blob: fd6e52bd1f30ab51f80e0fe3b43b5cb0b4aa81e4 [file] [log] [blame]
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +00001//===- StrongPHIElimination.cpp - Eliminate PHI nodes by inserting copies -===//
Owen Anderson0bda0e82007-10-31 03:37:57 +00002//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Owen Anderson0bda0e82007-10-31 03:37:57 +00007//
8//===----------------------------------------------------------------------===//
9//
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +000010// This pass eliminates PHI instructions by aggressively coalescing the copies
11// that would be inserted by a naive algorithm and only inserting the copies
12// that are necessary. The coalescing technique initially assumes that all
13// registers appearing in a PHI instruction do not interfere. It then eliminates
14// proven interferences, using dominators to only perform a linear number of
15// interference tests instead of the quadratic number of interference tests
16// that this would naively require. This is a technique derived from:
17//
18// Budimlic, et al. Fast copy coalescing and live-range identification.
19// In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
20// Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
21// PLDI '02. ACM, New York, NY, 25-32.
22//
23// The original implementation constructs a data structure they call a dominance
24// forest for this purpose. The dominance forest was shown to be unnecessary,
25// as it is possible to emulate the creation and traversal of a dominance forest
26// by directly using the dominator tree, rather than actually constructing the
27// dominance forest. This technique is explained in:
28//
29// Boissinot, et al. Revisiting Out-of-SSA Translation for Correctness, Code
30// Quality and Efficiency,
31// In Proceedings of the 7th annual IEEE/ACM International Symposium on Code
32// Generation and Optimization (Seattle, Washington, March 22 - 25, 2009).
33// CGO '09. IEEE, Washington, DC, 114-125.
34//
35// Careful implementation allows for all of the dominator forest interference
36// checks to be performed at once in a single depth-first traversal of the
37// dominator tree, which is what is implemented here.
Owen Anderson0bda0e82007-10-31 03:37:57 +000038//
39//===----------------------------------------------------------------------===//
40
41#define DEBUG_TYPE "strongphielim"
Cameron Zwarich47bce432010-12-21 06:54:43 +000042#include "PHIEliminationUtils.h"
Owen Anderson0bda0e82007-10-31 03:37:57 +000043#include "llvm/CodeGen/Passes.h"
Owen Andersoneb37ecc2008-03-10 07:22:36 +000044#include "llvm/CodeGen/LiveIntervalAnalysis.h"
Owen Anderson0bda0e82007-10-31 03:37:57 +000045#include "llvm/CodeGen/MachineDominators.h"
46#include "llvm/CodeGen/MachineFunctionPass.h"
Cameron Zwarich47bce432010-12-21 06:54:43 +000047#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineRegisterInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Support/Debug.h"
Owen Anderson0bda0e82007-10-31 03:37:57 +000051using namespace llvm;
52
Owen Anderson0bda0e82007-10-31 03:37:57 +000053namespace {
Cameron Zwarich9eaf49b2010-12-05 22:34:08 +000054 class StrongPHIElimination : public MachineFunctionPass {
55 public:
56 static char ID; // Pass identification, replacement for typeid
57 StrongPHIElimination() : MachineFunctionPass(ID) {
58 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
59 }
Owen Anderson0bda0e82007-10-31 03:37:57 +000060
Cameron Zwarich9eaf49b2010-12-05 22:34:08 +000061 virtual void getAnalysisUsage(AnalysisUsage&) const;
62 bool runOnMachineFunction(MachineFunction&);
Cameron Zwarich47bce432010-12-21 06:54:43 +000063
64 private:
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +000065 /// This struct represents a single node in the union-find data structure
66 /// representing the variable congruence classes. There is one difference
67 /// from a normal union-find data structure. We steal two bits from the parent
68 /// pointer . One of these bits is used to represent whether the register
69 /// itself has been isolated, and the other is used to represent whether the
70 /// PHI with that register as its destination has been isolated.
71 ///
72 /// Note that this leads to the strange situation where the leader of a
73 /// congruence class may no longer logically be a member, due to being
74 /// isolated.
75 struct Node {
76 enum Flags {
77 kRegisterIsolatedFlag = 1,
78 kPHIIsolatedFlag = 2
79 };
80 Node(unsigned v) : value(v), rank(0) { parent.setPointer(this); }
81
82 Node* getLeader();
83
84 PointerIntPair<Node*, 2> parent;
85 unsigned value;
86 unsigned rank;
87 };
88
89 /// Add a register in a new congruence class containing only itself.
90 void addReg(unsigned);
91
92 /// Join the congruence classes of two registers.
