri32:
93 case X86::ANDri16: case X86::ANDri32:
94 case X86::ORri16: case X86::ORri32:
95 case X86::XORri16: case X86::XORri32:
96 assert(MI->getNumOperands() == 2 && "These should all have 2 operands!");
97 if (MI->getOperand(1).isImmediate()) {
98 int Val = MI->getOperand(1).getImmedValue();
99 // If the value is the same when signed extended from 8 bits...
100 if (Val == (signed int)(signed char)Val) {
101 unsigned Opcode;
102 switch (MI->getOpcode()) {
103 default: assert(0 && "Unknown opcode value!");
Chris Lattner43a5ff82003-10-20 05:53:31 +0000104 case X86::ADDri16: Opcode = X86::ADDri16b; break;
105 case X86::ADDri32: Opcode = X86::ADDri32b; break;
106 case X86::SUBri16: Opcode = X86::SUBri16b; break;
107 case X86::SUBri32: Opcode = X86::SUBri32b; break;
Chris Lattner43a5ff82003-10-20 05:53:31 +0000108 case X86::ANDri16: Opcode = X86::ANDri16b; break;
109 case X86::ANDri32: Opcode = X86::ANDri32b; break;
110 case X86::ORri16: Opcode = X86::ORri16b; break;
111 case X86::ORri32: Opcode = X86::ORri32b; break;
112 case X86::XORri16: Opcode = X86::XORri16b; break;
113 case X86::XORri32: Opcode = X86::XORri32b; break;
114 }
115 unsigned R0 = MI->getOperand(0).getReg();
Alkis Evlogimenos14be6402004-02-04 22:17:40 +0000116 *I = BuildMI(Opcode, 1, R0, MOTy::UseAndDef).addZImm((char)Val);
Chris Lattner43a5ff82003-10-20 05:53:31 +0000117 delete MI;
118 return true;
119 }
120 }
121 return false;
122
Chris Lattnera960d952003-01-13 01:01:59 +0000123#if 0
124 case X86::MOVir32: Size++;
125 case X86::MOVir16: Size++;
126 case X86::MOVir8:
127 // FIXME: We can only do this transformation if we know that flags are not
128 // used here, because XOR clobbers the flags!
129 if (MI->getOperand(1).isImmediate()) { // avoid mov EAX, <value>
130 int Val = MI->getOperand(1).getImmedValue();
131 if (Val == 0) { // mov EAX, 0 -> xor EAX, EAX
132 static const unsigned Opcode[] ={X86::XORrr8,X86::XORrr16,X86::XORrr32};
133 unsigned Reg = MI->getOperand(0).getReg();
134 *I = BuildMI(Opcode[Size], 2, Reg).addReg(Reg).addReg(Reg);
135 delete MI;
136 return true;
137 } else if (Val == -1) { // mov EAX, -1 -> or EAX, -1
138 // TODO: 'or Reg, -1' has a smaller encoding than 'mov Reg, -1'
139 }
140 }
141 return false;
142#endif
143 case X86::BSWAPr32: // Change bswap EAX, bswap EAX into nothing
144 if (Next->getOpcode() == X86::BSWAPr32 &&
145 MI->getOperand(0).getReg() == Next->getOperand(0).getReg()) {
146 I = MBB.erase(MBB.erase(I));
147 delete MI;
148 delete Next;
149 return true;
150 }
151 return false;
152 default:
153 return false;
154 }
155}
Brian Gaeked0fde302003-11-11 22:41:34 +0000156
Chris Lattner45370762003-12-01 05:15:28 +0000157namespace {
158 class UseDefChains : public MachineFunctionPass {
159 std::vector<MachineInstr*> DefiningInst;
160 public:
161 // getDefinition - Return the machine instruction that defines the specified
162 // SSA virtual register.
163 MachineInstr *getDefinition(unsigned Reg) {
164 assert(Reg >= MRegisterInfo::FirstVirtualRegister &&
165 "use-def chains only exist for SSA registers!");
166 assert(Reg - MRegisterInfo::FirstVirtualRegister < DefiningInst.size() &&
167 "Unknown register number!");
168 assert(DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] &&
169 "Unknown register number!");
170 return DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister];
171 }
172
173 // setDefinition - Update the use-def chains to indicate that MI defines
174 // register Reg.
175 void setDefinition(unsigned Reg, MachineInstr *MI) {
176 if (Reg-MRegisterInfo::FirstVirtualRegister >= DefiningInst.size())
177 DefiningInst.resize(Reg-MRegisterInfo::FirstVirtualRegister+1);
178 DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = MI;
179 }
180
181 // removeDefinition - Update the use-def chains to forget about Reg
182 // entirely.
