blob: 30dc3526abd43eea7bc5a324ec04f459e52219b7 [file] [log] [blame]
Zhou Shengfd43dcf2007-02-06 03:00:16 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Zhou Shengfd43dcf2007-02-06 03:00:16 +00007//
8//===----------------------------------------------------------------------===//
9//
Reid Spencer5d0d05c2007-02-25 19:32:03 +000010// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
Zhou Shengfd43dcf2007-02-06 03:00:16 +000012//
13//===----------------------------------------------------------------------===//
14
Reid Spencer9d6c9192007-02-24 03:58:46 +000015#define DEBUG_TYPE "apint"
Zhou Shengfd43dcf2007-02-06 03:00:16 +000016#include "llvm/ADT/APInt.h"
Ted Kremeneke420deb2008-01-19 04:23:33 +000017#include "llvm/ADT/FoldingSet.h"
Chris Lattnerfad86b02008-08-17 07:19:36 +000018#include "llvm/ADT/SmallString.h"
Reid Spencer9d6c9192007-02-24 03:58:46 +000019#include "llvm/Support/Debug.h"
Zhou Shengfd43dcf2007-02-06 03:00:16 +000020#include "llvm/Support/MathExtras.h"
Chris Lattner944fac72008-08-23 22:23:09 +000021#include "llvm/Support/raw_ostream.h"
Chris Lattnerfad86b02008-08-17 07:19:36 +000022#include <cmath>
Jeff Cohen09dfd8e2007-03-20 20:42:36 +000023#include <limits>
Zhou Shenga3832fd2007-02-07 06:14:53 +000024#include <cstring>
Zhou Shengfd43dcf2007-02-06 03:00:16 +000025#include <cstdlib>
26using namespace llvm;
27
Reid Spencer5d0d05c2007-02-25 19:32:03 +000028/// A utility function for allocating memory, checking for allocation failures,
29/// and ensuring the contents are zeroed.
Chris Lattner455e9ab2009-01-21 18:09:24 +000030inline static uint64_t* getClearedMemory(unsigned numWords) {
Reid Spenceraf0e9562007-02-18 18:38:44 +000031 uint64_t * result = new uint64_t[numWords];
32 assert(result && "APInt memory allocation fails!");
33 memset(result, 0, numWords * sizeof(uint64_t));
34 return result;
Zhou Sheng353815d2007-02-06 06:04:53 +000035}
36
Reid Spencer5d0d05c2007-02-25 19:32:03 +000037/// A utility function for allocating memory and checking for allocation
38/// failure. The content is not zeroed.
Chris Lattner455e9ab2009-01-21 18:09:24 +000039inline static uint64_t* getMemory(unsigned numWords) {
Reid Spenceraf0e9562007-02-18 18:38:44 +000040 uint64_t * result = new uint64_t[numWords];
41 assert(result && "APInt memory allocation fails!");
42 return result;
43}
44
Chris Lattner455e9ab2009-01-21 18:09:24 +000045void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +000046 pVal = getClearedMemory(getNumWords());
47 pVal[0] = val;
48 if (isSigned && int64_t(val) < 0)
49 for (unsigned i = 1; i < getNumWords(); ++i)
50 pVal[i] = -1ULL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +000051}
52
Chris Lattner119c30b2008-10-11 22:07:19 +000053void APInt::initSlowCase(const APInt& that) {
54 pVal = getMemory(getNumWords());
55 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
56}
57
58
Chris Lattner455e9ab2009-01-21 18:09:24 +000059APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
Chris Lattner944fac72008-08-23 22:23:09 +000060 : BitWidth(numBits), VAL(0) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +000061 assert(BitWidth && "bitwidth too small");
Zhou Shengfd43dcf2007-02-06 03:00:16 +000062 assert(bigVal && "Null pointer detected!");
63 if (isSingleWord())
Reid Spencer610fad82007-02-24 10:01:42 +000064 VAL = bigVal[0];
Zhou Shengfd43dcf2007-02-06 03:00:16 +000065 else {
Reid Spencer610fad82007-02-24 10:01:42 +000066 // Get memory, cleared to 0
67 pVal = getClearedMemory(getNumWords());
68 // Calculate the number of words to copy
Chris Lattner455e9ab2009-01-21 18:09:24 +000069 unsigned words = std::min<unsigned>(numWords, getNumWords());
Reid Spencer610fad82007-02-24 10:01:42 +000070 // Copy the words from bigVal to pVal
71 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +000072 }
Reid Spencer610fad82007-02-24 10:01:42 +000073 // Make sure unused high bits are cleared
74 clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +000075}
76
Chris Lattner455e9ab2009-01-21 18:09:24 +000077APInt::APInt(unsigned numbits, const char StrStart[], unsigned slen,
Reid Spencer9c0696f2007-02-20 08:51:03 +000078 uint8_t radix)
Reid Spencer385f7542007-02-21 03:55:44 +000079 : BitWidth(numbits), VAL(0) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +000080 assert(BitWidth && "bitwidth too small");
Reid Spencere81d2da2007-02-16 22:36:51 +000081 fromString(numbits, StrStart, slen, radix);
Zhou Shenga3832fd2007-02-07 06:14:53 +000082}
83
Chris Lattner98f8ccf2008-08-20 17:02:31 +000084APInt& APInt::AssignSlowCase(const APInt& RHS) {
Reid Spencer9ac44112007-02-26 23:38:21 +000085 // Don't do anything for X = X
86 if (this == &RHS)
87 return *this;
88
Reid Spencer9ac44112007-02-26 23:38:21 +000089 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +000090 // assume same bit-width single-word case is already handled
91 assert(!isSingleWord());
92 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Reid Spencer9ac44112007-02-26 23:38:21 +000093 return *this;
94 }
95
Chris Lattner98f8ccf2008-08-20 17:02:31 +000096 if (isSingleWord()) {
97 // assume case where both are single words is already handled
98 assert(!RHS.isSingleWord());
99 VAL = 0;
100 pVal = getMemory(RHS.getNumWords());
101 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
102 } else if (getNumWords() == RHS.getNumWords())
Reid Spencer9ac44112007-02-26 23:38:21 +0000103 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
104 else if (RHS.isSingleWord()) {
105 delete [] pVal;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000106 VAL = RHS.VAL;
Reid Spencer9ac44112007-02-26 23:38:21 +0000107 } else {
108 delete [] pVal;
109 pVal = getMemory(RHS.getNumWords());
110 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
111 }
112 BitWidth = RHS.BitWidth;
113 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000114}
115
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000116APInt& APInt::operator=(uint64_t RHS) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000117 if (isSingleWord())
118 VAL = RHS;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000119 else {
120 pVal[0] = RHS;
Reid Spencera58f0582007-02-18 20:09:41 +0000121 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000122 }
Reid Spencer9ac44112007-02-26 23:38:21 +0000123 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000124}
125
Ted Kremeneke420deb2008-01-19 04:23:33 +0000126/// Profile - This method 'profiles' an APInt for use with FoldingSet.
127void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremeneka795aca2008-02-19 20:50:41 +0000128 ID.AddInteger(BitWidth);
129
Ted Kremeneke420deb2008-01-19 04:23:33 +0000130 if (isSingleWord()) {
131 ID.AddInteger(VAL);
132 return;
133 }
134
Chris Lattner455e9ab2009-01-21 18:09:24 +0000135 unsigned NumWords = getNumWords();
Ted Kremeneke420deb2008-01-19 04:23:33 +0000136 for (unsigned i = 0; i < NumWords; ++i)
137 ID.AddInteger(pVal[i]);
138}
139
Reid Spenceraf0e9562007-02-18 18:38:44 +0000140/// add_1 - This function adds a single "digit" integer, y, to the multiple
141/// "digit" integer array, x[]. x[] is modified to reflect the addition and
142/// 1 is returned if there is a carry out, otherwise 0 is returned.
Reid Spencer5e0a8512007-02-17 03:16:00 +0000143/// @returns the carry of the addition.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000144static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
145 for (unsigned i = 0; i < len; ++i) {
Reid Spencerf2c521c2007-02-18 06:39:42 +0000146 dest[i] = y + x[i];
147 if (dest[i] < y)
Reid Spencer610fad82007-02-24 10:01:42 +0000148 y = 1; // Carry one to next digit.
Reid Spencerf2c521c2007-02-18 06:39:42 +0000149 else {
Reid Spencer610fad82007-02-24 10:01:42 +0000150 y = 0; // No need to carry so exit early
Reid Spencerf2c521c2007-02-18 06:39:42 +0000151 break;
152 }
Reid Spencer5e0a8512007-02-17 03:16:00 +0000153 }
Reid Spencerf2c521c2007-02-18 06:39:42 +0000154 return y;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000155}
156
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000157/// @brief Prefix increment operator. Increments the APInt by one.
158APInt& APInt::operator++() {
Reid Spencere81d2da2007-02-16 22:36:51 +0000159 if (isSingleWord())
160 ++VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000161 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000162 add_1(pVal, pVal, getNumWords(), 1);
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000163 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000164}
165
Reid Spenceraf0e9562007-02-18 18:38:44 +0000166/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
167/// the multi-digit integer array, x[], propagating the borrowed 1 value until
168/// no further borrowing is neeeded or it runs out of "digits" in x. The result
169/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
170/// In other words, if y > x then this function returns 1, otherwise 0.
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000171/// @returns the borrow out of the subtraction
Chris Lattner455e9ab2009-01-21 18:09:24 +0000172static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
173 for (unsigned i = 0; i < len; ++i) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000174 uint64_t X = x[i];
Reid Spencerf2c521c2007-02-18 06:39:42 +0000175 x[i] -= y;
176 if (y > X)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000177 y = 1; // We have to "borrow 1" from next "digit"
Reid Spencer5e0a8512007-02-17 03:16:00 +0000178 else {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000179 y = 0; // No need to borrow
180 break; // Remaining digits are unchanged so exit early
Reid Spencer5e0a8512007-02-17 03:16:00 +0000181 }
182 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000183 return bool(y);
Reid Spencer5e0a8512007-02-17 03:16:00 +0000184}
185
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000186/// @brief Prefix decrement operator. Decrements the APInt by one.
187APInt& APInt::operator--() {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000188 if (isSingleWord())
189 --VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000190 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000191 sub_1(pVal, getNumWords(), 1);
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000192 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000193}
194
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000195/// add - This function adds the integer array x to the integer array Y and
196/// places the result in dest.
197/// @returns the carry out from the addition
198/// @brief General addition of 64-bit integer arrays
Reid Spencer9d6c9192007-02-24 03:58:46 +0000199static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner455e9ab2009-01-21 18:09:24 +0000200 unsigned len) {
Reid Spencer9d6c9192007-02-24 03:58:46 +0000201 bool carry = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000202 for (unsigned i = 0; i< len; ++i) {
Reid Spencer92904632007-02-23 01:57:13 +0000203 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
Reid Spencer54362ca2007-02-20 23:40:25 +0000204 dest[i] = x[i] + y[i] + carry;
Reid Spencer60c0a6a2007-02-21 05:44:56 +0000205 carry = dest[i] < limit || (carry && dest[i] == limit);
Reid Spencer5e0a8512007-02-17 03:16:00 +0000206 }
207 return carry;
208}
209
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000210/// Adds the RHS APint to this APInt.
211/// @returns this, after addition of RHS.
212/// @brief Addition assignment operator.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000213APInt& APInt::operator+=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000214 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer54362ca2007-02-20 23:40:25 +0000215 if (isSingleWord())
216 VAL += RHS.VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000217 else {
Reid Spencer54362ca2007-02-20 23:40:25 +0000218 add(pVal, pVal, RHS.pVal, getNumWords());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000219 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000220 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000221}
222
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000223/// Subtracts the integer array y from the integer array x
224/// @returns returns the borrow out.
225/// @brief Generalized subtraction of 64-bit integer arrays.
Reid Spencer9d6c9192007-02-24 03:58:46 +0000226static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner455e9ab2009-01-21 18:09:24 +0000227 unsigned len) {
Reid Spencer385f7542007-02-21 03:55:44 +0000228 bool borrow = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000229 for (unsigned i = 0; i < len; ++i) {
Reid Spencer385f7542007-02-21 03:55:44 +0000230 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
231 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
232 dest[i] = x_tmp - y[i];
Reid Spencer5e0a8512007-02-17 03:16:00 +0000233 }
Reid Spencer54362ca2007-02-20 23:40:25 +0000234 return borrow;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000235}
236
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000237/// Subtracts the RHS APInt from this APInt
238/// @returns this, after subtraction
239/// @brief Subtraction assignment operator.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000240APInt& APInt::operator-=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000241 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000242 if (isSingleWord())
Reid Spencer54362ca2007-02-20 23:40:25 +0000243 VAL -= RHS.VAL;
244 else
245 sub(pVal, pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000246 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000247}
248
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000249/// Multiplies an integer array, x by a a uint64_t integer and places the result
250/// into dest.
251/// @returns the carry out of the multiplication.
252/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000253static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
Reid Spencer610fad82007-02-24 10:01:42 +0000254 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
Reid Spencer5e0a8512007-02-17 03:16:00 +0000255 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000256 uint64_t carry = 0;
257
258 // For each digit of x.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000259 for (unsigned i = 0; i < len; ++i) {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000260 // Split x into high and low words
261 uint64_t lx = x[i] & 0xffffffffULL;
262 uint64_t hx = x[i] >> 32;
263 // hasCarry - A flag to indicate if there is a carry to the next digit.
Reid Spencer5e0a8512007-02-17 03:16:00 +0000264 // hasCarry == 0, no carry
265 // hasCarry == 1, has carry
266 // hasCarry == 2, no carry and the calculation result == 0.
267 uint8_t hasCarry = 0;
268 dest[i] = carry + lx * ly;
269 // Determine if the add above introduces carry.
270 hasCarry = (dest[i] < carry) ? 1 : 0;
271 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
272 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
273 // (2^32 - 1) + 2^32 = 2^64.
274 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
275
276 carry += (lx * hy) & 0xffffffffULL;
277 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
278 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
279 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
280 }
Reid Spencer5e0a8512007-02-17 03:16:00 +0000281 return carry;
282}
283
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000284/// Multiplies integer array x by integer array y and stores the result into
285/// the integer array dest. Note that dest's size must be >= xlen + ylen.
286/// @brief Generalized multiplicate of integer arrays.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000287static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
288 unsigned ylen) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000289 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000290 for (unsigned i = 1; i < ylen; ++i) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000291 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
Reid Spencere0cdd332007-02-21 08:21:52 +0000292 uint64_t carry = 0, lx = 0, hx = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000293 for (unsigned j = 0; j < xlen; ++j) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000294 lx = x[j] & 0xffffffffULL;
295 hx = x[j] >> 32;
296 // hasCarry - A flag to indicate if has carry.