93 void unionRegs(unsigned, unsigned);
94
95 /// Get the color of a register. The color is 0 if the register has been
96 /// isolated.
97 unsigned getRegColor(unsigned);
98
99 // Isolate a register.
100 void isolateReg(unsigned);
101
102 /// Get the color of a PHI. The color of a PHI is 0 if the PHI has been
103 /// isolated. Otherwise, it is the original color of its destination and
104 /// all of its operands (before they were isolated, if they were).
105 unsigned getPHIColor(MachineInstr*);
106
107 /// Isolate a PHI.
108 void isolatePHI(MachineInstr*);
109
110 void PartitionRegisters(MachineFunction& MF);
111
112 /// Traverses a basic block, splitting any interferences found between
113 /// registers in the same congruence class. It takes two DenseMaps as
114 /// arguments that it also updates: CurrentDominatingParent, which maps
115 /// a color to the register in that congruence class whose definition was
116 /// most recently seen, and ImmediateDominatingParent, which maps a register
117 /// to the register in the same congruence class that most immediately
118 /// dominates it.
119 ///
120 /// This function assumes that it is being called in a depth-first traversal
121 /// of the dominator tree.
122 void SplitInterferencesForBasicBlock(
123 MachineBasicBlock&,
124 DenseMap<unsigned, unsigned>& CurrentDominatingParent,
125 DenseMap<unsigned, unsigned>& ImmediateDominatingParent);
126
127 // Lowers a PHI instruction, inserting copies of the source and destination
128 // registers as necessary.
Cameron Zwarich47bce432010-12-21 06:54:43 +0000129 void InsertCopiesForPHI(MachineInstr*, MachineBasicBlock*);
130
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000131 // Merges the live interval of Reg into NewReg and renames Reg to NewReg
132 // everywhere that Reg appears. Requires Reg and NewReg to have non-
133 // overlapping lifetimes.
134 void MergeLIsAndRename(unsigned Reg, unsigned NewReg);
135
Cameron Zwarich47bce432010-12-21 06:54:43 +0000136 MachineRegisterInfo* MRI;
137 const TargetInstrInfo* TII;
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000138 MachineDominatorTree* DT;
Cameron Zwarich47bce432010-12-21 06:54:43 +0000139 LiveIntervals* LI;
140
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000141 BumpPtrAllocator Allocator;
142
143 DenseMap<unsigned, Node*> RegNodeMap;
144
145 // FIXME: Can these two data structures be combined? Would a std::multimap
146 // be any better?
147
148 // Stores pairs of predecessor basic blocks and the source registers of
149 // inserted copy instructions.
150 typedef DenseSet<std::pair<MachineBasicBlock*, unsigned> > SrcCopySet;
151 SrcCopySet InsertedSrcCopySet;
152
153 // Maps pairs of predecessor basic blocks and colors to their defining copy
154 // instructions.
155 typedef DenseMap<std::pair<MachineBasicBlock*, unsigned>, MachineInstr*>
156 SrcCopyMap;
157 SrcCopyMap InsertedSrcCopyMap;
158
159 // Maps inserted destination copy registers to their defining copy
160 // instructions.
161 typedef DenseMap<unsigned, MachineInstr*> DestCopyMap;
162 DestCopyMap InsertedDestCopies;
Cameron Zwarich9eaf49b2010-12-05 22:34:08 +0000163 };
Jakob Stoklund Olesen68be9562010-12-03 19:21:53 +0000164} // namespace
Owen Anderson0bda0e82007-10-31 03:37:57 +0000165
Dan Gohman844731a2008-05-13 00:00:25 +0000166char StrongPHIElimination::ID = 0;
Owen Anderson2ab36d32010-10-12 19:48:12 +0000167INITIALIZE_PASS_BEGIN(StrongPHIElimination, "strong-phi-node-elimination",
168 "Eliminate PHI nodes for register allocation, intelligently", false, false)
169INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
170INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
171INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
172INITIALIZE_PASS_END(StrongPHIElimination, "strong-phi-node-elimination",
Owen Andersonce665bd2010-10-07 22:25:06 +0000173 "Eliminate PHI nodes for register allocation, intelligently", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000174
Owen Anderson90c579d2010-08-06 18:33:48 +0000175char &llvm::StrongPHIEliminationID = StrongPHIElimination::ID;
Owen Anderson0bda0e82007-10-31 03:37:57 +0000176
Cameron Zwarich9eaf49b2010-12-05 22:34:08 +0000177void StrongPHIElimination::getAnalysisUsage(AnalysisUsage& AU) const {
178 AU.setPreservesCFG();
179 AU.addRequired<MachineDominatorTree>();
180 AU.addRequired<SlotIndexes>();
181 AU.addPreserved<SlotIndexes>();
182 AU.addRequired<LiveIntervals>();
183 AU.addPreserved<LiveIntervals>();
184 MachineFunctionPass::getAnalysisUsage(AU);
185}
186
Cameron Zwarich47bce432010-12-21 06:54:43 +0000187static MachineOperand* findLastUse(MachineBasicBlock* MBB, unsigned Reg) {
188 // FIXME: This only needs to check from the first terminator, as only the
189 // first terminator can use a virtual register.