183 void removeDefinition(unsigned Reg) {
184 assert(getDefinition(Reg)); // Check validity
185 DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = 0;
186 }
187
188 virtual bool runOnMachineFunction(MachineFunction &MF) {
189 for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI!=E; ++BI)
190 for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); ++I) {
191 MachineInstr *MI = *I;
192 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
193 MachineOperand &MO = MI->getOperand(i);
Alkis Evlogimenos4d7af652003-12-14 13:24:17 +0000194 if (MO.isVirtualRegister() && MO.isDef() && !MO.isUse())
Chris Lattner45370762003-12-01 05:15:28 +0000195 setDefinition(MO.getReg(), MI);
196 }
197 }
198 return false;
199 }
200
201 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
202 AU.setPreservesAll();
203 MachineFunctionPass::getAnalysisUsage(AU);
204 }
205
206 virtual void releaseMemory() {
207 std::vector<MachineInstr*>().swap(DefiningInst);
208 }
209 };
210
211 RegisterAnalysis<UseDefChains> X("use-def-chains",
212 "use-def chain construction for machine code");
213}
214
215
216namespace {
217 Statistic<> NumSSAPHOpts("x86-ssa-peephole",
218 "Number of SSA peephole optimization performed");
219
220 /// SSAPH - This pass is an X86-specific, SSA-based, peephole optimizer. This
221 /// pass is really a bad idea: a better instruction selector should completely
222 /// supersume it. However, that will take some time to develop, and the
223 /// simple things this can do are important now.
224 class SSAPH : public MachineFunctionPass {
225 UseDefChains *UDC;
226 public:
227 virtual bool runOnMachineFunction(MachineFunction &MF);
228
229 bool PeepholeOptimize(MachineBasicBlock &MBB,
230 MachineBasicBlock::iterator &I);
231
232 virtual const char *getPassName() const {
233 return "X86 SSA-based Peephole Optimizer";
234 }
235
236 /// Propagate - Set MI[DestOpNo] = Src[SrcOpNo], optionally change the
237 /// opcode of the instruction, then return true.
238 bool Propagate(MachineInstr *MI, unsigned DestOpNo,
239 MachineInstr *Src, unsigned SrcOpNo, unsigned NewOpcode = 0){
240 MI->getOperand(DestOpNo) = Src->getOperand(SrcOpNo);
241 if (NewOpcode) MI->setOpcode(NewOpcode);
242 return true;
243 }
244
245 /// OptimizeAddress - If we can fold the addressing arithmetic for this
246 /// memory instruction into the instruction itself, do so and return true.
247 bool OptimizeAddress(MachineInstr *MI, unsigned OpNo);
248
249 /// getDefininingInst - If the specified operand is a read of an SSA
250 /// register, return the machine instruction defining it, otherwise, return
251 /// null.
252 MachineInstr *getDefiningInst(MachineOperand &MO) {
Alkis Evlogimenos4d7af652003-12-14 13:24:17 +0000253 if (MO.isDef() || !MO.isVirtualRegister()) return 0;
Chris Lattner45370762003-12-01 05:15:28 +0000254 return UDC->getDefinition(MO.getReg());
255 }
256
257 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
258 AU.addRequired<UseDefChains>();
259 AU.addPreserved<UseDefChains>();
260 MachineFunctionPass::getAnalysisUsage(AU);
261 }
262 };
263}
264
265FunctionPass *llvm::createX86SSAPeepholeOptimizerPass() { return new SSAPH(); }
266
267bool SSAPH::runOnMachineFunction(MachineFunction &MF) {
268 bool Changed = false;
269 bool LocalChanged;
270
271 UDC = &getAnalysis<UseDefChains>();
272
273 do {
274 LocalChanged = false;
275
276 for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
277 for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
278 if (PeepholeOptimize(*BI, I)) {
279 LocalChanged = true;
280 ++NumSSAPHOpts;
281 } else
282 ++I;
283 Changed |= LocalChanged;
284 } while (LocalChanged);
285
286 return Changed;
287}
288
289static bool isValidScaleAmount(unsigned Scale) {
290 return Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8;
291}
292
293/// OptimizeAddress - If we can fold the addressing arithmetic for this
294/// memory instruction into the instruction itself, do so and return true.
295bool SSAPH::OptimizeAddress(MachineInstr *MI, unsigned OpNo) {
296 MachineOperand &BaseRegOp = MI->getOperand(OpNo+0);
297 MachineOperand &ScaleOp = MI->getOperand(OpNo+1);
298 MachineOperand &IndexRegOp = MI->getOperand(OpNo+2);
299 MachineOperand &DisplacementOp = MI->getOperand(OpNo+3);
300
301 unsigned BaseReg = BaseRegOp.hasAllocatedReg() ? BaseRegOp.getReg() : 0;
302 unsigned Scale = ScaleOp.getImmedValue();
303 unsigned IndexReg = IndexRegOp.hasAllocatedReg() ? IndexRegOp.getReg() : 0;
304
305 bool Changed = false;
306
307 // If the base register is unset, and the index register is set with a scale
308 // of 1, move it to be the base register.