297 // hasCarry == 0, no carry
298 // hasCarry == 1, has carry
299 // hasCarry == 2, no carry and the calculation result == 0.
300 uint8_t hasCarry = 0;
301 uint64_t resul = carry + lx * ly;
302 hasCarry = (resul < carry) ? 1 : 0;
303 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
304 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
305
306 carry += (lx * hy) & 0xffffffffULL;
307 resul = (carry << 32) | (resul & 0xffffffffULL);
308 dest[i+j] += resul;
309 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
310 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
311 ((lx * hy) >> 32) + hx * hy;
312 }
313 dest[i+xlen] = carry;
314 }
315}
316
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000317APInt& APInt::operator*=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000318 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencere0cdd332007-02-21 08:21:52 +0000319 if (isSingleWord()) {
Reid Spencer61eb1802007-02-20 20:42:10 +0000320 VAL *= RHS.VAL;
Reid Spencere0cdd332007-02-21 08:21:52 +0000321 clearUnusedBits();
322 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000323 }
Reid Spencere0cdd332007-02-21 08:21:52 +0000324
325 // Get some bit facts about LHS and check for zero
Chris Lattner455e9ab2009-01-21 18:09:24 +0000326 unsigned lhsBits = getActiveBits();
327 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
Reid Spencere0cdd332007-02-21 08:21:52 +0000328 if (!lhsWords)
329 // 0 * X ===> 0
330 return *this;
331
332 // Get some bit facts about RHS and check for zero
Chris Lattner455e9ab2009-01-21 18:09:24 +0000333 unsigned rhsBits = RHS.getActiveBits();
334 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
Reid Spencere0cdd332007-02-21 08:21:52 +0000335 if (!rhsWords) {
336 // X * 0 ===> 0
337 clear();
338 return *this;
339 }
340
341 // Allocate space for the result
Chris Lattner455e9ab2009-01-21 18:09:24 +0000342 unsigned destWords = rhsWords + lhsWords;
Reid Spencere0cdd332007-02-21 08:21:52 +0000343 uint64_t *dest = getMemory(destWords);
344
345 // Perform the long multiply
346 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
347
348 // Copy result back into *this
349 clear();
Chris Lattner455e9ab2009-01-21 18:09:24 +0000350 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
Reid Spencere0cdd332007-02-21 08:21:52 +0000351 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
352
353 // delete dest array and return
354 delete[] dest;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000355 return *this;
356}
357
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000358APInt& APInt::operator&=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000359 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000360 if (isSingleWord()) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000361 VAL &= RHS.VAL;
362 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000363 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000364 unsigned numWords = getNumWords();
365 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000366 pVal[i] &= RHS.pVal[i];
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000367 return *this;
368}
369
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000370APInt& APInt::operator|=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000371 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000372 if (isSingleWord()) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000373 VAL |= RHS.VAL;
374 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000375 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000376 unsigned numWords = getNumWords();
377 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000378 pVal[i] |= RHS.pVal[i];
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000379 return *this;
380}
381
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000382APInt& APInt::operator^=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000383 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000384 if (isSingleWord()) {
Reid Spencerf2c521c2007-02-18 06:39:42 +0000385 VAL ^= RHS.VAL;
Reid Spencer54362ca2007-02-20 23:40:25 +0000386 this->clearUnusedBits();
Reid Spencerf2c521c2007-02-18 06:39:42 +0000387 return *this;
388 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000389 unsigned numWords = getNumWords();
390 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000391 pVal[i] ^= RHS.pVal[i];
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000392 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000393}
394
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000395APInt APInt::AndSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000396 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000397 uint64_t* val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000398 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000399 val[i] = pVal[i] & RHS.pVal[i];
400 return APInt(val, getBitWidth());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000401}
402
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000403APInt APInt::OrSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000404 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000405 uint64_t *val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000406 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000407 val[i] = pVal[i] | RHS.pVal[i];
408 return APInt(val, getBitWidth());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000409}
410
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000411APInt APInt::XorSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000412 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000413 uint64_t *val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000414 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000415 val[i] = pVal[i] ^ RHS.pVal[i];
416
417 // 0^0==1 so clear the high bits in case they got set.
418 return APInt(val, getBitWidth()).clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000419}
420
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000421bool APInt::operator !() const {
422 if (isSingleWord())
423 return !VAL;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000424
Chris Lattner455e9ab2009-01-21 18:09:24 +0000425 for (unsigned i = 0; i < getNumWords(); ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000426 if (pVal[i])
427 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000428 return true;
429}
430
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000431APInt APInt::operator*(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000432 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000433 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000434 return APInt(BitWidth, VAL * RHS.VAL);
Reid Spencer61eb1802007-02-20 20:42:10 +0000435 APInt Result(*this);
436 Result *= RHS;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000437 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000438}
439
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000440APInt APInt::operator+(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000441 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000442 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000443 return APInt(BitWidth, VAL + RHS.VAL);
Reid Spencer54362ca2007-02-20 23:40:25 +0000444 APInt Result(BitWidth, 0);
445 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000446 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000447}
448
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000449APInt APInt::operator-(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000450 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000451 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000452 return APInt(BitWidth, VAL - RHS.VAL);
Reid Spencer54362ca2007-02-20 23:40:25 +0000453 APInt Result(BitWidth, 0);
454 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000455 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000456}
457
Chris Lattner455e9ab2009-01-21 18:09:24 +0000458bool APInt::operator[](unsigned bitPosition) const {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000459 return (maskBit(bitPosition) &
460 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000461}
462
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000463bool APInt::EqualSlowCase(const APInt& RHS) const {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000464 // Get some facts about the number of bits used in the two operands.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000465 unsigned n1 = getActiveBits();
466 unsigned n2 = RHS.getActiveBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000467
468 // If the number of bits isn't the same, they aren't equal
Reid Spencer54362ca2007-02-20 23:40:25 +0000469 if (n1 != n2)
470 return false;
471
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000472 // If the number of bits fits in a word, we only need to compare the low word.
Reid Spencer54362ca2007-02-20 23:40:25 +0000473 if (n1 <= APINT_BITS_PER_WORD)
474 return pVal[0] == RHS.pVal[0];
475
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000476 // Otherwise, compare everything
Reid Spencer54362ca2007-02-20 23:40:25 +0000477 for (int i = whichWord(n1 - 1); i >= 0; --i)
478 if (pVal[i] != RHS.pVal[i])
479 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000480 return true;
481}
482
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000483bool APInt::EqualSlowCase(uint64_t Val) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000484 unsigned n = getActiveBits();
Reid Spencer54362ca2007-02-20 23:40:25 +0000485 if (n <= APINT_BITS_PER_WORD)
486 return pVal[0] == Val;
487 else
488 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000489}
490
Reid Spencere81d2da2007-02-16 22:36:51 +0000491bool APInt::ult(const APInt& RHS) const {
492 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
493 if (isSingleWord())
494 return VAL < RHS.VAL;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000495
496 // Get active bit length of both operands
Chris Lattner455e9ab2009-01-21 18:09:24 +0000497 unsigned n1 = getActiveBits();
498 unsigned n2 = RHS.getActiveBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000499
500 // If magnitude of LHS is less than RHS, return true.
501 if (n1 < n2)
502 return true;
503
504 // If magnitude of RHS is greather than LHS, return false.
505 if (n2 < n1)
506 return false;
507
508 // If they bot fit in a word, just compare the low order word
509 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
510 return pVal[0] < RHS.pVal[0];
511
512 // Otherwise, compare all words
Chris Lattner455e9ab2009-01-21 18:09:24 +0000513 unsigned topWord = whichWord(std::max(n1,n2)-1);
Reid Spencer1fa111e2007-02-27 18:23:40 +0000514 for (int i = topWord; i >= 0; --i) {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000515 if (pVal[i] > RHS.pVal[i])
Reid Spencere81d2da2007-02-16 22:36:51 +0000516 return false;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000517 if (pVal[i] < RHS.pVal[i])
518 return true;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000519 }
520 return false;
521}
522
Reid Spencere81d2da2007-02-16 22:36:51 +0000523bool APInt::slt(const APInt& RHS) const {
524 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
Reid Spencera58f0582007-02-18 20:09:41 +0000525 if (isSingleWord()) {
526 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
527 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
528 return lhsSext < rhsSext;
Reid Spencere81d2da2007-02-16 22:36:51 +0000529 }
Reid Spencera58f0582007-02-18 20:09:41 +0000530
531 APInt lhs(*this);
Reid Spencer1fa111e2007-02-27 18:23:40 +0000532 APInt rhs(RHS);
533 bool lhsNeg = isNegative();
534 bool rhsNeg = rhs.isNegative();
535 if (lhsNeg) {
536 // Sign bit is set so perform two's complement to make it positive
Reid Spencera58f0582007-02-18 20:09:41 +0000537 lhs.flip();
538 lhs++;
539 }
Reid Spencer1fa111e2007-02-27 18:23:40 +0000540 if (rhsNeg) {
541 // Sign bit is set so perform two's complement to make it positive
Reid Spencera58f0582007-02-18 20:09:41 +0000542 rhs.flip();
543 rhs++;
544 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000545
546 // Now we have unsigned values to compare so do the comparison if necessary
547 // based on the negativeness of the values.
Reid Spencer1fa111e2007-02-27 18:23:40 +0000548 if (lhsNeg)
549 if (rhsNeg)
550 return lhs.ugt(rhs);
Reid Spencera58f0582007-02-18 20:09:41 +0000551 else
552 return true;
Reid Spencer1fa111e2007-02-27 18:23:40 +0000553 else if (rhsNeg)
Reid Spencera58f0582007-02-18 20:09:41 +0000554 return false;
555 else
556 return lhs.ult(rhs);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000557}
558
Chris Lattner455e9ab2009-01-21 18:09:24 +0000559APInt& APInt::set(unsigned bitPosition) {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000560 if (isSingleWord())
561 VAL |= maskBit(bitPosition);
562 else
563 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000564 return *this;
565}
566
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000567/// Set the given bit to 0 whose position is given as "bitPosition".
568/// @brief Set a given bit to 0.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000569APInt& APInt::clear(unsigned bitPosition) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000570 if (isSingleWord())
571 VAL &= ~maskBit(bitPosition);
572 else
573 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000574 return *this;
575}
576
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000577/// @brief Toggle every bit to its opposite value.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000578
579/// Toggle a given bit to its opposite value whose position is given
580/// as "bitPosition".
581/// @brief Toggles a given bit to its opposite value.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000582APInt& APInt::flip(unsigned bitPosition) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000583 assert(bitPosition < BitWidth && "Out of the bit-width range!");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000584 if ((*this)[bitPosition]) clear(bitPosition);
585 else set(bitPosition);
586 return *this;
587}
588
Chris Lattner455e9ab2009-01-21 18:09:24 +0000589unsigned APInt::getBitsNeeded(const char* str, unsigned slen, uint8_t radix) {
Reid Spencer57ae4f52007-04-13 19:19:07 +0000590 assert(str != 0 && "Invalid value string");
591 assert(slen > 0 && "Invalid string length");
592
593 // Each computation below needs to know if its negative
Chris Lattner455e9ab2009-01-21 18:09:24 +0000594 unsigned isNegative = str[0] == '-';
Reid Spencer57ae4f52007-04-13 19:19:07 +0000595 if (isNegative) {
596 slen--;
597 str++;
598 }
599 // For radixes of power-of-two values, the bits required is accurately and
600 // easily computed
601 if (radix == 2)
602 return slen + isNegative;
603 if (radix == 8)
604 return slen * 3 + isNegative;
605 if (radix == 16)
606 return slen * 4 + isNegative;
607
608 // Otherwise it must be radix == 10, the hard case
609 assert(radix == 10 && "Invalid radix");
610
611 // This is grossly inefficient but accurate. We could probably do something
612 // with a computation of roughly slen*64/20 and then adjust by the value of
613 // the first few digits. But, I'm not sure how accurate that could be.
614
615 // Compute a sufficient number of bits that is always large enough but might
616 // be too large. This avoids the assertion in the constructor.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000617 unsigned sufficient = slen*64/18;
Reid Spencer57ae4f52007-04-13 19:19:07 +0000618
619 // Convert to the actual binary value.
620 APInt tmp(sufficient, str, slen, radix);
621
622 // Compute how many bits are required.
Reid Spencer0468ab32007-04-14 00:00:10 +0000623 return isNegative + tmp.logBase2() + 1;
Reid Spencer57ae4f52007-04-13 19:19:07 +0000624}
625
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000626// From http://www.burtleburtle.net, byBob Jenkins.
627// When targeting x86, both GCC and LLVM seem to recognize this as a
628// rotate instruction.
629#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
Reid Spencer794f4722007-02-26 21:02:27 +0000630
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000631// From http://www.burtleburtle.net, by Bob Jenkins.
632#define mix(a,b,c) \
633 { \
634 a -= c; a ^= rot(c, 4); c += b; \
635 b -= a; b ^= rot(a, 6); a += c; \
636 c -= b; c ^= rot(b, 8); b += a; \
637 a -= c; a ^= rot(c,16); c += b; \
638 b -= a; b ^= rot(a,19); a += c; \
639 c -= b; c ^= rot(b, 4); b += a; \
640 }
641
642// From http://www.burtleburtle.net, by Bob Jenkins.
643#define final(a,b,c) \
644 { \
645 c ^= b; c -= rot(b,14); \
646 a ^= c; a -= rot(c,11); \
647 b ^= a; b -= rot(a,25); \
648 c ^= b; c -= rot(b,16); \
649 a ^= c; a -= rot(c,4); \
650 b ^= a; b -= rot(a,14); \
651 c ^= b; c -= rot(b,24); \
652 }
653
654// hashword() was adapted from http://www.burtleburtle.net, by Bob
655// Jenkins. k is a pointer to an array of uint32_t values; length is
656// the length of the key, in 32-bit chunks. This version only handles
657// keys that are a multiple of 32 bits in size.
658static inline uint32_t hashword(const uint64_t *k64, size_t length)
659{
660 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
661 uint32_t a,b,c;
662
663 /* Set up the internal state */
664 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
665
666 /*------------------------------------------------- handle most of the key */
667 while (length > 3)
668 {
669 a += k[0];
670 b += k[1];
671 c += k[2];
672 mix(a,b,c);
673 length -= 3;
674 k += 3;
675 }
676
677 /*------------------------------------------- handle the last 3 uint32_t's */
Mike Stumpf3dc0c02009-05-13 23:23:20 +0000678 switch (length) { /* all the case statements fall through */
679 case 3 : c+=k[2];
680 case 2 : b+=k[1];
681 case 1 : a+=k[0];
682 final(a,b,c);
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000683 case 0: /* case 0: nothing left to add */
684 break;
685 }
686 /*------------------------------------------------------ report the result */
687 return c;
688}
689
690// hashword8() was adapted from http://www.burtleburtle.net, by Bob
691// Jenkins. This computes a 32-bit hash from one 64-bit word. When
692// targeting x86 (32 or 64 bit), both LLVM and GCC compile this
693// function into about 35 instructions when inlined.