190 for (MachineBasicBlock::reverse_iterator RI = MBB->rbegin(); ; ++RI) {
191 assert (RI != MBB->rend());
192 MachineInstr* MI = &*RI;
193
194 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
195 OE = MI->operands_end(); OI != OE; ++OI) {
196 MachineOperand& MO = *OI;
197 if (MO.isReg() && MO.isUse() && MO.getReg() == Reg)
198 return &MO;
199 }
200 }
201 return NULL;
202}
203
204bool StrongPHIElimination::runOnMachineFunction(MachineFunction& MF) {
205 MRI = &MF.getRegInfo();
206 TII = MF.getTarget().getInstrInfo();
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000207 DT = &getAnalysis<MachineDominatorTree>();
Cameron Zwarich47bce432010-12-21 06:54:43 +0000208 LI = &getAnalysis<LiveIntervals>();
209
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000210 PartitionRegisters(MF);
211
212 // Perform a depth-first traversal of the dominator tree, splitting
213 // interferences amongst PHI-congruence classes.
214 DenseMap<unsigned, unsigned> CurrentDominatingParent;
215 DenseMap<unsigned, unsigned> ImmediateDominatingParent;
216 for (df_iterator<MachineDomTreeNode*> DI = df_begin(DT->getRootNode()),
217 DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
218 SplitInterferencesForBasicBlock(*DI->getBlock(),
219 CurrentDominatingParent,
220 ImmediateDominatingParent);
221 }
222
Cameron Zwarich47bce432010-12-21 06:54:43 +0000223 // Insert copies for all PHI source and destination registers.
224 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
225 I != E; ++I) {
226 for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
227 BBI != BBE && BBI->isPHI(); ++BBI) {
228 InsertCopiesForPHI(BBI, I);
229 }
230 }
231
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000232 // FIXME: Preserve the equivalence classes during copy insertion and use
233 // the preversed equivalence classes instead of recomputing them.
234 RegNodeMap.clear();
235 PartitionRegisters(MF);
236
237 DenseMap<unsigned, unsigned> RegRenamingMap;
238 bool Changed = false;
239 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
240 I != E; ++I) {
241 MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
242 while (BBI != BBE && BBI->isPHI()) {
243 MachineInstr* PHI = BBI;
244
245 assert(PHI->getNumOperands() > 0);
246
247 unsigned SrcReg = PHI->getOperand(1).getReg();
248 unsigned SrcColor = getRegColor(SrcReg);
249 unsigned NewReg = RegRenamingMap[SrcColor];
250 if (!NewReg) {
251 NewReg = SrcReg;
252 RegRenamingMap[SrcColor] = SrcReg;
253 }
254 MergeLIsAndRename(SrcReg, NewReg);
255
256 unsigned DestReg = PHI->getOperand(0).getReg();
257 if (!InsertedDestCopies.count(DestReg))
258 MergeLIsAndRename(DestReg, NewReg);
259
260 for (unsigned i = 3; i < PHI->getNumOperands(); i += 2) {
261 unsigned SrcReg = PHI->getOperand(i).getReg();
262 MergeLIsAndRename(SrcReg, NewReg);
263 }
264
265 ++BBI;
266 LI->RemoveMachineInstrFromMaps(PHI);
267 PHI->eraseFromParent();
268 Changed = true;
269 }
270 }
271
272 // Due to the insertion of copies to split live ranges, the live intervals are
273 // guaranteed to not overlap, except in one case: an original PHI source and a
274 // PHI destination copy. In this case, they have the same value and thus don't
275 // truly intersect, so we merge them into the value live at that point.
276 // FIXME: Is there some better way we can handle this?
