blob: c2d291dadd3ef002dd6d8071e299a2fbd4229ea2 [file] [log] [blame]
Dan Gohman343f0c02008-11-19 23:18:57 +00001//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/Target/TargetMachine.h"
18#include "llvm/Target/TargetInstrInfo.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/Support/Debug.h"
Dan Gohman40362062008-11-20 01:41:34 +000021#include <climits>
Dan Gohman343f0c02008-11-19 23:18:57 +000022using namespace llvm;
23
24ScheduleDAG::ScheduleDAG(SelectionDAG *dag, MachineBasicBlock *bb,
25 const TargetMachine &tm)
26 : DAG(dag), BB(bb), TM(tm), MRI(BB->getParent()->getRegInfo()) {
27 TII = TM.getInstrInfo();
28 MF = BB->getParent();
29 TRI = TM.getRegisterInfo();
30 TLI = TM.getTargetLowering();
31 ConstPool = MF->getConstantPool();
32}
33
34ScheduleDAG::~ScheduleDAG() {}
35
Dan Gohman343f0c02008-11-19 23:18:57 +000036/// dump - dump the schedule.
37void ScheduleDAG::dumpSchedule() const {
38 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
39 if (SUnit *SU = Sequence[i])
40 SU->dump(this);
41 else
42 cerr << "**** NOOP ****\n";
43 }
44}
45
46
47/// Run - perform scheduling.
48///
49void ScheduleDAG::Run() {
50 Schedule();
51
52 DOUT << "*** Final schedule ***\n";
53 DEBUG(dumpSchedule());
54 DOUT << "\n";
55}
56
Dan Gohmanc6b680e2008-12-16 01:05:52 +000057/// addPred - This adds the specified edge as a pred of the current node if
58/// not already. It also adds the current node as a successor of the
59/// specified node.
60void SUnit::addPred(const SDep &D) {
61 // If this node already has this depenence, don't add a redundant one.
62 for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
63 if (Preds[i] == D)
64 return;
Dan Gohmanc6b680e2008-12-16 01:05:52 +000065 // Now add a corresponding succ to N.
66 SDep P = D;
67 P.setSUnit(this);
68 SUnit *N = D.getSUnit();
Dan Gohmanc6b680e2008-12-16 01:05:52 +000069 // Update the bookkeeping.
70 if (D.getKind() == SDep::Data) {
71 ++NumPreds;
72 ++N->NumSuccs;
73 }
74 if (!N->isScheduled)
75 ++NumPredsLeft;
76 if (!isScheduled)
77 ++N->NumSuccsLeft;
Dan Gohman3f237442008-12-16 03:25:46 +000078 N->Succs.push_back(P);
79 Preds.push_back(D);
80 this->setDepthDirty();
81 N->setHeightDirty();
Dan Gohmanc6b680e2008-12-16 01:05:52 +000082}
83
84/// removePred - This removes the specified edge as a pred of the current
85/// node if it exists. It also removes the current node as a successor of
86/// the specified node.
87void SUnit::removePred(const SDep &D) {
88 // Find the matching predecessor.
89 for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
90 I != E; ++I)
91 if (*I == D) {
92 bool FoundSucc = false;
93 // Find the corresponding successor in N.
