blob: 2be31c826012ec72e8cf56e448b4f2c528b525e3 [file] [log] [blame]
Chris Lattner310968c2005-01-07 07:44:53 +00001//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
Misha Brukmanf976c852005-04-21 22:55:34 +00002//
Chris Lattner310968c2005-01-07 07:44:53 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanf976c852005-04-21 22:55:34 +00007//
Chris Lattner310968c2005-01-07 07:44:53 +00008//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
Rafael Espindolaf1ba1ca2007-11-05 23:12:20 +000015#include "llvm/Target/TargetSubtarget.h"
Owen Anderson07000c62006-05-12 06:33:49 +000016#include "llvm/Target/TargetData.h"
Chris Lattner310968c2005-01-07 07:44:53 +000017#include "llvm/Target/TargetMachine.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000018#include "llvm/Target/MRegisterInfo.h"
Chris Lattnerdc879292006-03-31 00:28:56 +000019#include "llvm/DerivedTypes.h"
Chris Lattner310968c2005-01-07 07:44:53 +000020#include "llvm/CodeGen/SelectionDAG.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000021#include "llvm/ADT/StringExtras.h"
Owen Anderson718cb662007-09-07 04:06:50 +000022#include "llvm/ADT/STLExtras.h"
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +000023#include "llvm/Support/MathExtras.h"
Dan Gohmanc3b0b5c2007-09-25 15:10:49 +000024#include "llvm/Target/TargetAsmInfo.h"
Rafael Espindolaf1ba1ca2007-11-05 23:12:20 +000025#include "llvm/CallingConv.h"
Chris Lattner310968c2005-01-07 07:44:53 +000026using namespace llvm;
27
Evan Cheng56966222007-01-12 02:11:51 +000028/// InitLibcallNames - Set default libcall names.
29///
Evan Cheng79cca502007-01-12 22:51:10 +000030static void InitLibcallNames(const char **Names) {
Evan Cheng56966222007-01-12 02:11:51 +000031 Names[RTLIB::SHL_I32] = "__ashlsi3";
32 Names[RTLIB::SHL_I64] = "__ashldi3";
33 Names[RTLIB::SRL_I32] = "__lshrsi3";
34 Names[RTLIB::SRL_I64] = "__lshrdi3";
35 Names[RTLIB::SRA_I32] = "__ashrsi3";
36 Names[RTLIB::SRA_I64] = "__ashrdi3";
37 Names[RTLIB::MUL_I32] = "__mulsi3";
38 Names[RTLIB::MUL_I64] = "__muldi3";
39 Names[RTLIB::SDIV_I32] = "__divsi3";
40 Names[RTLIB::SDIV_I64] = "__divdi3";
41 Names[RTLIB::UDIV_I32] = "__udivsi3";
42 Names[RTLIB::UDIV_I64] = "__udivdi3";
43 Names[RTLIB::SREM_I32] = "__modsi3";
44 Names[RTLIB::SREM_I64] = "__moddi3";
45 Names[RTLIB::UREM_I32] = "__umodsi3";
46 Names[RTLIB::UREM_I64] = "__umoddi3";
47 Names[RTLIB::NEG_I32] = "__negsi2";
48 Names[RTLIB::NEG_I64] = "__negdi2";
49 Names[RTLIB::ADD_F32] = "__addsf3";
50 Names[RTLIB::ADD_F64] = "__adddf3";
Dale Johannesen161e8972007-10-05 20:04:43 +000051 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
Evan Cheng56966222007-01-12 02:11:51 +000052 Names[RTLIB::SUB_F32] = "__subsf3";
53 Names[RTLIB::SUB_F64] = "__subdf3";
Dale Johannesen161e8972007-10-05 20:04:43 +000054 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
Evan Cheng56966222007-01-12 02:11:51 +000055 Names[RTLIB::MUL_F32] = "__mulsf3";
56 Names[RTLIB::MUL_F64] = "__muldf3";
Dale Johannesen161e8972007-10-05 20:04:43 +000057 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
Evan Cheng56966222007-01-12 02:11:51 +000058 Names[RTLIB::DIV_F32] = "__divsf3";
59 Names[RTLIB::DIV_F64] = "__divdf3";
Dale Johannesen161e8972007-10-05 20:04:43 +000060 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
Evan Cheng56966222007-01-12 02:11:51 +000061 Names[RTLIB::REM_F32] = "fmodf";
62 Names[RTLIB::REM_F64] = "fmod";
Dale Johannesen161e8972007-10-05 20:04:43 +000063 Names[RTLIB::REM_PPCF128] = "fmodl";
Evan Cheng56966222007-01-12 02:11:51 +000064 Names[RTLIB::NEG_F32] = "__negsf2";
65 Names[RTLIB::NEG_F64] = "__negdf2";
66 Names[RTLIB::POWI_F32] = "__powisf2";
67 Names[RTLIB::POWI_F64] = "__powidf2";
Dale Johannesen161e8972007-10-05 20:04:43 +000068 Names[RTLIB::POWI_F80] = "__powixf2";
69 Names[RTLIB::POWI_PPCF128] = "__powitf2";
Evan Cheng56966222007-01-12 02:11:51 +000070 Names[RTLIB::SQRT_F32] = "sqrtf";
71 Names[RTLIB::SQRT_F64] = "sqrt";
Dale Johannesen161e8972007-10-05 20:04:43 +000072 Names[RTLIB::SQRT_F80] = "sqrtl";
73 Names[RTLIB::SQRT_PPCF128] = "sqrtl";
Evan Cheng56966222007-01-12 02:11:51 +000074 Names[RTLIB::SIN_F32] = "sinf";
75 Names[RTLIB::SIN_F64] = "sin";
76 Names[RTLIB::COS_F32] = "cosf";
77 Names[RTLIB::COS_F64] = "cos";
Dan Gohmane54be102007-10-11 23:09:10 +000078 Names[RTLIB::POW_F32] = "powf";
79 Names[RTLIB::POW_F64] = "pow";
80 Names[RTLIB::POW_F80] = "powl";
81 Names[RTLIB::POW_PPCF128] = "powl";
Evan Cheng56966222007-01-12 02:11:51 +000082 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
83 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
84 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
85 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
86 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
87 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
Dale Johannesen161e8972007-10-05 20:04:43 +000088 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
89 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
Evan Cheng56966222007-01-12 02:11:51 +000090 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
91 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
92 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
93 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
Dale Johannesen161e8972007-10-05 20:04:43 +000094 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
95 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
96 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
Evan Cheng56966222007-01-12 02:11:51 +000097 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
98 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
99 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
100 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
Dale Johannesen161e8972007-10-05 20:04:43 +0000101 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
102 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
Evan Cheng56966222007-01-12 02:11:51 +0000103 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
104 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
105 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
106 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
107 Names[RTLIB::OEQ_F32] = "__eqsf2";
108 Names[RTLIB::OEQ_F64] = "__eqdf2";
109 Names[RTLIB::UNE_F32] = "__nesf2";
110 Names[RTLIB::UNE_F64] = "__nedf2";
111 Names[RTLIB::OGE_F32] = "__gesf2";
112 Names[RTLIB::OGE_F64] = "__gedf2";
113 Names[RTLIB::OLT_F32] = "__ltsf2";
114 Names[RTLIB::OLT_F64] = "__ltdf2";
115 Names[RTLIB::OLE_F32] = "__lesf2";
116 Names[RTLIB::OLE_F64] = "__ledf2";
117 Names[RTLIB::OGT_F32] = "__gtsf2";
118 Names[RTLIB::OGT_F64] = "__gtdf2";
119 Names[RTLIB::UO_F32] = "__unordsf2";
120 Names[RTLIB::UO_F64] = "__unorddf2";
Evan Chengd385fd62007-01-31 09:29:11 +0000121 Names[RTLIB::O_F32] = "__unordsf2";
122 Names[RTLIB::O_F64] = "__unorddf2";
123}
124
125/// InitCmpLibcallCCs - Set default comparison libcall CC.