694static inline uint32_t hashword8(const uint64_t k64)
695{
696 uint32_t a,b,c;
697 a = b = c = 0xdeadbeef + 4;
698 b += k64 >> 32;
699 a += k64 & 0xffffffff;
700 final(a,b,c);
701 return c;
702}
703#undef final
704#undef mix
705#undef rot
706
707uint64_t APInt::getHashValue() const {
708 uint64_t hash;
Reid Spencer794f4722007-02-26 21:02:27 +0000709 if (isSingleWord())
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000710 hash = hashword8(VAL);
Reid Spencer794f4722007-02-26 21:02:27 +0000711 else
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000712 hash = hashword(pVal, getNumWords()*2);
Reid Spencer794f4722007-02-26 21:02:27 +0000713 return hash;
714}
715
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000716/// HiBits - This function returns the high "numBits" bits of this APInt.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000717APInt APInt::getHiBits(unsigned numBits) const {
Reid Spencere81d2da2007-02-16 22:36:51 +0000718 return APIntOps::lshr(*this, BitWidth - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000719}
720
721/// LoBits - This function returns the low "numBits" bits of this APInt.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000722APInt APInt::getLoBits(unsigned numBits) const {
Reid Spencere81d2da2007-02-16 22:36:51 +0000723 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
724 BitWidth - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000725}
726
Reid Spencere81d2da2007-02-16 22:36:51 +0000727bool APInt::isPowerOf2() const {
728 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
729}
730
Chris Lattner455e9ab2009-01-21 18:09:24 +0000731unsigned APInt::countLeadingZerosSlowCase() const {
732 unsigned Count = 0;
733 for (unsigned i = getNumWords(); i > 0u; --i) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000734 if (pVal[i-1] == 0)
735 Count += APINT_BITS_PER_WORD;
736 else {
737 Count += CountLeadingZeros_64(pVal[i-1]);
738 break;
Reid Spencere549c492007-02-21 00:29:48 +0000739 }
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000740 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000741 unsigned remainder = BitWidth % APINT_BITS_PER_WORD;
Reid Spencerab2b2c82007-02-22 00:22:00 +0000742 if (remainder)
743 Count -= APINT_BITS_PER_WORD - remainder;
Chris Lattner9e513ac2007-11-23 22:42:31 +0000744 return std::min(Count, BitWidth);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000745}
746
Chris Lattner455e9ab2009-01-21 18:09:24 +0000747static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
748 unsigned Count = 0;
Reid Spencer681dcd12007-02-27 21:59:26 +0000749 if (skip)
750 V <<= skip;
751 while (V && (V & (1ULL << 63))) {
752 Count++;
753 V <<= 1;
754 }
755 return Count;
756}
757
Chris Lattner455e9ab2009-01-21 18:09:24 +0000758unsigned APInt::countLeadingOnes() const {
Reid Spencer681dcd12007-02-27 21:59:26 +0000759 if (isSingleWord())
760 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
761
Chris Lattner455e9ab2009-01-21 18:09:24 +0000762 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
Torok Edwin2d0f1c52009-01-27 18:06:03 +0000763 unsigned shift;
764 if (!highWordBits) {
765 highWordBits = APINT_BITS_PER_WORD;
766 shift = 0;
767 } else {
768 shift = APINT_BITS_PER_WORD - highWordBits;
769 }
Reid Spencer681dcd12007-02-27 21:59:26 +0000770 int i = getNumWords() - 1;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000771 unsigned Count = countLeadingOnes_64(pVal[i], shift);
Reid Spencer681dcd12007-02-27 21:59:26 +0000772 if (Count == highWordBits) {
773 for (i--; i >= 0; --i) {
774 if (pVal[i] == -1ULL)
775 Count += APINT_BITS_PER_WORD;
776 else {
777 Count += countLeadingOnes_64(pVal[i], 0);
778 break;
779 }
780 }
781 }
782 return Count;
783}
784
Chris Lattner455e9ab2009-01-21 18:09:24 +0000785unsigned APInt::countTrailingZeros() const {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000786 if (isSingleWord())
Chris Lattner455e9ab2009-01-21 18:09:24 +0000787 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
788 unsigned Count = 0;
789 unsigned i = 0;
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000790 for (; i < getNumWords() && pVal[i] == 0; ++i)
791 Count += APINT_BITS_PER_WORD;
792 if (i < getNumWords())
793 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner5e557122007-11-23 22:36:25 +0000794 return std::min(Count, BitWidth);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000795}
796
Chris Lattner455e9ab2009-01-21 18:09:24 +0000797unsigned APInt::countTrailingOnesSlowCase() const {
798 unsigned Count = 0;
799 unsigned i = 0;
Dan Gohman5a0e7b42008-02-14 22:38:45 +0000800 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohman42dd77f2008-02-13 21:11:05 +0000801 Count += APINT_BITS_PER_WORD;
802 if (i < getNumWords())
803 Count += CountTrailingOnes_64(pVal[i]);
804 return std::min(Count, BitWidth);
805}
806
Chris Lattner455e9ab2009-01-21 18:09:24 +0000807unsigned APInt::countPopulationSlowCase() const {
808 unsigned Count = 0;
809 for (unsigned i = 0; i < getNumWords(); ++i)
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000810 Count += CountPopulation_64(pVal[i]);
811 return Count;
812}
813
Reid Spencere81d2da2007-02-16 22:36:51 +0000814APInt APInt::byteSwap() const {
815 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
816 if (BitWidth == 16)
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000817 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
Reid Spencere81d2da2007-02-16 22:36:51 +0000818 else if (BitWidth == 32)
Chris Lattner455e9ab2009-01-21 18:09:24 +0000819 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
Reid Spencere81d2da2007-02-16 22:36:51 +0000820 else if (BitWidth == 48) {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000821 unsigned Tmp1 = unsigned(VAL >> 16);
Zhou Shengb04973e2007-02-15 06:36:31 +0000822 Tmp1 = ByteSwap_32(Tmp1);
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000823 uint16_t Tmp2 = uint16_t(VAL);
Zhou Shengb04973e2007-02-15 06:36:31 +0000824 Tmp2 = ByteSwap_16(Tmp2);
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000825 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
Reid Spencere81d2da2007-02-16 22:36:51 +0000826 } else if (BitWidth == 64)
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000827 return APInt(BitWidth, ByteSwap_64(VAL));
Zhou Shengb04973e2007-02-15 06:36:31 +0000828 else {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000829 APInt Result(BitWidth, 0);
Zhou Shengb04973e2007-02-15 06:36:31 +0000830 char *pByte = (char*)Result.pVal;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000831 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
Zhou Shengb04973e2007-02-15 06:36:31 +0000832 char Tmp = pByte[i];
Reid Spencera58f0582007-02-18 20:09:41 +0000833 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
834 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
Zhou Shengb04973e2007-02-15 06:36:31 +0000835 }
836 return Result;
837 }
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000838}
839
Zhou Sheng0b706b12007-02-08 14:35:19 +0000840APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
841 const APInt& API2) {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000842 APInt A = API1, B = API2;
843 while (!!B) {
844 APInt T = B;
Reid Spencere81d2da2007-02-16 22:36:51 +0000845 B = APIntOps::urem(A, B);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000846 A = T;
847 }
848 return A;
849}
Chris Lattner6ad4c142007-02-06 05:38:37 +0000850
Chris Lattner455e9ab2009-01-21 18:09:24 +0000851APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Zhou Shengd93f00c2007-02-12 20:02:55 +0000852 union {
853 double D;
854 uint64_t I;
855 } T;
856 T.D = Double;
Reid Spencer30f44f32007-02-27 01:28:10 +0000857
858 // Get the sign bit from the highest order bit
Zhou Shengd93f00c2007-02-12 20:02:55 +0000859 bool isNeg = T.I >> 63;
Reid Spencer30f44f32007-02-27 01:28:10 +0000860
861 // Get the 11-bit exponent and adjust for the 1023 bit bias
Zhou Shengd93f00c2007-02-12 20:02:55 +0000862 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
Reid Spencer30f44f32007-02-27 01:28:10 +0000863
864 // If the exponent is negative, the value is < 0 so just return 0.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000865 if (exp < 0)
Reid Spencerff605762007-02-28 01:30:08 +0000866 return APInt(width, 0u);
Reid Spencer30f44f32007-02-27 01:28:10 +0000867
868 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
869 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
870
871 // If the exponent doesn't shift all bits out of the mantissa
Zhou Shengd93f00c2007-02-12 20:02:55 +0000872 if (exp < 52)
Reid Spencer1fa111e2007-02-27 18:23:40 +0000873 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
874 APInt(width, mantissa >> (52 - exp));
875
876 // If the client didn't provide enough bits for us to shift the mantissa into
877 // then the result is undefined, just return 0
878 if (width <= exp - 52)
879 return APInt(width, 0);
Reid Spencer30f44f32007-02-27 01:28:10 +0000880
881 // Otherwise, we have to shift the mantissa bits up to the right location
Reid Spencer1fa111e2007-02-27 18:23:40 +0000882 APInt Tmp(width, mantissa);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000883 Tmp = Tmp.shl((unsigned)exp - 52);
Zhou Shengd93f00c2007-02-12 20:02:55 +0000884 return isNeg ? -Tmp : Tmp;
885}
886
Reid Spencerdb3faa62007-02-13 22:41:58 +0000887/// RoundToDouble - This function convert this APInt to a double.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000888/// The layout for double is as following (IEEE Standard 754):
889/// --------------------------------------
890/// | Sign Exponent Fraction Bias |
891/// |-------------------------------------- |
892/// | 1[63] 11[62-52] 52[51-00] 1023 |
893/// --------------------------------------
Reid Spencere81d2da2007-02-16 22:36:51 +0000894double APInt::roundToDouble(bool isSigned) const {
Reid Spencer9c0696f2007-02-20 08:51:03 +0000895
896 // Handle the simple case where the value is contained in one uint64_t.
Reid Spencera58f0582007-02-18 20:09:41 +0000897 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
898 if (isSigned) {
899 int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
900 return double(sext);
901 } else
902 return double(VAL);
903 }
904
Reid Spencer9c0696f2007-02-20 08:51:03 +0000905 // Determine if the value is negative.
Reid Spencere81d2da2007-02-16 22:36:51 +0000906 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
Reid Spencer9c0696f2007-02-20 08:51:03 +0000907
908 // Construct the absolute value if we're negative.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000909 APInt Tmp(isNeg ? -(*this) : (*this));
Reid Spencer9c0696f2007-02-20 08:51:03 +0000910
911 // Figure out how many bits we're using.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000912 unsigned n = Tmp.getActiveBits();
Zhou Shengd93f00c2007-02-12 20:02:55 +0000913
Reid Spencer9c0696f2007-02-20 08:51:03 +0000914 // The exponent (without bias normalization) is just the number of bits
915 // we are using. Note that the sign bit is gone since we constructed the
916 // absolute value.
917 uint64_t exp = n;
Zhou Shengd93f00c2007-02-12 20:02:55 +0000918
Reid Spencer9c0696f2007-02-20 08:51:03 +0000919 // Return infinity for exponent overflow
920 if (exp > 1023) {
921 if (!isSigned || !isNeg)
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000922 return std::numeric_limits<double>::infinity();
Reid Spencer9c0696f2007-02-20 08:51:03 +0000923 else
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000924 return -std::numeric_limits<double>::infinity();
Reid Spencer9c0696f2007-02-20 08:51:03 +0000925 }
926 exp += 1023; // Increment for 1023 bias
927
928 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
929 // extract the high 52 bits from the correct words in pVal.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000930 uint64_t mantissa;
Reid Spencer9c0696f2007-02-20 08:51:03 +0000931 unsigned hiWord = whichWord(n-1);
932 if (hiWord == 0) {
933 mantissa = Tmp.pVal[0];
934 if (n > 52)
935 mantissa >>= n - 52; // shift down, we want the top 52 bits.
936 } else {
937 assert(hiWord > 0 && "huh?");
938 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
939 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
940 mantissa = hibits | lobits;
941 }
942
Zhou Shengd93f00c2007-02-12 20:02:55 +0000943 // The leading bit of mantissa is implicit, so get rid of it.
Reid Spencer443b5702007-02-18 00:44:22 +0000944 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
Zhou Shengd93f00c2007-02-12 20:02:55 +0000945 union {
946 double D;
947 uint64_t I;
948 } T;
949 T.I = sign | (exp << 52) | mantissa;
950 return T.D;
951}
952
Reid Spencere81d2da2007-02-16 22:36:51 +0000953// Truncate to new width.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000954APInt &APInt::trunc(unsigned width) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000955 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000956 assert(width && "Can't truncate to 0 bits");
Chris Lattner455e9ab2009-01-21 18:09:24 +0000957 unsigned wordsBefore = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +0000958 BitWidth = width;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000959 unsigned wordsAfter = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +0000960 if (wordsBefore != wordsAfter) {
961 if (wordsAfter == 1) {
962 uint64_t *tmp = pVal;
963 VAL = pVal[0];
Reid Spencer9ac44112007-02-26 23:38:21 +0000964 delete [] tmp;
Reid Spencer9eec2412007-02-25 23:44:53 +0000965 } else {
966 uint64_t *newVal = getClearedMemory(wordsAfter);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000967 for (unsigned i = 0; i < wordsAfter; ++i)
Reid Spencer9eec2412007-02-25 23:44:53 +0000968 newVal[i] = pVal[i];
Reid Spencer9ac44112007-02-26 23:38:21 +0000969 delete [] pVal;
Reid Spencer9eec2412007-02-25 23:44:53 +0000970 pVal = newVal;
971 }
972 }
Reid Spencer94900772007-02-28 17:34:32 +0000973 return clearUnusedBits();
Reid Spencere81d2da2007-02-16 22:36:51 +0000974}
975
976// Sign extend to a new width.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000977APInt &APInt::sext(unsigned width) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000978 assert(width > BitWidth && "Invalid APInt SignExtend request");
Reid Spencer9eec2412007-02-25 23:44:53 +0000979 // If the sign bit isn't set, this is the same as zext.
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000980 if (!isNegative()) {
Reid Spencer9eec2412007-02-25 23:44:53 +0000981 zext(width);
Reid Spencer94900772007-02-28 17:34:32 +0000982 return *this;
Reid Spencer9eec2412007-02-25 23:44:53 +0000983 }
984
985 // The sign bit is set. First, get some facts
Chris Lattner455e9ab2009-01-21 18:09:24 +0000986 unsigned wordsBefore = getNumWords();
987 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
Reid Spencer9eec2412007-02-25 23:44:53 +0000988 BitWidth = width;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000989 unsigned wordsAfter = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +0000990
991 // Mask the high order word appropriately
992 if (wordsBefore == wordsAfter) {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000993 unsigned newWordBits = width % APINT_BITS_PER_WORD;
Reid Spencer9eec2412007-02-25 23:44:53 +0000994 // The extension is contained to the wordsBefore-1th word.
