blob: 5557c0193261ca54363c4c431573dc0a5d46ea18 [file] [log] [blame]
Chris Lattnerd28b0d72004-06-25 04:24:22 +00001//===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattnere995a2a2004-05-23 21:00:47 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattnere995a2a2004-05-23 21:00:47 +00008//===----------------------------------------------------------------------===//
9//
Daniel Berlinaad15882007-09-16 21:45:02 +000010// This file defines an implementation of Andersen's interprocedural alias
11// analysis
Chris Lattnere995a2a2004-05-23 21:00:47 +000012//
13// In pointer analysis terms, this is a subset-based, flow-insensitive,
Daniel Berlinaad15882007-09-16 21:45:02 +000014// field-sensitive, and context-insensitive algorithm pointer algorithm.
Chris Lattnere995a2a2004-05-23 21:00:47 +000015//
16// This algorithm is implemented as three stages:
17// 1. Object identification.
18// 2. Inclusion constraint identification.
Daniel Berlind81ccc22007-09-24 19:45:49 +000019// 3. Offline constraint graph optimization
20// 4. Inclusion constraint solving.
Chris Lattnere995a2a2004-05-23 21:00:47 +000021//
22// The object identification stage identifies all of the memory objects in the
23// program, which includes globals, heap allocated objects, and stack allocated
24// objects.
25//
26// The inclusion constraint identification stage finds all inclusion constraints
27// in the program by scanning the program, looking for pointer assignments and
28// other statements that effect the points-to graph. For a statement like "A =
29// B", this statement is processed to indicate that A can point to anything that
Daniel Berlinaad15882007-09-16 21:45:02 +000030// B can point to. Constraints can handle copies, loads, and stores, and
31// address taking.
Chris Lattnere995a2a2004-05-23 21:00:47 +000032//
Daniel Berline6f04792007-09-24 22:20:45 +000033// The offline constraint graph optimization portion includes offline variable
Daniel Berlinc864edb2008-03-05 19:31:47 +000034// substitution algorithms intended to compute pointer and location
Daniel Berline6f04792007-09-24 22:20:45 +000035// equivalences. Pointer equivalences are those pointers that will have the
36// same points-to sets, and location equivalences are those variables that
Daniel Berlinc864edb2008-03-05 19:31:47 +000037// always appear together in points-to sets. It also includes an offline
38// cycle detection algorithm that allows cycles to be collapsed sooner
39// during solving.
Daniel Berlind81ccc22007-09-24 19:45:49 +000040//
Chris Lattnere995a2a2004-05-23 21:00:47 +000041// The inclusion constraint solving phase iteratively propagates the inclusion
42// constraints until a fixed point is reached. This is an O(N^3) algorithm.
43//
Daniel Berlinaad15882007-09-16 21:45:02 +000044// Function constraints are handled as if they were structs with X fields.
45// Thus, an access to argument X of function Y is an access to node index
46// getNode(Y) + X. This representation allows handling of indirect calls
Daniel Berlind81ccc22007-09-24 19:45:49 +000047// without any issues. To wit, an indirect call Y(a,b) is equivalent to
Daniel Berlinaad15882007-09-16 21:45:02 +000048// *(Y + 1) = a, *(Y + 2) = b.
49// The return node for a function is always located at getNode(F) +
50// CallReturnPos. The arguments start at getNode(F) + CallArgPos.
Chris Lattnere995a2a2004-05-23 21:00:47 +000051//
Chris Lattnerc7ca32b2004-06-05 20:12:36 +000052// Future Improvements:
Daniel Berlinc864edb2008-03-05 19:31:47 +000053// Use of BDD's.
Chris Lattnere995a2a2004-05-23 21:00:47 +000054//===----------------------------------------------------------------------===//
55
56#define DEBUG_TYPE "anders-aa"
57#include "llvm/Constants.h"
58#include "llvm/DerivedTypes.h"
59#include "llvm/Instructions.h"
60#include "llvm/Module.h"
61#include "llvm/Pass.h"
Reid Spencerd7d83db2007-02-05 23:42:17 +000062#include "llvm/Support/Compiler.h"
Chris Lattnere995a2a2004-05-23 21:00:47 +000063#include "llvm/Support/InstIterator.h"
64#include "llvm/Support/InstVisitor.h"
65#include "llvm/Analysis/AliasAnalysis.h"
Jeff Cohen534927d2005-01-08 22:01:16 +000066#include "llvm/Analysis/Passes.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000067#include "llvm/Support/Debug.h"
68#include "llvm/ADT/Statistic.h"
Daniel Berlinaad15882007-09-16 21:45:02 +000069#include "llvm/ADT/SparseBitVector.h"
Chris Lattnerbe207732007-09-30 00:47:20 +000070#include "llvm/ADT/DenseSet.h"
Jeff Cohenca5183d2007-03-05 00:00:42 +000071#include <algorithm>
Chris Lattnere995a2a2004-05-23 21:00:47 +000072#include <set>
Daniel Berlinaad15882007-09-16 21:45:02 +000073#include <list>
74#include <stack>
75#include <vector>
Daniel Berlin3a3f1632007-12-12 00:37:04 +000076#include <queue>
77
78// Determining the actual set of nodes the universal set can consist of is very
79// expensive because it means propagating around very large sets. We rely on
80// other analysis being able to determine which nodes can never be pointed to in
81// order to disambiguate further than "points-to anything".
82#define FULL_UNIVERSAL 0
Chris Lattnere995a2a2004-05-23 21:00:47 +000083
Daniel Berlinaad15882007-09-16 21:45:02 +000084using namespace llvm;
Daniel Berlind81ccc22007-09-24 19:45:49 +000085STATISTIC(NumIters , "Number of iterations to reach convergence");
86STATISTIC(NumConstraints, "Number of constraints");
87STATISTIC(NumNodes , "Number of nodes");
88STATISTIC(NumUnified , "Number of variables unified");
Daniel Berlin3a3f1632007-12-12 00:37:04 +000089STATISTIC(NumErased , "Number of redundant constraints erased");
Chris Lattnere995a2a2004-05-23 21:00:47 +000090
Chris Lattner3b27d682006-12-19 22:30:33 +000091namespace {
Daniel Berlinaad15882007-09-16 21:45:02 +000092 const unsigned SelfRep = (unsigned)-1;
93 const unsigned Unvisited = (unsigned)-1;
94 // Position of the function return node relative to the function node.
Daniel Berlind81ccc22007-09-24 19:45:49 +000095 const unsigned CallReturnPos = 1;
Daniel Berlinaad15882007-09-16 21:45:02 +000096 // Position of the function call node relative to the function node.
Daniel Berlind81ccc22007-09-24 19:45:49 +000097 const unsigned CallFirstArgPos = 2;
98
99 struct BitmapKeyInfo {
100 static inline SparseBitVector<> *getEmptyKey() {
101 return reinterpret_cast<SparseBitVector<> *>(-1);
102 }
103 static inline SparseBitVector<> *getTombstoneKey() {
104 return reinterpret_cast<SparseBitVector<> *>(-2);
105 }
106 static unsigned getHashValue(const SparseBitVector<> *bitmap) {
107 return bitmap->getHashValue();
108 }
109 static bool isEqual(const SparseBitVector<> *LHS,
110 const SparseBitVector<> *RHS) {
111 if (LHS == RHS)
112 return true;
113 else if (LHS == getEmptyKey() || RHS == getEmptyKey()
114 || LHS == getTombstoneKey() || RHS == getTombstoneKey())
115 return false;
116
117 return *LHS == *RHS;
118 }
119
120 static bool isPod() { return true; }
121 };
Daniel Berlinaad15882007-09-16 21:45:02 +0000122
Reid Spencerd7d83db2007-02-05 23:42:17 +0000123 class VISIBILITY_HIDDEN Andersens : public ModulePass, public AliasAnalysis,
124 private InstVisitor<Andersens> {
Hartmut Kaiser081fdf22007-10-25 23:49:14 +0000125 struct Node;
Daniel Berlinaad15882007-09-16 21:45:02 +0000126
127 /// Constraint - Objects of this structure are used to represent the various
128 /// constraints identified by the algorithm. The constraints are 'copy',
129 /// for statements like "A = B", 'load' for statements like "A = *B",
130 /// 'store' for statements like "*A = B", and AddressOf for statements like
131 /// A = alloca; The Offset is applied as *(A + K) = B for stores,
132 /// A = *(B + K) for loads, and A = B + K for copies. It is
Daniel Berlind81ccc22007-09-24 19:45:49 +0000133 /// illegal on addressof constraints (because it is statically
Daniel Berlinaad15882007-09-16 21:45:02 +0000134 /// resolvable to A = &C where C = B + K)
135
136 struct Constraint {
137 enum ConstraintType { Copy, Load, Store, AddressOf } Type;
138 unsigned Dest;
139 unsigned Src;
140 unsigned Offset;
141
142 Constraint(ConstraintType Ty, unsigned D, unsigned S, unsigned O = 0)
143 : Type(Ty), Dest(D), Src(S), Offset(O) {
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +0000144 assert((Offset == 0 || Ty != AddressOf) &&
Daniel Berlinaad15882007-09-16 21:45:02 +0000145 "Offset is illegal on addressof constraints");
146 }
Daniel Berlin336c6c02007-09-29 00:50:40 +0000147
Daniel Berlinc7a12ae2007-09-27 15:42:23 +0000148 bool operator==(const Constraint &RHS) const {
149 return RHS.Type == Type
150 && RHS.Dest == Dest
151 && RHS.Src == Src
152 && RHS.Offset == Offset;
153 }
Daniel Berlin336c6c02007-09-29 00:50:40 +0000154
155 bool operator!=(const Constraint &RHS) const {
156 return !(*this == RHS);
157 }
158
Daniel Berlinc7a12ae2007-09-27 15:42:23 +0000159 bool operator<(const Constraint &RHS) const {
160 if (RHS.Type != Type)
161 return RHS.Type < Type;
162 else if (RHS.Dest != Dest)
163 return RHS.Dest < Dest;
164 else if (RHS.Src != Src)
165 return RHS.Src < Src;
166 return RHS.Offset < Offset;
167 }
Daniel Berlinaad15882007-09-16 21:45:02 +0000168 };
169
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000170 // Information DenseSet requires implemented in order to be able to do
171 // it's thing
172 struct PairKeyInfo {
173 static inline std::pair<unsigned, unsigned> getEmptyKey() {
174 return std::make_pair(~0UL, ~0UL);
175 }
176 static inline std::pair<unsigned, unsigned> getTombstoneKey() {
177 return std::make_pair(~0UL - 1, ~0UL - 1);
178 }
179 static unsigned getHashValue(const std::pair<unsigned, unsigned> &P) {
180 return P.first ^ P.second;
181 }
182 static unsigned isEqual(const std::pair<unsigned, unsigned> &LHS,
183 const std::pair<unsigned, unsigned> &RHS) {
184 return LHS == RHS;
185 }
186 };
187
Daniel Berlin336c6c02007-09-29 00:50:40 +0000188 struct ConstraintKeyInfo {
189 static inline Constraint getEmptyKey() {
190 return Constraint(Constraint::Copy, ~0UL, ~0UL, ~0UL);
191 }
192 static inline Constraint getTombstoneKey() {
193 return Constraint(Constraint::Copy, ~0UL - 1, ~0UL - 1, ~0UL - 1);
194 }
195 static unsigned getHashValue(const Constraint &C) {
196 return C.Src ^ C.Dest ^ C.Type ^ C.Offset;
197 }
198 static bool isEqual(const Constraint &LHS,
199 const Constraint &RHS) {
200 return LHS.Type == RHS.Type && LHS.Dest == RHS.Dest
201 && LHS.Src == RHS.Src && LHS.Offset == RHS.Offset;
202 }
203 };
204
Daniel Berlind81ccc22007-09-24 19:45:49 +0000205 // Node class - This class is used to represent a node in the constraint
Daniel Berline6f04792007-09-24 22:20:45 +0000206 // graph. Due to various optimizations, it is not always the case that
207 // there is a mapping from a Node to a Value. In particular, we add
208 // artificial Node's that represent the set of pointed-to variables shared
209 // for each location equivalent Node.
Daniel Berlinaad15882007-09-16 21:45:02 +0000210 struct Node {
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000211 private:
212 static unsigned Counter;
213
214 public:
Daniel Berlind81ccc22007-09-24 19:45:49 +0000215 Value *Val;
Daniel Berlinaad15882007-09-16 21:45:02 +0000216 SparseBitVector<> *Edges;
217 SparseBitVector<> *PointsTo;
218 SparseBitVector<> *OldPointsTo;
Daniel Berlinaad15882007-09-16 21:45:02 +0000219 std::list<Constraint> Constraints;
220
Daniel Berlind81ccc22007-09-24 19:45:49 +0000221 // Pointer and location equivalence labels
222 unsigned PointerEquivLabel;
223 unsigned LocationEquivLabel;
224 // Predecessor edges, both real and implicit
225 SparseBitVector<> *PredEdges;
226 SparseBitVector<> *ImplicitPredEdges;
227 // Set of nodes that point to us, only use for location equivalence.
228 SparseBitVector<> *PointedToBy;
229 // Number of incoming edges, used during variable substitution to early
230 // free the points-to sets
231 unsigned NumInEdges;
Daniel Berline6f04792007-09-24 22:20:45 +0000232 // True if our points-to set is in the Set2PEClass map
Daniel Berlind81ccc22007-09-24 19:45:49 +0000233 bool StoredInHash;
Daniel Berline6f04792007-09-24 22:20:45 +0000234 // True if our node has no indirect constraints (complex or otherwise)
Daniel Berlind81ccc22007-09-24 19:45:49 +0000235 bool Direct;
236 // True if the node is address taken, *or* it is part of a group of nodes
237 // that must be kept together. This is set to true for functions and
238 // their arg nodes, which must be kept at the same position relative to
239 // their base function node.
Daniel Berlind81ccc22007-09-24 19:45:49 +0000240 bool AddressTaken;
Daniel Berlinaad15882007-09-16 21:45:02 +0000241
Daniel Berlind81ccc22007-09-24 19:45:49 +0000242 // Nodes in cycles (or in equivalence classes) are united together using a
243 // standard union-find representation with path compression. NodeRep
244 // gives the index into GraphNodes for the representative Node.
245 unsigned NodeRep;
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000246
247 // Modification timestamp. Assigned from Counter.
248 // Used for work list prioritization.
249 unsigned Timestamp;
Daniel Berlind81ccc22007-09-24 19:45:49 +0000250
Dan Gohmanded2b0d2007-12-14 15:41:34 +0000251 explicit Node(bool direct = true) :
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000252 Val(0), Edges(0), PointsTo(0), OldPointsTo(0),
Daniel Berlind81ccc22007-09-24 19:45:49 +0000253 PointerEquivLabel(0), LocationEquivLabel(0), PredEdges(0),
254 ImplicitPredEdges(0), PointedToBy(0), NumInEdges(0),
255 StoredInHash(false), Direct(direct), AddressTaken(false),
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000256 NodeRep(SelfRep), Timestamp(0) { }
Daniel Berlinaad15882007-09-16 21:45:02 +0000257
Chris Lattnere995a2a2004-05-23 21:00:47 +0000258 Node *setValue(Value *V) {
259 assert(Val == 0 && "Value already set for this node!");
260 Val = V;
261 return this;
262 }
263
264 /// getValue - Return the LLVM value corresponding to this node.
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000265 ///
Chris Lattnere995a2a2004-05-23 21:00:47 +0000266 Value *getValue() const { return Val; }
267
Chris Lattnere995a2a2004-05-23 21:00:47 +0000268 /// addPointerTo - Add a pointer to the list of pointees of this node,
269 /// returning true if this caused a new pointer to be added, or false if
270 /// we already knew about the points-to relation.
Daniel Berlinaad15882007-09-16 21:45:02 +0000271 bool addPointerTo(unsigned Node) {
272 return PointsTo->test_and_set(Node);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000273 }
274
275 /// intersects - Return true if the points-to set of this node intersects
276 /// with the points-to set of the specified node.
277 bool intersects(Node *N) const;
278
279 /// intersectsIgnoring - Return true if the points-to set of this node
280 /// intersects with the points-to set of the specified node on any nodes
281 /// except for the specified node to ignore.
Daniel Berlinaad15882007-09-16 21:45:02 +0000282 bool intersectsIgnoring(Node *N, unsigned) const;
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000283
284 // Timestamp a node (used for work list prioritization)
285 void Stamp() {
286 Timestamp = Counter++;
287 }
288
289 bool isRep() {
290 return( (int) NodeRep < 0 );
291 }
292 };
293
294 struct WorkListElement {
295 Node* node;
296 unsigned Timestamp;
297 WorkListElement(Node* n, unsigned t) : node(n), Timestamp(t) {}
298
299 // Note that we reverse the sense of the comparison because we
300 // actually want to give low timestamps the priority over high,
301 // whereas priority is typically interpreted as a greater value is
302 // given high priority.
303 bool operator<(const WorkListElement& that) const {
304 return( this->Timestamp > that.Timestamp );
305 }
306 };
307
308 // Priority-queue based work list specialized for Nodes.
309 class WorkList {
310 std::priority_queue<WorkListElement> Q;
311
312 public:
313 void insert(Node* n) {
314 Q.push( WorkListElement(n, n->Timestamp) );
315 }
316
317 // We automatically discard non-representative nodes and nodes
318 // that were in the work list twice (we keep a copy of the
319 // timestamp in the work list so we can detect this situation by
320 // comparing against the node's current timestamp).