126///
127static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
128 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
129 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
130 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
131 CCs[RTLIB::UNE_F32] = ISD::SETNE;
132 CCs[RTLIB::UNE_F64] = ISD::SETNE;
133 CCs[RTLIB::OGE_F32] = ISD::SETGE;
134 CCs[RTLIB::OGE_F64] = ISD::SETGE;
135 CCs[RTLIB::OLT_F32] = ISD::SETLT;
136 CCs[RTLIB::OLT_F64] = ISD::SETLT;
137 CCs[RTLIB::OLE_F32] = ISD::SETLE;
138 CCs[RTLIB::OLE_F64] = ISD::SETLE;
139 CCs[RTLIB::OGT_F32] = ISD::SETGT;
140 CCs[RTLIB::OGT_F64] = ISD::SETGT;
141 CCs[RTLIB::UO_F32] = ISD::SETNE;
142 CCs[RTLIB::UO_F64] = ISD::SETNE;
143 CCs[RTLIB::O_F32] = ISD::SETEQ;
144 CCs[RTLIB::O_F64] = ISD::SETEQ;
Evan Cheng56966222007-01-12 02:11:51 +0000145}
146
Chris Lattner310968c2005-01-07 07:44:53 +0000147TargetLowering::TargetLowering(TargetMachine &tm)
Chris Lattner3e6e8cc2006-01-29 08:41:12 +0000148 : TM(tm), TD(TM.getTargetData()) {
Evan Cheng33143dc2006-03-03 06:58:59 +0000149 assert(ISD::BUILTIN_OP_END <= 156 &&
Chris Lattner310968c2005-01-07 07:44:53 +0000150 "Fixed size array in TargetLowering is not large enough!");
Chris Lattnercba82f92005-01-16 07:28:11 +0000151 // All operations default to being supported.
152 memset(OpActions, 0, sizeof(OpActions));
Evan Chengc5484282006-10-04 00:56:09 +0000153 memset(LoadXActions, 0, sizeof(LoadXActions));
Evan Cheng8b2794a2006-10-13 21:14:26 +0000154 memset(&StoreXActions, 0, sizeof(StoreXActions));
Dan Gohman93f81e22007-07-09 20:49:44 +0000155 memset(&IndexedModeActions, 0, sizeof(IndexedModeActions));
Dale Johannesen5411a392007-08-09 01:04:01 +0000156 memset(&ConvertActions, 0, sizeof(ConvertActions));
Dan Gohman93f81e22007-07-09 20:49:44 +0000157
158 // Set all indexed load / store to expand.
Evan Cheng5ff839f2006-11-09 18:56:43 +0000159 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
160 for (unsigned IM = (unsigned)ISD::PRE_INC;
161 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
162 setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
163 setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
164 }
165 }
Chris Lattner310968c2005-01-07 07:44:53 +0000166
Owen Andersona69571c2006-05-03 01:29:57 +0000167 IsLittleEndian = TD->isLittleEndian();
Chris Lattnercf9668f2006-10-06 22:52:08 +0000168 UsesGlobalOffsetTable = false;
Owen Andersona69571c2006-05-03 01:29:57 +0000169 ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
Chris Lattnerd6e49672005-01-19 03:36:14 +0000170 ShiftAmtHandling = Undefined;
Chris Lattner310968c2005-01-07 07:44:53 +0000171 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
Owen Anderson718cb662007-09-07 04:06:50 +0000172 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
Evan Chenga03a5dc2006-02-14 08:38:30 +0000173 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
Reid Spencer0f9beca2005-08-27 19:09:02 +0000174 allowUnalignedMemoryAccesses = false;
Anton Korobeynikovd27a2582006-12-10 23:12:42 +0000175 UseUnderscoreSetJmp = false;
176 UseUnderscoreLongJmp = false;
Chris Lattner66180392007-02-25 01:28:05 +0000177 SelectIsExpensive = false;
Nate Begeman405e3ec2005-10-21 00:02:42 +0000178 IntDivIsCheap = false;
179 Pow2DivIsCheap = false;
Chris Lattneree4a7652006-01-25 18:57:15 +0000180 StackPointerRegisterToSaveRestore = 0;
Jim Laskey9bb3c932007-02-22 18:04:49 +0000181 ExceptionPointerRegister = 0;
182 ExceptionSelectorRegister = 0;
Chris Lattnerdfe89342007-09-21 17:06:39 +0000183 SetCCResultContents = UndefinedSetCCResult;
Evan Cheng0577a222006-01-25 18:52:42 +0000184 SchedPreferenceInfo = SchedulingForLatency;
Chris Lattner7acf5f32006-09-05 17:39:15 +0000185 JumpBufSize = 0;
Duraid Madina0c9e0ff2006-09-04 07:44:11 +0000186 JumpBufAlignment = 0;
Evan Chengd60483e2007-05-16 23:45:53 +0000187 IfCvtBlockSizeLimit = 2;
Evan Cheng56966222007-01-12 02:11:51 +0000188
189 InitLibcallNames(LibcallRoutineNames);
Evan Chengd385fd62007-01-31 09:29:11 +0000190 InitCmpLibcallCCs(CmpLibcallCCs);
Dan Gohmanc3b0b5c2007-09-25 15:10:49 +0000191
192 // Tell Legalize whether the assembler supports DEBUG_LOC.
193 if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
194 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
Chris Lattner310968c2005-01-07 07:44:53 +0000195}
196
Chris Lattnercba82f92005-01-16 07:28:11 +0000197TargetLowering::~TargetLowering() {}
198
Rafael Espindolaf1ba1ca2007-11-05 23:12:20 +0000199
200SDOperand TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
201 assert(getSubtarget() && "Subtarget not defined");
202 SDOperand ChainOp = Op.getOperand(0);
203 SDOperand DestOp = Op.getOperand(1);
204 SDOperand SourceOp = Op.getOperand(2);
205 SDOperand CountOp = Op.getOperand(3);
206 SDOperand AlignOp = Op.getOperand(4);
207 SDOperand AlwaysInlineOp = Op.getOperand(5);
208
209 bool AlwaysInline = (bool)cast<ConstantSDNode>(AlwaysInlineOp)->getValue();
210 unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
211 if (Align == 0) Align = 1;
212
213 // If size is unknown, call memcpy.