277 for (DestCopyMap::iterator I = InsertedDestCopies.begin(),
278 E = InsertedDestCopies.end(); I != E; ++I) {
279 unsigned DestReg = I->first;
280 unsigned DestColor = getRegColor(DestReg);
281 unsigned NewReg = RegRenamingMap[DestColor];
282
283 LiveInterval& DestLI = LI->getInterval(DestReg);
284 LiveInterval& NewLI = LI->getInterval(NewReg);
285
286 assert(DestLI.containsOneValue());
287 LiveRange* DestLR = DestLI.begin();
288 VNInfo* NewVNI = NewLI.getVNInfoAt(DestLR->start);
289 if (!NewVNI) {
290 NewVNI = NewLI.createValueCopy(DestLR->valno, LI->getVNInfoAllocator());
291 MachineInstr* CopyInstr = I->second;
292 CopyInstr->getOperand(1).setIsKill(true);
293 }
294
295 LiveRange NewLR(DestLR->start, DestLR->end, NewVNI);
296 NewLI.addRange(NewLR);
297
298 LI->removeInterval(DestReg);
299 MRI->replaceRegWith(DestReg, NewReg);
300 }
301
Cameron Zwarich47bce432010-12-21 06:54:43 +0000302 // Adjust the live intervals of all PHI source registers to handle the case
303 // where the PHIs in successor blocks were the only later uses of the source
304 // register.
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000305 for (SrcCopySet::iterator I = InsertedSrcCopySet.begin(),
306 E = InsertedSrcCopySet.end(); I != E; ++I) {
Cameron Zwarich47bce432010-12-21 06:54:43 +0000307 MachineBasicBlock* MBB = I->first;
308 unsigned SrcReg = I->second;
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000309 if (unsigned RenamedRegister = RegRenamingMap[getRegColor(SrcReg)])
310 SrcReg = RenamedRegister;
311
Cameron Zwarich47bce432010-12-21 06:54:43 +0000312 LiveInterval& SrcLI = LI->getInterval(SrcReg);
313
314 bool isLiveOut = false;
315 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
316 SE = MBB->succ_end(); SI != SE; ++SI) {
317 if (SrcLI.liveAt(LI->getMBBStartIdx(*SI))) {
318 isLiveOut = true;
319 break;
320 }
321 }
322
323 if (isLiveOut)
324 continue;
325
326 MachineOperand* LastUse = findLastUse(MBB, SrcReg);
327 assert(LastUse);
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000328 SlotIndex LastUseIndex = LI->getInstructionIndex(LastUse->getParent());
329 SrcLI.removeRange(LastUseIndex.getDefIndex(), LI->getMBBEndIdx(MBB));
Cameron Zwarich47bce432010-12-21 06:54:43 +0000330 LastUse->setIsKill(true);
331 }
332
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000333 LI->renumber();
334
335 Allocator.Reset();
336 RegNodeMap.clear();
337 InsertedSrcCopySet.clear();
338 InsertedSrcCopyMap.clear();
339 InsertedDestCopies.clear();
340
341 return Changed;
342}
343
344void StrongPHIElimination::addReg(unsigned Reg) {
345 if (RegNodeMap.count(Reg))
346 return;
347 RegNodeMap[Reg] = new (Allocator) Node(Reg);
348}
349
350StrongPHIElimination::Node*
351StrongPHIElimination::Node::getLeader() {
352 Node* parentPointer = parent.getPointer();
353 if (parentPointer == this)
354 return this;
355 Node* newParent = parentPointer->getLeader();
356 parent.setPointer(newParent);
357 return newParent;
358}
359
360unsigned StrongPHIElimination::getRegColor(unsigned Reg) {
361 DenseMap<unsigned, Node*>::iterator RI = RegNodeMap.find(Reg);
362 if (RI == RegNodeMap.end())
363 return 0;
364 Node* Node = RI->second;
365 if (Node->parent.getInt() & Node::kRegisterIsolatedFlag)
366 return 0;
367 return Node->getLeader()->value;
368}
369
370void StrongPHIElimination::unionRegs(unsigned Reg1, unsigned Reg2) {
371 Node* Node1 = RegNodeMap[Reg1]->getLeader();
372 Node* Node2 = RegNodeMap[Reg2]->getLeader();
373
374 if (Node1->rank > Node2->rank) {
375 Node2->parent.setPointer(Node1->getLeader());
376 } else if (Node1->rank < Node2->rank) {
377 Node1->parent.setPointer(Node2->getLeader());
378 } else if (Node1 != Node2) {
379 Node2->parent.setPointer(Node1->getLeader());
380 Node1->rank++;
381 }
382}
383
384void StrongPHIElimination::isolateReg(unsigned Reg) {
385 Node* Node = RegNodeMap[Reg];
386 Node->parent.setInt(Node->parent.getInt() | Node::kRegisterIsolatedFlag);
387}
388
389unsigned StrongPHIElimination::getPHIColor(MachineInstr* PHI) {
390 assert(PHI->isPHI());
391
392 unsigned DestReg = PHI->getOperand(0).getReg();
393 Node* DestNode = RegNodeMap[DestReg];
394 if (DestNode->parent.getInt() & Node::kPHIIsolatedFlag)
395 return 0;
396
397 for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
398 unsigned SrcColor = getRegColor(PHI->getOperand(i).getReg());
399 if (SrcColor)
400 return SrcColor;
401 }
402 return 0;
403}
404