309 if (BaseRegOp.hasAllocatedReg() && BaseReg == 0 &&
310 Scale == 1 && IndexReg != 0) {
311 BaseRegOp.setReg(IndexReg);
312 IndexRegOp.setReg(0);
313 return true;
314 }
315
316 // Attempt to fold instructions used by the base register into the instruction
317 if (MachineInstr *DefInst = getDefiningInst(BaseRegOp)) {
318 switch (DefInst->getOpcode()) {
319 case X86::MOVir32:
320 // If there is no displacement set for this instruction set one now.
321 // FIXME: If we can fold two immediates together, we should do so!
322 if (DisplacementOp.isImmediate() && !DisplacementOp.getImmedValue()) {
323 if (DefInst->getOperand(1).isImmediate()) {
324 BaseRegOp.setReg(0);
325 return Propagate(MI, OpNo+3, DefInst, 1);
326 }
327 }
328 break;
329
330 case X86::ADDrr32:
331 // If the source is a register-register add, and we do not yet have an
332 // index register, fold the add into the memory address.
333 if (IndexReg == 0) {
334 BaseRegOp = DefInst->getOperand(1);
335 IndexRegOp = DefInst->getOperand(2);
336 ScaleOp.setImmedValue(1);
337 return true;
338 }
339 break;
340
341 case X86::SHLir32:
342 // If this shift could be folded into the index portion of the address if
343 // it were the index register, move it to the index register operand now,
344 // so it will be folded in below.
345 if ((Scale == 1 || (IndexReg == 0 && IndexRegOp.hasAllocatedReg())) &&
346 DefInst->getOperand(2).getImmedValue() < 4) {
347 std::swap(BaseRegOp, IndexRegOp);
348 ScaleOp.setImmedValue(1); Scale = 1;
349 std::swap(IndexReg, BaseReg);
350 Changed = true;
351 break;
352 }
353 }
354 }
355
356 // Attempt to fold instructions used by the index into the instruction
357 if (MachineInstr *DefInst = getDefiningInst(IndexRegOp)) {
358 switch (DefInst->getOpcode()) {
359 case X86::SHLir32: {
360 // Figure out what the resulting scale would be if we folded this shift.
361 unsigned ResScale = Scale * (1 << DefInst->getOperand(2).getImmedValue());
362 if (isValidScaleAmount(ResScale)) {
363 IndexRegOp = DefInst->getOperand(1);
364 ScaleOp.setImmedValue(ResScale);
365 return true;
366 }
367 break;
368 }
369 }
370 }
371
372 return Changed;
373}
374
375bool SSAPH::PeepholeOptimize(MachineBasicBlock &MBB,
376 MachineBasicBlock::iterator &I) {
377 MachineInstr *MI = *I;
378 MachineInstr *Next = (I+1 != MBB.end()) ? *(I+1) : 0;
379
380 bool Changed = false;
381
382 // Scan the operands of this instruction. If any operands are
383 // register-register copies, replace the operand with the source.
384 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
385 // Is this an SSA register use?
386 if (MachineInstr *DefInst = getDefiningInst(MI->getOperand(i)))
387 // If the operand is a vreg-vreg copy, it is always safe to replace the
388 // source value with the input operand.
389 if (DefInst->getOpcode() == X86::MOVrr8 ||
390 DefInst->getOpcode() == X86::MOVrr16 ||
391 DefInst->getOpcode() == X86::MOVrr32) {
392 // Don't propagate physical registers into PHI nodes...
393 if (MI->getOpcode() != X86::PHI ||
394 DefInst->getOperand(1).isVirtualRegister())
395 Changed = Propagate(MI, i, DefInst, 1);
396 }
397
398
399 // Perform instruction specific optimizations.
400 switch (MI->getOpcode()) {
401
402 // Register to memory stores. Format: <base,scale,indexreg,immdisp>, srcreg
403 case X86::MOVrm32: case X86::MOVrm16: case X86::MOVrm8:
404 case X86::MOVim32: case X86::MOVim16: case X86::MOVim8:
405 // Check to see if we can fold the source instruction into this one...
406 if (MachineInstr *SrcInst = getDefiningInst(MI->getOperand(4))) {
407 switch (SrcInst->getOpcode()) {
408 // Fold the immediate value into the store, if possible.
409 case X86::MOVir8: return Propagate(MI, 4, SrcInst, 1, X86::MOVim8);
410 case X86::MOVir16: return Propagate(MI, 4, SrcInst, 1, X86::MOVim16);
411 case X86::MOVir32: return Propagate(MI, 4, SrcInst, 1, X86::MOVim32);
412 default: break;
413 }
414 }
415
416 // If we can optimize the addressing expression, do so now.
417 if (OptimizeAddress(MI, 0))
418 return true;
419 break;
420
421 case X86::MOVmr32:
422 case X86::MOVmr16:
423 case X86::MOVmr8:
424 // If we can optimize the addressing expression, do so now.
425 if (OptimizeAddress(MI, 1))
426 return true;
427 break;
428
429 default: break;
430 }
431
432 return Changed;
433}