214 ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
215 if (!I) {
216 assert(!AlwaysInline && "Cannot inline copy of unknown size");
217 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
218 }
219
220 // If not DWORD aligned or if size is more than threshold, then call memcpy.
221 // The libc version is likely to be faster for the following cases. It can
222 // use the address value and run time information about the CPU.
223 // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
224 unsigned Size = I->getValue();
225 if (AlwaysInline ||
226 (Size <= getSubtarget()->getMaxInlineSizeThreshold() &&
227 (Align & 3) == 0))
228 return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
229 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
230}
231
232
233SDOperand TargetLowering::LowerMEMCPYCall(SDOperand Chain,
234 SDOperand Dest,
235 SDOperand Source,
236 SDOperand Count,
237 SelectionDAG &DAG) {
238 MVT::ValueType IntPtr = getPointerTy();
239 TargetLowering::ArgListTy Args;
240 TargetLowering::ArgListEntry Entry;
241 Entry.Ty = getTargetData()->getIntPtrType();
242 Entry.Node = Dest; Args.push_back(Entry);
243 Entry.Node = Source; Args.push_back(Entry);
244 Entry.Node = Count; Args.push_back(Entry);
245 std::pair<SDOperand,SDOperand> CallResult =
246 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
247 DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
248 return CallResult.second;
249}
250
251
Chris Lattner310968c2005-01-07 07:44:53 +0000252/// computeRegisterProperties - Once all of the register classes are added,
253/// this allows us to compute derived properties we expose.
254void TargetLowering::computeRegisterProperties() {
Nate Begeman6a648612005-11-29 05:45:29 +0000255 assert(MVT::LAST_VALUETYPE <= 32 &&
Chris Lattnerbb97d812005-01-16 01:10:58 +0000256 "Too many value types for ValueTypeActions to hold!");
257
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000258 // Everything defaults to needing one register.
259 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
Dan Gohmanb9f10192007-06-21 14:42:22 +0000260 NumRegistersForVT[i] = 1;
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000261 RegisterTypeForVT[i] = TransformToType[i] = i;
262 }
263 // ...except isVoid, which doesn't need any registers.
264 NumRegistersForVT[MVT::isVoid] = 0;
Misha Brukmanf976c852005-04-21 22:55:34 +0000265
Chris Lattner310968c2005-01-07 07:44:53 +0000266 // Find the largest integer register class.
267 unsigned LargestIntReg = MVT::i128;
268 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
269 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
270
271 // Every integer value type larger than this largest register takes twice as
272 // many registers to represent as the previous ValueType.
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000273 for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
274 MVT::isInteger(ExpandedReg); ++ExpandedReg) {
Dan Gohmanb9f10192007-06-21 14:42:22 +0000275 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000276 RegisterTypeForVT[ExpandedReg] = LargestIntReg;
277 TransformToType[ExpandedReg] = ExpandedReg - 1;
278 ValueTypeActions.setTypeAction(ExpandedReg, Expand);
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000279 }
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000280
281 // Inspect all of the ValueType's smaller than the largest integer
282 // register to see which ones need promotion.
283 MVT::ValueType LegalIntReg = LargestIntReg;
284 for (MVT::ValueType IntReg = LargestIntReg - 1;
285 IntReg >= MVT::i1; --IntReg) {
286 if (isTypeLegal(IntReg)) {
287 LegalIntReg = IntReg;
288 } else {
289 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
290 ValueTypeActions.setTypeAction(IntReg, Promote);
291 }
292 }
293
Dale Johannesen161e8972007-10-05 20:04:43 +0000294 // ppcf128 type is really two f64's.
295 if (!isTypeLegal(MVT::ppcf128)) {
296 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
297 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
298 TransformToType[MVT::ppcf128] = MVT::f64;
299 ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
300 }
301
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000302 // Decide how to handle f64. If the target does not have native f64 support,
303 // expand it to i64 and we will be generating soft float library calls.
304 if (!isTypeLegal(MVT::f64)) {
305 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
306 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
307 TransformToType[MVT::f64] = MVT::i64;
308 ValueTypeActions.setTypeAction(MVT::f64, Expand);
309 }
310
311 // Decide how to handle f32. If the target does not have native support for
312 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
313 if (!isTypeLegal(MVT::f32)) {
314 if (isTypeLegal(MVT::f64)) {
315 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
316 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
317 TransformToType[MVT::f32] = MVT::f64;
318 ValueTypeActions.setTypeAction(MVT::f32, Promote);
319 } else {
320 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
321 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
322 TransformToType[MVT::f32] = MVT::i32;
323 ValueTypeActions.setTypeAction(MVT::f32, Expand);
324 }
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000325 }
Nate Begeman4ef3b812005-11-22 01:29:36 +0000326
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000327 // Loop over all of the vector value types to see which need transformations.
328 for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
Evan Cheng677274b2006-03-23 23:24:51 +0000329 i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000330 if (!isTypeLegal(i)) {
331 MVT::ValueType IntermediateVT, RegisterVT;
332 unsigned NumIntermediates;
333 NumRegistersForVT[i] =
334 getVectorTypeBreakdown(i,
335 IntermediateVT, NumIntermediates,
336 RegisterVT);
337 RegisterTypeForVT[i] = RegisterVT;
338 TransformToType[i] = MVT::Other; // this isn't actually used
339 ValueTypeActions.setTypeAction(i, Expand);
Dan Gohman7f321562007-06-25 16:23:39 +0000340 }
Chris Lattner3a5935842006-03-16 19:50:01 +0000341 }
Chris Lattnerbb97d812005-01-16 01:10:58 +0000342}
Chris Lattnercba82f92005-01-16 07:28:11 +0000343
Evan Cheng72261582005-12-20 06:22:03 +0000344const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
345 return NULL;
346}
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000347
Dan Gohman7f321562007-06-25 16:23:39 +0000348/// getVectorTypeBreakdown - Vector types are broken down into some number of
349/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
Chris Lattnerdc879292006-03-31 00:28:56 +0000350/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
Dan Gohman7f321562007-06-25 16:23:39 +0000351/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
Chris Lattnerdc879292006-03-31 00:28:56 +0000352///
Dan Gohman7f321562007-06-25 16:23:39 +0000353/// This method returns the number of registers needed, and the VT for each
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000354/// register. It also returns the VT and quantity of the intermediate values
355/// before they are promoted/expanded.
Chris Lattnerdc879292006-03-31 00:28:56 +0000356///
Dan Gohman7f321562007-06-25 16:23:39 +0000357unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000358 MVT::ValueType &IntermediateVT,
359 unsigned &NumIntermediates,
360 MVT::ValueType &RegisterVT) const {
Chris Lattnerdc879292006-03-31 00:28:56 +0000361 // Figure out the right, legal destination reg to copy into.
Dan Gohman7f321562007-06-25 16:23:39 +0000362 unsigned NumElts = MVT::getVectorNumElements(VT);
363 MVT::ValueType EltTy = MVT::getVectorElementType(VT);
Chris Lattnerdc879292006-03-31 00:28:56 +0000364
365 unsigned NumVectorRegs = 1;
366
Nate Begemand73ab882007-11-27 19:28:48 +0000367 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
368 // could break down into LHS/RHS like LegalizeDAG does.