321 Node* pop() {
322 while( !Q.empty() ) {
323 WorkListElement x = Q.top(); Q.pop();
324 Node* INode = x.node;
325
326 if( INode->isRep() &&
327 INode->Timestamp == x.Timestamp ) {
328 return(x.node);
329 }
330 }
331 return(0);
332 }
333
334 bool empty() {
335 return Q.empty();
336 }
Chris Lattnere995a2a2004-05-23 21:00:47 +0000337 };
338
339 /// GraphNodes - This vector is populated as part of the object
340 /// identification stage of the analysis, which populates this vector with a
341 /// node for each memory object and fills in the ValueNodes map.
342 std::vector<Node> GraphNodes;
343
344 /// ValueNodes - This map indicates the Node that a particular Value* is
345 /// represented by. This contains entries for all pointers.
Daniel Berlind81ccc22007-09-24 19:45:49 +0000346 DenseMap<Value*, unsigned> ValueNodes;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000347
348 /// ObjectNodes - This map contains entries for each memory object in the
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000349 /// program: globals, alloca's and mallocs.
Daniel Berlind81ccc22007-09-24 19:45:49 +0000350 DenseMap<Value*, unsigned> ObjectNodes;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000351
352 /// ReturnNodes - This map contains an entry for each function in the
353 /// program that returns a value.
Daniel Berlind81ccc22007-09-24 19:45:49 +0000354 DenseMap<Function*, unsigned> ReturnNodes;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000355
356 /// VarargNodes - This map contains the entry used to represent all pointers
357 /// passed through the varargs portion of a function call for a particular
358 /// function. An entry is not present in this map for functions that do not
359 /// take variable arguments.
Daniel Berlind81ccc22007-09-24 19:45:49 +0000360 DenseMap<Function*, unsigned> VarargNodes;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000361
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000362
Chris Lattnere995a2a2004-05-23 21:00:47 +0000363 /// Constraints - This vector contains a list of all of the constraints
364 /// identified by the program.
365 std::vector<Constraint> Constraints;
366
Daniel Berlind81ccc22007-09-24 19:45:49 +0000367 // Map from graph node to maximum K value that is allowed (for functions,
Daniel Berlinaad15882007-09-16 21:45:02 +0000368 // this is equivalent to the number of arguments + CallFirstArgPos)
369 std::map<unsigned, unsigned> MaxK;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000370
371 /// This enum defines the GraphNodes indices that correspond to important
372 /// fixed sets.
373 enum {
374 UniversalSet = 0,
375 NullPtr = 1,
Daniel Berlind81ccc22007-09-24 19:45:49 +0000376 NullObject = 2,
377 NumberSpecialNodes
Chris Lattnere995a2a2004-05-23 21:00:47 +0000378 };
Daniel Berlind81ccc22007-09-24 19:45:49 +0000379 // Stack for Tarjan's
Daniel Berlinaad15882007-09-16 21:45:02 +0000380 std::stack<unsigned> SCCStack;
Daniel Berlinaad15882007-09-16 21:45:02 +0000381 // Map from Graph Node to DFS number
382 std::vector<unsigned> Node2DFS;
383 // Map from Graph Node to Deleted from graph.
384 std::vector<bool> Node2Deleted;
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000385 // Same as Node Maps, but implemented as std::map because it is faster to
386 // clear
387 std::map<unsigned, unsigned> Tarjan2DFS;
388 std::map<unsigned, bool> Tarjan2Deleted;
389 // Current DFS number
Daniel Berlinaad15882007-09-16 21:45:02 +0000390 unsigned DFSNumber;
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000391
392 // Work lists.
393 WorkList w1, w2;
394 WorkList *CurrWL, *NextWL; // "current" and "next" work lists
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000395
Daniel Berlind81ccc22007-09-24 19:45:49 +0000396 // Offline variable substitution related things
397
398 // Temporary rep storage, used because we can't collapse SCC's in the
399 // predecessor graph by uniting the variables permanently, we can only do so
400 // for the successor graph.
401 std::vector<unsigned> VSSCCRep;
402 // Mapping from node to whether we have visited it during SCC finding yet.
403 std::vector<bool> Node2Visited;
404 // During variable substitution, we create unknowns to represent the unknown
405 // value that is a dereference of a variable. These nodes are known as
406 // "ref" nodes (since they represent the value of dereferences).
407 unsigned FirstRefNode;
408 // During HVN, we create represent address taken nodes as if they were
409 // unknown (since HVN, unlike HU, does not evaluate unions).
410 unsigned FirstAdrNode;
411 // Current pointer equivalence class number
412 unsigned PEClass;
413 // Mapping from points-to sets to equivalence classes
414 typedef DenseMap<SparseBitVector<> *, unsigned, BitmapKeyInfo> BitVectorMap;
415 BitVectorMap Set2PEClass;
416 // Mapping from pointer equivalences to the representative node. -1 if we
417 // have no representative node for this pointer equivalence class yet.
418 std::vector<int> PEClass2Node;
419 // Mapping from pointer equivalences to representative node. This includes
420 // pointer equivalent but not location equivalent variables. -1 if we have
421 // no representative node for this pointer equivalence class yet.
422 std::vector<int> PENLEClass2Node;
Daniel Berlinc864edb2008-03-05 19:31:47 +0000423 // Union/Find for HCD
424 std::vector<unsigned> HCDSCCRep;
425 // HCD's offline-detected cycles; "Statically DeTected"
426 // -1 if not part of such a cycle, otherwise a representative node.
427 std::vector<int> SDT;
428 // Whether to use SDT (UniteNodes can use it during solving, but not before)
429 bool SDTActive;
Daniel Berlind81ccc22007-09-24 19:45:49 +0000430
Chris Lattnere995a2a2004-05-23 21:00:47 +0000431 public:
Daniel Berlinaad15882007-09-16 21:45:02 +0000432 static char ID;
433 Andersens() : ModulePass((intptr_t)&ID) {}
434
Chris Lattnerb12914b2004-09-20 04:48:05 +0000435 bool runOnModule(Module &M) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000436 InitializeAliasAnalysis(this);
437 IdentifyObjects(M);
438 CollectConstraints(M);
Daniel Berlind81ccc22007-09-24 19:45:49 +0000439#undef DEBUG_TYPE
440#define DEBUG_TYPE "anders-aa-constraints"
Chris Lattnere995a2a2004-05-23 21:00:47 +0000441 DEBUG(PrintConstraints());
Daniel Berlind81ccc22007-09-24 19:45:49 +0000442#undef DEBUG_TYPE
443#define DEBUG_TYPE "anders-aa"
Chris Lattnere995a2a2004-05-23 21:00:47 +0000444 SolveConstraints();
445 DEBUG(PrintPointsToGraph());
446
447 // Free the constraints list, as we don't need it to respond to alias
448 // requests.
449 ObjectNodes.clear();
450 ReturnNodes.clear();
451 VarargNodes.clear();
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000452 std::vector<Constraint>().swap(Constraints);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000453 return false;
454 }
455
456 void releaseMemory() {
457 // FIXME: Until we have transitively required passes working correctly,
458 // this cannot be enabled! Otherwise, using -count-aa with the pass
459 // causes memory to be freed too early. :(
460#if 0
461 // The memory objects and ValueNodes data structures at the only ones that
462 // are still live after construction.
463 std::vector<Node>().swap(GraphNodes);
464 ValueNodes.clear();
465#endif
466 }
467
468 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
469 AliasAnalysis::getAnalysisUsage(AU);
470 AU.setPreservesAll(); // Does not transform code
471 }
472
473 //------------------------------------------------
474 // Implement the AliasAnalysis API
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000475 //
Chris Lattnere995a2a2004-05-23 21:00:47 +0000476 AliasResult alias(const Value *V1, unsigned V1Size,
477 const Value *V2, unsigned V2Size);
Reid Spencer3a9ec242006-08-28 01:02:49 +0000478 virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
479 virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000480 void getMustAliases(Value *P, std::vector<Value*> &RetVals);
481 bool pointsToConstantMemory(const Value *P);
482
483 virtual void deleteValue(Value *V) {
484 ValueNodes.erase(V);
485 getAnalysis<AliasAnalysis>().deleteValue(V);
486 }
487
488 virtual void copyValue(Value *From, Value *To) {
489 ValueNodes[To] = ValueNodes[From];
490 getAnalysis<AliasAnalysis>().copyValue(From, To);
491 }
492
493 private:
494 /// getNode - Return the node corresponding to the specified pointer scalar.
495 ///
Daniel Berlinaad15882007-09-16 21:45:02 +0000496 unsigned getNode(Value *V) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000497 if (Constant *C = dyn_cast<Constant>(V))
Chris Lattnerdf9b7bc2004-08-16 05:38:02 +0000498 if (!isa<GlobalValue>(C))
499 return getNodeForConstantPointer(C);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000500
Daniel Berlind81ccc22007-09-24 19:45:49 +0000501 DenseMap<Value*, unsigned>::iterator I = ValueNodes.find(V);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000502 if (I == ValueNodes.end()) {
Jim Laskey16d42c62006-07-11 18:25:13 +0000503#ifndef NDEBUG
504 V->dump();
505#endif
Jim Laskeye37fe9b2006-07-11 17:58:07 +0000506 assert(0 && "Value does not have a node in the points-to graph!");
Chris Lattnere995a2a2004-05-23 21:00:47 +0000507 }
Daniel Berlinaad15882007-09-16 21:45:02 +0000508 return I->second;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000509 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000510
Chris Lattnere995a2a2004-05-23 21:00:47 +0000511 /// getObject - Return the node corresponding to the memory object for the
512 /// specified global or allocation instruction.
Daniel Berlinaad15882007-09-16 21:45:02 +0000513 unsigned getObject(Value *V) {
Daniel Berlind81ccc22007-09-24 19:45:49 +0000514 DenseMap<Value*, unsigned>::iterator I = ObjectNodes.find(V);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000515 assert(I != ObjectNodes.end() &&
516 "Value does not have an object in the points-to graph!");
Daniel Berlinaad15882007-09-16 21:45:02 +0000517 return I->second;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000518 }
519
520 /// getReturnNode - Return the node representing the return value for the
521 /// specified function.
Daniel Berlinaad15882007-09-16 21:45:02 +0000522 unsigned getReturnNode(Function *F) {
Daniel Berlind81ccc22007-09-24 19:45:49 +0000523 DenseMap<Function*, unsigned>::iterator I = ReturnNodes.find(F);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000524 assert(I != ReturnNodes.end() && "Function does not return a value!");
Daniel Berlinaad15882007-09-16 21:45:02 +0000525 return I->second;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000526 }
527
528 /// getVarargNode - Return the node representing the variable arguments
529 /// formal for the specified function.
Daniel Berlinaad15882007-09-16 21:45:02 +0000530 unsigned getVarargNode(Function *F) {
Daniel Berlind81ccc22007-09-24 19:45:49 +0000531 DenseMap<Function*, unsigned>::iterator I = VarargNodes.find(F);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000532 assert(I != VarargNodes.end() && "Function does not take var args!");
Daniel Berlinaad15882007-09-16 21:45:02 +0000533 return I->second;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000534 }
535
536 /// getNodeValue - Get the node for the specified LLVM value and set the
537 /// value for it to be the specified value.
Daniel Berlinaad15882007-09-16 21:45:02 +0000538 unsigned getNodeValue(Value &V) {
539 unsigned Index = getNode(&V);
540 GraphNodes[Index].setValue(&V);
541 return Index;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000542 }
543
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000544 unsigned UniteNodes(unsigned First, unsigned Second,
545 bool UnionByRank = true);
Daniel Berlinaad15882007-09-16 21:45:02 +0000546 unsigned FindNode(unsigned Node);
547
Chris Lattnere995a2a2004-05-23 21:00:47 +0000548 void IdentifyObjects(Module &M);
549 void CollectConstraints(Module &M);
Daniel Berlinaad15882007-09-16 21:45:02 +0000550 bool AnalyzeUsesOfFunction(Value *);
551 void CreateConstraintGraph();
Daniel Berlind81ccc22007-09-24 19:45:49 +0000552 void OptimizeConstraints();
553 unsigned FindEquivalentNode(unsigned, unsigned);
554 void ClumpAddressTaken();
555 void RewriteConstraints();
556 void HU();
557 void HVN();
Daniel Berlinc864edb2008-03-05 19:31:47 +0000558 void HCD();
559 void Search(unsigned Node);
Daniel Berlind81ccc22007-09-24 19:45:49 +0000560 void UnitePointerEquivalences();
Chris Lattnere995a2a2004-05-23 21:00:47 +0000561 void SolveConstraints();
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000562 bool QueryNode(unsigned Node);
Daniel Berlind81ccc22007-09-24 19:45:49 +0000563 void Condense(unsigned Node);
564 void HUValNum(unsigned Node);
565 void HVNValNum(unsigned Node);
Daniel Berlinaad15882007-09-16 21:45:02 +0000566 unsigned getNodeForConstantPointer(Constant *C);
567 unsigned getNodeForConstantPointerTarget(Constant *C);
568 void AddGlobalInitializerConstraints(unsigned, Constant *C);
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000569
Chris Lattnere995a2a2004-05-23 21:00:47 +0000570 void AddConstraintsForNonInternalLinkage(Function *F);
571 void AddConstraintsForCall(CallSite CS, Function *F);
Chris Lattner8a446432005-03-29 06:09:07 +0000572 bool AddConstraintsForExternalCall(CallSite CS, Function *F);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000573
574
575 void PrintNode(Node *N);
576 void PrintConstraints();
Daniel Berlind81ccc22007-09-24 19:45:49 +0000577 void PrintConstraint(const Constraint &);
578 void PrintLabels();
Chris Lattnere995a2a2004-05-23 21:00:47 +0000579 void PrintPointsToGraph();
580
581 //===------------------------------------------------------------------===//
582 // Instruction visitation methods for adding constraints
583 //
584 friend class InstVisitor<Andersens>;
585 void visitReturnInst(ReturnInst &RI);
586 void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); }
587 void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); }
588 void visitCallSite(CallSite CS);
589 void visitAllocationInst(AllocationInst &AI);
590 void visitLoadInst(LoadInst &LI);
591 void visitStoreInst(StoreInst &SI);
592 void visitGetElementPtrInst(GetElementPtrInst &GEP);
593 void visitPHINode(PHINode &PN);
594 void visitCastInst(CastInst &CI);
Reid Spencere4d87aa2006-12-23 06:05:41 +0000595 void visitICmpInst(ICmpInst &ICI) {} // NOOP!
596 void visitFCmpInst(FCmpInst &ICI) {} // NOOP!
Chris Lattnere995a2a2004-05-23 21:00:47 +0000597 void visitSelectInst(SelectInst &SI);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000598 void visitVAArg(VAArgInst &I);
599 void visitInstruction(Instruction &I);
Daniel Berlinaad15882007-09-16 21:45:02 +0000600
Chris Lattnere995a2a2004-05-23 21:00:47 +0000601 };
602
Devang Patel19974732007-05-03 01:11:54 +0000603 char Andersens::ID = 0;
Chris Lattner7f8897f2006-08-27 22:42:52 +0000604 RegisterPass<Andersens> X("anders-aa",
605 "Andersen's Interprocedural Alias Analysis");
Chris Lattnera5370172006-08-28 00:42:29 +0000606 RegisterAnalysisGroup<AliasAnalysis> Y(X);
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000607
608 // Initialize Timestamp Counter (static).
609 unsigned Andersens::Node::Counter = 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000610}
611
Jeff Cohen534927d2005-01-08 22:01:16 +0000612ModulePass *llvm::createAndersensPass() { return new Andersens(); }
613
Chris Lattnere995a2a2004-05-23 21:00:47 +0000614//===----------------------------------------------------------------------===//
615// AliasAnalysis Interface Implementation
616//===----------------------------------------------------------------------===//
617
618AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size,
619 const Value *V2, unsigned V2Size) {
Daniel Berlinaad15882007-09-16 21:45:02 +0000620 Node *N1 = &GraphNodes[FindNode(getNode(const_cast<Value*>(V1)))];
621 Node *N2 = &GraphNodes[FindNode(getNode(const_cast<Value*>(V2)))];
Chris Lattnere995a2a2004-05-23 21:00:47 +0000622
623 // Check to see if the two pointers are known to not alias. They don't alias
624 // if their points-to sets do not intersect.
Daniel Berlinaad15882007-09-16 21:45:02 +0000625 if (!N1->intersectsIgnoring(N2, NullObject))
Chris Lattnere995a2a2004-05-23 21:00:47 +0000626 return NoAlias;
627
628 return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
629}
630
Chris Lattnerf392c642005-03-28 06:21:17 +0000631AliasAnalysis::ModRefResult
632Andersens::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
633 // The only thing useful that we can contribute for mod/ref information is
634 // when calling external function calls: if we know that memory never escapes
635 // from the program, it cannot be modified by an external call.
636 //
637 // NOTE: This is not really safe, at least not when the entire program is not
638 // available. The deal is that the external function could call back into the
639 // program and modify stuff. We ignore this technical niggle for now. This
640 // is, after all, a "research quality" implementation of Andersen's analysis.
641 if (Function *F = CS.getCalledFunction())
Reid Spencer5cbf9852007-01-30 20:08:39 +0000642 if (F->isDeclaration()) {
Daniel Berlinaad15882007-09-16 21:45:02 +0000643 Node *N1 = &GraphNodes[FindNode(getNode(P))];
Chris Lattnerf392c642005-03-28 06:21:17 +0000644
Daniel Berlinaad15882007-09-16 21:45:02 +0000645 if (N1->PointsTo->empty())
646 return NoModRef;
Chris Lattnerf392c642005-03-28 06:21:17 +0000647
Daniel Berlinaad15882007-09-16 21:45:02 +0000648 if (!N1->PointsTo->test(UniversalSet))
Chris Lattnerf392c642005-03-28 06:21:17 +0000649 return NoModRef; // P doesn't point to the universal set.