Reid Spencer36184ed2007-03-02 01:19:42 +0000995 uint64_t mask = ~0ULL;
996 if (newWordBits)
997 mask >>= APINT_BITS_PER_WORD - newWordBits;
998 mask <<= wordBits;
Reid Spencer9eec2412007-02-25 23:44:53 +0000999 if (wordsBefore == 1)
1000 VAL |= mask;
1001 else
1002 pVal[wordsBefore-1] |= mask;
Reid Spencer295e40a2007-03-01 23:30:25 +00001003 return clearUnusedBits();
Reid Spencer9eec2412007-02-25 23:44:53 +00001004 }
1005
Reid Spencerf30b1882007-02-25 23:54:00 +00001006 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
Reid Spencer9eec2412007-02-25 23:44:53 +00001007 uint64_t *newVal = getMemory(wordsAfter);
1008 if (wordsBefore == 1)
1009 newVal[0] = VAL | mask;
1010 else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001011 for (unsigned i = 0; i < wordsBefore; ++i)
Reid Spencer9eec2412007-02-25 23:44:53 +00001012 newVal[i] = pVal[i];
1013 newVal[wordsBefore-1] |= mask;
1014 }
Chris Lattner455e9ab2009-01-21 18:09:24 +00001015 for (unsigned i = wordsBefore; i < wordsAfter; i++)
Reid Spencer9eec2412007-02-25 23:44:53 +00001016 newVal[i] = -1ULL;
1017 if (wordsBefore != 1)
Reid Spencer9ac44112007-02-26 23:38:21 +00001018 delete [] pVal;
Reid Spencer9eec2412007-02-25 23:44:53 +00001019 pVal = newVal;
Reid Spencer94900772007-02-28 17:34:32 +00001020 return clearUnusedBits();
Reid Spencere81d2da2007-02-16 22:36:51 +00001021}
1022
1023// Zero extend to a new width.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001024APInt &APInt::zext(unsigned width) {
Reid Spencere81d2da2007-02-16 22:36:51 +00001025 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Chris Lattner455e9ab2009-01-21 18:09:24 +00001026 unsigned wordsBefore = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +00001027 BitWidth = width;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001028 unsigned wordsAfter = getNumWords();
Reid Spencer9eec2412007-02-25 23:44:53 +00001029 if (wordsBefore != wordsAfter) {
1030 uint64_t *newVal = getClearedMemory(wordsAfter);
1031 if (wordsBefore == 1)
1032 newVal[0] = VAL;
1033 else
Chris Lattner455e9ab2009-01-21 18:09:24 +00001034 for (unsigned i = 0; i < wordsBefore; ++i)
Reid Spencer9eec2412007-02-25 23:44:53 +00001035 newVal[i] = pVal[i];
1036 if (wordsBefore != 1)
Reid Spencer9ac44112007-02-26 23:38:21 +00001037 delete [] pVal;
Reid Spencer9eec2412007-02-25 23:44:53 +00001038 pVal = newVal;
1039 }
Reid Spencer94900772007-02-28 17:34:32 +00001040 return *this;
Reid Spencere81d2da2007-02-16 22:36:51 +00001041}
1042
Chris Lattner455e9ab2009-01-21 18:09:24 +00001043APInt &APInt::zextOrTrunc(unsigned width) {
Reid Spencer68e23002007-03-01 17:15:32 +00001044 if (BitWidth < width)
1045 return zext(width);
1046 if (BitWidth > width)
1047 return trunc(width);
1048 return *this;
1049}
1050
Chris Lattner455e9ab2009-01-21 18:09:24 +00001051APInt &APInt::sextOrTrunc(unsigned width) {
Reid Spencer68e23002007-03-01 17:15:32 +00001052 if (BitWidth < width)
1053 return sext(width);
1054 if (BitWidth > width)
1055 return trunc(width);
1056 return *this;
1057}
1058
Zhou Shengff4304f2007-02-09 07:48:24 +00001059/// Arithmetic right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001060/// @brief Arithmetic right-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001061APInt APInt::ashr(const APInt &shiftAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001062 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001063}
1064
1065/// Arithmetic right-shift this APInt by shiftAmt.
1066/// @brief Arithmetic right-shift function.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001067APInt APInt::ashr(unsigned shiftAmt) const {
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001068 assert(shiftAmt <= BitWidth && "Invalid shift amount");
Reid Spencer46f9c942007-03-02 22:39:11 +00001069 // Handle a degenerate case
1070 if (shiftAmt == 0)
1071 return *this;
1072
1073 // Handle single word shifts with built-in ashr
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001074 if (isSingleWord()) {
1075 if (shiftAmt == BitWidth)
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001076 return APInt(BitWidth, 0); // undefined
1077 else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001078 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001079 return APInt(BitWidth,
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001080 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1081 }
Zhou Sheng0b706b12007-02-08 14:35:19 +00001082 }
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001083
Reid Spencer46f9c942007-03-02 22:39:11 +00001084 // If all the bits were shifted out, the result is, technically, undefined.
1085 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1086 // issues in the algorithm below.
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001087 if (shiftAmt == BitWidth) {
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001088 if (isNegative())
Zhou Shengbfde7d62008-06-05 13:27:38 +00001089 return APInt(BitWidth, -1ULL, true);
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001090 else
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001091 return APInt(BitWidth, 0);
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001092 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001093
1094 // Create some space for the result.
1095 uint64_t * val = new uint64_t[getNumWords()];
1096
Reid Spencer46f9c942007-03-02 22:39:11 +00001097 // Compute some values needed by the following shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001098 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1099 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1100 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1101 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
Reid Spencer46f9c942007-03-02 22:39:11 +00001102 if (bitsInWord == 0)
1103 bitsInWord = APINT_BITS_PER_WORD;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001104
1105 // If we are shifting whole words, just move whole words
1106 if (wordShift == 0) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001107 // Move the words containing significant bits
Chris Lattner455e9ab2009-01-21 18:09:24 +00001108 for (unsigned i = 0; i <= breakWord; ++i)
Reid Spencer46f9c942007-03-02 22:39:11 +00001109 val[i] = pVal[i+offset]; // move whole word
1110
1111 // Adjust the top significant word for sign bit fill, if negative
1112 if (isNegative())
1113 if (bitsInWord < APINT_BITS_PER_WORD)
1114 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1115 } else {
1116 // Shift the low order words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001117 for (unsigned i = 0; i < breakWord; ++i) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001118 // This combines the shifted corresponding word with the low bits from
1119 // the next word (shifted into this word's high bits).
1120 val[i] = (pVal[i+offset] >> wordShift) |
1121 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1122 }
1123
1124 // Shift the break word. In this case there are no bits from the next word
1125 // to include in this word.
1126 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1127
1128 // Deal with sign extenstion in the break word, and possibly the word before
1129 // it.
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001130 if (isNegative()) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001131 if (wordShift > bitsInWord) {
1132 if (breakWord > 0)
1133 val[breakWord-1] |=
1134 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1135 val[breakWord] |= ~0ULL;
1136 } else
1137 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001138 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001139 }
1140
Reid Spencer46f9c942007-03-02 22:39:11 +00001141 // Remaining words are 0 or -1, just assign them.
1142 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001143 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencer46f9c942007-03-02 22:39:11 +00001144 val[i] = fillValue;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001145 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001146}
1147
Zhou Shengff4304f2007-02-09 07:48:24 +00001148/// Logical right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001149/// @brief Logical right-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001150APInt APInt::lshr(const APInt &shiftAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001151 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001152}
1153
1154/// Logical right-shift this APInt by shiftAmt.
1155/// @brief Logical right-shift function.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001156APInt APInt::lshr(unsigned shiftAmt) const {
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001157 if (isSingleWord()) {
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001158 if (shiftAmt == BitWidth)
1159 return APInt(BitWidth, 0);
1160 else
1161 return APInt(BitWidth, this->VAL >> shiftAmt);
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001162 }
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001163
Reid Spencerba81c2b2007-02-26 01:19:48 +00001164 // If all the bits were shifted out, the result is 0. This avoids issues
1165 // with shifting by the size of the integer type, which produces undefined
1166 // results. We define these "undefined results" to always be 0.
1167 if (shiftAmt == BitWidth)
1168 return APInt(BitWidth, 0);
1169
Reid Spencer02ae8b72007-05-17 06:26:29 +00001170 // If none of the bits are shifted out, the result is *this. This avoids
Nick Lewycky4bd47872009-01-19 17:42:33 +00001171 // issues with shifting by the size of the integer type, which produces
Reid Spencer02ae8b72007-05-17 06:26:29 +00001172 // undefined results in the code below. This is also an optimization.
1173 if (shiftAmt == 0)
1174 return *this;
1175
Reid Spencerba81c2b2007-02-26 01:19:48 +00001176 // Create some space for the result.
1177 uint64_t * val = new uint64_t[getNumWords()];
1178
1179 // If we are shifting less than a word, compute the shift with a simple carry
1180 if (shiftAmt < APINT_BITS_PER_WORD) {
1181 uint64_t carry = 0;
1182 for (int i = getNumWords()-1; i >= 0; --i) {
Reid Spenceraf8fb192007-03-01 05:39:56 +00001183 val[i] = (pVal[i] >> shiftAmt) | carry;
Reid Spencerba81c2b2007-02-26 01:19:48 +00001184 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1185 }
1186 return APInt(val, BitWidth).clearUnusedBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001187 }
1188
Reid Spencerba81c2b2007-02-26 01:19:48 +00001189 // Compute some values needed by the remaining shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001190 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1191 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencerba81c2b2007-02-26 01:19:48 +00001192
1193 // If we are shifting whole words, just move whole words
1194 if (wordShift == 0) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001195 for (unsigned i = 0; i < getNumWords() - offset; ++i)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001196 val[i] = pVal[i+offset];
Chris Lattner455e9ab2009-01-21 18:09:24 +00001197 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001198 val[i] = 0;
1199 return APInt(val,BitWidth).clearUnusedBits();
1200 }
1201
1202 // Shift the low order words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001203 unsigned breakWord = getNumWords() - offset -1;
1204 for (unsigned i = 0; i < breakWord; ++i)
Reid Spenceraf8fb192007-03-01 05:39:56 +00001205 val[i] = (pVal[i+offset] >> wordShift) |
1206 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
Reid Spencerba81c2b2007-02-26 01:19:48 +00001207 // Shift the break word.
1208 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1209
1210 // Remaining words are 0
Chris Lattner455e9ab2009-01-21 18:09:24 +00001211 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001212 val[i] = 0;
1213 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001214}
1215
Zhou Shengff4304f2007-02-09 07:48:24 +00001216/// Left-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001217/// @brief Left-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001218APInt APInt::shl(const APInt &shiftAmt) const {
Nick Lewycky4bd47872009-01-19 17:42:33 +00001219 // It's undefined behavior in C to shift by BitWidth or greater.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001220 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001221}
1222
Chris Lattner455e9ab2009-01-21 18:09:24 +00001223APInt APInt::shlSlowCase(unsigned shiftAmt) const {
Reid Spencer87553802007-02-25 00:56:44 +00001224 // If all the bits were shifted out, the result is 0. This avoids issues
1225 // with shifting by the size of the integer type, which produces undefined
1226 // results. We define these "undefined results" to always be 0.
1227 if (shiftAmt == BitWidth)
1228 return APInt(BitWidth, 0);
1229
Reid Spencer92c72832007-05-12 18:01:57 +00001230 // If none of the bits are shifted out, the result is *this. This avoids a
1231 // lshr by the words size in the loop below which can produce incorrect
1232 // results. It also avoids the expensive computation below for a common case.
1233 if (shiftAmt == 0)
1234 return *this;
1235
Reid Spencer87553802007-02-25 00:56:44 +00001236 // Create some space for the result.
1237 uint64_t * val = new uint64_t[getNumWords()];
1238
1239 // If we are shifting less than a word, do it the easy way
1240 if (shiftAmt < APINT_BITS_PER_WORD) {
1241 uint64_t carry = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001242 for (unsigned i = 0; i < getNumWords(); i++) {
Reid Spencer87553802007-02-25 00:56:44 +00001243 val[i] = pVal[i] << shiftAmt | carry;
1244 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1245 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001246 return APInt(val, BitWidth).clearUnusedBits();
Reid Spencer5bce8542007-02-24 20:19:37 +00001247 }
1248
Reid Spencer87553802007-02-25 00:56:44 +00001249 // Compute some values needed by the remaining shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001250 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1251 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencer87553802007-02-25 00:56:44 +00001252
1253 // If we are shifting whole words, just move whole words
1254 if (wordShift == 0) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001255 for (unsigned i = 0; i < offset; i++)
Reid Spencer87553802007-02-25 00:56:44 +00001256 val[i] = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001257 for (unsigned i = offset; i < getNumWords(); i++)
Reid Spencer87553802007-02-25 00:56:44 +00001258 val[i] = pVal[i-offset];
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001259 return APInt(val,BitWidth).clearUnusedBits();
Reid Spencer5bce8542007-02-24 20:19:37 +00001260 }
Reid Spencer87553802007-02-25 00:56:44 +00001261
1262 // Copy whole words from this to Result.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001263 unsigned i = getNumWords() - 1;
Reid Spencer87553802007-02-25 00:56:44 +00001264 for (; i > offset; --i)
1265 val[i] = pVal[i-offset] << wordShift |
1266 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
Reid Spencer438d71e2007-02-25 01:08:58 +00001267 val[offset] = pVal[0] << wordShift;
Reid Spencer87553802007-02-25 00:56:44 +00001268 for (i = 0; i < offset; ++i)
1269 val[i] = 0;
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001270 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001271}
1272
Dan Gohmancf609572008-02-29 01:40:47 +00001273APInt APInt::rotl(const APInt &rotateAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001274 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001275}
1276
Chris Lattner455e9ab2009-01-21 18:09:24 +00001277APInt APInt::rotl(unsigned rotateAmt) const {
Reid Spencer69944e82007-05-14 00:15:28 +00001278 if (rotateAmt == 0)
1279 return *this;
Reid Spencer19dc32a2007-05-13 23:44:59 +00001280 // Don't get too fancy, just use existing shift/or facilities
1281 APInt hi(*this);
1282 APInt lo(*this);
1283 hi.shl(rotateAmt);
1284 lo.lshr(BitWidth - rotateAmt);
1285 return hi | lo;
1286}
1287
Dan Gohmancf609572008-02-29 01:40:47 +00001288APInt APInt::rotr(const APInt &rotateAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001289 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001290}
1291
Chris Lattner455e9ab2009-01-21 18:09:24 +00001292APInt APInt::rotr(unsigned rotateAmt) const {
Reid Spencer69944e82007-05-14 00:15:28 +00001293 if (rotateAmt == 0)
1294 return *this;
Reid Spencer19dc32a2007-05-13 23:44:59 +00001295 // Don't get too fancy, just use existing shift/or facilities
1296 APInt hi(*this);
1297 APInt lo(*this);
1298 lo.lshr(rotateAmt);
1299 hi.shl(BitWidth - rotateAmt);
1300 return hi | lo;
1301}
Reid Spenceraf8fb192007-03-01 05:39:56 +00001302
1303// Square Root - this method computes and returns the square root of "this".