369 if (!isPowerOf2_32(NumElts)) {
370 NumVectorRegs = NumElts;
371 NumElts = 1;
372 }
373
Chris Lattnerdc879292006-03-31 00:28:56 +0000374 // Divide the input until we get to a supported size. This will always
375 // end with a scalar if the target doesn't support vectors.
Dan Gohman7f321562007-06-25 16:23:39 +0000376 while (NumElts > 1 &&
377 !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000378 NumElts >>= 1;
379 NumVectorRegs <<= 1;
380 }
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000381
382 NumIntermediates = NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000383
Dan Gohman7f321562007-06-25 16:23:39 +0000384 MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
385 if (!isTypeLegal(NewVT))
386 NewVT = EltTy;
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000387 IntermediateVT = NewVT;
Chris Lattnerdc879292006-03-31 00:28:56 +0000388
Dan Gohman7f321562007-06-25 16:23:39 +0000389 MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000390 RegisterVT = DestVT;
Dan Gohman7f321562007-06-25 16:23:39 +0000391 if (DestVT < NewVT) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000392 // Value is expanded, e.g. i64 -> i16.
Dan Gohman7f321562007-06-25 16:23:39 +0000393 return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
Chris Lattnerdc879292006-03-31 00:28:56 +0000394 } else {
395 // Otherwise, promotion or legal types use the same number of registers as
396 // the vector decimated to the appropriate level.
Chris Lattner79227e22006-03-31 00:46:36 +0000397 return NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000398 }
399
Evan Chenge9b3da12006-05-17 18:10:06 +0000400 return 1;
Chris Lattnerdc879292006-03-31 00:28:56 +0000401}
402
Evan Chengcc415862007-11-09 01:32:10 +0000403SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
404 SelectionDAG &DAG) const {
405 if (usesGlobalOffsetTable())
406 return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
407 return Table;
408}
409
Chris Lattnereb8146b2006-02-04 02:13:02 +0000410//===----------------------------------------------------------------------===//
411// Optimization Methods
412//===----------------------------------------------------------------------===//
413
Nate Begeman368e18d2006-02-16 21:11:51 +0000414/// ShrinkDemandedConstant - Check to see if the specified operand of the
415/// specified instruction is a constant integer. If so, check to see if there
416/// are any bits set in the constant that are not demanded. If so, shrink the
417/// constant and return true.
418bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
419 uint64_t Demanded) {
Chris Lattnerec665152006-02-26 23:36:02 +0000420 // FIXME: ISD::SELECT, ISD::SELECT_CC
Nate Begeman368e18d2006-02-16 21:11:51 +0000421 switch(Op.getOpcode()) {
422 default: break;
Nate Begemande996292006-02-03 22:24:05 +0000423 case ISD::AND:
Nate Begeman368e18d2006-02-16 21:11:51 +0000424 case ISD::OR:
425 case ISD::XOR:
426 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
427 if ((~Demanded & C->getValue()) != 0) {
428 MVT::ValueType VT = Op.getValueType();
429 SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
430 DAG.getConstant(Demanded & C->getValue(),
431 VT));
432 return CombineTo(Op, New);
Nate Begemande996292006-02-03 22:24:05 +0000433 }
Nate Begemande996292006-02-03 22:24:05 +0000434 break;
435 }
436 return false;
437}
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000438
Nate Begeman368e18d2006-02-16 21:11:51 +0000439/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
440/// DemandedMask bits of the result of Op are ever used downstream. If we can
441/// use this information to simplify Op, create a new simplified DAG node and
442/// return true, returning the original and new nodes in Old and New. Otherwise,
443/// analyze the expression and return a mask of KnownOne and KnownZero bits for
444/// the expression (used to simplify the caller). The KnownZero/One bits may
445/// only be accurate for those bits in the DemandedMask.
446bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
447 uint64_t &KnownZero,
448 uint64_t &KnownOne,
449 TargetLoweringOpt &TLO,
450 unsigned Depth) const {
451 KnownZero = KnownOne = 0; // Don't know anything.
Chris Lattner3fc5b012007-05-17 18:19:23 +0000452
453 // The masks are not wide enough to represent this type! Should use APInt.
454 if (Op.getValueType() == MVT::i128)
455 return false;
456
Nate Begeman368e18d2006-02-16 21:11:51 +0000457 // Other users may use these bits.
458 if (!Op.Val->hasOneUse()) {
459 if (Depth != 0) {
460 // If not at the root, Just compute the KnownZero/KnownOne bits to
461 // simplify things downstream.
Dan Gohmanea859be2007-06-22 14:59:07 +0000462 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
Nate Begeman368e18d2006-02-16 21:11:51 +0000463 return false;
464 }
465 // If this is the root being simplified, allow it to have multiple uses,
466 // just set the DemandedMask to all bits.
467 DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
468 } else if (DemandedMask == 0) {
469 // Not demanding any bits from Op.
470 if (Op.getOpcode() != ISD::UNDEF)
471 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
472 return false;
473 } else if (Depth == 6) { // Limit search depth.
474 return false;
475 }
476
477 uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000478 switch (Op.getOpcode()) {
479 case ISD::Constant:
Nate Begeman368e18d2006-02-16 21:11:51 +0000480 // We know all of the bits for a constant!
481 KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
482 KnownZero = ~KnownOne & DemandedMask;
Chris Lattnerec665152006-02-26 23:36:02 +0000483 return false; // Don't fall through, will infinitely loop.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000484 case ISD::AND:
Chris Lattner81cd3552006-02-27 00:36:27 +0000485 // If the RHS is a constant, check to see if the LHS would be zero without
486 // using the bits from the RHS. Below, we use knowledge about the RHS to
487 // simplify the LHS, here we're using information from the LHS to simplify
488 // the RHS.
489 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
490 uint64_t LHSZero, LHSOne;
Dan Gohmanea859be2007-06-22 14:59:07 +0000491 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
492 LHSZero, LHSOne, Depth+1);
Chris Lattner81cd3552006-02-27 00:36:27 +0000493 // If the LHS already has zeros where RHSC does, this and is dead.
494 if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
495 return TLO.CombineTo(Op, Op.getOperand(0));
496 // If any of the set bits in the RHS are known zero on the LHS, shrink
497 // the constant.
498 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
499 return true;
500 }
501
Nate Begeman368e18d2006-02-16 21:11:51 +0000502 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
503 KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000504 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000505 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Nate Begeman368e18d2006-02-16 21:11:51 +0000506 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
507 KnownZero2, KnownOne2, TLO, Depth+1))
508 return true;
509 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
510
511 // If all of the demanded bits are known one on one side, return the other.
512 // These bits cannot contribute to the result of the 'and'.
513 if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
514 return TLO.CombineTo(Op, Op.getOperand(0));
515 if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
516 return TLO.CombineTo(Op, Op.getOperand(1));
517 // If all of the demanded bits in the inputs are known zeros, return zero.
518 if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
519 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
520 // If the RHS is a constant, see if we can simplify it.