650 }
651
652 return AliasAnalysis::getModRefInfo(CS, P, Size);
653}
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000654
Reid Spencer3a9ec242006-08-28 01:02:49 +0000655AliasAnalysis::ModRefResult
656Andersens::getModRefInfo(CallSite CS1, CallSite CS2) {
657 return AliasAnalysis::getModRefInfo(CS1,CS2);
658}
659
Chris Lattnere995a2a2004-05-23 21:00:47 +0000660/// getMustAlias - We can provide must alias information if we know that a
661/// pointer can only point to a specific function or the null pointer.
662/// Unfortunately we cannot determine must-alias information for global
663/// variables or any other memory memory objects because we do not track whether
664/// a pointer points to the beginning of an object or a field of it.
665void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) {
Daniel Berlinaad15882007-09-16 21:45:02 +0000666 Node *N = &GraphNodes[FindNode(getNode(P))];
667 if (N->PointsTo->count() == 1) {
668 Node *Pointee = &GraphNodes[N->PointsTo->find_first()];
669 // If a function is the only object in the points-to set, then it must be
670 // the destination. Note that we can't handle global variables here,
671 // because we don't know if the pointer is actually pointing to a field of
672 // the global or to the beginning of it.
673 if (Value *V = Pointee->getValue()) {
674 if (Function *F = dyn_cast<Function>(V))
675 RetVals.push_back(F);
676 } else {
677 // If the object in the points-to set is the null object, then the null
678 // pointer is a must alias.
679 if (Pointee == &GraphNodes[NullObject])
680 RetVals.push_back(Constant::getNullValue(P->getType()));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000681 }
682 }
Chris Lattnere995a2a2004-05-23 21:00:47 +0000683 AliasAnalysis::getMustAliases(P, RetVals);
684}
685
686/// pointsToConstantMemory - If we can determine that this pointer only points
687/// to constant memory, return true. In practice, this means that if the
688/// pointer can only point to constant globals, functions, or the null pointer,
689/// return true.
690///
691bool Andersens::pointsToConstantMemory(const Value *P) {
Dan Gohman6a551e72008-02-21 17:33:24 +0000692 Node *N = &GraphNodes[FindNode(getNode(const_cast<Value*>(P)))];
Daniel Berlinaad15882007-09-16 21:45:02 +0000693 unsigned i;
694
695 for (SparseBitVector<>::iterator bi = N->PointsTo->begin();
696 bi != N->PointsTo->end();
697 ++bi) {
698 i = *bi;
699 Node *Pointee = &GraphNodes[i];
700 if (Value *V = Pointee->getValue()) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000701 if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) &&
702 !cast<GlobalVariable>(V)->isConstant()))
703 return AliasAnalysis::pointsToConstantMemory(P);
704 } else {
Daniel Berlinaad15882007-09-16 21:45:02 +0000705 if (i != NullObject)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000706 return AliasAnalysis::pointsToConstantMemory(P);
707 }
708 }
709
710 return true;
711}
712
713//===----------------------------------------------------------------------===//
714// Object Identification Phase
715//===----------------------------------------------------------------------===//
716
717/// IdentifyObjects - This stage scans the program, adding an entry to the
718/// GraphNodes list for each memory object in the program (global stack or
719/// heap), and populates the ValueNodes and ObjectNodes maps for these objects.
720///
721void Andersens::IdentifyObjects(Module &M) {
722 unsigned NumObjects = 0;
723
724 // Object #0 is always the universal set: the object that we don't know
725 // anything about.
726 assert(NumObjects == UniversalSet && "Something changed!");
727 ++NumObjects;
728
729 // Object #1 always represents the null pointer.
730 assert(NumObjects == NullPtr && "Something changed!");
731 ++NumObjects;
732
733 // Object #2 always represents the null object (the object pointed to by null)
734 assert(NumObjects == NullObject && "Something changed!");
735 ++NumObjects;
736
737 // Add all the globals first.
Chris Lattner493f6362005-03-27 22:03:46 +0000738 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
739 I != E; ++I) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000740 ObjectNodes[I] = NumObjects++;
741 ValueNodes[I] = NumObjects++;
742 }
743
744 // Add nodes for all of the functions and the instructions inside of them.
745 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
746 // The function itself is a memory object.
Daniel Berlinaad15882007-09-16 21:45:02 +0000747 unsigned First = NumObjects;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000748 ValueNodes[F] = NumObjects++;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000749 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
750 ReturnNodes[F] = NumObjects++;
751 if (F->getFunctionType()->isVarArg())
752 VarargNodes[F] = NumObjects++;
753
Daniel Berlinaad15882007-09-16 21:45:02 +0000754
Chris Lattnere995a2a2004-05-23 21:00:47 +0000755 // Add nodes for all of the incoming pointer arguments.
Chris Lattner493f6362005-03-27 22:03:46 +0000756 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
757 I != E; ++I)
Daniel Berlind81ccc22007-09-24 19:45:49 +0000758 {
759 if (isa<PointerType>(I->getType()))
760 ValueNodes[I] = NumObjects++;
761 }
Daniel Berlinaad15882007-09-16 21:45:02 +0000762 MaxK[First] = NumObjects - First;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000763
764 // Scan the function body, creating a memory object for each heap/stack
765 // allocation in the body of the function and a node to represent all
766 // pointer values defined by instructions and used as operands.
767 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
768 // If this is an heap or stack allocation, create a node for the memory
769 // object.
770 if (isa<PointerType>(II->getType())) {
771 ValueNodes[&*II] = NumObjects++;
772 if (AllocationInst *AI = dyn_cast<AllocationInst>(&*II))
773 ObjectNodes[AI] = NumObjects++;
774 }
Nick Lewycky4ac0e8d2007-11-22 03:07:37 +0000775
776 // Calls to inline asm need to be added as well because the callee isn't
777 // referenced anywhere else.
778 if (CallInst *CI = dyn_cast<CallInst>(&*II)) {
779 Value *Callee = CI->getCalledValue();
780 if (isa<InlineAsm>(Callee))
781 ValueNodes[Callee] = NumObjects++;
782 }
Chris Lattnere995a2a2004-05-23 21:00:47 +0000783 }
784 }
785
786 // Now that we know how many objects to create, make them all now!
787 GraphNodes.resize(NumObjects);
788 NumNodes += NumObjects;
789}
790
791//===----------------------------------------------------------------------===//
792// Constraint Identification Phase
793//===----------------------------------------------------------------------===//
794
795/// getNodeForConstantPointer - Return the node corresponding to the constant
796/// pointer itself.
Daniel Berlinaad15882007-09-16 21:45:02 +0000797unsigned Andersens::getNodeForConstantPointer(Constant *C) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000798 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
799
Chris Lattner267a1b02005-03-27 18:58:23 +0000800 if (isa<ConstantPointerNull>(C) || isa<UndefValue>(C))
Daniel Berlinaad15882007-09-16 21:45:02 +0000801 return NullPtr;
Reid Spencere8404342004-07-18 00:18:30 +0000802 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
803 return getNode(GV);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000804 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
805 switch (CE->getOpcode()) {
806 case Instruction::GetElementPtr:
807 return getNodeForConstantPointer(CE->getOperand(0));
Reid Spencer3da59db2006-11-27 01:05:10 +0000808 case Instruction::IntToPtr:
Daniel Berlinaad15882007-09-16 21:45:02 +0000809 return UniversalSet;
Reid Spencer3da59db2006-11-27 01:05:10 +0000810 case Instruction::BitCast:
811 return getNodeForConstantPointer(CE->getOperand(0));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000812 default:
Bill Wendlinge8156192006-12-07 01:30:32 +0000813 cerr << "Constant Expr not yet handled: " << *CE << "\n";
Chris Lattnere995a2a2004-05-23 21:00:47 +0000814 assert(0);
815 }
816 } else {
817 assert(0 && "Unknown constant pointer!");
818 }
Chris Lattner1fc37392004-05-27 20:57:01 +0000819 return 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000820}
821
822/// getNodeForConstantPointerTarget - Return the node POINTED TO by the
823/// specified constant pointer.
Daniel Berlinaad15882007-09-16 21:45:02 +0000824unsigned Andersens::getNodeForConstantPointerTarget(Constant *C) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000825 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
826
827 if (isa<ConstantPointerNull>(C))
Daniel Berlinaad15882007-09-16 21:45:02 +0000828 return NullObject;
Reid Spencere8404342004-07-18 00:18:30 +0000829 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
830 return getObject(GV);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000831 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
832 switch (CE->getOpcode()) {
833 case Instruction::GetElementPtr:
834 return getNodeForConstantPointerTarget(CE->getOperand(0));
Reid Spencer3da59db2006-11-27 01:05:10 +0000835 case Instruction::IntToPtr:
Daniel Berlinaad15882007-09-16 21:45:02 +0000836 return UniversalSet;
Reid Spencer3da59db2006-11-27 01:05:10 +0000837 case Instruction::BitCast:
838 return getNodeForConstantPointerTarget(CE->getOperand(0));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000839 default:
Bill Wendlinge8156192006-12-07 01:30:32 +0000840 cerr << "Constant Expr not yet handled: " << *CE << "\n";
Chris Lattnere995a2a2004-05-23 21:00:47 +0000841 assert(0);
842 }
843 } else {
844 assert(0 && "Unknown constant pointer!");
845 }
Chris Lattner1fc37392004-05-27 20:57:01 +0000846 return 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000847}
848
849/// AddGlobalInitializerConstraints - Add inclusion constraints for the memory
850/// object N, which contains values indicated by C.
Daniel Berlinaad15882007-09-16 21:45:02 +0000851void Andersens::AddGlobalInitializerConstraints(unsigned NodeIndex,
852 Constant *C) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000853 if (C->getType()->isFirstClassType()) {
854 if (isa<PointerType>(C->getType()))
Daniel Berlinaad15882007-09-16 21:45:02 +0000855 Constraints.push_back(Constraint(Constraint::Copy, NodeIndex,
856 getNodeForConstantPointer(C)));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000857 } else if (C->isNullValue()) {
Daniel Berlinaad15882007-09-16 21:45:02 +0000858 Constraints.push_back(Constraint(Constraint::Copy, NodeIndex,
859 NullObject));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000860 return;
Chris Lattner8a446432005-03-29 06:09:07 +0000861 } else if (!isa<UndefValue>(C)) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000862 // If this is an array or struct, include constraints for each element.
863 assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C));
864 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
Daniel Berlinaad15882007-09-16 21:45:02 +0000865 AddGlobalInitializerConstraints(NodeIndex,
866 cast<Constant>(C->getOperand(i)));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000867 }
868}
869
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000870/// AddConstraintsForNonInternalLinkage - If this function does not have
871/// internal linkage, realize that we can't trust anything passed into or
872/// returned by this function.
Chris Lattnere995a2a2004-05-23 21:00:47 +0000873void Andersens::AddConstraintsForNonInternalLinkage(Function *F) {
Chris Lattnere4d5c442005-03-15 04:54:21 +0000874 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000875 if (isa<PointerType>(I->getType()))
876 // If this is an argument of an externally accessible function, the
877 // incoming pointer might point to anything.
878 Constraints.push_back(Constraint(Constraint::Copy, getNode(I),
Daniel Berlinaad15882007-09-16 21:45:02 +0000879 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000880}
881
Chris Lattner8a446432005-03-29 06:09:07 +0000882/// AddConstraintsForCall - If this is a call to a "known" function, add the
883/// constraints and return true. If this is a call to an unknown function,
884/// return false.
885bool Andersens::AddConstraintsForExternalCall(CallSite CS, Function *F) {
Reid Spencer5cbf9852007-01-30 20:08:39 +0000886 assert(F->isDeclaration() && "Not an external function!");
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000887
888 // These functions don't induce any points-to constraints.
Chris Lattner175b9632005-03-29 20:36:05 +0000889 if (F->getName() == "atoi" || F->getName() == "atof" ||
890 F->getName() == "atol" || F->getName() == "atoll" ||
891 F->getName() == "remove" || F->getName() == "unlink" ||
892 F->getName() == "rename" || F->getName() == "memcmp" ||
Chris Lattner01ac91e2006-03-03 01:21:36 +0000893 F->getName() == "llvm.memset.i32" ||
894 F->getName() == "llvm.memset.i64" ||
Chris Lattner175b9632005-03-29 20:36:05 +0000895 F->getName() == "strcmp" || F->getName() == "strncmp" ||
896 F->getName() == "execl" || F->getName() == "execlp" ||
897 F->getName() == "execle" || F->getName() == "execv" ||
898 F->getName() == "execvp" || F->getName() == "chmod" ||
899 F->getName() == "puts" || F->getName() == "write" ||
900 F->getName() == "open" || F->getName() == "create" ||
901 F->getName() == "truncate" || F->getName() == "chdir" ||
902 F->getName() == "mkdir" || F->getName() == "rmdir" ||
903 F->getName() == "read" || F->getName() == "pipe" ||
904 F->getName() == "wait" || F->getName() == "time" ||
905 F->getName() == "stat" || F->getName() == "fstat" ||
906 F->getName() == "lstat" || F->getName() == "strtod" ||
907 F->getName() == "strtof" || F->getName() == "strtold" ||
908 F->getName() == "fopen" || F->getName() == "fdopen" ||
909 F->getName() == "freopen" ||
910 F->getName() == "fflush" || F->getName() == "feof" ||
911 F->getName() == "fileno" || F->getName() == "clearerr" ||
912 F->getName() == "rewind" || F->getName() == "ftell" ||
913 F->getName() == "ferror" || F->getName() == "fgetc" ||
914 F->getName() == "fgetc" || F->getName() == "_IO_getc" ||
915 F->getName() == "fwrite" || F->getName() == "fread" ||
916 F->getName() == "fgets" || F->getName() == "ungetc" ||
917 F->getName() == "fputc" ||
918 F->getName() == "fputs" || F->getName() == "putc" ||
919 F->getName() == "ftell" || F->getName() == "rewind" ||
920 F->getName() == "_IO_putc" || F->getName() == "fseek" ||
921 F->getName() == "fgetpos" || F->getName() == "fsetpos" ||
922 F->getName() == "printf" || F->getName() == "fprintf" ||
923 F->getName() == "sprintf" || F->getName() == "vprintf" ||
924 F->getName() == "vfprintf" || F->getName() == "vsprintf" ||
925 F->getName() == "scanf" || F->getName() == "fscanf" ||
926 F->getName() == "sscanf" || F->getName() == "__assert_fail" ||
927 F->getName() == "modf")
Chris Lattner8a446432005-03-29 06:09:07 +0000928 return true;
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000929
Chris Lattner175b9632005-03-29 20:36:05 +0000930
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000931 // These functions do induce points-to edges.
Daniel Berlinaad15882007-09-16 21:45:02 +0000932 if (F->getName() == "llvm.memcpy.i32" || F->getName() == "llvm.memcpy.i64" ||
Chris Lattner01ac91e2006-03-03 01:21:36 +0000933 F->getName() == "llvm.memmove.i32" ||F->getName() == "llvm.memmove.i64" ||
Chris Lattner4de57fd2005-03-29 06:52:20 +0000934 F->getName() == "memmove") {
Daniel Berlinaad15882007-09-16 21:45:02 +0000935
936 // *Dest = *Src, which requires an artificial graph node to represent the
937 // constraint. It is broken up into *Dest = temp, temp = *Src
938 unsigned FirstArg = getNode(CS.getArgument(0));
939 unsigned SecondArg = getNode(CS.getArgument(1));
940 unsigned TempArg = GraphNodes.size();
941 GraphNodes.push_back(Node());
942 Constraints.push_back(Constraint(Constraint::Store,
943 FirstArg, TempArg));
944 Constraints.push_back(Constraint(Constraint::Load,
945 TempArg, SecondArg));
Chris Lattner8a446432005-03-29 06:09:07 +0000946 return true;
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000947 }
948
Chris Lattner77b50562005-03-29 20:04:24 +0000949 // Result = Arg0
950 if (F->getName() == "realloc" || F->getName() == "strchr" ||
951 F->getName() == "strrchr" || F->getName() == "strstr" ||
952 F->getName() == "strtok") {
Chris Lattner8a446432005-03-29 06:09:07 +0000953 Constraints.push_back(Constraint(Constraint::Copy,
954 getNode(CS.getInstruction()),
955 getNode(CS.getArgument(0))));
956 return true;
957 }
958
959 return false;
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000960}
961
962
Chris Lattnere995a2a2004-05-23 21:00:47 +0000963
Daniel Berlinaad15882007-09-16 21:45:02 +0000964/// AnalyzeUsesOfFunction - Look at all of the users of the specified function.
965/// If this is used by anything complex (i.e., the address escapes), return
966/// true.
967bool Andersens::AnalyzeUsesOfFunction(Value *V) {
968
969 if (!isa<PointerType>(V->getType())) return true;
970
971 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
972 if (dyn_cast<LoadInst>(*UI)) {
973 return false;
974 } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
975 if (V == SI->getOperand(1)) {
976 return false;
977 } else if (SI->getOperand(1)) {
978 return true; // Storing the pointer
979 }
980 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
981 if (AnalyzeUsesOfFunction(GEP)) return true;
982 } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
983 // Make sure that this is just the function being called, not that it is
984 // passing into the function.