1304// Three mechanisms are used for computation. For small values (<= 5 bits),
1305// a table lookup is done. This gets some performance for common cases. For
1306// values using less than 52 bits, the value is converted to double and then
1307// the libc sqrt function is called. The result is rounded and then converted
1308// back to a uint64_t which is then used to construct the result. Finally,
1309// the Babylonian method for computing square roots is used.
1310APInt APInt::sqrt() const {
1311
1312 // Determine the magnitude of the value.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001313 unsigned magnitude = getActiveBits();
Reid Spenceraf8fb192007-03-01 05:39:56 +00001314
1315 // Use a fast table for some small values. This also gets rid of some
1316 // rounding errors in libc sqrt for small values.
1317 if (magnitude <= 5) {
Reid Spencer4e1e87f2007-03-01 17:47:31 +00001318 static const uint8_t results[32] = {
Reid Spencerb5ca2cd2007-03-01 06:23:32 +00001319 /* 0 */ 0,
1320 /* 1- 2 */ 1, 1,
1321 /* 3- 6 */ 2, 2, 2, 2,
1322 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1323 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1324 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1325 /* 31 */ 6
1326 };
1327 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
Reid Spenceraf8fb192007-03-01 05:39:56 +00001328 }
1329
1330 // If the magnitude of the value fits in less than 52 bits (the precision of
1331 // an IEEE double precision floating point value), then we can use the
1332 // libc sqrt function which will probably use a hardware sqrt computation.
1333 // This should be faster than the algorithm below.
Jeff Cohenca5183d2007-03-05 00:00:42 +00001334 if (magnitude < 52) {
1335#ifdef _MSC_VER
1336 // Amazingly, VC++ doesn't have round().
1337 return APInt(BitWidth,
1338 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1339#else
Reid Spenceraf8fb192007-03-01 05:39:56 +00001340 return APInt(BitWidth,
1341 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
Jeff Cohenca5183d2007-03-05 00:00:42 +00001342#endif
1343 }
Reid Spenceraf8fb192007-03-01 05:39:56 +00001344
1345 // Okay, all the short cuts are exhausted. We must compute it. The following
1346 // is a classical Babylonian method for computing the square root. This code
1347 // was adapted to APINt from a wikipedia article on such computations.
1348 // See http://www.wikipedia.org/ and go to the page named
1349 // Calculate_an_integer_square_root.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001350 unsigned nbits = BitWidth, i = 4;
Reid Spenceraf8fb192007-03-01 05:39:56 +00001351 APInt testy(BitWidth, 16);
1352 APInt x_old(BitWidth, 1);
1353 APInt x_new(BitWidth, 0);
1354 APInt two(BitWidth, 2);
1355
1356 // Select a good starting value using binary logarithms.
1357 for (;; i += 2, testy = testy.shl(2))
1358 if (i >= nbits || this->ule(testy)) {
1359 x_old = x_old.shl(i / 2);
1360 break;
1361 }
1362
1363 // Use the Babylonian method to arrive at the integer square root:
1364 for (;;) {
1365 x_new = (this->udiv(x_old) + x_old).udiv(two);
1366 if (x_old.ule(x_new))
1367 break;
1368 x_old = x_new;
1369 }
1370
1371 // Make sure we return the closest approximation
Reid Spencerf09aef72007-03-02 04:21:55 +00001372 // NOTE: The rounding calculation below is correct. It will produce an
1373 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1374 // determined to be a rounding issue with pari/gp as it begins to use a
1375 // floating point representation after 192 bits. There are no discrepancies
1376 // between this algorithm and pari/gp for bit widths < 192 bits.
Reid Spenceraf8fb192007-03-01 05:39:56 +00001377 APInt square(x_old * x_old);
1378 APInt nextSquare((x_old + 1) * (x_old +1));
1379 if (this->ult(square))
1380 return x_old;
Reid Spencerf09aef72007-03-02 04:21:55 +00001381 else if (this->ule(nextSquare)) {
1382 APInt midpoint((nextSquare - square).udiv(two));
1383 APInt offset(*this - square);
1384 if (offset.ult(midpoint))
Reid Spenceraf8fb192007-03-01 05:39:56 +00001385 return x_old;
Reid Spencerf09aef72007-03-02 04:21:55 +00001386 else
1387 return x_old + 1;
1388 } else
Reid Spenceraf8fb192007-03-01 05:39:56 +00001389 assert(0 && "Error in APInt::sqrt computation");
1390 return x_old + 1;
1391}
1392
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001393/// Computes the multiplicative inverse of this APInt for a given modulo. The
1394/// iterative extended Euclidean algorithm is used to solve for this value,
1395/// however we simplify it to speed up calculating only the inverse, and take
1396/// advantage of div+rem calculations. We also use some tricks to avoid copying
1397/// (potentially large) APInts around.
1398APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1399 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1400
1401 // Using the properties listed at the following web page (accessed 06/21/08):
1402 // http://www.numbertheory.org/php/euclid.html
1403 // (especially the properties numbered 3, 4 and 9) it can be proved that
1404 // BitWidth bits suffice for all the computations in the algorithm implemented
1405 // below. More precisely, this number of bits suffice if the multiplicative
1406 // inverse exists, but may not suffice for the general extended Euclidean
1407 // algorithm.
1408
1409 APInt r[2] = { modulo, *this };
1410 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1411 APInt q(BitWidth, 0);
1412
1413 unsigned i;
1414 for (i = 0; r[i^1] != 0; i ^= 1) {
1415 // An overview of the math without the confusing bit-flipping:
1416 // q = r[i-2] / r[i-1]
1417 // r[i] = r[i-2] % r[i-1]
1418 // t[i] = t[i-2] - t[i-1] * q
1419 udivrem(r[i], r[i^1], q, r[i]);
1420 t[i] -= t[i^1] * q;
1421 }
1422
1423 // If this APInt and the modulo are not coprime, there is no multiplicative
1424 // inverse, so return 0. We check this by looking at the next-to-last
1425 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1426 // algorithm.
1427 if (r[i] != 1)
1428 return APInt(BitWidth, 0);
1429
1430 // The next-to-last t is the multiplicative inverse. However, we are
1431 // interested in a positive inverse. Calcuate a positive one from a negative
1432 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00001433 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001434 return t[i].isNegative() ? t[i] + modulo : t[i];
1435}
1436
Jay Foad4e5ea552009-04-30 10:15:35 +00001437/// Calculate the magic numbers required to implement a signed integer division
1438/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1439/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1440/// Warren, Jr., chapter 10.
1441APInt::ms APInt::magic() const {
1442 const APInt& d = *this;
1443 unsigned p;
1444 APInt ad, anc, delta, q1, r1, q2, r2, t;
1445 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1446 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1447 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1448 struct ms mag;
1449
1450 ad = d.abs();
1451 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1452 anc = t - 1 - t.urem(ad); // absolute value of nc
1453 p = d.getBitWidth() - 1; // initialize p
1454 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1455 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1456 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1457 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1458 do {
1459 p = p + 1;
1460 q1 = q1<<1; // update q1 = 2p/abs(nc)
1461 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1462 if (r1.uge(anc)) { // must be unsigned comparison
1463 q1 = q1 + 1;
1464 r1 = r1 - anc;
1465 }
1466 q2 = q2<<1; // update q2 = 2p/abs(d)
1467 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1468 if (r2.uge(ad)) { // must be unsigned comparison
1469 q2 = q2 + 1;
1470 r2 = r2 - ad;
1471 }
1472 delta = ad - r2;
1473 } while (q1.ule(delta) || (q1 == delta && r1 == 0));
1474
1475 mag.m = q2 + 1;
1476 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1477 mag.s = p - d.getBitWidth(); // resulting shift
1478 return mag;
1479}
1480
1481/// Calculate the magic numbers required to implement an unsigned integer
1482/// division by a constant as a sequence of multiplies, adds and shifts.
1483/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1484/// S. Warren, Jr., chapter 10.
1485APInt::mu APInt::magicu() const {
1486 const APInt& d = *this;
1487 unsigned p;
1488 APInt nc, delta, q1, r1, q2, r2;
1489 struct mu magu;
1490 magu.a = 0; // initialize "add" indicator
1491 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1492 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1493 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1494
1495 nc = allOnes - (-d).urem(d);
1496 p = d.getBitWidth() - 1; // initialize p
1497 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1498 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1499 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1500 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1501 do {
1502 p = p + 1;
1503 if (r1.uge(nc - r1)) {
1504 q1 = q1 + q1 + 1; // update q1
1505 r1 = r1 + r1 - nc; // update r1
1506 }
1507 else {
1508 q1 = q1+q1; // update q1
1509 r1 = r1+r1; // update r1
1510 }
1511 if ((r2 + 1).uge(d - r2)) {
1512 if (q2.uge(signedMax)) magu.a = 1;
1513 q2 = q2+q2 + 1; // update q2
1514 r2 = r2+r2 + 1 - d; // update r2
1515 }
1516 else {
1517 if (q2.uge(signedMin)) magu.a = 1;
1518 q2 = q2+q2; // update q2
1519 r2 = r2+r2 + 1; // update r2
1520 }
1521 delta = d - 1 - r2;
1522 } while (p < d.getBitWidth()*2 &&
1523 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1524 magu.m = q2 + 1; // resulting magic number
1525 magu.s = p - d.getBitWidth(); // resulting shift
1526 return magu;
1527}
1528
Reid Spencer9c0696f2007-02-20 08:51:03 +00001529/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1530/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1531/// variables here have the same names as in the algorithm. Comments explain
1532/// the algorithm and any deviation from it.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001533static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1534 unsigned m, unsigned n) {
Reid Spencer9c0696f2007-02-20 08:51:03 +00001535 assert(u && "Must provide dividend");
1536 assert(v && "Must provide divisor");
1537 assert(q && "Must provide quotient");
Reid Spencer9d6c9192007-02-24 03:58:46 +00001538 assert(u != v && u != q && v != q && "Must us different memory");
Reid Spencer9c0696f2007-02-20 08:51:03 +00001539 assert(n>1 && "n must be > 1");
1540
1541 // Knuth uses the value b as the base of the number system. In our case b
1542 // is 2^31 so we just set it to -1u.
1543 uint64_t b = uint64_t(1) << 32;
1544
Chris Lattnerfad86b02008-08-17 07:19:36 +00001545#if 0
Reid Spencer9d6c9192007-02-24 03:58:46 +00001546 DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1547 DEBUG(cerr << "KnuthDiv: original:");
1548 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1549 DEBUG(cerr << " by");
1550 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1551 DEBUG(cerr << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001552#endif
Reid Spencer9c0696f2007-02-20 08:51:03 +00001553 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1554 // u and v by d. Note that we have taken Knuth's advice here to use a power
1555 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1556 // 2 allows us to shift instead of multiply and it is easy to determine the
1557 // shift amount from the leading zeros. We are basically normalizing the u
1558 // and v so that its high bits are shifted to the top of v's range without
1559 // overflow. Note that this can require an extra word in u so that u must
1560 // be of length m+n+1.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001561 unsigned shift = CountLeadingZeros_32(v[n-1]);
1562 unsigned v_carry = 0;
1563 unsigned u_carry = 0;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001564 if (shift) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001565 for (unsigned i = 0; i < m+n; ++i) {
1566 unsigned u_tmp = u[i] >> (32 - shift);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001567 u[i] = (u[i] << shift) | u_carry;
1568 u_carry = u_tmp;
Reid Spencer5e0a8512007-02-17 03:16:00 +00001569 }
Chris Lattner455e9ab2009-01-21 18:09:24 +00001570 for (unsigned i = 0; i < n; ++i) {
1571 unsigned v_tmp = v[i] >> (32 - shift);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001572 v[i] = (v[i] << shift) | v_carry;
1573 v_carry = v_tmp;
1574 }
1575 }
1576 u[m+n] = u_carry;
Chris Lattnerfad86b02008-08-17 07:19:36 +00001577#if 0
Reid Spencer9d6c9192007-02-24 03:58:46 +00001578 DEBUG(cerr << "KnuthDiv: normal:");
1579 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1580 DEBUG(cerr << " by");
1581 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1582 DEBUG(cerr << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001583#endif
Reid Spencer9c0696f2007-02-20 08:51:03 +00001584
1585 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1586 int j = m;
1587 do {
Reid Spencer9d6c9192007-02-24 03:58:46 +00001588 DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001589 // D3. [Calculate q'.].
1590 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1591 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1592 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1593 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1594 // on v[n-2] determines at high speed most of the cases in which the trial
1595 // value qp is one too large, and it eliminates all cases where qp is two
1596 // too large.
Reid Spencer92904632007-02-23 01:57:13 +00001597 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
Reid Spencer9d6c9192007-02-24 03:58:46 +00001598 DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
Reid Spencer92904632007-02-23 01:57:13 +00001599 uint64_t qp = dividend / v[n-1];
1600 uint64_t rp = dividend % v[n-1];
Reid Spencer9c0696f2007-02-20 08:51:03 +00001601 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1602 qp--;
1603 rp += v[n-1];
Reid Spencer610fad82007-02-24 10:01:42 +00001604 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
Reid Spencer9d6c9192007-02-24 03:58:46 +00001605 qp--;
Reid Spencer92904632007-02-23 01:57:13 +00001606 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001607 DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001608
Reid Spencer92904632007-02-23 01:57:13 +00001609 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1610 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1611 // consists of a simple multiplication by a one-place number, combined with
Reid Spencer610fad82007-02-24 10:01:42 +00001612 // a subtraction.