521 if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
522 return true;
Chris Lattner5f0c6582006-02-27 00:22:28 +0000523
Nate Begeman368e18d2006-02-16 21:11:51 +0000524 // Output known-1 bits are only known if set in both the LHS & RHS.
525 KnownOne &= KnownOne2;
526 // Output known-0 are known to be clear if zero in either the LHS | RHS.
527 KnownZero |= KnownZero2;
528 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000529 case ISD::OR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000530 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
531 KnownOne, TLO, Depth+1))
532 return true;
533 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
534 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
535 KnownZero2, KnownOne2, TLO, Depth+1))
536 return true;
537 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
538
539 // If all of the demanded bits are known zero on one side, return the other.
540 // These bits cannot contribute to the result of the 'or'.
Jeff Cohen5755b172006-02-17 02:12:18 +0000541 if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
Nate Begeman368e18d2006-02-16 21:11:51 +0000542 return TLO.CombineTo(Op, Op.getOperand(0));
Jeff Cohen5755b172006-02-17 02:12:18 +0000543 if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
Nate Begeman368e18d2006-02-16 21:11:51 +0000544 return TLO.CombineTo(Op, Op.getOperand(1));
545 // If all of the potentially set bits on one side are known to be set on
546 // the other side, just use the 'other' side.
547 if ((DemandedMask & (~KnownZero) & KnownOne2) ==
548 (DemandedMask & (~KnownZero)))
549 return TLO.CombineTo(Op, Op.getOperand(0));
550 if ((DemandedMask & (~KnownZero2) & KnownOne) ==
551 (DemandedMask & (~KnownZero2)))
552 return TLO.CombineTo(Op, Op.getOperand(1));
553 // If the RHS is a constant, see if we can simplify it.
554 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
555 return true;
556
557 // Output known-0 bits are only known if clear in both the LHS & RHS.
558 KnownZero &= KnownZero2;
559 // Output known-1 are known to be set if set in either the LHS | RHS.
560 KnownOne |= KnownOne2;
561 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000562 case ISD::XOR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000563 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
564 KnownOne, TLO, Depth+1))
565 return true;
566 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
567 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
568 KnownOne2, TLO, Depth+1))
569 return true;
570 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
571
572 // If all of the demanded bits are known zero on one side, return the other.
573 // These bits cannot contribute to the result of the 'xor'.
574 if ((DemandedMask & KnownZero) == DemandedMask)
575 return TLO.CombineTo(Op, Op.getOperand(0));
576 if ((DemandedMask & KnownZero2) == DemandedMask)
577 return TLO.CombineTo(Op, Op.getOperand(1));
Chris Lattner3687c1a2006-11-27 21:50:02 +0000578
579 // If all of the unknown bits are known to be zero on one side or the other
580 // (but not both) turn this into an *inclusive* or.
581 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
582 if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
583 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
584 Op.getOperand(0),
585 Op.getOperand(1)));
Nate Begeman368e18d2006-02-16 21:11:51 +0000586
587 // Output known-0 bits are known if clear or set in both the LHS & RHS.
588 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
589 // Output known-1 are known to be set if set in only one of the LHS, RHS.
590 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
591
Nate Begeman368e18d2006-02-16 21:11:51 +0000592 // If all of the demanded bits on one side are known, and all of the set
593 // bits on that side are also known to be set on the other side, turn this
594 // into an AND, as we know the bits will be cleared.
595 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
596 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
597 if ((KnownOne & KnownOne2) == KnownOne) {
598 MVT::ValueType VT = Op.getValueType();
599 SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
600 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
601 ANDC));
602 }
603 }
604
605 // If the RHS is a constant, see if we can simplify it.
606 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
607 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
608 return true;
609
610 KnownZero = KnownZeroOut;
611 KnownOne = KnownOneOut;
612 break;
613 case ISD::SETCC:
614 // If we know the result of a setcc has the top bits zero, use this info.
615 if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
616 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
617 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000618 case ISD::SELECT:
Nate Begeman368e18d2006-02-16 21:11:51 +0000619 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
620 KnownOne, TLO, Depth+1))
621 return true;
622 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
623 KnownOne2, TLO, Depth+1))
624 return true;
625 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
626 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
627
628 // If the operands are constants, see if we can simplify them.
629 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
630 return true;
631
632 // Only known if known in both the LHS and RHS.
633 KnownOne &= KnownOne2;
634 KnownZero &= KnownZero2;
635 break;
Chris Lattnerec665152006-02-26 23:36:02 +0000636 case ISD::SELECT_CC:
637 if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
638 KnownOne, TLO, Depth+1))
639 return true;
640 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
641 KnownOne2, TLO, Depth+1))
642 return true;
643 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
644 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
645
646 // If the operands are constants, see if we can simplify them.
647 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
648 return true;
649
650 // Only known if known in both the LHS and RHS.
651 KnownOne &= KnownOne2;
652 KnownZero &= KnownZero2;
653 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000654 case ISD::SHL:
Nate Begeman368e18d2006-02-16 21:11:51 +0000655 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Chris Lattner895c4ab2007-04-17 21:14:16 +0000656 unsigned ShAmt = SA->getValue();
657 SDOperand InOp = Op.getOperand(0);
658
659 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
660 // single shift. We can do this if the bottom bits (which are shifted
661 // out) are never demanded.
662 if (InOp.getOpcode() == ISD::SRL &&
663 isa<ConstantSDNode>(InOp.getOperand(1))) {
664 if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
665 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
666 unsigned Opc = ISD::SHL;
667 int Diff = ShAmt-C1;
668 if (Diff < 0) {
669 Diff = -Diff;
670 Opc = ISD::SRL;
671 }
672
673 SDOperand NewSA =
Chris Lattner4e7e6cd2007-05-30 16:30:06 +0000674 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000675 MVT::ValueType VT = Op.getValueType();
Chris Lattner0a16a1f2007-04-18 03:01:40 +0000676 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
Chris Lattner895c4ab2007-04-17 21:14:16 +0000677 InOp.getOperand(0), NewSA));
678 }
679 }
680
681 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
Nate Begeman368e18d2006-02-16 21:11:51 +0000682 KnownZero, KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000683 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000684 KnownZero <<= SA->getValue();
685 KnownOne <<= SA->getValue();
686 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000687 }
688 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000689 case ISD::SRL:
690 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
691 MVT::ValueType VT = Op.getValueType();
692 unsigned ShAmt = SA->getValue();
Chris Lattner895c4ab2007-04-17 21:14:16 +0000693 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
694 unsigned VTSize = MVT::getSizeInBits(VT);
695 SDOperand InOp = Op.getOperand(0);
696
697 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
698 // single shift. We can do this if the top bits (which are shifted out)
699 // are never demanded.
700 if (InOp.getOpcode() == ISD::SHL &&
701 isa<ConstantSDNode>(InOp.getOperand(1))) {
702 if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
703 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
704 unsigned Opc = ISD::SRL;
705 int Diff = ShAmt-C1;
706 if (Diff < 0) {
707 Diff = -Diff;
708 Opc = ISD::SHL;
709 }
710
711 SDOperand NewSA =
Chris Lattner8c7d2d52007-04-17 22:53:02 +0000712 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000713 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
714 InOp.getOperand(0), NewSA));
715 }
716 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000717
718 // Compute the new bits that are at the top now.