985 for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
986 if (CI->getOperand(i) == V) return true;
987 } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
988 // Make sure that this is just the function being called, not that it is
989 // passing into the function.
990 for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i)
991 if (II->getOperand(i) == V) return true;
992 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
993 if (CE->getOpcode() == Instruction::GetElementPtr ||
994 CE->getOpcode() == Instruction::BitCast) {
995 if (AnalyzeUsesOfFunction(CE))
996 return true;
997 } else {
998 return true;
999 }
1000 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
1001 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1002 return true; // Allow comparison against null.
1003 } else if (dyn_cast<FreeInst>(*UI)) {
1004 return false;
1005 } else {
1006 return true;
1007 }
1008 return false;
1009}
1010
Chris Lattnere995a2a2004-05-23 21:00:47 +00001011/// CollectConstraints - This stage scans the program, adding a constraint to
1012/// the Constraints list for each instruction in the program that induces a
1013/// constraint, and setting up the initial points-to graph.
1014///
1015void Andersens::CollectConstraints(Module &M) {
1016 // First, the universal set points to itself.
Daniel Berlinaad15882007-09-16 21:45:02 +00001017 Constraints.push_back(Constraint(Constraint::AddressOf, UniversalSet,
1018 UniversalSet));
1019 Constraints.push_back(Constraint(Constraint::Store, UniversalSet,
1020 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001021
1022 // Next, the null pointer points to the null object.
Daniel Berlinaad15882007-09-16 21:45:02 +00001023 Constraints.push_back(Constraint(Constraint::AddressOf, NullPtr, NullObject));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001024
1025 // Next, add any constraints on global variables and their initializers.
Chris Lattner493f6362005-03-27 22:03:46 +00001026 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1027 I != E; ++I) {
Chris Lattnere995a2a2004-05-23 21:00:47 +00001028 // Associate the address of the global object as pointing to the memory for
1029 // the global: &G = <G memory>
Daniel Berlinaad15882007-09-16 21:45:02 +00001030 unsigned ObjectIndex = getObject(I);
1031 Node *Object = &GraphNodes[ObjectIndex];
Chris Lattnere995a2a2004-05-23 21:00:47 +00001032 Object->setValue(I);
Daniel Berlinaad15882007-09-16 21:45:02 +00001033 Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(*I),
1034 ObjectIndex));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001035
1036 if (I->hasInitializer()) {
Daniel Berlinaad15882007-09-16 21:45:02 +00001037 AddGlobalInitializerConstraints(ObjectIndex, I->getInitializer());
Chris Lattnere995a2a2004-05-23 21:00:47 +00001038 } else {
1039 // If it doesn't have an initializer (i.e. it's defined in another
1040 // translation unit), it points to the universal set.
Daniel Berlinaad15882007-09-16 21:45:02 +00001041 Constraints.push_back(Constraint(Constraint::Copy, ObjectIndex,
1042 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001043 }
1044 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001045
Chris Lattnere995a2a2004-05-23 21:00:47 +00001046 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
Chris Lattnere995a2a2004-05-23 21:00:47 +00001047 // Set up the return value node.
1048 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
Daniel Berlinaad15882007-09-16 21:45:02 +00001049 GraphNodes[getReturnNode(F)].setValue(F);
Chris Lattnere995a2a2004-05-23 21:00:47 +00001050 if (F->getFunctionType()->isVarArg())
Daniel Berlinaad15882007-09-16 21:45:02 +00001051 GraphNodes[getVarargNode(F)].setValue(F);
Chris Lattnere995a2a2004-05-23 21:00:47 +00001052
1053 // Set up incoming argument nodes.
Chris Lattner493f6362005-03-27 22:03:46 +00001054 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
1055 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +00001056 if (isa<PointerType>(I->getType()))
1057 getNodeValue(*I);
1058
Daniel Berlinaad15882007-09-16 21:45:02 +00001059 // At some point we should just add constraints for the escaping functions
1060 // at solve time, but this slows down solving. For now, we simply mark
1061 // address taken functions as escaping and treat them as external.
1062 if (!F->hasInternalLinkage() || AnalyzeUsesOfFunction(F))
Chris Lattnere995a2a2004-05-23 21:00:47 +00001063 AddConstraintsForNonInternalLinkage(F);
1064
Reid Spencer5cbf9852007-01-30 20:08:39 +00001065 if (!F->isDeclaration()) {
Chris Lattnere995a2a2004-05-23 21:00:47 +00001066 // Scan the function body, creating a memory object for each heap/stack
1067 // allocation in the body of the function and a node to represent all
1068 // pointer values defined by instructions and used as operands.
1069 visit(F);
Chris Lattner8a446432005-03-29 06:09:07 +00001070 } else {
Chris Lattnere995a2a2004-05-23 21:00:47 +00001071 // External functions that return pointers return the universal set.
1072 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
1073 Constraints.push_back(Constraint(Constraint::Copy,
1074 getReturnNode(F),
Daniel Berlinaad15882007-09-16 21:45:02 +00001075 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001076
1077 // Any pointers that are passed into the function have the universal set
1078 // stored into them.
Chris Lattner493f6362005-03-27 22:03:46 +00001079 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
1080 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +00001081 if (isa<PointerType>(I->getType())) {
1082 // Pointers passed into external functions could have anything stored
1083 // through them.
1084 Constraints.push_back(Constraint(Constraint::Store, getNode(I),
Daniel Berlinaad15882007-09-16 21:45:02 +00001085 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001086 // Memory objects passed into external function calls can have the
1087 // universal set point to them.
Daniel Berlin3a3f1632007-12-12 00:37:04 +00001088#if FULL_UNIVERSAL
Chris Lattnere995a2a2004-05-23 21:00:47 +00001089 Constraints.push_back(Constraint(Constraint::Copy,
Daniel Berlinaad15882007-09-16 21:45:02 +00001090 UniversalSet,
Chris Lattnere995a2a2004-05-23 21:00:47 +00001091 getNode(I)));
Daniel Berlin3a3f1632007-12-12 00:37:04 +00001092#else
1093 Constraints.push_back(Constraint(Constraint::Copy,
1094 getNode(I),
1095 UniversalSet));
1096#endif
Chris Lattnere995a2a2004-05-23 21:00:47 +00001097 }
1098
1099 // If this is an external varargs function, it can also store pointers
1100 // into any pointers passed through the varargs section.
1101 if (F->getFunctionType()->isVarArg())
1102 Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F),
Daniel Berlinaad15882007-09-16 21:45:02 +00001103 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001104 }
1105 }
1106 NumConstraints += Constraints.size();
1107}
1108
1109
1110void Andersens::visitInstruction(Instruction &I) {
1111#ifdef NDEBUG
1112 return; // This function is just a big assert.
1113#endif
1114 if (isa<BinaryOperator>(I))
1115 return;
1116 // Most instructions don't have any effect on pointer values.
1117 switch (I.getOpcode()) {
1118 case Instruction::Br:
1119 case Instruction::Switch:
1120 case Instruction::Unwind:
Chris Lattnerc17edbd2004-10-16 18:16:19 +00001121 case Instruction::Unreachable:
Chris Lattnere995a2a2004-05-23 21:00:47 +00001122 case Instruction::Free:
Reid Spencere4d87aa2006-12-23 06:05:41 +00001123 case Instruction::ICmp:
1124 case Instruction::FCmp:
Chris Lattnere995a2a2004-05-23 21:00:47 +00001125 return;
1126 default:
1127 // Is this something we aren't handling yet?
Bill Wendlinge8156192006-12-07 01:30:32 +00001128 cerr << "Unknown instruction: " << I;
Chris Lattnere995a2a2004-05-23 21:00:47 +00001129 abort();
1130 }
1131}
1132
1133void Andersens::visitAllocationInst(AllocationInst &AI) {
Daniel Berlinaad15882007-09-16 21:45:02 +00001134 unsigned ObjectIndex = getObject(&AI);
1135 GraphNodes[ObjectIndex].setValue(&AI);
1136 Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(AI),
1137 ObjectIndex));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001138}
1139
1140void Andersens::visitReturnInst(ReturnInst &RI) {
1141 if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType()))
1142 // return V --> <Copy/retval{F}/v>
1143 Constraints.push_back(Constraint(Constraint::Copy,
1144 getReturnNode(RI.getParent()->getParent()),
1145 getNode(RI.getOperand(0))));
1146}
1147
1148void Andersens::visitLoadInst(LoadInst &LI) {
1149 if (isa<PointerType>(LI.getType()))
1150 // P1 = load P2 --> <Load/P1/P2>
1151 Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI),
1152 getNode(LI.getOperand(0))));
1153}
1154
1155void Andersens::visitStoreInst(StoreInst &SI) {
1156 if (isa<PointerType>(SI.getOperand(0)->getType()))
1157 // store P1, P2 --> <Store/P2/P1>
1158 Constraints.push_back(Constraint(Constraint::Store,
1159 getNode(SI.getOperand(1)),
1160 getNode(SI.getOperand(0))));
1161}
1162
1163void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1164 // P1 = getelementptr P2, ... --> <Copy/P1/P2>
1165 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP),
1166 getNode(GEP.getOperand(0))));
1167}
1168
1169void Andersens::visitPHINode(PHINode &PN) {
1170 if (isa<PointerType>(PN.getType())) {
Daniel Berlinaad15882007-09-16 21:45:02 +00001171 unsigned PNN = getNodeValue(PN);
Chris Lattnere995a2a2004-05-23 21:00:47 +00001172 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1173 // P1 = phi P2, P3 --> <Copy/P1/P2>, <Copy/P1/P3>, ...
1174 Constraints.push_back(Constraint(Constraint::Copy, PNN,
1175 getNode(PN.getIncomingValue(i))));
1176 }
1177}
1178
1179void Andersens::visitCastInst(CastInst &CI) {
1180 Value *Op = CI.getOperand(0);
1181 if (isa<PointerType>(CI.getType())) {
1182 if (isa<PointerType>(Op->getType())) {
1183 // P1 = cast P2 --> <Copy/P1/P2>
1184 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
1185 getNode(CI.getOperand(0))));
1186 } else {
1187 // P1 = cast int --> <Copy/P1/Univ>
Chris Lattner175b9632005-03-29 20:36:05 +00001188#if 0
Chris Lattnere995a2a2004-05-23 21:00:47 +00001189 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
Daniel Berlinaad15882007-09-16 21:45:02 +00001190 UniversalSet));
Chris Lattnerbd135c72005-04-05 01:12:03 +00001191#else
1192 getNodeValue(CI);
Chris Lattner175b9632005-03-29 20:36:05 +00001193#endif
Chris Lattnere995a2a2004-05-23 21:00:47 +00001194 }
1195 } else if (isa<PointerType>(Op->getType())) {
1196 // int = cast P1 --> <Copy/Univ/P1>
Chris Lattner175b9632005-03-29 20:36:05 +00001197#if 0
Chris Lattnere995a2a2004-05-23 21:00:47 +00001198 Constraints.push_back(Constraint(Constraint::Copy,
Daniel Berlinaad15882007-09-16 21:45:02 +00001199 UniversalSet,
Chris Lattnere995a2a2004-05-23 21:00:47 +00001200 getNode(CI.getOperand(0))));
Chris Lattnerbd135c72005-04-05 01:12:03 +00001201#else
1202 getNode(CI.getOperand(0));
Chris Lattner175b9632005-03-29 20:36:05 +00001203#endif
Chris Lattnere995a2a2004-05-23 21:00:47 +00001204 }
1205}
1206
1207void Andersens::visitSelectInst(SelectInst &SI) {
1208 if (isa<PointerType>(SI.getType())) {
Daniel Berlinaad15882007-09-16 21:45:02 +00001209 unsigned SIN = getNodeValue(SI);
Chris Lattnere995a2a2004-05-23 21:00:47 +00001210 // P1 = select C, P2, P3 ---> <Copy/P1/P2>, <Copy/P1/P3>
1211 Constraints.push_back(Constraint(Constraint::Copy, SIN,
1212 getNode(SI.getOperand(1))));
1213 Constraints.push_back(Constraint(Constraint::Copy, SIN,
1214 getNode(SI.getOperand(2))));
1215 }
1216}
1217
Chris Lattnere995a2a2004-05-23 21:00:47 +00001218void Andersens::visitVAArg(VAArgInst &I) {
1219 assert(0 && "vaarg not handled yet!");
1220}
1221
1222/// AddConstraintsForCall - Add constraints for a call with actual arguments
1223/// specified by CS to the function specified by F. Note that the types of
1224/// arguments might not match up in the case where this is an indirect call and
1225/// the function pointer has been casted. If this is the case, do something
1226/// reasonable.
1227void Andersens::AddConstraintsForCall(CallSite CS, Function *F) {
Daniel Berlinaad15882007-09-16 21:45:02 +00001228 Value *CallValue = CS.getCalledValue();
1229 bool IsDeref = F == NULL;
1230
1231 // If this is a call to an external function, try to handle it directly to get
1232 // some taste of context sensitivity.
1233 if (F && F->isDeclaration() && AddConstraintsForExternalCall(CS, F))
Chris Lattner8a446432005-03-29 06:09:07 +00001234 return;
1235
Chris Lattnere995a2a2004-05-23 21:00:47 +00001236 if (isa<PointerType>(CS.getType())) {
Daniel Berlinaad15882007-09-16 21:45:02 +00001237 unsigned CSN = getNode(CS.getInstruction());
1238 if (!F || isa<PointerType>(F->getFunctionType()->getReturnType())) {
1239 if (IsDeref)
1240 Constraints.push_back(Constraint(Constraint::Load, CSN,
1241 getNode(CallValue), CallReturnPos));
1242 else
1243 Constraints.push_back(Constraint(Constraint::Copy, CSN,
1244 getNode(CallValue) + CallReturnPos));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001245 } else {
1246 // If the function returns a non-pointer value, handle this just like we
1247 // treat a nonpointer cast to pointer.
1248 Constraints.push_back(Constraint(Constraint::Copy, CSN,
Daniel Berlinaad15882007-09-16 21:45:02 +00001249 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001250 }
Daniel Berlinaad15882007-09-16 21:45:02 +00001251 } else if (F && isa<PointerType>(F->getFunctionType()->getReturnType())) {
Daniel Berlin3a3f1632007-12-12 00:37:04 +00001252#if FULL_UNIVERSAL
Chris Lattnere995a2a2004-05-23 21:00:47 +00001253 Constraints.push_back(Constraint(Constraint::Copy,
Daniel Berlinaad15882007-09-16 21:45:02 +00001254 UniversalSet,
1255 getNode(CallValue) + CallReturnPos));
Daniel Berlin3a3f1632007-12-12 00:37:04 +00001256#else
1257 Constraints.push_back(Constraint(Constraint::Copy,
1258 getNode(CallValue) + CallReturnPos,
1259 UniversalSet));
1260#endif
1261
1262
Chris Lattnere995a2a2004-05-23 21:00:47 +00001263 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001264
Chris Lattnere995a2a2004-05-23 21:00:47 +00001265 CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end();
Daniel Berlinaad15882007-09-16 21:45:02 +00001266 if (F) {
1267 // Direct Call
1268 Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1269 for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI)
1270 if (isa<PointerType>(AI->getType())) {
1271 if (isa<PointerType>((*ArgI)->getType())) {
1272 // Copy the actual argument into the formal argument.
1273 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
1274 getNode(*ArgI)));
1275 } else {
1276 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
1277 UniversalSet));
1278 }
1279 } else if (isa<PointerType>((*ArgI)->getType())) {
Daniel Berlin3a3f1632007-12-12 00:37:04 +00001280#if FULL_UNIVERSAL
Daniel Berlinaad15882007-09-16 21:45:02 +00001281 Constraints.push_back(Constraint(Constraint::Copy,
1282 UniversalSet,
1283 getNode(*ArgI)));
Daniel Berlin3a3f1632007-12-12 00:37:04 +00001284#else
1285 Constraints.push_back(Constraint(Constraint::Copy,
1286 getNode(*ArgI),
1287 UniversalSet));
1288#endif
Daniel Berlinaad15882007-09-16 21:45:02 +00001289 }
1290 } else {
1291 //Indirect Call
1292 unsigned ArgPos = CallFirstArgPos;
1293 for (; ArgI != ArgE; ++ArgI) {
Chris Lattnere995a2a2004-05-23 21:00:47 +00001294 if (isa<PointerType>((*ArgI)->getType())) {
1295 // Copy the actual argument into the formal argument.
Daniel Berlinaad15882007-09-16 21:45:02 +00001296 Constraints.push_back(Constraint(Constraint::Store,
1297 getNode(CallValue),
1298 getNode(*ArgI), ArgPos++));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001299 } else {
Daniel Berlinaad15882007-09-16 21:45:02 +00001300 Constraints.push_back(Constraint(Constraint::Store,
1301 getNode (CallValue),
1302 UniversalSet, ArgPos++));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001303 }
Chris Lattnere995a2a2004-05-23 21:00:47 +00001304 }
Daniel Berlinaad15882007-09-16 21:45:02 +00001305 }
Chris Lattnere995a2a2004-05-23 21:00:47 +00001306 // Copy all pointers passed through the varargs section to the varargs node.
Daniel Berlinaad15882007-09-16 21:45:02 +00001307 if (F && F->getFunctionType()->isVarArg())
Chris Lattnere995a2a2004-05-23 21:00:47 +00001308 for (; ArgI != ArgE; ++ArgI)
1309 if (isa<PointerType>((*ArgI)->getType()))
1310 Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F),
1311 getNode(*ArgI)));
1312 // If more arguments are passed in than we track, just drop them on the floor.