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001613 bool isNeg = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001614 for (unsigned i = 0; i < n; ++i) {
Reid Spencer610fad82007-02-24 10:01:42 +00001615 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
Reid Spencer9d6c9192007-02-24 03:58:46 +00001616 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
Reid Spencer610fad82007-02-24 10:01:42 +00001617 bool borrow = subtrahend > u_tmp;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001618 DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
Reid Spencer610fad82007-02-24 10:01:42 +00001619 << ", subtrahend == " << subtrahend
1620 << ", borrow = " << borrow << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001621
Reid Spencer610fad82007-02-24 10:01:42 +00001622 uint64_t result = u_tmp - subtrahend;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001623 unsigned k = j + i;
1624 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1625 u[k++] = (unsigned)(result >> 32); // subtract high word
Reid Spencer610fad82007-02-24 10:01:42 +00001626 while (borrow && k <= m+n) { // deal with borrow to the left
1627 borrow = u[k] == 0;
1628 u[k]--;
1629 k++;
1630 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001631 isNeg |= borrow;
Reid Spencer610fad82007-02-24 10:01:42 +00001632 DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1633 u[j+i+1] << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001634 }
1635 DEBUG(cerr << "KnuthDiv: after subtraction:");
1636 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1637 DEBUG(cerr << '\n');
Reid Spencer610fad82007-02-24 10:01:42 +00001638 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1639 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1640 // true value plus b**(n+1), namely as the b's complement of
Reid Spencer92904632007-02-23 01:57:13 +00001641 // the true value, and a "borrow" to the left should be remembered.
1642 //
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001643 if (isNeg) {
Reid Spencer610fad82007-02-24 10:01:42 +00001644 bool carry = true; // true because b's complement is "complement + 1"
Chris Lattner455e9ab2009-01-21 18:09:24 +00001645 for (unsigned i = 0; i <= m+n; ++i) {
Reid Spencer610fad82007-02-24 10:01:42 +00001646 u[i] = ~u[i] + carry; // b's complement
1647 carry = carry && u[i] == 0;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001648 }
Reid Spencer92904632007-02-23 01:57:13 +00001649 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001650 DEBUG(cerr << "KnuthDiv: after complement:");
1651 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1652 DEBUG(cerr << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001653
1654 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1655 // negative, go to step D6; otherwise go on to step D7.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001656 q[j] = (unsigned)qp;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001657 if (isNeg) {
Reid Spencer9c0696f2007-02-20 08:51:03 +00001658 // D6. [Add back]. The probability that this step is necessary is very
1659 // small, on the order of only 2/b. Make sure that test data accounts for
Reid Spencer92904632007-02-23 01:57:13 +00001660 // this possibility. Decrease q[j] by 1
1661 q[j]--;
1662 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1663 // A carry will occur to the left of u[j+n], and it should be ignored
1664 // since it cancels with the borrow that occurred in D4.
1665 bool carry = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001666 for (unsigned i = 0; i < n; i++) {
1667 unsigned limit = std::min(u[j+i],v[i]);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001668 u[j+i] += v[i] + carry;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001669 carry = u[j+i] < limit || (carry && u[j+i] == limit);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001670 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001671 u[j+n] += carry;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001672 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001673 DEBUG(cerr << "KnuthDiv: after correction:");
1674 DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1675 DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001676
Reid Spencer92904632007-02-23 01:57:13 +00001677 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1678 } while (--j >= 0);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001679
Reid Spencer9d6c9192007-02-24 03:58:46 +00001680 DEBUG(cerr << "KnuthDiv: quotient:");
1681 DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1682 DEBUG(cerr << '\n');
1683
Reid Spencer9c0696f2007-02-20 08:51:03 +00001684 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1685 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1686 // compute the remainder (urem uses this).
1687 if (r) {
1688 // The value d is expressed by the "shift" value above since we avoided
1689 // multiplication by d by using a shift left. So, all we have to do is
1690 // shift right here. In order to mak
Reid Spencer1050ec52007-02-24 20:38:01 +00001691 if (shift) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001692 unsigned carry = 0;
Reid Spencer1050ec52007-02-24 20:38:01 +00001693 DEBUG(cerr << "KnuthDiv: remainder:");
1694 for (int i = n-1; i >= 0; i--) {
1695 r[i] = (u[i] >> shift) | carry;
1696 carry = u[i] << (32 - shift);
1697 DEBUG(cerr << " " << r[i]);
1698 }
1699 } else {
1700 for (int i = n-1; i >= 0; i--) {
1701 r[i] = u[i];
1702 DEBUG(cerr << " " << r[i]);
1703 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001704 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001705 DEBUG(cerr << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001706 }
Chris Lattnerfad86b02008-08-17 07:19:36 +00001707#if 0
Reid Spencer9d6c9192007-02-24 03:58:46 +00001708 DEBUG(cerr << std::setbase(10) << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001709#endif
Reid Spencer9c0696f2007-02-20 08:51:03 +00001710}
1711
Chris Lattner455e9ab2009-01-21 18:09:24 +00001712void APInt::divide(const APInt LHS, unsigned lhsWords,
1713 const APInt &RHS, unsigned rhsWords,
Reid Spencer9c0696f2007-02-20 08:51:03 +00001714 APInt *Quotient, APInt *Remainder)
1715{
1716 assert(lhsWords >= rhsWords && "Fractional result");
1717
1718 // First, compose the values into an array of 32-bit words instead of
1719 // 64-bit words. This is a necessity of both the "short division" algorithm
1720 // and the the Knuth "classical algorithm" which requires there to be native
1721 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1722 // can't use 64-bit operands here because we don't have native results of
Duncan Sandsbf5836b2009-03-19 11:37:15 +00001723 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Reid Spencer9c0696f2007-02-20 08:51:03 +00001724 // work on large-endian machines.
Dan Gohmande551f92009-04-01 18:45:54 +00001725 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001726 unsigned n = rhsWords * 2;
1727 unsigned m = (lhsWords * 2) - n;
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001728
1729 // Allocate space for the temporary values we need either on the stack, if
1730 // it will fit, or on the heap if it won't.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001731 unsigned SPACE[128];
1732 unsigned *U = 0;
1733 unsigned *V = 0;
1734 unsigned *Q = 0;
1735 unsigned *R = 0;
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001736 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1737 U = &SPACE[0];
1738 V = &SPACE[m+n+1];
1739 Q = &SPACE[(m+n+1) + n];
1740 if (Remainder)
1741 R = &SPACE[(m+n+1) + n + (m+n)];
1742 } else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001743 U = new unsigned[m + n + 1];
1744 V = new unsigned[n];
1745 Q = new unsigned[m+n];
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001746 if (Remainder)
Chris Lattner455e9ab2009-01-21 18:09:24 +00001747 R = new unsigned[n];
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001748 }
1749
1750 // Initialize the dividend
Chris Lattner455e9ab2009-01-21 18:09:24 +00001751 memset(U, 0, (m+n+1)*sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001752 for (unsigned i = 0; i < lhsWords; ++i) {
Reid Spencer15aab8a2007-02-22 00:58:45 +00001753 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001754 U[i * 2] = (unsigned)(tmp & mask);
Dan Gohmande551f92009-04-01 18:45:54 +00001755 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001756 }
1757 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1758
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001759 // Initialize the divisor
Chris Lattner455e9ab2009-01-21 18:09:24 +00001760 memset(V, 0, (n)*sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001761 for (unsigned i = 0; i < rhsWords; ++i) {
Reid Spencer15aab8a2007-02-22 00:58:45 +00001762 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001763 V[i * 2] = (unsigned)(tmp & mask);
Dan Gohmande551f92009-04-01 18:45:54 +00001764 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001765 }
1766
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001767 // initialize the quotient and remainder
Chris Lattner455e9ab2009-01-21 18:09:24 +00001768 memset(Q, 0, (m+n) * sizeof(unsigned));
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001769 if (Remainder)
Chris Lattner455e9ab2009-01-21 18:09:24 +00001770 memset(R, 0, n * sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001771
1772 // Now, adjust m and n for the Knuth division. n is the number of words in
1773 // the divisor. m is the number of words by which the dividend exceeds the
1774 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1775 // contain any zero words or the Knuth algorithm fails.
1776 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1777 n--;
1778 m++;
1779 }
1780 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1781 m--;
1782
1783 // If we're left with only a single word for the divisor, Knuth doesn't work
1784 // so we implement the short division algorithm here. This is much simpler
1785 // and faster because we are certain that we can divide a 64-bit quantity
1786 // by a 32-bit quantity at hardware speed and short division is simply a
1787 // series of such operations. This is just like doing short division but we
1788 // are using base 2^32 instead of base 10.
1789 assert(n != 0 && "Divide by zero?");
1790 if (n == 1) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001791 unsigned divisor = V[0];
1792 unsigned remainder = 0;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001793 for (int i = m+n-1; i >= 0; i--) {
1794 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1795 if (partial_dividend == 0) {
1796 Q[i] = 0;
1797 remainder = 0;
1798 } else if (partial_dividend < divisor) {
1799 Q[i] = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001800 remainder = (unsigned)partial_dividend;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001801 } else if (partial_dividend == divisor) {
1802 Q[i] = 1;
1803 remainder = 0;
1804 } else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001805 Q[i] = (unsigned)(partial_dividend / divisor);
1806 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001807 }
1808 }
1809 if (R)
1810 R[0] = remainder;
1811 } else {
1812 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1813 // case n > 1.
1814 KnuthDiv(U, V, Q, R, m, n);
1815 }
1816
1817 // If the caller wants the quotient
1818 if (Quotient) {
1819 // Set up the Quotient value's memory.
1820 if (Quotient->BitWidth != LHS.BitWidth) {
1821 if (Quotient->isSingleWord())
1822 Quotient->VAL = 0;
1823 else
Reid Spencer9ac44112007-02-26 23:38:21 +00001824 delete [] Quotient->pVal;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001825 Quotient->BitWidth = LHS.BitWidth;
1826 if (!Quotient->isSingleWord())
Reid Spencere0cdd332007-02-21 08:21:52 +00001827 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
Reid Spencer9c0696f2007-02-20 08:51:03 +00001828 } else
1829 Quotient->clear();
1830
1831 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1832 // order words.
1833 if (lhsWords == 1) {
1834 uint64_t tmp =
1835 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1836 if (Quotient->isSingleWord())
1837 Quotient->VAL = tmp;
1838 else
1839 Quotient->pVal[0] = tmp;
1840 } else {
1841 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1842 for (unsigned i = 0; i < lhsWords; ++i)
1843 Quotient->pVal[i] =
1844 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1845 }
1846 }
1847
1848 // If the caller wants the remainder
1849 if (Remainder) {
1850 // Set up the Remainder value's memory.
1851 if (Remainder->BitWidth != RHS.BitWidth) {
1852 if (Remainder->isSingleWord())
1853 Remainder->VAL = 0;
1854 else
Reid Spencer9ac44112007-02-26 23:38:21 +00001855 delete [] Remainder->pVal;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001856 Remainder->BitWidth = RHS.BitWidth;
1857 if (!Remainder->isSingleWord())
Reid Spencere0cdd332007-02-21 08:21:52 +00001858 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
Reid Spencer9c0696f2007-02-20 08:51:03 +00001859 } else
1860 Remainder->clear();
1861
1862 // The remainder is in R. Reconstitute the remainder into Remainder's low
1863 // order words.
1864 if (rhsWords == 1) {
1865 uint64_t tmp =
1866 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1867 if (Remainder->isSingleWord())
1868 Remainder->VAL = tmp;
1869 else
1870 Remainder->pVal[0] = tmp;
1871 } else {
1872 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1873 for (unsigned i = 0; i < rhsWords; ++i)
1874 Remainder->pVal[i] =
1875 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1876 }
1877 }
1878
1879 // Clean up the memory we allocated.
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001880 if (U != &SPACE[0]) {
1881 delete [] U;
1882 delete [] V;
1883 delete [] Q;
1884 delete [] R;
1885 }
Reid Spencer5e0a8512007-02-17 03:16:00 +00001886}
1887
Reid Spencere81d2da2007-02-16 22:36:51 +00001888APInt APInt::udiv(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +00001889 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer71bd08f2007-02-17 02:07:07 +00001890
1891 // First, deal with the easy case
1892 if (isSingleWord()) {
1893 assert(RHS.VAL != 0 && "Divide by zero?");
1894 return APInt(BitWidth, VAL / RHS.VAL);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001895 }
Reid Spencer71bd08f2007-02-17 02:07:07 +00001896
Reid Spencer71bd08f2007-02-17 02:07:07 +00001897 // Get some facts about the LHS and RHS number of bits and words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001898 unsigned rhsBits = RHS.getActiveBits();
1899 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001900 assert(rhsWords && "Divided by zero???");
Chris Lattner455e9ab2009-01-21 18:09:24 +00001901 unsigned lhsBits = this->getActiveBits();
1902 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001903
1904 // Deal with some degenerate cases
1905 if (!lhsWords)
Reid Spencere0cdd332007-02-21 08:21:52 +00001906 // 0 / X ===> 0
1907 return APInt(BitWidth, 0);
1908 else if (lhsWords < rhsWords || this->ult(RHS)) {
1909 // X / Y ===> 0, iff X < Y
1910 return APInt(BitWidth, 0);
1911 } else if (*this == RHS) {
1912 // X / X ===> 1
1913 return APInt(BitWidth, 1);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001914 } else if (lhsWords == 1 && rhsWords == 1) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001915 // All high words are zero, just use native divide
Reid Spencere0cdd332007-02-21 08:21:52 +00001916 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001917 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001918
1919 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1920 APInt Quotient(1,0); // to hold result.