Chris Lattner895c4ab2007-04-17 21:14:16 +0000719 if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000720 KnownZero, KnownOne, TLO, Depth+1))
721 return true;
722 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
723 KnownZero &= TypeMask;
724 KnownOne &= TypeMask;
725 KnownZero >>= ShAmt;
726 KnownOne >>= ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000727
728 uint64_t HighBits = (1ULL << ShAmt)-1;
Chris Lattner895c4ab2007-04-17 21:14:16 +0000729 HighBits <<= VTSize - ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000730 KnownZero |= HighBits; // High bits known zero.
Nate Begeman368e18d2006-02-16 21:11:51 +0000731 }
732 break;
733 case ISD::SRA:
734 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
735 MVT::ValueType VT = Op.getValueType();
736 unsigned ShAmt = SA->getValue();
737
738 // Compute the new bits that are at the top now.
Nate Begeman368e18d2006-02-16 21:11:51 +0000739 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
740
Chris Lattner1b737132006-05-08 17:22:53 +0000741 uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
742
743 // If any of the demanded bits are produced by the sign extension, we also
744 // demand the input sign bit.
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000745 uint64_t HighBits = (1ULL << ShAmt)-1;
746 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
Chris Lattner1b737132006-05-08 17:22:53 +0000747 if (HighBits & DemandedMask)
748 InDemandedMask |= MVT::getIntVTSignBit(VT);
749
750 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000751 KnownZero, KnownOne, TLO, Depth+1))
752 return true;
753 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
754 KnownZero &= TypeMask;
755 KnownOne &= TypeMask;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000756 KnownZero >>= ShAmt;
757 KnownOne >>= ShAmt;
Nate Begeman368e18d2006-02-16 21:11:51 +0000758
759 // Handle the sign bits.
760 uint64_t SignBit = MVT::getIntVTSignBit(VT);
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000761 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
Nate Begeman368e18d2006-02-16 21:11:51 +0000762
763 // If the input sign bit is known to be zero, or if none of the top bits
764 // are demanded, turn this into an unsigned shift right.
765 if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
766 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
767 Op.getOperand(1)));
768 } else if (KnownOne & SignBit) { // New bits are known one.
769 KnownOne |= HighBits;
770 }
771 }
772 break;
773 case ISD::SIGN_EXTEND_INREG: {
Nate Begeman368e18d2006-02-16 21:11:51 +0000774 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
775
Chris Lattnerec665152006-02-26 23:36:02 +0000776 // Sign extension. Compute the demanded bits in the result that are not
Nate Begeman368e18d2006-02-16 21:11:51 +0000777 // present in the input.
Chris Lattnerec665152006-02-26 23:36:02 +0000778 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
Nate Begeman368e18d2006-02-16 21:11:51 +0000779
Chris Lattnerec665152006-02-26 23:36:02 +0000780 // If none of the extended bits are demanded, eliminate the sextinreg.
781 if (NewBits == 0)
782 return TLO.CombineTo(Op, Op.getOperand(0));
783
Nate Begeman368e18d2006-02-16 21:11:51 +0000784 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
785 int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
786
Chris Lattnerec665152006-02-26 23:36:02 +0000787 // Since the sign extended bits are demanded, we know that the sign
Nate Begeman368e18d2006-02-16 21:11:51 +0000788 // bit is demanded.
Chris Lattnerec665152006-02-26 23:36:02 +0000789 InputDemandedBits |= InSignBit;
Nate Begeman368e18d2006-02-16 21:11:51 +0000790
791 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
792 KnownZero, KnownOne, TLO, Depth+1))
793 return true;
794 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
795
796 // If the sign bit of the input is known set or clear, then we know the
797 // top bits of the result.
798
Chris Lattnerec665152006-02-26 23:36:02 +0000799 // If the input sign bit is known zero, convert this into a zero extension.
800 if (KnownZero & InSignBit)
801 return TLO.CombineTo(Op,
802 TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
803
804 if (KnownOne & InSignBit) { // Input sign bit known set
Nate Begeman368e18d2006-02-16 21:11:51 +0000805 KnownOne |= NewBits;
806 KnownZero &= ~NewBits;
Chris Lattnerec665152006-02-26 23:36:02 +0000807 } else { // Input sign bit unknown
Nate Begeman368e18d2006-02-16 21:11:51 +0000808 KnownZero &= ~NewBits;
809 KnownOne &= ~NewBits;
810 }
811 break;
812 }
Chris Lattnerec665152006-02-26 23:36:02 +0000813 case ISD::CTTZ:
814 case ISD::CTLZ:
815 case ISD::CTPOP: {
816 MVT::ValueType VT = Op.getValueType();
817 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
818 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
819 KnownOne = 0;
820 break;
821 }
Evan Cheng466685d2006-10-09 20:57:25 +0000822 case ISD::LOAD: {
Evan Chengc5484282006-10-04 00:56:09 +0000823 if (ISD::isZEXTLoad(Op.Val)) {
Evan Cheng466685d2006-10-09 20:57:25 +0000824 LoadSDNode *LD = cast<LoadSDNode>(Op);
Evan Cheng2e49f092006-10-11 07:10:22 +0000825 MVT::ValueType VT = LD->getLoadedVT();
Evan Chengc5484282006-10-04 00:56:09 +0000826 KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
827 }
Chris Lattnerec665152006-02-26 23:36:02 +0000828 break;
829 }
830 case ISD::ZERO_EXTEND: {
831 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
832
833 // If none of the top bits are demanded, convert this into an any_extend.
834 uint64_t NewBits = (~InMask) & DemandedMask;
835 if (NewBits == 0)
836 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
837 Op.getValueType(),
838 Op.getOperand(0)));
839
840 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
841 KnownZero, KnownOne, TLO, Depth+1))
842 return true;
843 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
844 KnownZero |= NewBits;
845 break;
846 }
847 case ISD::SIGN_EXTEND: {
848 MVT::ValueType InVT = Op.getOperand(0).getValueType();
849 uint64_t InMask = MVT::getIntVTBitMask(InVT);
850 uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
851 uint64_t NewBits = (~InMask) & DemandedMask;
852
853 // If none of the top bits are demanded, convert this into an any_extend.
854 if (NewBits == 0)
Chris Lattnerfea997a2007-02-01 04:55:59 +0000855 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
Chris Lattnerec665152006-02-26 23:36:02 +0000856 Op.getOperand(0)));
857
858 // Since some of the sign extended bits are demanded, we know that the sign
859 // bit is demanded.
860 uint64_t InDemandedBits = DemandedMask & InMask;
861 InDemandedBits |= InSignBit;
862
863 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
864 KnownOne, TLO, Depth+1))
865 return true;
866
867 // If the sign bit is known zero, convert this to a zero extend.
868 if (KnownZero & InSignBit)
869 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
870 Op.getValueType(),
871 Op.getOperand(0)));
872
873 // If the sign bit is known one, the top bits match.
874 if (KnownOne & InSignBit) {
875 KnownOne |= NewBits;
876 KnownZero &= ~NewBits;
877 } else { // Otherwise, top bits aren't known.