405void StrongPHIElimination::isolatePHI(MachineInstr* PHI) {
406 assert(PHI->isPHI());
407 Node* Node = RegNodeMap[PHI->getOperand(0).getReg()];
408 Node->parent.setInt(Node->parent.getInt() | Node::kPHIIsolatedFlag);
409}
410
411void StrongPHIElimination::PartitionRegisters(MachineFunction& MF) {
Cameron Zwarich47bce432010-12-21 06:54:43 +0000412 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
413 I != E; ++I) {
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000414 for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
415 BBI != BBE && BBI->isPHI(); ++BBI) {
416 unsigned DestReg = BBI->getOperand(0).getReg();
417 addReg(DestReg);
418
419 for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
420 unsigned SrcReg = BBI->getOperand(i).getReg();
421 addReg(SrcReg);
422 unionRegs(DestReg, SrcReg);
423 }
424 }
425 }
426}
427
428/// SplitInterferencesForBasicBlock - traverses a basic block, splitting any
429/// interferences found between registers in the same congruence class. It
430/// takes two DenseMaps as arguments that it also updates:
431///
432/// 1) CurrentDominatingParent, which maps a color to the register in that
433/// congruence class whose definition was most recently seen.
434///
435/// 2) ImmediateDominatingParent, which maps a register to the register in the
436/// same congruence class that most immediately dominates it.
437///
438/// This function assumes that it is being called in a depth-first traversal
439/// of the dominator tree.
440///
441/// The algorithm used here is a generalization of the dominance-based SSA test
442/// for two variables. If there are variables a_1, ..., a_n such that
443///
444/// def(a_1) dom ... dom def(a_n),
445///
446/// then we can test for an interference between any two a_i by only using O(n)
447/// interference tests between pairs of variables. If i < j and a_i and a_j
448/// interfere, then a_i is alive at def(a_j), so it is also alive at def(a_i+1).
449/// Thus, in order to test for an interference involving a_i, we need only check
450/// for a potential interference with a_i+1.
451///
452/// This method can be generalized to arbitrary sets of variables by performing
453/// a depth-first traversal of the dominator tree. As we traverse down a branch
454/// of the dominator tree, we keep track of the current dominating variable and
455/// only perform an interference test with that variable. However, when we go to
456/// another branch of the dominator tree, the definition of the current dominating
457/// variable may no longer dominate the current block. In order to correct this,
458/// we need to use a stack of past choices of the current dominating variable
459/// and pop from this stack until we find a variable whose definition actually
460/// dominates the current block.
461///
462/// There will be one push on this stack for each variable that has become the
463/// current dominating variable, so instead of using an explicit stack we can
464/// simply associate the previous choice for a current dominating variable with
465/// the new choice. This works better in our implementation, where we test for
466/// interference in multiple distinct sets at once.
467void
468StrongPHIElimination::SplitInterferencesForBasicBlock(
469 MachineBasicBlock& MBB,
470 DenseMap<unsigned, unsigned>& CurrentDominatingParent,
471 DenseMap<unsigned, unsigned>& ImmediateDominatingParent) {
472 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
473 BBI != BBE; ++BBI) {
474 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
475 MachineOperand& MO = BBI->getOperand(i);
476 if (!MO.isReg() || !MO.isDef())
477 continue;
478
479 unsigned DestReg = MO.getReg();
480 if (!DestReg || !TargetRegisterInfo::isVirtualRegister(DestReg))
481 continue;
482
483 // If the virtual register being defined is not used in any PHI or has
484 // already been isolated, then there are no more interferences to check.
485 unsigned DestColor = getRegColor(DestReg);
486 if (!DestColor)
487 continue;
488
489 // The input to this pass sometimes is not in SSA form in every basic
490 // block, as some virtual registers have redefinitions. We could eliminate
491 // this by fixing the passes that generate the non-SSA code, or we could
492 // handle it here by tracking defining machine instructions rather than
493 // virtual registers. For now, we just handle the situation conservatively
494 // in a way that will possibly lead to false interferences.