1313}
1314
1315void Andersens::visitCallSite(CallSite CS) {
1316 if (isa<PointerType>(CS.getType()))
1317 getNodeValue(*CS.getInstruction());
1318
1319 if (Function *F = CS.getCalledFunction()) {
1320 AddConstraintsForCall(CS, F);
1321 } else {
Daniel Berlinaad15882007-09-16 21:45:02 +00001322 AddConstraintsForCall(CS, NULL);
Chris Lattnere995a2a2004-05-23 21:00:47 +00001323 }
1324}
1325
1326//===----------------------------------------------------------------------===//
1327// Constraint Solving Phase
1328//===----------------------------------------------------------------------===//
1329
1330/// intersects - Return true if the points-to set of this node intersects
1331/// with the points-to set of the specified node.
1332bool Andersens::Node::intersects(Node *N) const {
Daniel Berlinaad15882007-09-16 21:45:02 +00001333 return PointsTo->intersects(N->PointsTo);
Chris Lattnere995a2a2004-05-23 21:00:47 +00001334}
1335
1336/// intersectsIgnoring - Return true if the points-to set of this node
1337/// intersects with the points-to set of the specified node on any nodes
1338/// except for the specified node to ignore.
Daniel Berlinaad15882007-09-16 21:45:02 +00001339bool Andersens::Node::intersectsIgnoring(Node *N, unsigned Ignoring) const {
1340 // TODO: If we are only going to call this with the same value for Ignoring,
1341 // we should move the special values out of the points-to bitmap.
1342 bool WeHadIt = PointsTo->test(Ignoring);
1343 bool NHadIt = N->PointsTo->test(Ignoring);
1344 bool Result = false;
1345 if (WeHadIt)
1346 PointsTo->reset(Ignoring);
1347 if (NHadIt)
1348 N->PointsTo->reset(Ignoring);
1349 Result = PointsTo->intersects(N->PointsTo);
1350 if (WeHadIt)
1351 PointsTo->set(Ignoring);
1352 if (NHadIt)
1353 N->PointsTo->set(Ignoring);
1354 return Result;
Chris Lattnere995a2a2004-05-23 21:00:47 +00001355}
1356
Daniel Berlind81ccc22007-09-24 19:45:49 +00001357void dumpToDOUT(SparseBitVector<> *bitmap) {
Bill Wendlingcab5f5d2007-09-24 22:43:48 +00001358#ifndef NDEBUG
Daniel Berlind81ccc22007-09-24 19:45:49 +00001359 dump(*bitmap, DOUT);
Bill Wendlingcab5f5d2007-09-24 22:43:48 +00001360#endif
Daniel Berlind81ccc22007-09-24 19:45:49 +00001361}
1362
1363
1364/// Clump together address taken variables so that the points-to sets use up
1365/// less space and can be operated on faster.
1366
1367void Andersens::ClumpAddressTaken() {
1368#undef DEBUG_TYPE
1369#define DEBUG_TYPE "anders-aa-renumber"
1370 std::vector<unsigned> Translate;
1371 std::vector<Node> NewGraphNodes;
1372
1373 Translate.resize(GraphNodes.size());
1374 unsigned NewPos = 0;
1375
1376 for (unsigned i = 0; i < Constraints.size(); ++i) {
1377 Constraint &C = Constraints[i];
1378 if (C.Type == Constraint::AddressOf) {
1379 GraphNodes[C.Src].AddressTaken = true;
1380 }
1381 }
1382 for (unsigned i = 0; i < NumberSpecialNodes; ++i) {
1383 unsigned Pos = NewPos++;
1384 Translate[i] = Pos;
1385 NewGraphNodes.push_back(GraphNodes[i]);
1386 DOUT << "Renumbering node " << i << " to node " << Pos << "\n";
1387 }
1388
1389 // I believe this ends up being faster than making two vectors and splicing
1390 // them.
1391 for (unsigned i = NumberSpecialNodes; i < GraphNodes.size(); ++i) {
1392 if (GraphNodes[i].AddressTaken) {
1393 unsigned Pos = NewPos++;
1394 Translate[i] = Pos;
1395 NewGraphNodes.push_back(GraphNodes[i]);
1396 DOUT << "Renumbering node " << i << " to node " << Pos << "\n";
1397 }
1398 }
1399
1400 for (unsigned i = NumberSpecialNodes; i < GraphNodes.size(); ++i) {
1401 if (!GraphNodes[i].AddressTaken) {
1402 unsigned Pos = NewPos++;
1403 Translate[i] = Pos;
1404 NewGraphNodes.push_back(GraphNodes[i]);
1405 DOUT << "Renumbering node " << i << " to node " << Pos << "\n";
1406 }
1407 }
1408
1409 for (DenseMap<Value*, unsigned>::iterator Iter = ValueNodes.begin();
1410 Iter != ValueNodes.end();
1411 ++Iter)
1412 Iter->second = Translate[Iter->second];
1413
1414 for (DenseMap<Value*, unsigned>::iterator Iter = ObjectNodes.begin();
1415 Iter != ObjectNodes.end();
1416 ++Iter)
1417 Iter->second = Translate[Iter->second];
1418
1419 for (DenseMap<Function*, unsigned>::iterator Iter = ReturnNodes.begin();
1420 Iter != ReturnNodes.end();
1421 ++Iter)
1422 Iter->second = Translate[Iter->second];
1423
1424 for (DenseMap<Function*, unsigned>::iterator Iter = VarargNodes.begin();
1425 Iter != VarargNodes.end();
1426 ++Iter)
1427 Iter->second = Translate[Iter->second];
1428
1429 for (unsigned i = 0; i < Constraints.size(); ++i) {
1430 Constraint &C = Constraints[i];
1431 C.Src = Translate[C.Src];
1432 C.Dest = Translate[C.Dest];
1433 }
1434
1435 GraphNodes.swap(NewGraphNodes);
1436#undef DEBUG_TYPE
1437#define DEBUG_TYPE "anders-aa"
1438}
1439
1440/// The technique used here is described in "Exploiting Pointer and Location
1441/// Equivalence to Optimize Pointer Analysis. In the 14th International Static
1442/// Analysis Symposium (SAS), August 2007." It is known as the "HVN" algorithm,
1443/// and is equivalent to value numbering the collapsed constraint graph without
1444/// evaluating unions. This is used as a pre-pass to HU in order to resolve
1445/// first order pointer dereferences and speed up/reduce memory usage of HU.
1446/// Running both is equivalent to HRU without the iteration
1447/// HVN in more detail:
1448/// Imagine the set of constraints was simply straight line code with no loops
1449/// (we eliminate cycles, so there are no loops), such as:
1450/// E = &D
1451/// E = &C
1452/// E = F
1453/// F = G
1454/// G = F
1455/// Applying value numbering to this code tells us:
1456/// G == F == E
1457///
1458/// For HVN, this is as far as it goes. We assign new value numbers to every
1459/// "address node", and every "reference node".
1460/// To get the optimal result for this, we use a DFS + SCC (since all nodes in a
1461/// cycle must have the same value number since the = operation is really
1462/// inclusion, not overwrite), and value number nodes we receive points-to sets
1463/// before we value our own node.
1464/// The advantage of HU over HVN is that HU considers the inclusion property, so
1465/// that if you have
1466/// E = &D
1467/// E = &C
1468/// E = F
1469/// F = G
1470/// F = &D
1471/// G = F
1472/// HU will determine that G == F == E. HVN will not, because it cannot prove
1473/// that the points to information ends up being the same because they all
1474/// receive &D from E anyway.
1475
1476void Andersens::HVN() {
1477 DOUT << "Beginning HVN\n";
1478 // Build a predecessor graph. This is like our constraint graph with the
1479 // edges going in the opposite direction, and there are edges for all the
1480 // constraints, instead of just copy constraints. We also build implicit
1481 // edges for constraints are implied but not explicit. I.E for the constraint
1482 // a = &b, we add implicit edges *a = b. This helps us capture more cycles
1483 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1484 Constraint &C = Constraints[i];
1485 if (C.Type == Constraint::AddressOf) {
1486 GraphNodes[C.Src].AddressTaken = true;
1487 GraphNodes[C.Src].Direct = false;
1488
1489 // Dest = &src edge
1490 unsigned AdrNode = C.Src + FirstAdrNode;
1491 if (!GraphNodes[C.Dest].PredEdges)
1492 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1493 GraphNodes[C.Dest].PredEdges->set(AdrNode);
1494
1495 // *Dest = src edge
1496 unsigned RefNode = C.Dest + FirstRefNode;
1497 if (!GraphNodes[RefNode].ImplicitPredEdges)
1498 GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
1499 GraphNodes[RefNode].ImplicitPredEdges->set(C.Src);
1500 } else if (C.Type == Constraint::Load) {
1501 if (C.Offset == 0) {
1502 // dest = *src edge
1503 if (!GraphNodes[C.Dest].PredEdges)
1504 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1505 GraphNodes[C.Dest].PredEdges->set(C.Src + FirstRefNode);
1506 } else {
1507 GraphNodes[C.Dest].Direct = false;
1508 }
1509 } else if (C.Type == Constraint::Store) {
1510 if (C.Offset == 0) {
1511 // *dest = src edge
1512 unsigned RefNode = C.Dest + FirstRefNode;
1513 if (!GraphNodes[RefNode].PredEdges)
1514 GraphNodes[RefNode].PredEdges = new SparseBitVector<>;
1515 GraphNodes[RefNode].PredEdges->set(C.Src);
1516 }
1517 } else {
1518 // Dest = Src edge and *Dest = *Src edge
1519 if (!GraphNodes[C.Dest].PredEdges)
1520 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1521 GraphNodes[C.Dest].PredEdges->set(C.Src);
1522 unsigned RefNode = C.Dest + FirstRefNode;
1523 if (!GraphNodes[RefNode].ImplicitPredEdges)
1524 GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
1525 GraphNodes[RefNode].ImplicitPredEdges->set(C.Src + FirstRefNode);
1526 }
1527 }
1528 PEClass = 1;
1529 // Do SCC finding first to condense our predecessor graph
1530 DFSNumber = 0;
1531 Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
1532 Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
1533 Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
1534
1535 for (unsigned i = 0; i < FirstRefNode; ++i) {
1536 unsigned Node = VSSCCRep[i];
1537 if (!Node2Visited[Node])
1538 HVNValNum(Node);
1539 }
1540 for (BitVectorMap::iterator Iter = Set2PEClass.begin();
1541 Iter != Set2PEClass.end();
1542 ++Iter)
1543 delete Iter->first;
1544 Set2PEClass.clear();
1545 Node2DFS.clear();
1546 Node2Deleted.clear();
1547 Node2Visited.clear();
1548 DOUT << "Finished HVN\n";
1549
1550}
1551
1552/// This is the workhorse of HVN value numbering. We combine SCC finding at the
1553/// same time because it's easy.
1554void Andersens::HVNValNum(unsigned NodeIndex) {
1555 unsigned MyDFS = DFSNumber++;
1556 Node *N = &GraphNodes[NodeIndex];
1557 Node2Visited[NodeIndex] = true;
1558 Node2DFS[NodeIndex] = MyDFS;
1559
1560 // First process all our explicit edges
1561 if (N->PredEdges)
1562 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1563 Iter != N->PredEdges->end();
1564 ++Iter) {
1565 unsigned j = VSSCCRep[*Iter];
1566 if (!Node2Deleted[j]) {
1567 if (!Node2Visited[j])
1568 HVNValNum(j);
1569 if (Node2DFS[NodeIndex] > Node2DFS[j])
1570 Node2DFS[NodeIndex] = Node2DFS[j];
1571 }
1572 }
1573
1574 // Now process all the implicit edges
1575 if (N->ImplicitPredEdges)
1576 for (SparseBitVector<>::iterator Iter = N->ImplicitPredEdges->begin();
1577 Iter != N->ImplicitPredEdges->end();
1578 ++Iter) {
1579 unsigned j = VSSCCRep[*Iter];
1580 if (!Node2Deleted[j]) {
1581 if (!Node2Visited[j])
1582 HVNValNum(j);
1583 if (Node2DFS[NodeIndex] > Node2DFS[j])
1584 Node2DFS[NodeIndex] = Node2DFS[j];
1585 }
1586 }
1587
1588 // See if we found any cycles
1589 if (MyDFS == Node2DFS[NodeIndex]) {
1590 while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
1591 unsigned CycleNodeIndex = SCCStack.top();
1592 Node *CycleNode = &GraphNodes[CycleNodeIndex];
1593 VSSCCRep[CycleNodeIndex] = NodeIndex;
1594 // Unify the nodes
1595 N->Direct &= CycleNode->Direct;
1596
1597 if (CycleNode->PredEdges) {
1598 if (!N->PredEdges)
1599 N->PredEdges = new SparseBitVector<>;
1600 *(N->PredEdges) |= CycleNode->PredEdges;
1601 delete CycleNode->PredEdges;
1602 CycleNode->PredEdges = NULL;
1603 }
1604 if (CycleNode->ImplicitPredEdges) {
1605 if (!N->ImplicitPredEdges)
1606 N->ImplicitPredEdges = new SparseBitVector<>;
1607 *(N->ImplicitPredEdges) |= CycleNode->ImplicitPredEdges;
1608 delete CycleNode->ImplicitPredEdges;
1609 CycleNode->ImplicitPredEdges = NULL;
1610 }
1611
1612 SCCStack.pop();
1613 }
1614
1615 Node2Deleted[NodeIndex] = true;
1616
1617 if (!N->Direct) {
1618 GraphNodes[NodeIndex].PointerEquivLabel = PEClass++;
1619 return;
1620 }
1621
1622 // Collect labels of successor nodes
1623 bool AllSame = true;
1624 unsigned First = ~0;
1625 SparseBitVector<> *Labels = new SparseBitVector<>;
1626 bool Used = false;
1627
1628 if (N->PredEdges)
1629 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1630 Iter != N->PredEdges->end();
1631 ++Iter) {
1632 unsigned j = VSSCCRep[*Iter];
1633 unsigned Label = GraphNodes[j].PointerEquivLabel;
1634 // Ignore labels that are equal to us or non-pointers
1635 if (j == NodeIndex || Label == 0)
1636 continue;
1637 if (First == (unsigned)~0)
1638 First = Label;
1639 else if (First != Label)
1640 AllSame = false;
1641 Labels->set(Label);
1642 }
1643
1644 // We either have a non-pointer, a copy of an existing node, or a new node.
1645 // Assign the appropriate pointer equivalence label.
1646 if (Labels->empty()) {
1647 GraphNodes[NodeIndex].PointerEquivLabel = 0;
1648 } else if (AllSame) {
1649 GraphNodes[NodeIndex].PointerEquivLabel = First;
1650 } else {
1651 GraphNodes[NodeIndex].PointerEquivLabel = Set2PEClass[Labels];
1652 if (GraphNodes[NodeIndex].PointerEquivLabel == 0) {
1653 unsigned EquivClass = PEClass++;
1654 Set2PEClass[Labels] = EquivClass;
1655 GraphNodes[NodeIndex].PointerEquivLabel = EquivClass;
1656 Used = true;
1657 }
1658 }
1659 if (!Used)
1660 delete Labels;
1661 } else {
1662 SCCStack.push(NodeIndex);
1663 }
1664}
1665
1666/// The technique used here is described in "Exploiting Pointer and Location
1667/// Equivalence to Optimize Pointer Analysis. In the 14th International Static
1668/// Analysis Symposium (SAS), August 2007." It is known as the "HU" algorithm,
1669/// and is equivalent to value numbering the collapsed constraint graph
1670/// including evaluating unions.
1671void Andersens::HU() {
1672 DOUT << "Beginning HU\n";
1673 // Build a predecessor graph. This is like our constraint graph with the
1674 // edges going in the opposite direction, and there are edges for all the
1675 // constraints, instead of just copy constraints. We also build implicit
1676 // edges for constraints are implied but not explicit. I.E for the constraint
1677 // a = &b, we add implicit edges *a = b. This helps us capture more cycles
1678 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1679 Constraint &C = Constraints[i];
1680 if (C.Type == Constraint::AddressOf) {
1681 GraphNodes[C.Src].AddressTaken = true;
1682 GraphNodes[C.Src].Direct = false;
1683
1684 GraphNodes[C.Dest].PointsTo->set(C.Src);
1685 // *Dest = src edge
1686 unsigned RefNode = C.Dest + FirstRefNode;
1687 if (!GraphNodes[RefNode].ImplicitPredEdges)
1688 GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
1689 GraphNodes[RefNode].ImplicitPredEdges->set(C.Src);
1690 GraphNodes[C.Src].PointedToBy->set(C.Dest);
1691 } else if (C.Type == Constraint::Load) {
1692 if (C.Offset == 0) {
1693 // dest = *src edge
1694 if (!GraphNodes[C.Dest].PredEdges)
1695 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1696 GraphNodes[C.Dest].PredEdges->set(C.Src + FirstRefNode);
1697 } else {
1698 GraphNodes[C.Dest].Direct = false;
1699 }
1700 } else if (C.Type == Constraint::Store) {
1701 if (C.Offset == 0) {
1702 // *dest = src edge
1703 unsigned RefNode = C.Dest + FirstRefNode;
1704 if (!GraphNodes[RefNode].PredEdges)
1705 GraphNodes[RefNode].PredEdges = new SparseBitVector<>;
1706 GraphNodes[RefNode].PredEdges->set(C.Src);
1707 }
1708 } else {
1709 // Dest = Src edge and *Dest = *Src edg
1710 if (!GraphNodes[C.Dest].PredEdges)
1711 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1712 GraphNodes[C.Dest].PredEdges->set(C.Src);
1713 unsigned RefNode = C.Dest + FirstRefNode;
1714 if (!GraphNodes[RefNode].ImplicitPredEdges)
1715 GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
1716 GraphNodes[RefNode].ImplicitPredEdges->set(C.Src + FirstRefNode);
1717 }
1718 }
1719 PEClass = 1;
1720 // Do SCC finding first to condense our predecessor graph
1721 DFSNumber = 0;
1722 Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
1723 Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
1724 Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
1725
1726 for (unsigned i = 0; i < FirstRefNode; ++i) {
1727 if (FindNode(i) == i) {
1728 unsigned Node = VSSCCRep[i];
1729 if (!Node2Visited[Node])
1730 Condense(Node);
1731 }
1732 }
1733
1734 // Reset tables for actual labeling
1735 Node2DFS.clear();
1736 Node2Visited.clear();
1737 Node2Deleted.clear();
1738 // Pre-grow our densemap so that we don't get really bad behavior
1739 Set2PEClass.resize(GraphNodes.size());
1740
1741 // Visit the condensed graph and generate pointer equivalence labels.