878 KnownOne &= ~NewBits;
879 KnownZero &= ~NewBits;
880 }
881 break;
882 }
883 case ISD::ANY_EXTEND: {
884 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
885 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
886 KnownZero, KnownOne, TLO, Depth+1))
887 return true;
888 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
889 break;
890 }
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000891 case ISD::TRUNCATE: {
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000892 // Simplify the input, using demanded bit information, and compute the known
893 // zero/one bits live out.
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000894 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
895 KnownZero, KnownOne, TLO, Depth+1))
896 return true;
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000897
898 // If the input is only used by this truncate, see if we can shrink it based
899 // on the known demanded bits.
900 if (Op.getOperand(0).Val->hasOneUse()) {
901 SDOperand In = Op.getOperand(0);
902 switch (In.getOpcode()) {
903 default: break;
904 case ISD::SRL:
905 // Shrink SRL by a constant if none of the high bits shifted in are
906 // demanded.
907 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
908 uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
909 HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
910 HighBits >>= ShAmt->getValue();
911
912 if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
913 (DemandedMask & HighBits) == 0) {
914 // None of the shifted in bits are needed. Add a truncate of the
915 // shift input, then shift it.
916 SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
917 Op.getValueType(),
918 In.getOperand(0));
919 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
920 NewTrunc, In.getOperand(1)));
921 }
922 }
923 break;
924 }
925 }
926
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000927 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
928 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
929 KnownZero &= OutMask;
930 KnownOne &= OutMask;
931 break;
932 }
Chris Lattnerec665152006-02-26 23:36:02 +0000933 case ISD::AssertZext: {
934 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
935 uint64_t InMask = MVT::getIntVTBitMask(VT);
936 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
937 KnownZero, KnownOne, TLO, Depth+1))
938 return true;
939 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
940 KnownZero |= ~InMask & DemandedMask;
941 break;
942 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000943 case ISD::ADD:
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000944 case ISD::SUB:
Chris Lattner1482b5f2006-04-02 06:15:09 +0000945 case ISD::INTRINSIC_WO_CHAIN:
946 case ISD::INTRINSIC_W_CHAIN:
947 case ISD::INTRINSIC_VOID:
948 // Just use ComputeMaskedBits to compute output bits.
Dan Gohmanea859be2007-06-22 14:59:07 +0000949 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000950 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000951 }
Chris Lattnerec665152006-02-26 23:36:02 +0000952
953 // If we know the value of all of the demanded bits, return this as a
954 // constant.
955 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
956 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
957
Nate Begeman368e18d2006-02-16 21:11:51 +0000958 return false;
959}
960
Nate Begeman368e18d2006-02-16 21:11:51 +0000961/// computeMaskedBitsForTargetNode - Determine which of the bits specified
962/// in Mask are known to be either zero or one and return them in the
963/// KnownZero/KnownOne bitsets.
964void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
965 uint64_t Mask,
966 uint64_t &KnownZero,
967 uint64_t &KnownOne,
Dan Gohmanea859be2007-06-22 14:59:07 +0000968 const SelectionDAG &DAG,
Nate Begeman368e18d2006-02-16 21:11:51 +0000969 unsigned Depth) const {
Chris Lattner1b5232a2006-04-02 06:19:46 +0000970 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
971 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
972 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
973 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000974 "Should use MaskedValueIsZero if you don't know whether Op"
975 " is a target node!");
Nate Begeman368e18d2006-02-16 21:11:51 +0000976 KnownZero = 0;
977 KnownOne = 0;
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000978}
Chris Lattner4ccb0702006-01-26 20:37:03 +0000979
Chris Lattner5c3e21d2006-05-06 09:27:13 +0000980/// ComputeNumSignBitsForTargetNode - This method can be implemented by
981/// targets that want to expose additional information about sign bits to the
982/// DAG Combiner.
983unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
984 unsigned Depth) const {
985 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
986 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
987 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
988 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
989 "Should use ComputeNumSignBits if you don't know whether Op"
990 " is a target node!");
991 return 1;
992}
993
994
Evan Chengfa1eb272007-02-08 22:13:59 +0000995/// SimplifySetCC - Try to simplify a setcc built with the specified operands
996/// and cc. If it is unable to simplify it, return a null SDOperand.
997SDOperand
998TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
999 ISD::CondCode Cond, bool foldBooleans,
1000 DAGCombinerInfo &DCI) const {
1001 SelectionDAG &DAG = DCI.DAG;
1002
1003 // These setcc operations always fold.
1004 switch (Cond) {
1005 default: break;
1006 case ISD::SETFALSE:
1007 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1008 case ISD::SETTRUE:
1009 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
1010 }
1011
1012 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1013 uint64_t C1 = N1C->getValue();
1014 if (isa<ConstantSDNode>(N0.Val)) {
1015 return DAG.FoldSetCC(VT, N0, N1, Cond);
1016 } else {
1017 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1018 // equality comparison, then we're just comparing whether X itself is
1019 // zero.
1020 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1021 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1022 N0.getOperand(1).getOpcode() == ISD::Constant) {
1023 unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1024 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1025 ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
1026 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1027 // (srl (ctlz x), 5) == 0 -> X != 0
1028 // (srl (ctlz x), 5) != 1 -> X != 0
1029 Cond = ISD::SETNE;
1030 } else {
1031 // (srl (ctlz x), 5) != 0 -> X == 0
1032 // (srl (ctlz x), 5) == 1 -> X == 0
1033 Cond = ISD::SETEQ;
1034 }
1035 SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1036 return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1037 Zero, Cond);
1038 }
1039 }
1040
1041 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1042 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1043 unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
1044
1045 // If the comparison constant has bits in the upper part, the
1046 // zero-extended value could never match.
1047 if (C1 & (~0ULL << InSize)) {
1048 unsigned VSize = MVT::getSizeInBits(N0.getValueType());
1049 switch (Cond) {
1050 case ISD::SETUGT:
1051 case ISD::SETUGE:
1052 case ISD::SETEQ: return DAG.getConstant(0, VT);
1053 case ISD::SETULT:
1054 case ISD::SETULE:
1055 case ISD::SETNE: return DAG.getConstant(1, VT);
1056 case ISD::SETGT:
1057 case ISD::SETGE:
1058 // True if the sign bit of C1 is set.
Chris Lattner01ca65b2007-02-24 02:09:29 +00001059 return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +00001060 case ISD::SETLT:
1061 case ISD::SETLE:
1062 // True if the sign bit of C1 isn't set.
Chris Lattner01ca65b2007-02-24 02:09:29 +00001063 return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +00001064 default:
1065 break;
1066 }
1067 }
1068
1069 // Otherwise, we can perform the comparison with the low bits.