495 unsigned NewParent = CurrentDominatingParent[DestColor];
496 if (NewParent == DestReg)
497 continue;
498
499 // Pop registers from the stack represented by ImmediateDominatingParent
500 // until we find a parent that dominates the current instruction.
501 while (NewParent && (!DT->dominates(MRI->getVRegDef(NewParent), BBI)
502 || !getRegColor(NewParent)))
503 NewParent = ImmediateDominatingParent[NewParent];
504
505 // If NewParent is nonzero, then its definition dominates the current
506 // instruction, so it is only necessary to check for the liveness of
507 // NewParent in order to check for an interference.
508 if (NewParent
509 && LI->getInterval(NewParent).liveAt(LI->getInstructionIndex(BBI))) {
510 // If there is an interference, always isolate the new register. This
511 // could be improved by using a heuristic that decides which of the two
512 // registers to isolate.
513 isolateReg(DestReg);
514 CurrentDominatingParent[DestColor] = NewParent;
515 } else {
516 // If there is no interference, update ImmediateDominatingParent and set
517 // the CurrentDominatingParent for this color to the current register.
518 ImmediateDominatingParent[DestReg] = NewParent;
519 CurrentDominatingParent[DestColor] = DestReg;
520 }
Cameron Zwarich47bce432010-12-21 06:54:43 +0000521 }
522 }
523
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000524 // We now walk the PHIs in successor blocks and check for interferences. This
525 // is necesary because the use of a PHI's operands are logically contained in
526 // the predecessor block. The def of a PHI's destination register is processed
527 // along with the other defs in a basic block.
Cameron Zwarich47bce432010-12-21 06:54:43 +0000528
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000529 // The map CurrentPHIForColor maps a color to a pair of a MachineInstr* and a
530 // virtual register, which is the operand of that PHI corresponding to the
531 // current basic block.
532 // FIXME: This should use a container that doesn't always perform heap
533 // allocation.
534 DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > CurrentPHIForColor;
Cameron Zwarich47bce432010-12-21 06:54:43 +0000535
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000536 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
537 SE = MBB.succ_end(); SI != SE; ++SI) {
538 for (MachineBasicBlock::iterator BBI = (*SI)->begin(), BBE = (*SI)->end();
539 BBI != BBE && BBI->isPHI(); ++BBI) {
540 MachineInstr* PHI = BBI;
541
542 // If a PHI is already isolated, either by being isolated directly or
543 // having all of its operands isolated, ignore it.
544 unsigned Color = getPHIColor(PHI);
545 if (!Color)
546 continue;
547
548 // Find the index of the PHI operand that corresponds to this basic block.
549 unsigned PredIndex;
550 for (PredIndex = 1; PredIndex < PHI->getNumOperands(); PredIndex += 2) {
551 if (PHI->getOperand(PredIndex + 1).getMBB() == &MBB)
552 break;
553 }
554 assert(PredIndex < PHI->getNumOperands());
555 unsigned PredOperandReg = PHI->getOperand(PredIndex).getReg();
556
557 // Pop registers from the stack represented by ImmediateDominatingParent
558 // until we find a parent that dominates the current instruction.
559 unsigned NewParent = CurrentDominatingParent[Color];
560 while (NewParent
561 && (!DT->dominates(MRI->getVRegDef(NewParent)->getParent(), &MBB)
562 || !getRegColor(NewParent)))
563 NewParent = ImmediateDominatingParent[NewParent];
564 CurrentDominatingParent[Color] = NewParent;
565
566 // If there is an interference with a register, always isolate the
567 // register rather than the PHI. It is also possible to isolate the
568 // PHI, but that introduces copies for all of the registers involved
569 // in that PHI.
570 if (NewParent && LI->isLiveOutOfMBB(LI->getInterval(NewParent), &MBB)
571 && NewParent != PredOperandReg)
572 isolateReg(NewParent);
573
574 std::pair<MachineInstr*, unsigned> CurrentPHI = CurrentPHIForColor[Color];
575
576 // If two PHIs have the same operand from every shared predecessor, then
577 // they don't actually interfere. Otherwise, isolate the current PHI. This
578 // could possibly be improved, e.g. we could isolate the PHI with the
579 // fewest operands.