1742 Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
1743 for (unsigned i = 0; i < FirstRefNode; ++i) {
1744 if (FindNode(i) == i) {
1745 unsigned Node = VSSCCRep[i];
1746 if (!Node2Visited[Node])
1747 HUValNum(Node);
1748 }
1749 }
1750 // PEClass nodes will be deleted by the deleting of N->PointsTo in our caller.
1751 Set2PEClass.clear();
1752 DOUT << "Finished HU\n";
1753}
1754
1755
1756/// Implementation of standard Tarjan SCC algorithm as modified by Nuutilla.
1757void Andersens::Condense(unsigned NodeIndex) {
1758 unsigned MyDFS = DFSNumber++;
1759 Node *N = &GraphNodes[NodeIndex];
1760 Node2Visited[NodeIndex] = true;
1761 Node2DFS[NodeIndex] = MyDFS;
1762
1763 // First process all our explicit edges
1764 if (N->PredEdges)
1765 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1766 Iter != N->PredEdges->end();
1767 ++Iter) {
1768 unsigned j = VSSCCRep[*Iter];
1769 if (!Node2Deleted[j]) {
1770 if (!Node2Visited[j])
1771 Condense(j);
1772 if (Node2DFS[NodeIndex] > Node2DFS[j])
1773 Node2DFS[NodeIndex] = Node2DFS[j];
1774 }
1775 }
1776
1777 // Now process all the implicit edges
1778 if (N->ImplicitPredEdges)
1779 for (SparseBitVector<>::iterator Iter = N->ImplicitPredEdges->begin();
1780 Iter != N->ImplicitPredEdges->end();
1781 ++Iter) {
1782 unsigned j = VSSCCRep[*Iter];
1783 if (!Node2Deleted[j]) {
1784 if (!Node2Visited[j])
1785 Condense(j);
1786 if (Node2DFS[NodeIndex] > Node2DFS[j])
1787 Node2DFS[NodeIndex] = Node2DFS[j];
1788 }
1789 }
1790
1791 // See if we found any cycles
1792 if (MyDFS == Node2DFS[NodeIndex]) {
1793 while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
1794 unsigned CycleNodeIndex = SCCStack.top();
1795 Node *CycleNode = &GraphNodes[CycleNodeIndex];
1796 VSSCCRep[CycleNodeIndex] = NodeIndex;
1797 // Unify the nodes
1798 N->Direct &= CycleNode->Direct;
1799
1800 *(N->PointsTo) |= CycleNode->PointsTo;
1801 delete CycleNode->PointsTo;
1802 CycleNode->PointsTo = NULL;
1803 if (CycleNode->PredEdges) {
1804 if (!N->PredEdges)
1805 N->PredEdges = new SparseBitVector<>;
1806 *(N->PredEdges) |= CycleNode->PredEdges;
1807 delete CycleNode->PredEdges;
1808 CycleNode->PredEdges = NULL;
1809 }
1810 if (CycleNode->ImplicitPredEdges) {
1811 if (!N->ImplicitPredEdges)
1812 N->ImplicitPredEdges = new SparseBitVector<>;
1813 *(N->ImplicitPredEdges) |= CycleNode->ImplicitPredEdges;
1814 delete CycleNode->ImplicitPredEdges;
1815 CycleNode->ImplicitPredEdges = NULL;
1816 }
1817 SCCStack.pop();
1818 }
1819
1820 Node2Deleted[NodeIndex] = true;
1821
1822 // Set up number of incoming edges for other nodes
1823 if (N->PredEdges)
1824 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1825 Iter != N->PredEdges->end();
1826 ++Iter)
1827 ++GraphNodes[VSSCCRep[*Iter]].NumInEdges;
1828 } else {
1829 SCCStack.push(NodeIndex);
1830 }
1831}
1832
1833void Andersens::HUValNum(unsigned NodeIndex) {
1834 Node *N = &GraphNodes[NodeIndex];
1835 Node2Visited[NodeIndex] = true;
1836
1837 // Eliminate dereferences of non-pointers for those non-pointers we have
1838 // already identified. These are ref nodes whose non-ref node:
1839 // 1. Has already been visited determined to point to nothing (and thus, a
1840 // dereference of it must point to nothing)
1841 // 2. Any direct node with no predecessor edges in our graph and with no
1842 // points-to set (since it can't point to anything either, being that it
1843 // receives no points-to sets and has none).
1844 if (NodeIndex >= FirstRefNode) {
1845 unsigned j = VSSCCRep[FindNode(NodeIndex - FirstRefNode)];
1846 if ((Node2Visited[j] && !GraphNodes[j].PointerEquivLabel)
1847 || (GraphNodes[j].Direct && !GraphNodes[j].PredEdges
1848 && GraphNodes[j].PointsTo->empty())){
1849 return;
1850 }
1851 }
1852 // Process all our explicit edges
1853 if (N->PredEdges)
1854 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1855 Iter != N->PredEdges->end();
1856 ++Iter) {
1857 unsigned j = VSSCCRep[*Iter];
1858 if (!Node2Visited[j])
1859 HUValNum(j);
1860
1861 // If this edge turned out to be the same as us, or got no pointer
1862 // equivalence label (and thus points to nothing) , just decrement our
1863 // incoming edges and continue.
1864 if (j == NodeIndex || GraphNodes[j].PointerEquivLabel == 0) {
1865 --GraphNodes[j].NumInEdges;
1866 continue;
1867 }
1868
1869 *(N->PointsTo) |= GraphNodes[j].PointsTo;
1870
1871 // If we didn't end up storing this in the hash, and we're done with all
1872 // the edges, we don't need the points-to set anymore.
1873 --GraphNodes[j].NumInEdges;
1874 if (!GraphNodes[j].NumInEdges && !GraphNodes[j].StoredInHash) {
1875 delete GraphNodes[j].PointsTo;
1876 GraphNodes[j].PointsTo = NULL;
1877 }
1878 }
1879 // If this isn't a direct node, generate a fresh variable.
1880 if (!N->Direct) {
1881 N->PointsTo->set(FirstRefNode + NodeIndex);
1882 }
1883
1884 // See If we have something equivalent to us, if not, generate a new
1885 // equivalence class.
1886 if (N->PointsTo->empty()) {
1887 delete N->PointsTo;
1888 N->PointsTo = NULL;
1889 } else {
1890 if (N->Direct) {
1891 N->PointerEquivLabel = Set2PEClass[N->PointsTo];
1892 if (N->PointerEquivLabel == 0) {
1893 unsigned EquivClass = PEClass++;
1894 N->StoredInHash = true;
1895 Set2PEClass[N->PointsTo] = EquivClass;
1896 N->PointerEquivLabel = EquivClass;
1897 }
1898 } else {
1899 N->PointerEquivLabel = PEClass++;
1900 }
1901 }
1902}
1903
1904/// Rewrite our list of constraints so that pointer equivalent nodes are
1905/// replaced by their the pointer equivalence class representative.
1906void Andersens::RewriteConstraints() {
1907 std::vector<Constraint> NewConstraints;
Chris Lattnerbe207732007-09-30 00:47:20 +00001908 DenseSet<Constraint, ConstraintKeyInfo> Seen;
Daniel Berlind81ccc22007-09-24 19:45:49 +00001909
1910 PEClass2Node.clear();
1911 PENLEClass2Node.clear();
1912
1913 // We may have from 1 to Graphnodes + 1 equivalence classes.
1914 PEClass2Node.insert(PEClass2Node.begin(), GraphNodes.size() + 1, -1);
1915 PENLEClass2Node.insert(PENLEClass2Node.begin(), GraphNodes.size() + 1, -1);
1916
1917 // Rewrite constraints, ignoring non-pointer constraints, uniting equivalent
1918 // nodes, and rewriting constraints to use the representative nodes.
1919 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1920 Constraint &C = Constraints[i];
1921 unsigned RHSNode = FindNode(C.Src);
1922 unsigned LHSNode = FindNode(C.Dest);
1923 unsigned RHSLabel = GraphNodes[VSSCCRep[RHSNode]].PointerEquivLabel;
1924 unsigned LHSLabel = GraphNodes[VSSCCRep[LHSNode]].PointerEquivLabel;
1925
1926 // First we try to eliminate constraints for things we can prove don't point
1927 // to anything.
1928 if (LHSLabel == 0) {
1929 DEBUG(PrintNode(&GraphNodes[LHSNode]));
1930 DOUT << " is a non-pointer, ignoring constraint.\n";
1931 continue;
1932 }
1933 if (RHSLabel == 0) {
1934 DEBUG(PrintNode(&GraphNodes[RHSNode]));
1935 DOUT << " is a non-pointer, ignoring constraint.\n";
1936 continue;
1937 }
1938 // This constraint may be useless, and it may become useless as we translate
1939 // it.
1940 if (C.Src == C.Dest && C.Type == Constraint::Copy)
1941 continue;
Daniel Berlinc7a12ae2007-09-27 15:42:23 +00001942
Daniel Berlind81ccc22007-09-24 19:45:49 +00001943 C.Src = FindEquivalentNode(RHSNode, RHSLabel);
1944 C.Dest = FindEquivalentNode(FindNode(LHSNode), LHSLabel);
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00001945 if ((C.Src == C.Dest && C.Type == Constraint::Copy)
Chris Lattnerbe207732007-09-30 00:47:20 +00001946 || Seen.count(C))
Daniel Berlind81ccc22007-09-24 19:45:49 +00001947 continue;
1948
Chris Lattnerbe207732007-09-30 00:47:20 +00001949 Seen.insert(C);
Daniel Berlind81ccc22007-09-24 19:45:49 +00001950 NewConstraints.push_back(C);
1951 }
1952 Constraints.swap(NewConstraints);
1953 PEClass2Node.clear();
1954}
1955
1956/// See if we have a node that is pointer equivalent to the one being asked
1957/// about, and if so, unite them and return the equivalent node. Otherwise,
1958/// return the original node.
1959unsigned Andersens::FindEquivalentNode(unsigned NodeIndex,
1960 unsigned NodeLabel) {
1961 if (!GraphNodes[NodeIndex].AddressTaken) {
1962 if (PEClass2Node[NodeLabel] != -1) {
1963 // We found an existing node with the same pointer label, so unify them.
Daniel Berlin3a3f1632007-12-12 00:37:04 +00001964 // We specifically request that Union-By-Rank not be used so that
1965 // PEClass2Node[NodeLabel] U= NodeIndex and not the other way around.
1966 return UniteNodes(PEClass2Node[NodeLabel], NodeIndex, false);
Daniel Berlind81ccc22007-09-24 19:45:49 +00001967 } else {
1968 PEClass2Node[NodeLabel] = NodeIndex;
1969 PENLEClass2Node[NodeLabel] = NodeIndex;
1970 }
1971 } else if (PENLEClass2Node[NodeLabel] == -1) {
1972 PENLEClass2Node[NodeLabel] = NodeIndex;
1973 }
1974
1975 return NodeIndex;
1976}
1977
1978void Andersens::PrintLabels() {
1979 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
1980 if (i < FirstRefNode) {
1981 PrintNode(&GraphNodes[i]);
1982 } else if (i < FirstAdrNode) {
1983 DOUT << "REF(";
1984 PrintNode(&GraphNodes[i-FirstRefNode]);
1985 DOUT <<")";
1986 } else {
1987 DOUT << "ADR(";
1988 PrintNode(&GraphNodes[i-FirstAdrNode]);
1989 DOUT <<")";
1990 }
1991
1992 DOUT << " has pointer label " << GraphNodes[i].PointerEquivLabel
1993 << " and SCC rep " << VSSCCRep[i]
1994 << " and is " << (GraphNodes[i].Direct ? "Direct" : "Not direct")
1995 << "\n";
1996 }
1997}
1998
Daniel Berlinc864edb2008-03-05 19:31:47 +00001999/// The technique used here is described in "The Ant and the
2000/// Grasshopper: Fast and Accurate Pointer Analysis for Millions of
2001/// Lines of Code. In Programming Language Design and Implementation
2002/// (PLDI), June 2007." It is known as the "HCD" (Hybrid Cycle
2003/// Detection) algorithm. It is called a hybrid because it performs an
2004/// offline analysis and uses its results during the solving (online)
2005/// phase. This is just the offline portion; the results of this
2006/// operation are stored in SDT and are later used in SolveContraints()
2007/// and UniteNodes().
2008void Andersens::HCD() {
2009 DOUT << "Starting HCD.\n";
2010 HCDSCCRep.resize(GraphNodes.size());
2011
2012 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2013 GraphNodes[i].Edges = new SparseBitVector<>;
2014 HCDSCCRep[i] = i;
2015 }
2016
2017 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2018 Constraint &C = Constraints[i];
2019 assert (C.Src < GraphNodes.size() && C.Dest < GraphNodes.size());
2020 if (C.Type == Constraint::AddressOf) {
2021 continue;
2022 } else if (C.Type == Constraint::Load) {
2023 if( C.Offset == 0 )
2024 GraphNodes[C.Dest].Edges->set(C.Src + FirstRefNode);
2025 } else if (C.Type == Constraint::Store) {
2026 if( C.Offset == 0 )
2027 GraphNodes[C.Dest + FirstRefNode].Edges->set(C.Src);
2028 } else {
2029 GraphNodes[C.Dest].Edges->set(C.Src);
2030 }
2031 }
2032
2033 Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
2034 Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
2035 Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
2036 SDT.insert(SDT.begin(), GraphNodes.size() / 2, -1);
2037
2038 DFSNumber = 0;
2039 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2040 unsigned Node = HCDSCCRep[i];
2041 if (!Node2Deleted[Node])
2042 Search(Node);
2043 }
2044
2045 for (unsigned i = 0; i < GraphNodes.size(); ++i)
2046 if (GraphNodes[i].Edges != NULL) {
2047 delete GraphNodes[i].Edges;
2048 GraphNodes[i].Edges = NULL;
2049 }
2050
2051 while( !SCCStack.empty() )
2052 SCCStack.pop();
2053
2054 Node2DFS.clear();
2055 Node2Visited.clear();
2056 Node2Deleted.clear();
2057 HCDSCCRep.clear();
2058 DOUT << "HCD complete.\n";
2059}
2060
2061// Component of HCD:
2062// Use Nuutila's variant of Tarjan's algorithm to detect
2063// Strongly-Connected Components (SCCs). For non-trivial SCCs
2064// containing ref nodes, insert the appropriate information in SDT.
2065void Andersens::Search(unsigned Node) {
2066 unsigned MyDFS = DFSNumber++;
2067
2068 Node2Visited[Node] = true;
2069 Node2DFS[Node] = MyDFS;
2070
2071 for (SparseBitVector<>::iterator Iter = GraphNodes[Node].Edges->begin(),
2072 End = GraphNodes[Node].Edges->end();
2073 Iter != End;
2074 ++Iter) {
2075 unsigned J = HCDSCCRep[*Iter];
2076 assert(GraphNodes[J].isRep() && "Debug check; must be representative");
2077 if (!Node2Deleted[J]) {
2078 if (!Node2Visited[J])
2079 Search(J);
2080 if (Node2DFS[Node] > Node2DFS[J])
2081 Node2DFS[Node] = Node2DFS[J];
2082 }
2083 }
2084
2085 if( MyDFS != Node2DFS[Node] ) {
2086 SCCStack.push(Node);
2087 return;
2088 }
2089
2090 // This node is the root of a SCC, so process it.
2091 //
2092 // If the SCC is "non-trivial" (not a singleton) and contains a reference
2093 // node, we place this SCC into SDT. We unite the nodes in any case.
2094 if (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
2095 SparseBitVector<> SCC;
2096
2097 SCC.set(Node);
2098
2099 bool Ref = (Node >= FirstRefNode);
2100
2101 Node2Deleted[Node] = true;
2102
2103 do {
2104 unsigned P = SCCStack.top(); SCCStack.pop();
2105 Ref |= (P >= FirstRefNode);
2106 SCC.set(P);
2107 HCDSCCRep[P] = Node;
2108 } while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS);
2109
2110 if (Ref) {
2111 unsigned Rep = SCC.find_first();
2112 assert(Rep < FirstRefNode && "The SCC didn't have a non-Ref node!");
2113
2114 SparseBitVector<>::iterator i = SCC.begin();
2115
2116 // Skip over the non-ref nodes
2117 while( *i < FirstRefNode )
2118 ++i;
2119
2120 while( i != SCC.end() )
2121 SDT[ (*i++) - FirstRefNode ] = Rep;
2122 }
2123 }
2124}
2125
2126
Daniel Berlind81ccc22007-09-24 19:45:49 +00002127/// Optimize the constraints by performing offline variable substitution and
2128/// other optimizations.