94 SDep P = D;
95 P.setSUnit(this);
96 SUnit *N = D.getSUnit();
97 for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
98 EE = N->Succs.end(); II != EE; ++II)
99 if (*II == P) {
100 FoundSucc = true;
101 N->Succs.erase(II);
102 break;
103 }
104 assert(FoundSucc && "Mismatching preds / succs lists!");
105 Preds.erase(I);
106 // Update the bookkeeping;
107 if (D.getKind() == SDep::Data) {
108 --NumPreds;
109 --N->NumSuccs;
110 }
111 if (!N->isScheduled)
112 --NumPredsLeft;
113 if (!isScheduled)
114 --N->NumSuccsLeft;
Dan Gohman3f237442008-12-16 03:25:46 +0000115 this->setDepthDirty();
116 N->setHeightDirty();
Dan Gohmanc6b680e2008-12-16 01:05:52 +0000117 return;
118 }
119}
120
Dan Gohman3f237442008-12-16 03:25:46 +0000121void SUnit::setDepthDirty() {
Dan Gohman8044e9b2008-12-22 21:11:33 +0000122 if (!isDepthCurrent) return;
Dan Gohman3f237442008-12-16 03:25:46 +0000123 SmallVector<SUnit*, 8> WorkList;
124 WorkList.push_back(this);
Dan Gohman8044e9b2008-12-22 21:11:33 +0000125 do {
Dan Gohmane19c6362008-12-20 16:42:33 +0000126 SUnit *SU = WorkList.pop_back_val();
Dan Gohman3f237442008-12-16 03:25:46 +0000127 SU->isDepthCurrent = false;
Dan Gohmanf89e6e62008-12-20 16:34:57 +0000128 for (SUnit::const_succ_iterator I = SU->Succs.begin(),
Dan Gohman8044e9b2008-12-22 21:11:33 +0000129 E = SU->Succs.end(); I != E; ++I) {
130 SUnit *SuccSU = I->getSUnit();
131 if (SuccSU->isDepthCurrent)
132 WorkList.push_back(SuccSU);
133 }
134 } while (!WorkList.empty());
Dan Gohman3f237442008-12-16 03:25:46 +0000135}
136
137void SUnit::setHeightDirty() {
Dan Gohman8044e9b2008-12-22 21:11:33 +0000138 if (!isHeightCurrent) return;
Dan Gohman3f237442008-12-16 03:25:46 +0000139 SmallVector<SUnit*, 8> WorkList;
140 WorkList.push_back(this);
Dan Gohman8044e9b2008-12-22 21:11:33 +0000141 do {
Dan Gohmane19c6362008-12-20 16:42:33 +0000142 SUnit *SU = WorkList.pop_back_val();
Dan Gohman3f237442008-12-16 03:25:46 +0000143 SU->isHeightCurrent = false;
Dan Gohmanf89e6e62008-12-20 16:34:57 +0000144 for (SUnit::const_pred_iterator I = SU->Preds.begin(),
Dan Gohman8044e9b2008-12-22 21:11:33 +0000145 E = SU->Preds.end(); I != E; ++I) {
146 SUnit *PredSU = I->getSUnit();
147 if (PredSU->isHeightCurrent)
148 WorkList.push_back(PredSU);
149 }
150 } while (!WorkList.empty());
Dan Gohman3f237442008-12-16 03:25:46 +0000151}
152
153/// setDepthToAtLeast - Update this node's successors to reflect the
154/// fact that this node's depth just increased.
155///
156void SUnit::setDepthToAtLeast(unsigned NewDepth) {
Dan Gohmanfccf6dd2008-12-17 04:25:52 +0000157 if (NewDepth <= getDepth())
Dan Gohman3f237442008-12-16 03:25:46 +0000158 return;
159 setDepthDirty();
160 Depth = NewDepth;
161 isDepthCurrent = true;
162}
163
164/// setHeightToAtLeast - Update this node's predecessors to reflect the
165/// fact that this node's height just increased.
166///
167void SUnit::setHeightToAtLeast(unsigned NewHeight) {
Dan Gohmanfccf6dd2008-12-17 04:25:52 +0000168 if (NewHeight <= getHeight())
Dan Gohman3f237442008-12-16 03:25:46 +0000169 return;
170 setHeightDirty();
171 Height = NewHeight;
172 isHeightCurrent = true;
173}
174
175/// ComputeDepth - Calculate the maximal path from the node to the exit.
176///
177void SUnit::ComputeDepth() {
178 SmallVector<SUnit*, 8> WorkList;
179 WorkList.push_back(this);
Dan Gohman1578f842008-12-23 17:22:32 +0000180 do {
Dan Gohman3f237442008-12-16 03:25:46 +0000181 SUnit *Cur = WorkList.back();
182
183 bool Done = true;
184 unsigned MaxPredDepth = 0;
185 for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
186 E = Cur->Preds.end(); I != E; ++I) {
187 SUnit *PredSU = I->getSUnit();
188 if (PredSU->isDepthCurrent)
189 MaxPredDepth = std::max(MaxPredDepth,
190 PredSU->Depth + I->getLatency());
191 else {
192 Done = false;
193 WorkList.push_back(PredSU);
194 }
195 }
196
197 if (Done) {
198 WorkList.pop_back();
199 if (MaxPredDepth != Cur->Depth) {
200 Cur->setDepthDirty();
201 Cur->Depth = MaxPredDepth;
202 }
203 Cur->isDepthCurrent = true;
204 }
Dan Gohman1578f842008-12-23 17:22:32 +0000205 } while (!WorkList.empty());
Dan Gohman3f237442008-12-16 03:25:46 +0000206}
207
208/// ComputeHeight - Calculate the maximal path from the node to the entry.