580 if (CurrentPHI.first && CurrentPHI.second != PredOperandReg)
581 isolatePHI(PHI);
582 else
583 CurrentPHIForColor[Color] = std::make_pair(PHI, PredOperandReg);
584 }
585 }
Cameron Zwarich47bce432010-12-21 06:54:43 +0000586}
587
588void StrongPHIElimination::InsertCopiesForPHI(MachineInstr* PHI,
589 MachineBasicBlock* MBB) {
590 assert(PHI->isPHI());
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000591 unsigned PHIColor = getPHIColor(PHI);
592
593 for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
594 MachineOperand& SrcMO = PHI->getOperand(i);
595
596 // If a source is defined by an implicit def, there is no need to insert a
597 // copy in the predecessor.
598 if (SrcMO.isUndef())
599 continue;
600
601 unsigned SrcReg = SrcMO.getReg();
602 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
603 "Machine PHI Operands must all be virtual registers!");
604
605 MachineBasicBlock* PredBB = PHI->getOperand(i + 1).getMBB();
606 unsigned SrcColor = getRegColor(SrcReg);
607
608 // If neither the PHI nor the operand were isolated, then we only need to
609 // set the phi-kill flag on the VNInfo at this PHI.
610 if (PHIColor && SrcColor == PHIColor) {
611 LiveInterval& SrcInterval = LI->getInterval(SrcReg);
612 SlotIndex PredIndex = LI->getMBBEndIdx(PredBB);
613 VNInfo* SrcVNI = SrcInterval.getVNInfoAt(PredIndex.getPrevIndex());
614 assert(SrcVNI);
615 SrcVNI->setHasPHIKill(true);
616 continue;
617 }
618
619 unsigned CopyReg = 0;
620 if (PHIColor) {
621 SrcCopyMap::const_iterator I
622 = InsertedSrcCopyMap.find(std::make_pair(PredBB, PHIColor));
623 CopyReg
624 = I != InsertedSrcCopyMap.end() ? I->second->getOperand(0).getReg() : 0;
625 }
626
627 if (!CopyReg) {
628 const TargetRegisterClass* RC = MRI->getRegClass(SrcReg);
629 CopyReg = MRI->createVirtualRegister(RC);
630
631 MachineBasicBlock::iterator
632 CopyInsertPoint = findPHICopyInsertPoint(PredBB, MBB, SrcReg);
633 unsigned SrcSubReg = SrcMO.getSubReg();
634 MachineInstr* CopyInstr = BuildMI(*PredBB,
635 CopyInsertPoint,
636 PHI->getDebugLoc(),
637 TII->get(TargetOpcode::COPY),
638 CopyReg).addReg(SrcReg, 0, SrcSubReg);
639 LI->InsertMachineInstrInMaps(CopyInstr);
640
641 // addLiveRangeToEndOfBlock() also adds the phikill flag to the VNInfo for
642 // the newly added range.
643 LI->addLiveRangeToEndOfBlock(CopyReg, CopyInstr);
644 InsertedSrcCopySet.insert(std::make_pair(PredBB, SrcReg));
645
646 addReg(CopyReg);
647 if (PHIColor) {
648 unionRegs(PHIColor, CopyReg);
649 assert(getRegColor(CopyReg) != CopyReg);
650 } else {
651 PHIColor = CopyReg;
652 assert(getRegColor(CopyReg) == CopyReg);
653 }
654
655 if (!InsertedSrcCopyMap.count(std::make_pair(PredBB, PHIColor)))
656 InsertedSrcCopyMap[std::make_pair(PredBB, PHIColor)] = CopyInstr;
657 }
658
659 SrcMO.setReg(CopyReg);
660
661 // If SrcReg is not live beyond the PHI, trim its interval so that it is no
662 // longer live-in to MBB. Note that SrcReg may appear in other PHIs that are
663 // processed later, but this is still correct to do at this point because we
664 // never rely on LiveIntervals being correct while inserting copies.
665 // FIXME: Should this just count uses at PHIs like the normal PHIElimination
666 // pass does?
667 LiveInterval& SrcLI = LI->getInterval(SrcReg);
668 SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
669 SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
670 SlotIndex NextInstrIndex = PHIIndex.getNextIndex();
671 if (SrcLI.liveAt(MBBStartIndex) && SrcLI.expiredAt(NextInstrIndex))
672 SrcLI.removeRange(MBBStartIndex, PHIIndex, true);
673 }
674
Cameron Zwarich47bce432010-12-21 06:54:43 +0000675 unsigned DestReg = PHI->getOperand(0).getReg();
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000676 unsigned DestColor = getRegColor(DestReg);
677
678 if (PHIColor && DestColor == PHIColor) {
679 LiveInterval& DestLI = LI->getInterval(DestReg);
680
681 // Set the phi-def flag for the VN at this PHI.