2129void Andersens::OptimizeConstraints() {
2130 DOUT << "Beginning constraint optimization\n";
2131
Daniel Berlinc864edb2008-03-05 19:31:47 +00002132 SDTActive = false;
2133
Daniel Berlind81ccc22007-09-24 19:45:49 +00002134 // Function related nodes need to stay in the same relative position and can't
2135 // be location equivalent.
2136 for (std::map<unsigned, unsigned>::iterator Iter = MaxK.begin();
2137 Iter != MaxK.end();
2138 ++Iter) {
2139 for (unsigned i = Iter->first;
2140 i != Iter->first + Iter->second;
2141 ++i) {
2142 GraphNodes[i].AddressTaken = true;
2143 GraphNodes[i].Direct = false;
2144 }
2145 }
2146
2147 ClumpAddressTaken();
2148 FirstRefNode = GraphNodes.size();
2149 FirstAdrNode = FirstRefNode + GraphNodes.size();
2150 GraphNodes.insert(GraphNodes.end(), 2 * GraphNodes.size(),
2151 Node(false));
2152 VSSCCRep.resize(GraphNodes.size());
2153 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2154 VSSCCRep[i] = i;
2155 }
2156 HVN();
2157 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2158 Node *N = &GraphNodes[i];
2159 delete N->PredEdges;
2160 N->PredEdges = NULL;
2161 delete N->ImplicitPredEdges;
2162 N->ImplicitPredEdges = NULL;
2163 }
2164#undef DEBUG_TYPE
2165#define DEBUG_TYPE "anders-aa-labels"
2166 DEBUG(PrintLabels());
2167#undef DEBUG_TYPE
2168#define DEBUG_TYPE "anders-aa"
2169 RewriteConstraints();
2170 // Delete the adr nodes.
2171 GraphNodes.resize(FirstRefNode * 2);
2172
2173 // Now perform HU
2174 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2175 Node *N = &GraphNodes[i];
2176 if (FindNode(i) == i) {
2177 N->PointsTo = new SparseBitVector<>;
2178 N->PointedToBy = new SparseBitVector<>;
2179 // Reset our labels
2180 }
2181 VSSCCRep[i] = i;
2182 N->PointerEquivLabel = 0;
2183 }
2184 HU();
2185#undef DEBUG_TYPE
2186#define DEBUG_TYPE "anders-aa-labels"
2187 DEBUG(PrintLabels());
2188#undef DEBUG_TYPE
2189#define DEBUG_TYPE "anders-aa"
2190 RewriteConstraints();
2191 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2192 if (FindNode(i) == i) {
2193 Node *N = &GraphNodes[i];
2194 delete N->PointsTo;
Daniel Berlinc864edb2008-03-05 19:31:47 +00002195 N->PointsTo = NULL;
Daniel Berlind81ccc22007-09-24 19:45:49 +00002196 delete N->PredEdges;
Daniel Berlinc864edb2008-03-05 19:31:47 +00002197 N->PredEdges = NULL;
Daniel Berlind81ccc22007-09-24 19:45:49 +00002198 delete N->ImplicitPredEdges;
Daniel Berlinc864edb2008-03-05 19:31:47 +00002199 N->ImplicitPredEdges = NULL;
Daniel Berlind81ccc22007-09-24 19:45:49 +00002200 delete N->PointedToBy;
Daniel Berlinc864edb2008-03-05 19:31:47 +00002201 N->PointedToBy = NULL;
Daniel Berlind81ccc22007-09-24 19:45:49 +00002202 }
2203 }
Daniel Berlinc864edb2008-03-05 19:31:47 +00002204
2205 // perform Hybrid Cycle Detection (HCD)
2206 HCD();
2207 SDTActive = true;
2208
2209 // No longer any need for the upper half of GraphNodes (for ref nodes).
Daniel Berlind81ccc22007-09-24 19:45:49 +00002210 GraphNodes.erase(GraphNodes.begin() + FirstRefNode, GraphNodes.end());
Daniel Berlinc864edb2008-03-05 19:31:47 +00002211
2212 // HCD complete.
2213
Daniel Berlind81ccc22007-09-24 19:45:49 +00002214 DOUT << "Finished constraint optimization\n";
2215 FirstRefNode = 0;
2216 FirstAdrNode = 0;
2217}
2218
2219/// Unite pointer but not location equivalent variables, now that the constraint
2220/// graph is built.
2221void Andersens::UnitePointerEquivalences() {
2222 DOUT << "Uniting remaining pointer equivalences\n";
2223 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002224 if (GraphNodes[i].AddressTaken && GraphNodes[i].isRep()) {
Daniel Berlind81ccc22007-09-24 19:45:49 +00002225 unsigned Label = GraphNodes[i].PointerEquivLabel;
2226
2227 if (Label && PENLEClass2Node[Label] != -1)
2228 UniteNodes(i, PENLEClass2Node[Label]);
2229 }
2230 }
2231 DOUT << "Finished remaining pointer equivalences\n";
2232 PENLEClass2Node.clear();
2233}
2234
2235/// Create the constraint graph used for solving points-to analysis.
2236///
Daniel Berlinaad15882007-09-16 21:45:02 +00002237void Andersens::CreateConstraintGraph() {
2238 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2239 Constraint &C = Constraints[i];
2240 assert (C.Src < GraphNodes.size() && C.Dest < GraphNodes.size());
2241 if (C.Type == Constraint::AddressOf)
2242 GraphNodes[C.Dest].PointsTo->set(C.Src);
2243 else if (C.Type == Constraint::Load)
2244 GraphNodes[C.Src].Constraints.push_back(C);
2245 else if (C.Type == Constraint::Store)
2246 GraphNodes[C.Dest].Constraints.push_back(C);
2247 else if (C.Offset != 0)
2248 GraphNodes[C.Src].Constraints.push_back(C);
2249 else
2250 GraphNodes[C.Src].Edges->set(C.Dest);
2251 }
2252}
2253
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002254// Perform DFS and cycle detection.
2255bool Andersens::QueryNode(unsigned Node) {
2256 assert(GraphNodes[Node].isRep() && "Querying a non-rep node");
Daniel Berlinaad15882007-09-16 21:45:02 +00002257 unsigned OurDFS = ++DFSNumber;
2258 SparseBitVector<> ToErase;
2259 SparseBitVector<> NewEdges;
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002260 Tarjan2DFS[Node] = OurDFS;
2261
2262 // Changed denotes a change from a recursive call that we will bubble up.
2263 // Merged is set if we actually merge a node ourselves.
2264 bool Changed = false, Merged = false;
Daniel Berlinaad15882007-09-16 21:45:02 +00002265
2266 for (SparseBitVector<>::iterator bi = GraphNodes[Node].Edges->begin();
2267 bi != GraphNodes[Node].Edges->end();
2268 ++bi) {
2269 unsigned RepNode = FindNode(*bi);
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002270 // If this edge points to a non-representative node but we are
2271 // already planning to add an edge to its representative, we have no
2272 // need for this edge anymore.
Daniel Berlinaad15882007-09-16 21:45:02 +00002273 if (RepNode != *bi && NewEdges.test(RepNode)){
2274 ToErase.set(*bi);
2275 continue;
2276 }
2277
2278 // Continue about our DFS.
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002279 if (!Tarjan2Deleted[RepNode]){
2280 if (Tarjan2DFS[RepNode] == 0) {
2281 Changed |= QueryNode(RepNode);
2282 // May have been changed by QueryNode
Daniel Berlinaad15882007-09-16 21:45:02 +00002283 RepNode = FindNode(RepNode);
2284 }
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002285 if (Tarjan2DFS[RepNode] < Tarjan2DFS[Node])
2286 Tarjan2DFS[Node] = Tarjan2DFS[RepNode];
Daniel Berlinaad15882007-09-16 21:45:02 +00002287 }
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002288
2289 // We may have just discovered that this node is part of a cycle, in
2290 // which case we can also erase it.
Daniel Berlinaad15882007-09-16 21:45:02 +00002291 if (RepNode != *bi) {
2292 ToErase.set(*bi);
2293 NewEdges.set(RepNode);
Chris Lattnere995a2a2004-05-23 21:00:47 +00002294 }
2295 }
2296
Daniel Berlinaad15882007-09-16 21:45:02 +00002297 GraphNodes[Node].Edges->intersectWithComplement(ToErase);
2298 GraphNodes[Node].Edges |= NewEdges;
2299
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002300 // If this node is a root of a non-trivial SCC, place it on our
2301 // worklist to be processed.
2302 if (OurDFS == Tarjan2DFS[Node]) {
2303 while (!SCCStack.empty() && Tarjan2DFS[SCCStack.top()] >= OurDFS) {
2304 Node = UniteNodes(Node, SCCStack.top());
Daniel Berlinaad15882007-09-16 21:45:02 +00002305
2306 SCCStack.pop();
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002307 Merged = true;
Daniel Berlinaad15882007-09-16 21:45:02 +00002308 }
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002309 Tarjan2Deleted[Node] = true;
Daniel Berlinaad15882007-09-16 21:45:02 +00002310
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002311 if (Merged)
2312 NextWL->insert(&GraphNodes[Node]);
Daniel Berlinaad15882007-09-16 21:45:02 +00002313 } else {
2314 SCCStack.push(Node);
Chris Lattnere995a2a2004-05-23 21:00:47 +00002315 }
Chris Lattnere995a2a2004-05-23 21:00:47 +00002316
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002317 return(Changed | Merged);
2318}
Chris Lattnere995a2a2004-05-23 21:00:47 +00002319
2320/// SolveConstraints - This stage iteratively processes the constraints list
2321/// propagating constraints (adding edges to the Nodes in the points-to graph)
2322/// until a fixed point is reached.
2323///
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002324/// We use a variant of the technique called "Lazy Cycle Detection", which is
2325/// described in "The Ant and the Grasshopper: Fast and Accurate Pointer
2326/// Analysis for Millions of Lines of Code. In Programming Language Design and
2327/// Implementation (PLDI), June 2007."
2328/// The paper describes performing cycle detection one node at a time, which can
2329/// be expensive if there are no cycles, but there are long chains of nodes that
2330/// it heuristically believes are cycles (because it will DFS from each node
2331/// without state from previous nodes).
2332/// Instead, we use the heuristic to build a worklist of nodes to check, then
2333/// cycle detect them all at the same time to do this more cheaply. This
2334/// catches cycles slightly later than the original technique did, but does it
2335/// make significantly cheaper.
2336
Chris Lattnere995a2a2004-05-23 21:00:47 +00002337void Andersens::SolveConstraints() {
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002338 CurrWL = &w1;
2339 NextWL = &w2;
Daniel Berlinaad15882007-09-16 21:45:02 +00002340
Daniel Berlind81ccc22007-09-24 19:45:49 +00002341 OptimizeConstraints();
2342#undef DEBUG_TYPE
2343#define DEBUG_TYPE "anders-aa-constraints"
2344 DEBUG(PrintConstraints());
2345#undef DEBUG_TYPE
2346#define DEBUG_TYPE "anders-aa"
2347
Daniel Berlinaad15882007-09-16 21:45:02 +00002348 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2349 Node *N = &GraphNodes[i];
2350 N->PointsTo = new SparseBitVector<>;
2351 N->OldPointsTo = new SparseBitVector<>;
2352 N->Edges = new SparseBitVector<>;
2353 }
2354 CreateConstraintGraph();
Daniel Berlind81ccc22007-09-24 19:45:49 +00002355 UnitePointerEquivalences();
2356 assert(SCCStack.empty() && "SCC Stack should be empty by now!");
Daniel Berlind81ccc22007-09-24 19:45:49 +00002357 Node2DFS.clear();
2358 Node2Deleted.clear();
Daniel Berlinaad15882007-09-16 21:45:02 +00002359 Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
2360 Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
2361 DFSNumber = 0;
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002362 DenseSet<Constraint, ConstraintKeyInfo> Seen;
2363 DenseSet<std::pair<unsigned,unsigned>, PairKeyInfo> EdgesChecked;
2364
2365 // Order graph and add initial nodes to work list.
Daniel Berlinaad15882007-09-16 21:45:02 +00002366 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
Daniel Berlinaad15882007-09-16 21:45:02 +00002367 Node *INode = &GraphNodes[i];
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002368
2369 // Add to work list if it's a representative and can contribute to the
2370 // calculation right now.
2371 if (INode->isRep() && !INode->PointsTo->empty()
2372 && (!INode->Edges->empty() || !INode->Constraints.empty())) {
2373 INode->Stamp();
2374 CurrWL->insert(INode);
Daniel Berlinaad15882007-09-16 21:45:02 +00002375 }
2376 }
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002377 std::queue<unsigned int> TarjanWL;
Daniel Berlinc864edb2008-03-05 19:31:47 +00002378#if !FULL_UNIVERSAL
2379 // "Rep and special variables" - in order for HCD to maintain conservative
2380 // results when !FULL_UNIVERSAL, we need to treat the special variables in
2381 // the same way that the !FULL_UNIVERSAL tweak does throughout the rest of
2382 // the analysis - it's ok to add edges from the special nodes, but never
2383 // *to* the special nodes.
2384 std::vector<unsigned int> RSV;
2385#endif
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002386 while( !CurrWL->empty() ) {
2387 DOUT << "Starting iteration #" << ++NumIters << "\n";
Daniel Berlinaad15882007-09-16 21:45:02 +00002388
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002389 Node* CurrNode;
2390 unsigned CurrNodeIndex;
Chris Lattnere995a2a2004-05-23 21:00:47 +00002391
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002392 // Actual cycle checking code. We cycle check all of the lazy cycle
2393 // candidates from the last iteration in one go.
2394 if (!TarjanWL.empty()) {
2395 DFSNumber = 0;
2396
2397 Tarjan2DFS.clear();
2398 Tarjan2Deleted.clear();
2399 while (!TarjanWL.empty()) {
2400 unsigned int ToTarjan = TarjanWL.front();
2401 TarjanWL.pop();
2402 if (!Tarjan2Deleted[ToTarjan]
2403 && GraphNodes[ToTarjan].isRep()
2404 && Tarjan2DFS[ToTarjan] == 0)
2405 QueryNode(ToTarjan);
2406 }
2407 }
2408
2409 // Add to work list if it's a representative and can contribute to the
2410 // calculation right now.
2411 while( (CurrNode = CurrWL->pop()) != NULL ) {
2412 CurrNodeIndex = CurrNode - &GraphNodes[0];
2413 CurrNode->Stamp();
2414
2415
Daniel Berlinaad15882007-09-16 21:45:02 +00002416 // Figure out the changed points to bits
2417 SparseBitVector<> CurrPointsTo;
2418 CurrPointsTo.intersectWithComplement(CurrNode->PointsTo,
2419 CurrNode->OldPointsTo);
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002420 if (CurrPointsTo.empty())
Daniel Berlinaad15882007-09-16 21:45:02 +00002421 continue;
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002422
Daniel Berlinaad15882007-09-16 21:45:02 +00002423 *(CurrNode->OldPointsTo) |= CurrPointsTo;
Daniel Berlinc864edb2008-03-05 19:31:47 +00002424
2425 // Check the offline-computed equivalencies from HCD.
2426 bool SCC = false;
2427 unsigned Rep;
2428
2429 if (SDT[CurrNodeIndex] >= 0) {
2430 SCC = true;
2431 Rep = FindNode(SDT[CurrNodeIndex]);
2432
2433#if !FULL_UNIVERSAL
2434 RSV.clear();
2435#endif
2436 for (SparseBitVector<>::iterator bi = CurrPointsTo.begin();
2437 bi != CurrPointsTo.end(); ++bi) {
2438 unsigned Node = FindNode(*bi);
2439#if !FULL_UNIVERSAL
2440 if (Node < NumberSpecialNodes) {
2441 RSV.push_back(Node);
2442 continue;
2443 }
2444#endif
2445 Rep = UniteNodes(Rep,Node);
2446 }
2447#if !FULL_UNIVERSAL
2448 RSV.push_back(Rep);
2449#endif
2450
2451 NextWL->insert(&GraphNodes[Rep]);
2452
2453 if ( ! CurrNode->isRep() )
2454 continue;
2455 }
2456
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002457 Seen.clear();
Chris Lattnere995a2a2004-05-23 21:00:47 +00002458
Daniel Berlinaad15882007-09-16 21:45:02 +00002459 /* Now process the constraints for this node. */
2460 for (std::list<Constraint>::iterator li = CurrNode->Constraints.begin();
2461 li != CurrNode->Constraints.end(); ) {
2462 li->Src = FindNode(li->Src);
2463 li->Dest = FindNode(li->Dest);
Chris Lattnere995a2a2004-05-23 21:00:47 +00002464
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002465 // Delete redundant constraints
2466 if( Seen.count(*li) ) {
2467 std::list<Constraint>::iterator lk = li; li++;
2468
2469 CurrNode->Constraints.erase(lk);
2470 ++NumErased;
2471 continue;
2472 }
2473 Seen.insert(*li);
2474
Daniel Berlinaad15882007-09-16 21:45:02 +00002475 // Src and Dest will be the vars we are going to process.