209///
210void SUnit::ComputeHeight() {
211 SmallVector<SUnit*, 8> WorkList;
212 WorkList.push_back(this);
Dan Gohman1578f842008-12-23 17:22:32 +0000213 do {
Dan Gohman3f237442008-12-16 03:25:46 +0000214 SUnit *Cur = WorkList.back();
215
216 bool Done = true;
217 unsigned MaxSuccHeight = 0;
218 for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
219 E = Cur->Succs.end(); I != E; ++I) {
220 SUnit *SuccSU = I->getSUnit();
221 if (SuccSU->isHeightCurrent)
222 MaxSuccHeight = std::max(MaxSuccHeight,
223 SuccSU->Height + I->getLatency());
224 else {
225 Done = false;
226 WorkList.push_back(SuccSU);
227 }
228 }
229
230 if (Done) {
231 WorkList.pop_back();
232 if (MaxSuccHeight != Cur->Height) {
233 Cur->setHeightDirty();
234 Cur->Height = MaxSuccHeight;
235 }
236 Cur->isHeightCurrent = true;
237 }
Dan Gohman1578f842008-12-23 17:22:32 +0000238 } while (!WorkList.empty());
Dan Gohman3f237442008-12-16 03:25:46 +0000239}
240
Dan Gohman343f0c02008-11-19 23:18:57 +0000241/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
242/// a group of nodes flagged together.
243void SUnit::dump(const ScheduleDAG *G) const {
244 cerr << "SU(" << NodeNum << "): ";
245 G->dumpNode(this);
246}
247
248void SUnit::dumpAll(const ScheduleDAG *G) const {
249 dump(G);
250
251 cerr << " # preds left : " << NumPredsLeft << "\n";
252 cerr << " # succs left : " << NumSuccsLeft << "\n";
253 cerr << " Latency : " << Latency << "\n";
254 cerr << " Depth : " << Depth << "\n";
255 cerr << " Height : " << Height << "\n";
256
257 if (Preds.size() != 0) {
258 cerr << " Predecessors:\n";
259 for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
260 I != E; ++I) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000261 cerr << " ";
262 switch (I->getKind()) {
263 case SDep::Data: cerr << "val "; break;
264 case SDep::Anti: cerr << "anti"; break;
265 case SDep::Output: cerr << "out "; break;
266 case SDep::Order: cerr << "ch "; break;
267 }
268 cerr << "#";
269 cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
270 if (I->isArtificial())
Dan Gohman343f0c02008-11-19 23:18:57 +0000271 cerr << " *";
272 cerr << "\n";
273 }
274 }
275 if (Succs.size() != 0) {
276 cerr << " Successors:\n";
277 for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
278 I != E; ++I) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000279 cerr << " ";
280 switch (I->getKind()) {
281 case SDep::Data: cerr << "val "; break;
282 case SDep::Anti: cerr << "anti"; break;
283 case SDep::Output: cerr << "out "; break;
284 case SDep::Order: cerr << "ch "; break;
285 }
286 cerr << "#";
287 cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
288 if (I->isArtificial())
Dan Gohman343f0c02008-11-19 23:18:57 +0000289 cerr << " *";
290 cerr << "\n";
291 }
292 }
293 cerr << "\n";
294}
Dan Gohmana1e6d362008-11-20 01:26:25 +0000295
296#ifndef NDEBUG
297/// VerifySchedule - Verify that all SUnits were scheduled and that
298/// their state is consistent.