682 SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
683 VNInfo* DestVNI = DestLI.getVNInfoAt(PHIIndex.getDefIndex());
684 assert(DestVNI);
685 DestVNI->setIsPHIDef(true);
686
687 // Prior to PHI elimination, the live ranges of PHIs begin at their defining
688 // instruction. After PHI elimination, PHI instructions are replaced by VNs
689 // with the phi-def flag set, and the live ranges of these VNs start at the
690 // beginning of the basic block.
691 SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
692 DestVNI->def = MBBStartIndex;
693 DestLI.addRange(LiveRange(MBBStartIndex,
694 PHIIndex.getDefIndex(),
695 DestVNI));
696 return;
697 }
Cameron Zwarich47bce432010-12-21 06:54:43 +0000698
699 const TargetRegisterClass* RC = MRI->getRegClass(DestReg);
700 unsigned CopyReg = MRI->createVirtualRegister(RC);
701
702 MachineInstr* CopyInstr = BuildMI(*MBB,
703 MBB->SkipPHIsAndLabels(MBB->begin()),
704 PHI->getDebugLoc(),
705 TII->get(TargetOpcode::COPY),
706 DestReg).addReg(CopyReg);
707 LI->InsertMachineInstrInMaps(CopyInstr);
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000708 PHI->getOperand(0).setReg(CopyReg);
Cameron Zwarich47bce432010-12-21 06:54:43 +0000709
710 // Add the region from the beginning of MBB to the copy instruction to
711 // CopyReg's live interval, and give the VNInfo the phidef flag.
712 LiveInterval& CopyLI = LI->getOrCreateInterval(CopyReg);
713 SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
714 SlotIndex DestCopyIndex = LI->getInstructionIndex(CopyInstr);
715 VNInfo* CopyVNI = CopyLI.getNextValue(MBBStartIndex,
716 CopyInstr,
717 LI->getVNInfoAllocator());
718 CopyVNI->setIsPHIDef(true);
719 CopyLI.addRange(LiveRange(MBBStartIndex,
720 DestCopyIndex.getDefIndex(),
721 CopyVNI));
722
723 // Adjust DestReg's live interval to adjust for its new definition at
724 // CopyInstr.
725 LiveInterval& DestLI = LI->getOrCreateInterval(DestReg);
726 SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
727 DestLI.removeRange(PHIIndex.getDefIndex(), DestCopyIndex.getDefIndex());
728
729 VNInfo* DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getDefIndex());
730 assert(DestVNI);
731 DestVNI->def = DestCopyIndex.getDefIndex();
732
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000733 InsertedDestCopies[CopyReg] = CopyInstr;
734}
Cameron Zwarichef485d82010-12-24 03:09:36 +0000735
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000736void StrongPHIElimination::MergeLIsAndRename(unsigned Reg, unsigned NewReg) {
737 if (Reg == NewReg)
738 return;
Cameron Zwarichef485d82010-12-24 03:09:36 +0000739
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000740 LiveInterval& OldLI = LI->getInterval(Reg);
741 LiveInterval& NewLI = LI->getInterval(NewReg);
Cameron Zwarich47bce432010-12-21 06:54:43 +0000742
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000743 // Merge the live ranges of the two registers.
744 DenseMap<VNInfo*, VNInfo*> VNMap;
745 for (LiveInterval::iterator LRI = OldLI.begin(), LRE = OldLI.end();
746 LRI != LRE; ++LRI) {
747 LiveRange OldLR = *LRI;
748 VNInfo* OldVN = OldLR.valno;
Cameron Zwarich47bce432010-12-21 06:54:43 +0000749
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000750 VNInfo*& NewVN = VNMap[OldVN];
751 if (!NewVN) {
752 NewVN = NewLI.createValueCopy(OldVN, LI->getVNInfoAllocator());
753 VNMap[OldVN] = NewVN;
754 }
Cameron Zwarich47bce432010-12-21 06:54:43 +0000755
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000756 LiveRange LR(OldLR.start, OldLR.end, NewVN);
757 NewLI.addRange(LR);
Cameron Zwarich47bce432010-12-21 06:54:43 +0000758 }
Cameron Zwarich4e7f23b2010-12-27 10:08:19 +0000759
760 // Remove the LiveInterval for the register being renamed and replace all
761 // of its defs and uses with the new register.
762 LI->removeInterval(Reg);
763 MRI->replaceRegWith(Reg, NewReg);
Cameron Zwarich9eaf49b2010-12-05 22:34:08 +0000764}