1921 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1922 return Quotient;
Zhou Sheng0b706b12007-02-08 14:35:19 +00001923}
1924
Reid Spencere81d2da2007-02-16 22:36:51 +00001925APInt APInt::urem(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +00001926 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer71bd08f2007-02-17 02:07:07 +00001927 if (isSingleWord()) {
1928 assert(RHS.VAL != 0 && "Remainder by zero?");
1929 return APInt(BitWidth, VAL % RHS.VAL);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001930 }
Reid Spencer71bd08f2007-02-17 02:07:07 +00001931
Reid Spencere0cdd332007-02-21 08:21:52 +00001932 // Get some facts about the LHS
Chris Lattner455e9ab2009-01-21 18:09:24 +00001933 unsigned lhsBits = getActiveBits();
1934 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001935
1936 // Get some facts about the RHS
Chris Lattner455e9ab2009-01-21 18:09:24 +00001937 unsigned rhsBits = RHS.getActiveBits();
1938 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001939 assert(rhsWords && "Performing remainder operation by zero ???");
1940
Reid Spencer71bd08f2007-02-17 02:07:07 +00001941 // Check the degenerate cases
Reid Spencer9c0696f2007-02-20 08:51:03 +00001942 if (lhsWords == 0) {
Reid Spencere0cdd332007-02-21 08:21:52 +00001943 // 0 % Y ===> 0
1944 return APInt(BitWidth, 0);
1945 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1946 // X % Y ===> X, iff X < Y
1947 return *this;
1948 } else if (*this == RHS) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001949 // X % X == 0;
Reid Spencere0cdd332007-02-21 08:21:52 +00001950 return APInt(BitWidth, 0);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001951 } else if (lhsWords == 1) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001952 // All high words are zero, just use native remainder
Reid Spencere0cdd332007-02-21 08:21:52 +00001953 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001954 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001955
Reid Spencer19dc32a2007-05-13 23:44:59 +00001956 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Reid Spencer9c0696f2007-02-20 08:51:03 +00001957 APInt Remainder(1,0);
1958 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1959 return Remainder;
Zhou Sheng0b706b12007-02-08 14:35:19 +00001960}
Reid Spencer5e0a8512007-02-17 03:16:00 +00001961
Reid Spencer19dc32a2007-05-13 23:44:59 +00001962void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1963 APInt &Quotient, APInt &Remainder) {
1964 // Get some size facts about the dividend and divisor
Chris Lattner455e9ab2009-01-21 18:09:24 +00001965 unsigned lhsBits = LHS.getActiveBits();
1966 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1967 unsigned rhsBits = RHS.getActiveBits();
1968 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer19dc32a2007-05-13 23:44:59 +00001969
1970 // Check the degenerate cases
1971 if (lhsWords == 0) {
1972 Quotient = 0; // 0 / Y ===> 0
1973 Remainder = 0; // 0 % Y ===> 0
1974 return;
1975 }
1976
1977 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1978 Quotient = 0; // X / Y ===> 0, iff X < Y
1979 Remainder = LHS; // X % Y ===> X, iff X < Y
1980 return;
1981 }
1982
1983 if (LHS == RHS) {
1984 Quotient = 1; // X / X ===> 1
1985 Remainder = 0; // X % X ===> 0;
1986 return;
1987 }
1988
1989 if (lhsWords == 1 && rhsWords == 1) {
1990 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001991 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
1992 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1993 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
1994 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Reid Spencer19dc32a2007-05-13 23:44:59 +00001995 return;
1996 }
1997
1998 // Okay, lets do it the long way
1999 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2000}
2001
Chris Lattner455e9ab2009-01-21 18:09:24 +00002002void APInt::fromString(unsigned numbits, const char *str, unsigned slen,
Reid Spencer5e0a8512007-02-17 03:16:00 +00002003 uint8_t radix) {
Reid Spencer385f7542007-02-21 03:55:44 +00002004 // Check our assumptions here
Reid Spencer5e0a8512007-02-17 03:16:00 +00002005 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2006 "Radix should be 2, 8, 10, or 16!");
Reid Spencer385f7542007-02-21 03:55:44 +00002007 assert(str && "String is null?");
Reid Spencer47fbe9e2007-02-26 07:44:38 +00002008 bool isNeg = str[0] == '-';
2009 if (isNeg)
Reid Spencer9eec2412007-02-25 23:44:53 +00002010 str++, slen--;
Chris Lattnera5ae15e2007-05-03 18:15:36 +00002011 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattner38300e92009-04-25 18:34:04 +00002012 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2013 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2014 assert((((slen-1)*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
Reid Spencer385f7542007-02-21 03:55:44 +00002015
2016 // Allocate memory
2017 if (!isSingleWord())
2018 pVal = getClearedMemory(getNumWords());
2019
2020 // Figure out if we can shift instead of multiply
Chris Lattner455e9ab2009-01-21 18:09:24 +00002021 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Reid Spencer385f7542007-02-21 03:55:44 +00002022
2023 // Set up an APInt for the digit to add outside the loop so we don't
2024 // constantly construct/destruct it.
2025 APInt apdigit(getBitWidth(), 0);
2026 APInt apradix(getBitWidth(), radix);
2027
2028 // Enter digit traversal loop
2029 for (unsigned i = 0; i < slen; i++) {
2030 // Get a digit
Chris Lattner455e9ab2009-01-21 18:09:24 +00002031 unsigned digit = 0;
Reid Spencer385f7542007-02-21 03:55:44 +00002032 char cdigit = str[i];
Reid Spencer6551dcd2007-05-16 19:18:22 +00002033 if (radix == 16) {
2034 if (!isxdigit(cdigit))
2035 assert(0 && "Invalid hex digit in string");
2036 if (isdigit(cdigit))
2037 digit = cdigit - '0';
2038 else if (cdigit >= 'a')
Reid Spencer385f7542007-02-21 03:55:44 +00002039 digit = cdigit - 'a' + 10;
2040 else if (cdigit >= 'A')
2041 digit = cdigit - 'A' + 10;
2042 else
Reid Spencer6551dcd2007-05-16 19:18:22 +00002043 assert(0 && "huh? we shouldn't get here");
2044 } else if (isdigit(cdigit)) {
2045 digit = cdigit - '0';
Bill Wendlingf7a91e62008-03-16 20:05:52 +00002046 assert((radix == 10 ||
2047 (radix == 8 && digit != 8 && digit != 9) ||
2048 (radix == 2 && (digit == 0 || digit == 1))) &&
2049 "Invalid digit in string for given radix");
Reid Spencer6551dcd2007-05-16 19:18:22 +00002050 } else {
Reid Spencer385f7542007-02-21 03:55:44 +00002051 assert(0 && "Invalid character in digit string");
Reid Spencer6551dcd2007-05-16 19:18:22 +00002052 }
Reid Spencer385f7542007-02-21 03:55:44 +00002053
Reid Spencer6551dcd2007-05-16 19:18:22 +00002054 // Shift or multiply the value by the radix
Chris Lattner38300e92009-04-25 18:34:04 +00002055 if (slen > 1) {
2056 if (shift)
2057 *this <<= shift;
2058 else
2059 *this *= apradix;
2060 }
Reid Spencer385f7542007-02-21 03:55:44 +00002061
2062 // Add in the digit we just interpreted
Reid Spencer5bce8542007-02-24 20:19:37 +00002063 if (apdigit.isSingleWord())
2064 apdigit.VAL = digit;
2065 else
2066 apdigit.pVal[0] = digit;
Reid Spencer385f7542007-02-21 03:55:44 +00002067 *this += apdigit;
Reid Spencer5e0a8512007-02-17 03:16:00 +00002068 }
Reid Spencer9eec2412007-02-25 23:44:53 +00002069 // If its negative, put it in two's complement form
Reid Spencer47fbe9e2007-02-26 07:44:38 +00002070 if (isNeg) {
2071 (*this)--;
Reid Spencer9eec2412007-02-25 23:44:53 +00002072 this->flip();
Reid Spencer9eec2412007-02-25 23:44:53 +00002073 }
Reid Spencer5e0a8512007-02-17 03:16:00 +00002074}
Reid Spencer9c0696f2007-02-20 08:51:03 +00002075
Chris Lattnerfad86b02008-08-17 07:19:36 +00002076void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2077 bool Signed) const {
2078 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
Reid Spencer9c0696f2007-02-20 08:51:03 +00002079 "Radix should be 2, 8, 10, or 16!");
Chris Lattnerfad86b02008-08-17 07:19:36 +00002080
2081 // First, check for a zero value and just short circuit the logic below.
2082 if (*this == 0) {
2083 Str.push_back('0');
2084 return;
2085 }
2086
2087 static const char Digits[] = "0123456789ABCDEF";
2088
Reid Spencer9c0696f2007-02-20 08:51:03 +00002089 if (isSingleWord()) {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002090 char Buffer[65];
2091 char *BufPtr = Buffer+65;
2092
2093 uint64_t N;
2094 if (Signed) {
2095 int64_t I = getSExtValue();
2096 if (I < 0) {
2097 Str.push_back('-');
2098 I = -I;
2099 }
2100 N = I;
Reid Spencer9c0696f2007-02-20 08:51:03 +00002101 } else {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002102 N = getZExtValue();
Reid Spencer9c0696f2007-02-20 08:51:03 +00002103 }
Chris Lattnerfad86b02008-08-17 07:19:36 +00002104
2105 while (N) {
2106 *--BufPtr = Digits[N % Radix];
2107 N /= Radix;
2108 }
2109 Str.append(BufPtr, Buffer+65);
2110 return;
Reid Spencer9c0696f2007-02-20 08:51:03 +00002111 }
2112
Chris Lattnerfad86b02008-08-17 07:19:36 +00002113 APInt Tmp(*this);
2114
2115 if (Signed && isNegative()) {
Reid Spencer9c0696f2007-02-20 08:51:03 +00002116 // They want to print the signed version and it is a negative value
2117 // Flip the bits and add one to turn it into the equivalent positive
2118 // value and put a '-' in the result.
Chris Lattnerfad86b02008-08-17 07:19:36 +00002119 Tmp.flip();
2120 Tmp++;
2121 Str.push_back('-');
Reid Spencer9c0696f2007-02-20 08:51:03 +00002122 }
Chris Lattnerfad86b02008-08-17 07:19:36 +00002123
2124 // We insert the digits backward, then reverse them to get the right order.
2125 unsigned StartDig = Str.size();
2126
2127 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2128 // because the number of bits per digit (1, 3 and 4 respectively) divides
2129 // equaly. We just shift until the value is zero.
2130 if (Radix != 10) {
2131 // Just shift tmp right for each digit width until it becomes zero
2132 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2133 unsigned MaskAmt = Radix - 1;
2134
2135 while (Tmp != 0) {
2136 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2137 Str.push_back(Digits[Digit]);
2138 Tmp = Tmp.lshr(ShiftAmt);
2139 }
2140 } else {
2141 APInt divisor(4, 10);
2142 while (Tmp != 0) {
2143 APInt APdigit(1, 0);
2144 APInt tmp2(Tmp.getBitWidth(), 0);
2145 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2146 &APdigit);
Chris Lattner455e9ab2009-01-21 18:09:24 +00002147 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattnerfad86b02008-08-17 07:19:36 +00002148 assert(Digit < Radix && "divide failed");
2149 Str.push_back(Digits[Digit]);
2150 Tmp = tmp2;
2151 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00002152 }
Chris Lattnerfad86b02008-08-17 07:19:36 +00002153
2154 // Reverse the digits before returning.
2155 std::reverse(Str.begin()+StartDig, Str.end());
Reid Spencer9c0696f2007-02-20 08:51:03 +00002156}
2157
Chris Lattnerfad86b02008-08-17 07:19:36 +00002158/// toString - This returns the APInt as a std::string. Note that this is an
2159/// inefficient method. It is better to pass in a SmallVector/SmallString
2160/// to the methods above.
2161std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2162 SmallString<40> S;
2163 toString(S, Radix, Signed);
2164 return S.c_str();
Reid Spencer385f7542007-02-21 03:55:44 +00002165}
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002166
Chris Lattnerfad86b02008-08-17 07:19:36 +00002167
2168void APInt::dump() const {
2169 SmallString<40> S, U;
2170 this->toStringUnsigned(U);
2171 this->toStringSigned(S);
2172 fprintf(stderr, "APInt(%db, %su %ss)", BitWidth, U.c_str(), S.c_str());
2173}
2174
Chris Lattner944fac72008-08-23 22:23:09 +00002175void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002176 SmallString<40> S;
2177 this->toString(S, 10, isSigned);
2178 OS << S.c_str();
2179}
2180
Dan Gohman38a253d2009-06-30 20:10:56 +00002181std::ostream &llvm::operator<<(std::ostream &o, const APInt &I) {
2182 raw_os_ostream OS(o);
2183 OS << I;
2184 return o;
2185}
2186
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002187// This implements a variety of operations on a representation of
2188// arbitrary precision, two's-complement, bignum integer values.
2189
2190/* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2191 and unrestricting assumption. */
Chris Lattner9f17eb02008-08-17 04:58:58 +00002192#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002193COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002194
2195/* Some handy functions local to this file. */
2196namespace {
2197
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002198 /* Returns the integer part with the least significant BITS set.
2199 BITS cannot be zero. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002200 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002201 lowBitMask(unsigned int bits)
2202 {
2203 assert (bits != 0 && bits <= integerPartWidth);
2204
2205 return ~(integerPart) 0 >> (integerPartWidth - bits);
2206 }
2207
Neil Booth055c0b32007-10-06 00:43:45 +00002208 /* Returns the value of the lower half of PART. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002209 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002210 lowHalf(integerPart part)
2211 {
2212 return part & lowBitMask(integerPartWidth / 2);
2213 }
2214
Neil Booth055c0b32007-10-06 00:43:45 +00002215 /* Returns the value of the upper half of PART. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002216 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002217 highHalf(integerPart part)
2218 {
2219 return part >> (integerPartWidth / 2);
2220 }
2221
Neil Booth055c0b32007-10-06 00:43:45 +00002222 /* Returns the bit number of the most significant set bit of a part.
2223 If the input number has no bits set -1U is returned. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002224 static unsigned int
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002225 partMSB(integerPart value)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002226 {
2227 unsigned int n, msb;
2228
2229 if (value == 0)
2230 return -1U;
2231
2232 n = integerPartWidth / 2;
2233
2234 msb = 0;
2235 do {
2236 if (value >> n) {
2237 value >>= n;
2238 msb += n;
2239 }
2240
2241 n >>= 1;
2242 } while (n);
2243
2244 return msb;
2245 }
2246
Neil Booth055c0b32007-10-06 00:43:45 +00002247 /* Returns the bit number of the least significant set bit of a
2248 part. If the input number has no bits set -1U is returned. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002249 static unsigned int
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002250 partLSB(integerPart value)
2251 {
2252 unsigned int n, lsb;
2253
2254 if (value == 0)
2255 return -1U;
2256
2257 lsb = integerPartWidth - 1;
2258 n = integerPartWidth / 2;
2259
2260 do {
2261 if (value << n) {
2262 value <<= n;
2263 lsb -= n;
2264 }
2265
2266 n >>= 1;
2267 } while (n);
2268
2269 return lsb;
2270 }
2271}
2272
2273/* Sets the least significant part of a bignum to the input value, and
2274 zeroes out higher parts. */
2275void
2276APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2277{
2278 unsigned int i;
2279
Neil Booth68e53ad2007-10-08 13:47:12 +00002280 assert (parts > 0);
2281
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002282 dst[0] = part;
2283 for(i = 1; i < parts; i++)
2284 dst[i] = 0;
2285}
2286
2287/* Assign one bignum to another. */
2288void
2289APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2290{
2291 unsigned int i;
2292
2293 for(i = 0; i < parts; i++)
2294 dst[i] = src[i];
2295}
2296
2297/* Returns true if a bignum is zero, false otherwise. */
2298bool
2299APInt::tcIsZero(const integerPart *src, unsigned int parts)
2300{
2301 unsigned int i;
2302
2303 for(i = 0; i < parts; i++)
2304 if (src[i])
2305 return false;
2306
2307 return true;
2308}
2309
2310/* Extract the given bit of a bignum; returns 0 or 1. */
2311int
2312APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2313{
2314 return(parts[bit / integerPartWidth]
2315 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2316}
2317
2318/* Set the given bit of a bignum. */
2319void
2320APInt::tcSetBit(integerPart *parts, unsigned int bit)
2321{
2322 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2323}
2324
Neil Booth055c0b32007-10-06 00:43:45 +00002325/* Returns the bit number of the least significant set bit of a
2326 number. If the input number has no bits set -1U is returned. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002327unsigned int
2328APInt::tcLSB(const integerPart *parts, unsigned int n)
2329{
2330 unsigned int i, lsb;
2331
2332 for(i = 0; i < n; i++) {
2333 if (parts[i] != 0) {
2334 lsb = partLSB(parts[i]);
2335
2336 return lsb + i * integerPartWidth;
2337 }
2338 }
2339
2340 return -1U;
2341}
2342
Neil Booth055c0b32007-10-06 00:43:45 +00002343/* Returns the bit number of the most significant set bit of a number.