299///
300void ScheduleDAG::VerifySchedule(bool isBottomUp) {
301 bool AnyNotSched = false;
302 unsigned DeadNodes = 0;
303 unsigned Noops = 0;
304 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
305 if (!SUnits[i].isScheduled) {
306 if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
307 ++DeadNodes;
308 continue;
309 }
310 if (!AnyNotSched)
311 cerr << "*** Scheduling failed! ***\n";
312 SUnits[i].dump(this);
313 cerr << "has not been scheduled!\n";
314 AnyNotSched = true;
315 }
Dan Gohman3f237442008-12-16 03:25:46 +0000316 if (SUnits[i].isScheduled &&
317 (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getHeight()) >
318 unsigned(INT_MAX)) {
Dan Gohmana1e6d362008-11-20 01:26:25 +0000319 if (!AnyNotSched)
320 cerr << "*** Scheduling failed! ***\n";
321 SUnits[i].dump(this);
Dan Gohman3f237442008-12-16 03:25:46 +0000322 cerr << "has an unexpected "
323 << (isBottomUp ? "Height" : "Depth") << " value!\n";
Dan Gohmana1e6d362008-11-20 01:26:25 +0000324 AnyNotSched = true;
325 }
326 if (isBottomUp) {
327 if (SUnits[i].NumSuccsLeft != 0) {
328 if (!AnyNotSched)
329 cerr << "*** Scheduling failed! ***\n";
330 SUnits[i].dump(this);
331 cerr << "has successors left!\n";
332 AnyNotSched = true;
333 }
334 } else {
335 if (SUnits[i].NumPredsLeft != 0) {
336 if (!AnyNotSched)
337 cerr << "*** Scheduling failed! ***\n";
338 SUnits[i].dump(this);
339 cerr << "has predecessors left!\n";
340 AnyNotSched = true;
341 }
342 }
343 }
344 for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
345 if (!Sequence[i])
346 ++Noops;
347 assert(!AnyNotSched);
348 assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
349 "The number of nodes scheduled doesn't match the expected number!");
350}
351#endif
Dan Gohman21d90032008-11-25 00:52:40 +0000352
353/// InitDAGTopologicalSorting - create the initial topological
354/// ordering from the DAG to be scheduled.
355///
356/// The idea of the algorithm is taken from
357/// "Online algorithms for managing the topological order of
358/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
359/// This is the MNR algorithm, which was first introduced by
360/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
361/// "Maintaining a topological order under edge insertions".
362///
363/// Short description of the algorithm:
364///
365/// Topological ordering, ord, of a DAG maps each node to a topological
366/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
367///
368/// This means that if there is a path from the node X to the node Z,
369/// then ord(X) < ord(Z).
370///
371/// This property can be used to check for reachability of nodes:
372/// if Z is reachable from X, then an insertion of the edge Z->X would
373/// create a cycle.
374///
375/// The algorithm first computes a topological ordering for the DAG by
376/// initializing the Index2Node and Node2Index arrays and then tries to keep
377/// the ordering up-to-date after edge insertions by reordering the DAG.
378///
379/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
380/// the nodes reachable from Y, and then shifts them using Shift to lie
381/// immediately after X in Index2Node.
382void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
383 unsigned DAGSize = SUnits.size();
384 std::vector<SUnit*> WorkList;
385 WorkList.reserve(DAGSize);
386
387 Index2Node.resize(DAGSize);
388 Node2Index.resize(DAGSize);
389
390 // Initialize the data structures.
391 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
392 SUnit *SU = &SUnits[i];
393 int NodeNum = SU->NodeNum;
394 unsigned Degree = SU->Succs.size();
395 // Temporarily use the Node2Index array as scratch space for degree counts.
396 Node2Index[NodeNum] = Degree;
397
398 // Is it a node without dependencies?
399 if (Degree == 0) {
400 assert(SU->Succs.empty() && "SUnit should have no successors");
401 // Collect leaf nodes.
402 WorkList.push_back(SU);
403 }
404 }
405
406 int Id = DAGSize;
407 while (!WorkList.empty()) {
408 SUnit *SU = WorkList.back();
409 WorkList.pop_back();
410 Allocate(SU->NodeNum, --Id);
411 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
412 I != E; ++I) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000413 SUnit *SU = I->getSUnit();
Dan Gohman21d90032008-11-25 00:52:40 +0000414 if (!--Node2Index[SU->NodeNum])
415 // If all dependencies of the node are processed already,
416 // then the node can be computed now.
417 WorkList.push_back(SU);
418 }
419 }
420
421 Visited.resize(DAGSize);
422
423#ifndef NDEBUG
424 // Check correctness of the ordering
425 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
426 SUnit *SU = &SUnits[i];
427 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
428 I != E; ++I) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000429 assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
Dan Gohman21d90032008-11-25 00:52:40 +0000430 "Wrong topological sorting");
431 }
432 }
433#endif
434}
435
436/// AddPred - Updates the topological ordering to accomodate an edge
437/// to be added from SUnit X to SUnit Y.
438void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
439 int UpperBound, LowerBound;
440 LowerBound = Node2Index[Y->NodeNum];
441 UpperBound = Node2Index[X->NodeNum];
442 bool HasLoop = false;
443 // Is Ord(X) < Ord(Y) ?