2476 // This may look a bit ugly, but what it does is allow us to process
Daniel Berlind81ccc22007-09-24 19:45:49 +00002477 // both store and load constraints with the same code.
Daniel Berlinaad15882007-09-16 21:45:02 +00002478 // Load constraints say that every member of our RHS solution has K
2479 // added to it, and that variable gets an edge to LHS. We also union
2480 // RHS+K's solution into the LHS solution.
2481 // Store constraints say that every member of our LHS solution has K
2482 // added to it, and that variable gets an edge from RHS. We also union
2483 // RHS's solution into the LHS+K solution.
2484 unsigned *Src;
2485 unsigned *Dest;
2486 unsigned K = li->Offset;
2487 unsigned CurrMember;
2488 if (li->Type == Constraint::Load) {
2489 Src = &CurrMember;
2490 Dest = &li->Dest;
2491 } else if (li->Type == Constraint::Store) {
2492 Src = &li->Src;
2493 Dest = &CurrMember;
2494 } else {
2495 // TODO Handle offseted copy constraint
2496 li++;
2497 continue;
2498 }
Daniel Berlinc864edb2008-03-05 19:31:47 +00002499
2500 // See if we can use Hybrid Cycle Detection (that is, check
Daniel Berlinaad15882007-09-16 21:45:02 +00002501 // if it was a statically detected offline equivalence that
Daniel Berlinc864edb2008-03-05 19:31:47 +00002502 // involves pointers; if so, remove the redundant constraints).
2503 if( SCC && K == 0 ) {
2504#if FULL_UNIVERSAL
2505 CurrMember = Rep;
Chris Lattnere995a2a2004-05-23 21:00:47 +00002506
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002507 if (GraphNodes[*Src].Edges->test_and_set(*Dest))
2508 if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo))
2509 NextWL->insert(&GraphNodes[*Dest]);
Daniel Berlinc864edb2008-03-05 19:31:47 +00002510#else
2511 for (unsigned i=0; i < RSV.size(); ++i) {
2512 CurrMember = RSV[i];
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002513
Daniel Berlinc864edb2008-03-05 19:31:47 +00002514 if (*Dest < NumberSpecialNodes)
2515 continue;
2516 if (GraphNodes[*Src].Edges->test_and_set(*Dest))
2517 if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo))
2518 NextWL->insert(&GraphNodes[*Dest]);
2519 }
2520#endif
2521 // since all future elements of the points-to set will be
2522 // equivalent to the current ones, the complex constraints
2523 // become redundant.
2524 //
2525 std::list<Constraint>::iterator lk = li; li++;
2526#if !FULL_UNIVERSAL
2527 // In this case, we can still erase the constraints when the
2528 // elements of the points-to sets are referenced by *Dest,
2529 // but not when they are referenced by *Src (i.e. for a Load
2530 // constraint). This is because if another special variable is
2531 // put into the points-to set later, we still need to add the
2532 // new edge from that special variable.
2533 if( lk->Type != Constraint::Load)
2534#endif
2535 GraphNodes[CurrNodeIndex].Constraints.erase(lk);
2536 } else {
2537 const SparseBitVector<> &Solution = CurrPointsTo;
2538
2539 for (SparseBitVector<>::iterator bi = Solution.begin();
2540 bi != Solution.end();
2541 ++bi) {
2542 CurrMember = *bi;
2543
2544 // Need to increment the member by K since that is where we are
2545 // supposed to copy to/from. Note that in positive weight cycles,
2546 // which occur in address taking of fields, K can go past
2547 // MaxK[CurrMember] elements, even though that is all it could point
2548 // to.
2549 if (K > 0 && K > MaxK[CurrMember])
2550 continue;
2551 else
2552 CurrMember = FindNode(CurrMember + K);
2553
2554 // Add an edge to the graph, so we can just do regular
2555 // bitmap ior next time. It may also let us notice a cycle.
2556#if !FULL_UNIVERSAL
2557 if (*Dest < NumberSpecialNodes)
2558 continue;
2559#endif
2560 if (GraphNodes[*Src].Edges->test_and_set(*Dest))
2561 if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo))
2562 NextWL->insert(&GraphNodes[*Dest]);
2563
2564 }
2565 li++;
Daniel Berlinaad15882007-09-16 21:45:02 +00002566 }
Daniel Berlinaad15882007-09-16 21:45:02 +00002567 }
2568 SparseBitVector<> NewEdges;
2569 SparseBitVector<> ToErase;
2570
2571 // Now all we have left to do is propagate points-to info along the
2572 // edges, erasing the redundant edges.
Daniel Berlinaad15882007-09-16 21:45:02 +00002573 for (SparseBitVector<>::iterator bi = CurrNode->Edges->begin();
2574 bi != CurrNode->Edges->end();
2575 ++bi) {
2576
2577 unsigned DestVar = *bi;
2578 unsigned Rep = FindNode(DestVar);
2579
Bill Wendlingf059deb2008-02-26 10:51:52 +00002580 // If we ended up with this node as our destination, or we've already
2581 // got an edge for the representative, delete the current edge.
2582 if (Rep == CurrNodeIndex ||
2583 (Rep != DestVar && NewEdges.test(Rep))) {
Daniel Berlinc864edb2008-03-05 19:31:47 +00002584 ToErase.set(DestVar);
2585 continue;
Bill Wendlingf059deb2008-02-26 10:51:52 +00002586 }
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002587
Bill Wendlingf059deb2008-02-26 10:51:52 +00002588 std::pair<unsigned,unsigned> edge(CurrNodeIndex,Rep);
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002589
2590 // This is where we do lazy cycle detection.
2591 // If this is a cycle candidate (equal points-to sets and this
2592 // particular edge has not been cycle-checked previously), add to the
2593 // list to check for cycles on the next iteration.
2594 if (!EdgesChecked.count(edge) &&
2595 *(GraphNodes[Rep].PointsTo) == *(CurrNode->PointsTo)) {
2596 EdgesChecked.insert(edge);
2597 TarjanWL.push(Rep);
Daniel Berlinaad15882007-09-16 21:45:02 +00002598 }
2599 // Union the points-to sets into the dest
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002600#if !FULL_UNIVERSAL
2601 if (Rep >= NumberSpecialNodes)
2602#endif
Daniel Berlinaad15882007-09-16 21:45:02 +00002603 if (GraphNodes[Rep].PointsTo |= CurrPointsTo) {
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002604 NextWL->insert(&GraphNodes[Rep]);
Daniel Berlinaad15882007-09-16 21:45:02 +00002605 }
2606 // If this edge's destination was collapsed, rewrite the edge.
2607 if (Rep != DestVar) {
2608 ToErase.set(DestVar);
2609 NewEdges.set(Rep);
2610 }
2611 }
2612 CurrNode->Edges->intersectWithComplement(ToErase);
2613 CurrNode->Edges |= NewEdges;
2614 }
Daniel Berlinaad15882007-09-16 21:45:02 +00002615
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002616 // Switch to other work list.
2617 WorkList* t = CurrWL; CurrWL = NextWL; NextWL = t;
2618 }
Daniel Berlinaad15882007-09-16 21:45:02 +00002619
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002620
Daniel Berlinaad15882007-09-16 21:45:02 +00002621 Node2DFS.clear();
2622 Node2Deleted.clear();
2623 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2624 Node *N = &GraphNodes[i];
2625 delete N->OldPointsTo;
2626 delete N->Edges;
Chris Lattnere995a2a2004-05-23 21:00:47 +00002627 }
Daniel Berlinc864edb2008-03-05 19:31:47 +00002628 SDTActive = false;
2629 SDT.clear();
Chris Lattnere995a2a2004-05-23 21:00:47 +00002630}
2631
Daniel Berlinaad15882007-09-16 21:45:02 +00002632//===----------------------------------------------------------------------===//
2633// Union-Find
2634//===----------------------------------------------------------------------===//
Chris Lattnere995a2a2004-05-23 21:00:47 +00002635
Daniel Berlinaad15882007-09-16 21:45:02 +00002636// Unite nodes First and Second, returning the one which is now the
2637// representative node. First and Second are indexes into GraphNodes
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002638unsigned Andersens::UniteNodes(unsigned First, unsigned Second,
2639 bool UnionByRank) {
Daniel Berlinaad15882007-09-16 21:45:02 +00002640 assert (First < GraphNodes.size() && Second < GraphNodes.size() &&
2641 "Attempting to merge nodes that don't exist");
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002642
Daniel Berlinaad15882007-09-16 21:45:02 +00002643 Node *FirstNode = &GraphNodes[First];
2644 Node *SecondNode = &GraphNodes[Second];
2645
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002646 assert (SecondNode->isRep() && FirstNode->isRep() &&
Daniel Berlinaad15882007-09-16 21:45:02 +00002647 "Trying to unite two non-representative nodes!");
2648 if (First == Second)
2649 return First;
2650
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002651 if (UnionByRank) {
2652 int RankFirst = (int) FirstNode ->NodeRep;
2653 int RankSecond = (int) SecondNode->NodeRep;
2654
2655 // Rank starts at -1 and gets decremented as it increases.
2656 // Translation: higher rank, lower NodeRep value, which is always negative.
2657 if (RankFirst > RankSecond) {
2658 unsigned t = First; First = Second; Second = t;
2659 Node* tp = FirstNode; FirstNode = SecondNode; SecondNode = tp;
2660 } else if (RankFirst == RankSecond) {
2661 FirstNode->NodeRep = (unsigned) (RankFirst - 1);
2662 }
2663 }
2664
Daniel Berlinaad15882007-09-16 21:45:02 +00002665 SecondNode->NodeRep = First;
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002666#if !FULL_UNIVERSAL
2667 if (First >= NumberSpecialNodes)
2668#endif
Daniel Berlind81ccc22007-09-24 19:45:49 +00002669 if (FirstNode->PointsTo && SecondNode->PointsTo)
2670 FirstNode->PointsTo |= *(SecondNode->PointsTo);
2671 if (FirstNode->Edges && SecondNode->Edges)
2672 FirstNode->Edges |= *(SecondNode->Edges);
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002673 if (!SecondNode->Constraints.empty())
Daniel Berlind81ccc22007-09-24 19:45:49 +00002674 FirstNode->Constraints.splice(FirstNode->Constraints.begin(),
2675 SecondNode->Constraints);
2676 if (FirstNode->OldPointsTo) {
2677 delete FirstNode->OldPointsTo;
2678 FirstNode->OldPointsTo = new SparseBitVector<>;
2679 }
Daniel Berlinaad15882007-09-16 21:45:02 +00002680
2681 // Destroy interesting parts of the merged-from node.
2682 delete SecondNode->OldPointsTo;
2683 delete SecondNode->Edges;
2684 delete SecondNode->PointsTo;
2685 SecondNode->Edges = NULL;
2686 SecondNode->PointsTo = NULL;
2687 SecondNode->OldPointsTo = NULL;
2688
2689 NumUnified++;
2690 DOUT << "Unified Node ";
2691 DEBUG(PrintNode(FirstNode));
2692 DOUT << " and Node ";
2693 DEBUG(PrintNode(SecondNode));
2694 DOUT << "\n";
2695
Daniel Berlinc864edb2008-03-05 19:31:47 +00002696 if (SDTActive)
2697 if (SDT[Second] >= 0)
2698 if (SDT[First] < 0)
2699 SDT[First] = SDT[Second];
2700 else {
2701 UniteNodes( FindNode(SDT[First]), FindNode(SDT[Second]) );
2702 First = FindNode(First);
2703 }
2704
Daniel Berlinaad15882007-09-16 21:45:02 +00002705 return First;
2706}
2707
2708// Find the index into GraphNodes of the node representing Node, performing
2709// path compression along the way
2710unsigned Andersens::FindNode(unsigned NodeIndex) {
2711 assert (NodeIndex < GraphNodes.size()
2712 && "Attempting to find a node that can't exist");
2713 Node *N = &GraphNodes[NodeIndex];
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002714 if (N->isRep())
Daniel Berlinaad15882007-09-16 21:45:02 +00002715 return NodeIndex;
2716 else
2717 return (N->NodeRep = FindNode(N->NodeRep));
2718}
Chris Lattnere995a2a2004-05-23 21:00:47 +00002719
2720//===----------------------------------------------------------------------===//
2721// Debugging Output
2722//===----------------------------------------------------------------------===//
2723
2724void Andersens::PrintNode(Node *N) {
2725 if (N == &GraphNodes[UniversalSet]) {
Bill Wendlinge8156192006-12-07 01:30:32 +00002726 cerr << "<universal>";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002727 return;
2728 } else if (N == &GraphNodes[NullPtr]) {
Bill Wendlinge8156192006-12-07 01:30:32 +00002729 cerr << "<nullptr>";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002730 return;
2731 } else if (N == &GraphNodes[NullObject]) {
Bill Wendlinge8156192006-12-07 01:30:32 +00002732 cerr << "<null>";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002733 return;
2734 }
Daniel Berlinaad15882007-09-16 21:45:02 +00002735 if (!N->getValue()) {
2736 cerr << "artificial" << (intptr_t) N;
2737 return;
2738 }
Chris Lattnere995a2a2004-05-23 21:00:47 +00002739
2740 assert(N->getValue() != 0 && "Never set node label!");
2741 Value *V = N->getValue();
2742 if (Function *F = dyn_cast<Function>(V)) {
2743 if (isa<PointerType>(F->getFunctionType()->getReturnType()) &&
Daniel Berlinaad15882007-09-16 21:45:02 +00002744 N == &GraphNodes[getReturnNode(F)]) {
Bill Wendlinge8156192006-12-07 01:30:32 +00002745 cerr << F->getName() << ":retval";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002746 return;
Daniel Berlinaad15882007-09-16 21:45:02 +00002747 } else if (F->getFunctionType()->isVarArg() &&
2748 N == &GraphNodes[getVarargNode(F)]) {
Bill Wendlinge8156192006-12-07 01:30:32 +00002749 cerr << F->getName() << ":vararg";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002750 return;
2751 }
2752 }
2753
2754 if (Instruction *I = dyn_cast<Instruction>(V))
Bill Wendlinge8156192006-12-07 01:30:32 +00002755 cerr << I->getParent()->getParent()->getName() << ":";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002756 else if (Argument *Arg = dyn_cast<Argument>(V))
Bill Wendlinge8156192006-12-07 01:30:32 +00002757 cerr << Arg->getParent()->getName() << ":";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002758
2759 if (V->hasName())
Bill Wendlinge8156192006-12-07 01:30:32 +00002760 cerr << V->getName();
Chris Lattnere995a2a2004-05-23 21:00:47 +00002761 else
Bill Wendlinge8156192006-12-07 01:30:32 +00002762 cerr << "(unnamed)";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002763
2764 if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
Daniel Berlinaad15882007-09-16 21:45:02 +00002765 if (N == &GraphNodes[getObject(V)])
Bill Wendlinge8156192006-12-07 01:30:32 +00002766 cerr << "<mem>";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002767}
Daniel Berlind81ccc22007-09-24 19:45:49 +00002768void Andersens::PrintConstraint(const Constraint &C) {
2769 if (C.Type == Constraint::Store) {
2770 cerr << "*";
2771 if (C.Offset != 0)
2772 cerr << "(";
2773 }
2774 PrintNode(&GraphNodes[C.Dest]);
2775 if (C.Type == Constraint::Store && C.Offset != 0)
2776 cerr << " + " << C.Offset << ")";
2777 cerr << " = ";
2778 if (C.Type == Constraint::Load) {
2779 cerr << "*";
2780 if (C.Offset != 0)
2781 cerr << "(";
2782 }
2783 else if (C.Type == Constraint::AddressOf)
2784 cerr << "&";
2785 PrintNode(&GraphNodes[C.Src]);
2786 if (C.Offset != 0 && C.Type != Constraint::Store)
2787 cerr << " + " << C.Offset;
2788 if (C.Type == Constraint::Load && C.Offset != 0)
2789 cerr << ")";
2790 cerr << "\n";
2791}
Chris Lattnere995a2a2004-05-23 21:00:47 +00002792
2793void Andersens::PrintConstraints() {
Bill Wendlinge8156192006-12-07 01:30:32 +00002794 cerr << "Constraints:\n";
Daniel Berlinaad15882007-09-16 21:45:02 +00002795
Daniel Berlind81ccc22007-09-24 19:45:49 +00002796 for (unsigned i = 0, e = Constraints.size(); i != e; ++i)
2797 PrintConstraint(Constraints[i]);
Chris Lattnere995a2a2004-05-23 21:00:47 +00002798}
2799
2800void Andersens::PrintPointsToGraph() {
Bill Wendlinge8156192006-12-07 01:30:32 +00002801 cerr << "Points-to graph:\n";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002802 for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) {
2803 Node *N = &GraphNodes[i];
Daniel Berlinaad15882007-09-16 21:45:02 +00002804 if (FindNode (i) != i) {
2805 PrintNode(N);
2806 cerr << "\t--> same as ";
2807 PrintNode(&GraphNodes[FindNode(i)]);
2808 cerr << "\n";
2809 } else {
2810 cerr << "[" << (N->PointsTo->count()) << "] ";
2811 PrintNode(N);
2812 cerr << "\t--> ";
2813
2814 bool first = true;
2815 for (SparseBitVector<>::iterator bi = N->PointsTo->begin();
2816 bi != N->PointsTo->end();
2817 ++bi) {
2818 if (!first)
2819 cerr << ", ";
2820 PrintNode(&GraphNodes[*bi]);
2821 first = false;
2822 }
2823 cerr << "\n";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002824 }
Chris Lattnere995a2a2004-05-23 21:00:47 +00002825 }
2826}