2344 If the input number has no bits set -1U is returned. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002345unsigned int
2346APInt::tcMSB(const integerPart *parts, unsigned int n)
2347{
2348 unsigned int msb;
2349
2350 do {
2351 --n;
2352
2353 if (parts[n] != 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002354 msb = partMSB(parts[n]);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002355
2356 return msb + n * integerPartWidth;
2357 }
2358 } while (n);
2359
2360 return -1U;
2361}
2362
Neil Booth68e53ad2007-10-08 13:47:12 +00002363/* Copy the bit vector of width srcBITS from SRC, starting at bit
2364 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2365 the least significant bit of DST. All high bits above srcBITS in
2366 DST are zero-filled. */
2367void
Evan Chengcf69a742009-05-21 23:47:47 +00002368APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
Neil Booth68e53ad2007-10-08 13:47:12 +00002369 unsigned int srcBits, unsigned int srcLSB)
2370{
2371 unsigned int firstSrcPart, dstParts, shift, n;
2372
2373 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2374 assert (dstParts <= dstCount);
2375
2376 firstSrcPart = srcLSB / integerPartWidth;
2377 tcAssign (dst, src + firstSrcPart, dstParts);
2378
2379 shift = srcLSB % integerPartWidth;
2380 tcShiftRight (dst, dstParts, shift);
2381
2382 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2383 in DST. If this is less that srcBits, append the rest, else
2384 clear the high bits. */
2385 n = dstParts * integerPartWidth - shift;
2386 if (n < srcBits) {
2387 integerPart mask = lowBitMask (srcBits - n);
2388 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2389 << n % integerPartWidth);
2390 } else if (n > srcBits) {
Neil Booth1e8390d2007-10-12 15:31:31 +00002391 if (srcBits % integerPartWidth)
2392 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Booth68e53ad2007-10-08 13:47:12 +00002393 }
2394
2395 /* Clear high parts. */
2396 while (dstParts < dstCount)
2397 dst[dstParts++] = 0;
2398}
2399
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002400/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2401integerPart
2402APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2403 integerPart c, unsigned int parts)
2404{
2405 unsigned int i;
2406
2407 assert(c <= 1);
2408
2409 for(i = 0; i < parts; i++) {
2410 integerPart l;
2411
2412 l = dst[i];
2413 if (c) {
2414 dst[i] += rhs[i] + 1;
2415 c = (dst[i] <= l);
2416 } else {
2417 dst[i] += rhs[i];
2418 c = (dst[i] < l);
2419 }
2420 }
2421
2422 return c;
2423}
2424
2425/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2426integerPart
2427APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2428 integerPart c, unsigned int parts)
2429{
2430 unsigned int i;
2431
2432 assert(c <= 1);
2433
2434 for(i = 0; i < parts; i++) {
2435 integerPart l;
2436
2437 l = dst[i];
2438 if (c) {
2439 dst[i] -= rhs[i] + 1;
2440 c = (dst[i] >= l);
2441 } else {
2442 dst[i] -= rhs[i];
2443 c = (dst[i] > l);
2444 }
2445 }
2446
2447 return c;
2448}
2449
2450/* Negate a bignum in-place. */
2451void
2452APInt::tcNegate(integerPart *dst, unsigned int parts)
2453{
2454 tcComplement(dst, parts);
2455 tcIncrement(dst, parts);
2456}
2457
Neil Booth055c0b32007-10-06 00:43:45 +00002458/* DST += SRC * MULTIPLIER + CARRY if add is true
2459 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002460
2461 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2462 they must start at the same point, i.e. DST == SRC.
2463
2464 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2465 returned. Otherwise DST is filled with the least significant
2466 DSTPARTS parts of the result, and if all of the omitted higher
2467 parts were zero return zero, otherwise overflow occurred and
2468 return one. */
2469int
2470APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2471 integerPart multiplier, integerPart carry,
2472 unsigned int srcParts, unsigned int dstParts,
2473 bool add)
2474{
2475 unsigned int i, n;
2476
2477 /* Otherwise our writes of DST kill our later reads of SRC. */
2478 assert(dst <= src || dst >= src + srcParts);
2479 assert(dstParts <= srcParts + 1);
2480
2481 /* N loops; minimum of dstParts and srcParts. */
2482 n = dstParts < srcParts ? dstParts: srcParts;
2483
2484 for(i = 0; i < n; i++) {
2485 integerPart low, mid, high, srcPart;
2486
2487 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2488
2489 This cannot overflow, because
2490
2491 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2492
2493 which is less than n^2. */
2494
2495 srcPart = src[i];
2496
2497 if (multiplier == 0 || srcPart == 0) {
2498 low = carry;
2499 high = 0;
2500 } else {
2501 low = lowHalf(srcPart) * lowHalf(multiplier);
2502 high = highHalf(srcPart) * highHalf(multiplier);
2503
2504 mid = lowHalf(srcPart) * highHalf(multiplier);
2505 high += highHalf(mid);
2506 mid <<= integerPartWidth / 2;
2507 if (low + mid < low)
2508 high++;
2509 low += mid;
2510
2511 mid = highHalf(srcPart) * lowHalf(multiplier);
2512 high += highHalf(mid);
2513 mid <<= integerPartWidth / 2;
2514 if (low + mid < low)
2515 high++;
2516 low += mid;
2517
2518 /* Now add carry. */
2519 if (low + carry < low)
2520 high++;
2521 low += carry;
2522 }
2523
2524 if (add) {
2525 /* And now DST[i], and store the new low part there. */
2526 if (low + dst[i] < low)
2527 high++;
2528 dst[i] += low;
2529 } else
2530 dst[i] = low;
2531
2532 carry = high;
2533 }
2534
2535 if (i < dstParts) {
2536 /* Full multiplication, there is no overflow. */
2537 assert(i + 1 == dstParts);
2538 dst[i] = carry;
2539 return 0;
2540 } else {
2541 /* We overflowed if there is carry. */
2542 if (carry)
2543 return 1;
2544
2545 /* We would overflow if any significant unwritten parts would be
2546 non-zero. This is true if any remaining src parts are non-zero
2547 and the multiplier is non-zero. */
2548 if (multiplier)
2549 for(; i < srcParts; i++)
2550 if (src[i])
2551 return 1;
2552
2553 /* We fitted in the narrow destination. */
2554 return 0;
2555 }
2556}
2557
2558/* DST = LHS * RHS, where DST has the same width as the operands and
2559 is filled with the least significant parts of the result. Returns
2560 one if overflow occurred, otherwise zero. DST must be disjoint
2561 from both operands. */
2562int
2563APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2564 const integerPart *rhs, unsigned int parts)
2565{
2566 unsigned int i;
2567 int overflow;
2568
2569 assert(dst != lhs && dst != rhs);
2570
2571 overflow = 0;
2572 tcSet(dst, 0, parts);
2573
2574 for(i = 0; i < parts; i++)
2575 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2576 parts - i, true);
2577
2578 return overflow;
2579}
2580
Neil Booth978661d2007-10-06 00:24:48 +00002581/* DST = LHS * RHS, where DST has width the sum of the widths of the
2582 operands. No overflow occurs. DST must be disjoint from both
2583 operands. Returns the number of parts required to hold the
2584 result. */
2585unsigned int
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002586APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth978661d2007-10-06 00:24:48 +00002587 const integerPart *rhs, unsigned int lhsParts,
2588 unsigned int rhsParts)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002589{
Neil Booth978661d2007-10-06 00:24:48 +00002590 /* Put the narrower number on the LHS for less loops below. */
2591 if (lhsParts > rhsParts) {
2592 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2593 } else {
2594 unsigned int n;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002595
Neil Booth978661d2007-10-06 00:24:48 +00002596 assert(dst != lhs && dst != rhs);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002597
Neil Booth978661d2007-10-06 00:24:48 +00002598 tcSet(dst, 0, rhsParts);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002599
Neil Booth978661d2007-10-06 00:24:48 +00002600 for(n = 0; n < lhsParts; n++)
2601 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002602
Neil Booth978661d2007-10-06 00:24:48 +00002603 n = lhsParts + rhsParts;
2604
2605 return n - (dst[n - 1] == 0);
2606 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002607}
2608
2609/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2610 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2611 set REMAINDER to the remainder, return zero. i.e.
2612
2613 OLD_LHS = RHS * LHS + REMAINDER
2614
2615 SCRATCH is a bignum of the same size as the operands and result for
2616 use by the routine; its contents need not be initialized and are
2617 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2618*/
2619int
2620APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2621 integerPart *remainder, integerPart *srhs,
2622 unsigned int parts)
2623{
2624 unsigned int n, shiftCount;
2625 integerPart mask;
2626
2627 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2628
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002629 shiftCount = tcMSB(rhs, parts) + 1;
2630 if (shiftCount == 0)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002631 return true;
2632
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002633 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002634 n = shiftCount / integerPartWidth;
2635 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2636
2637 tcAssign(srhs, rhs, parts);
2638 tcShiftLeft(srhs, parts, shiftCount);
2639 tcAssign(remainder, lhs, parts);
2640 tcSet(lhs, 0, parts);
2641
2642 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2643 the total. */
2644 for(;;) {
2645 int compare;
2646
2647 compare = tcCompare(remainder, srhs, parts);
2648 if (compare >= 0) {
2649 tcSubtract(remainder, srhs, 0, parts);
2650 lhs[n] |= mask;
2651 }
2652
2653 if (shiftCount == 0)
2654 break;
2655 shiftCount--;
2656 tcShiftRight(srhs, parts, 1);
2657 if ((mask >>= 1) == 0)
2658 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2659 }
2660
2661 return false;
2662}
2663
2664/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2665 There are no restrictions on COUNT. */
2666void
2667APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2668{
Neil Booth68e53ad2007-10-08 13:47:12 +00002669 if (count) {
2670 unsigned int jump, shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002671
Neil Booth68e53ad2007-10-08 13:47:12 +00002672 /* Jump is the inter-part jump; shift is is intra-part shift. */
2673 jump = count / integerPartWidth;
2674 shift = count % integerPartWidth;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002675
Neil Booth68e53ad2007-10-08 13:47:12 +00002676 while (parts > jump) {
2677 integerPart part;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002678
Neil Booth68e53ad2007-10-08 13:47:12 +00002679 parts--;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002680
Neil Booth68e53ad2007-10-08 13:47:12 +00002681 /* dst[i] comes from the two parts src[i - jump] and, if we have
2682 an intra-part shift, src[i - jump - 1]. */
2683 part = dst[parts - jump];
2684 if (shift) {
2685 part <<= shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002686 if (parts >= jump + 1)
2687 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2688 }
2689
Neil Booth68e53ad2007-10-08 13:47:12 +00002690 dst[parts] = part;
2691 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002692
Neil Booth68e53ad2007-10-08 13:47:12 +00002693 while (parts > 0)
2694 dst[--parts] = 0;
2695 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002696}
2697
2698/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2699 zero. There are no restrictions on COUNT. */
2700void
2701APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2702{
Neil Booth68e53ad2007-10-08 13:47:12 +00002703 if (count) {
2704 unsigned int i, jump, shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002705
Neil Booth68e53ad2007-10-08 13:47:12 +00002706 /* Jump is the inter-part jump; shift is is intra-part shift. */
2707 jump = count / integerPartWidth;
2708 shift = count % integerPartWidth;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002709
Neil Booth68e53ad2007-10-08 13:47:12 +00002710 /* Perform the shift. This leaves the most significant COUNT bits
2711 of the result at zero. */
2712 for(i = 0; i < parts; i++) {
2713 integerPart part;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002714
Neil Booth68e53ad2007-10-08 13:47:12 +00002715 if (i + jump >= parts) {
2716 part = 0;
2717 } else {
2718 part = dst[i + jump];
2719 if (shift) {
2720 part >>= shift;
2721 if (i + jump + 1 < parts)
2722 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2723 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002724 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002725
Neil Booth68e53ad2007-10-08 13:47:12 +00002726 dst[i] = part;
2727 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002728 }
2729}
2730
2731/* Bitwise and of two bignums. */
2732void
2733APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2734{
2735 unsigned int i;
2736
2737 for(i = 0; i < parts; i++)
2738 dst[i] &= rhs[i];
2739}
2740
2741/* Bitwise inclusive or of two bignums. */
2742void
2743APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2744{
2745 unsigned int i;
2746
2747 for(i = 0; i < parts; i++)
2748 dst[i] |= rhs[i];
2749}
2750
2751/* Bitwise exclusive or of two bignums. */
2752void
2753APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2754{
2755 unsigned int i;
2756
2757 for(i = 0; i < parts; i++)
2758 dst[i] ^= rhs[i];
2759}
2760
2761/* Complement a bignum in-place. */
2762void
2763APInt::tcComplement(integerPart *dst, unsigned int parts)
2764{
2765 unsigned int i;
2766
2767 for(i = 0; i < parts; i++)
2768 dst[i] = ~dst[i];
2769}
2770
2771/* Comparison (unsigned) of two bignums. */
2772int
2773APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2774 unsigned int parts)
2775{
2776 while (parts) {
2777 parts--;
2778 if (lhs[parts] == rhs[parts])
2779 continue;
2780
2781 if (lhs[parts] > rhs[parts])
2782 return 1;
2783 else
2784 return -1;
2785 }
2786
2787 return 0;
2788}
2789
2790/* Increment a bignum in-place, return the carry flag. */
2791integerPart
2792APInt::tcIncrement(integerPart *dst, unsigned int parts)
2793{
2794 unsigned int i;
2795
2796 for(i = 0; i < parts; i++)
2797 if (++dst[i] != 0)
2798 break;
2799
2800 return i == parts;
2801}
2802
2803/* Set the least significant BITS bits of a bignum, clear the
2804 rest. */
2805void
2806APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2807 unsigned int bits)
2808{
2809 unsigned int i;
2810
2811 i = 0;
2812 while (bits > integerPartWidth) {
2813 dst[i++] = ~(integerPart) 0;
2814 bits -= integerPartWidth;
2815 }
2816
2817 if (bits)
2818 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2819
2820 while (i < parts)
2821 dst[i++] = 0;
2822}