444 if (LowerBound < UpperBound) {
445 // Update the topological order.
446 Visited.reset();
447 DFS(Y, UpperBound, HasLoop);
448 assert(!HasLoop && "Inserted edge creates a loop!");
449 // Recompute topological indexes.
450 Shift(Visited, LowerBound, UpperBound);
451 }
452}
453
454/// RemovePred - Updates the topological ordering to accomodate an
455/// an edge to be removed from the specified node N from the predecessors
456/// of the current node M.
457void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
458 // InitDAGTopologicalSorting();
459}
460
461/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
462/// all nodes affected by the edge insertion. These nodes will later get new
463/// topological indexes by means of the Shift method.
Dan Gohmane3a49cd2008-12-09 16:37:48 +0000464void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
465 bool& HasLoop) {
Dan Gohman21d90032008-11-25 00:52:40 +0000466 std::vector<const SUnit*> WorkList;
467 WorkList.reserve(SUnits.size());
468
469 WorkList.push_back(SU);
Dan Gohman1578f842008-12-23 17:22:32 +0000470 do {
Dan Gohman21d90032008-11-25 00:52:40 +0000471 SU = WorkList.back();
472 WorkList.pop_back();
473 Visited.set(SU->NodeNum);
474 for (int I = SU->Succs.size()-1; I >= 0; --I) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000475 int s = SU->Succs[I].getSUnit()->NodeNum;
Dan Gohman21d90032008-11-25 00:52:40 +0000476 if (Node2Index[s] == UpperBound) {
477 HasLoop = true;
478 return;
479 }
480 // Visit successors if not already and in affected region.
481 if (!Visited.test(s) && Node2Index[s] < UpperBound) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000482 WorkList.push_back(SU->Succs[I].getSUnit());
Dan Gohman21d90032008-11-25 00:52:40 +0000483 }
484 }
Dan Gohman1578f842008-12-23 17:22:32 +0000485 } while (!WorkList.empty());
Dan Gohman21d90032008-11-25 00:52:40 +0000486}
487
488/// Shift - Renumber the nodes so that the topological ordering is
489/// preserved.
490void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
Dan Gohmane3a49cd2008-12-09 16:37:48 +0000491 int UpperBound) {
Dan Gohman21d90032008-11-25 00:52:40 +0000492 std::vector<int> L;
493 int shift = 0;
494 int i;
495
496 for (i = LowerBound; i <= UpperBound; ++i) {
497 // w is node at topological index i.
498 int w = Index2Node[i];
499 if (Visited.test(w)) {
500 // Unmark.
501 Visited.reset(w);
502 L.push_back(w);
503 shift = shift + 1;
504 } else {
505 Allocate(w, i - shift);
506 }
507 }
508
509 for (unsigned j = 0; j < L.size(); ++j) {
510 Allocate(L[j], i - shift);
511 i = i + 1;
512 }
513}
514
515
516/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
517/// create a cycle.
518bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
519 if (IsReachable(TargetSU, SU))
520 return true;
521 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
522 I != E; ++I)
Dan Gohman54e4c362008-12-09 22:54:47 +0000523 if (I->isAssignedRegDep() &&
524 IsReachable(TargetSU, I->getSUnit()))
Dan Gohman21d90032008-11-25 00:52:40 +0000525 return true;
526 return false;
527}
528
529/// IsReachable - Checks if SU is reachable from TargetSU.
Dan Gohmane3a49cd2008-12-09 16:37:48 +0000530bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
531 const SUnit *TargetSU) {
Dan Gohman21d90032008-11-25 00:52:40 +0000532 // If insertion of the edge SU->TargetSU would create a cycle
533 // then there is a path from TargetSU to SU.
534 int UpperBound, LowerBound;
535 LowerBound = Node2Index[TargetSU->NodeNum];
536 UpperBound = Node2Index[SU->NodeNum];
537 bool HasLoop = false;
538 // Is Ord(TargetSU) < Ord(SU) ?
539 if (LowerBound < UpperBound) {
540 Visited.reset();
541 // There may be a path from TargetSU to SU. Check for it.
542 DFS(TargetSU, UpperBound, HasLoop);
543 }
544 return HasLoop;
545}
546
547/// Allocate - assign the topological index to the node n.
548void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
549 Node2Index[n] = index;
550 Index2Node[index] = n;
551}
552
553ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
554 std::vector<SUnit> &sunits)
555 : SUnits(sunits) {}