1070 switch (Cond) {
1071 case ISD::SETEQ:
1072 case ISD::SETNE:
1073 case ISD::SETUGT:
1074 case ISD::SETUGE:
1075 case ISD::SETULT:
1076 case ISD::SETULE:
1077 return DAG.getSetCC(VT, N0.getOperand(0),
1078 DAG.getConstant(C1, N0.getOperand(0).getValueType()),
1079 Cond);
1080 default:
1081 break; // todo, be more careful with signed comparisons
1082 }
1083 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1084 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1085 MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1086 unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1087 MVT::ValueType ExtDstTy = N0.getValueType();
1088 unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1089
1090 // If the extended part has any inconsistent bits, it cannot ever
1091 // compare equal. In other words, they have to be all ones or all
1092 // zeros.
1093 uint64_t ExtBits =
1094 (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
1095 if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1096 return DAG.getConstant(Cond == ISD::SETNE, VT);
1097
1098 SDOperand ZextOp;
1099 MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1100 if (Op0Ty == ExtSrcTy) {
1101 ZextOp = N0.getOperand(0);
1102 } else {
1103 int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1104 ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1105 DAG.getConstant(Imm, Op0Ty));
1106 }
1107 if (!DCI.isCalledByLegalizer())
1108 DCI.AddToWorklist(ZextOp.Val);
1109 // Otherwise, make this a use of a zext.
1110 return DAG.getSetCC(VT, ZextOp,
1111 DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1112 ExtDstTy),
1113 Cond);
1114 } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1115 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1116
1117 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
1118 if (N0.getOpcode() == ISD::SETCC) {
1119 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1120 if (TrueWhenTrue)
1121 return N0;
1122
1123 // Invert the condition.
1124 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1125 CC = ISD::getSetCCInverse(CC,
1126 MVT::isInteger(N0.getOperand(0).getValueType()));
1127 return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1128 }
1129
1130 if ((N0.getOpcode() == ISD::XOR ||
1131 (N0.getOpcode() == ISD::AND &&
1132 N0.getOperand(0).getOpcode() == ISD::XOR &&
1133 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1134 isa<ConstantSDNode>(N0.getOperand(1)) &&
1135 cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1136 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
1137 // can only do this if the top bits are known zero.
Dan Gohmanea859be2007-06-22 14:59:07 +00001138 if (DAG.MaskedValueIsZero(N0,
1139 MVT::getIntVTBitMask(N0.getValueType())-1)){
Evan Chengfa1eb272007-02-08 22:13:59 +00001140 // Okay, get the un-inverted input value.
1141 SDOperand Val;
1142 if (N0.getOpcode() == ISD::XOR)
1143 Val = N0.getOperand(0);
1144 else {
1145 assert(N0.getOpcode() == ISD::AND &&
1146 N0.getOperand(0).getOpcode() == ISD::XOR);
1147 // ((X^1)&1)^1 -> X & 1
1148 Val = DAG.getNode(ISD::AND, N0.getValueType(),
1149 N0.getOperand(0).getOperand(0),
1150 N0.getOperand(1));
1151 }
1152 return DAG.getSetCC(VT, Val, N1,
1153 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1154 }
1155 }
1156 }
1157
1158 uint64_t MinVal, MaxVal;
1159 unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1160 if (ISD::isSignedIntSetCC(Cond)) {
1161 MinVal = 1ULL << (OperandBitSize-1);
1162 if (OperandBitSize != 1) // Avoid X >> 64, which is undefined.
1163 MaxVal = ~0ULL >> (65-OperandBitSize);
1164 else
1165 MaxVal = 0;
1166 } else {
1167 MinVal = 0;
1168 MaxVal = ~0ULL >> (64-OperandBitSize);
1169 }
1170
1171 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1172 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1173 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
1174 --C1; // X >= C0 --> X > (C0-1)
1175 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1176 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1177 }
1178
1179 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1180 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
1181 ++C1; // X <= C0 --> X < (C0+1)
1182 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1183 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1184 }
1185
1186 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1187 return DAG.getConstant(0, VT); // X < MIN --> false
1188 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1189 return DAG.getConstant(1, VT); // X >= MIN --> true
1190 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1191 return DAG.getConstant(0, VT); // X > MAX --> false
1192 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1193 return DAG.getConstant(1, VT); // X <= MAX --> true
1194
1195 // Canonicalize setgt X, Min --> setne X, Min
1196 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1197 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1198 // Canonicalize setlt X, Max --> setne X, Max
1199 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1200 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1201
1202 // If we have setult X, 1, turn it into seteq X, 0
1203 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1204 return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1205 ISD::SETEQ);
1206 // If we have setugt X, Max-1, turn it into seteq X, Max
1207 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1208 return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1209 ISD::SETEQ);
1210
1211 // If we have "setcc X, C0", check to see if we can shrink the immediate
1212 // by changing cc.
1213
1214 // SETUGT X, SINTMAX -> SETLT X, 0
1215 if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1216 C1 == (~0ULL >> (65-OperandBitSize)))
1217 return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1218 ISD::SETLT);
1219
1220 // FIXME: Implement the rest of these.
1221
1222 // Fold bit comparisons when we can.
1223 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1224 VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1225 if (ConstantSDNode *AndRHS =
1226 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1227 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
1228 // Perform the xform if the AND RHS is a single bit.
1229 if (isPowerOf2_64(AndRHS->getValue())) {
1230 return DAG.getNode(ISD::SRL, VT, N0,
1231 DAG.getConstant(Log2_64(AndRHS->getValue()),
1232 getShiftAmountTy()));
1233 }
1234 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1235 // (X & 8) == 8 --> (X & 8) >> 3
1236 // Perform the xform if C1 is a single bit.
1237 if (isPowerOf2_64(C1)) {
1238 return DAG.getNode(ISD::SRL, VT, N0,
1239 DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1240 }
1241 }
1242 }
1243 }
1244 } else if (isa<ConstantSDNode>(N0.Val)) {
1245 // Ensure that the constant occurs on the RHS.
1246 return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1247 }
1248
1249 if (isa<ConstantFPSDNode>(N0.Val)) {
1250 // Constant fold or commute setcc.
1251 SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1252 if (O.Val) return O;
1253 }
1254
1255 if (N0 == N1) {
1256 // We can always fold X == X for integer setcc's.
1257 if (MVT::isInteger(N0.getValueType()))
1258 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1259 unsigned UOF = ISD::getUnorderedFlavor(Cond);
1260 if (UOF == 2) // FP operators that are undefined on NaNs.
1261 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1262 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1263 return DAG.getConstant(UOF, VT);
1264 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
1265 // if it is not already.
1266 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1267 if (NewCond != Cond)
1268 return DAG.getSetCC(VT, N0, N1, NewCond);
1269 }
1270
1271 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1272 MVT::isInteger(N0.getValueType())) {
1273 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1274 N0.getOpcode() == ISD::XOR) {
1275 // Simplify (X+Y) == (X+Z) --> Y == Z
1276 if (N0.getOpcode() == N1.getOpcode()) {
1277 if (N0.getOperand(0) == N1.getOperand(0))
1278 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1279 if (N0.getOperand(1) == N1.getOperand(1))
1280 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1281 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1282 // If X op Y == Y op X, try other combinations.
1283 if (N0.getOperand(0) == N1.getOperand(1))
1284 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1285 if (N0.getOperand(1) == N1.getOperand(0))
1286 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1287 }
1288 }
1289
1290 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1291 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1292 // Turn (X+C1) == C2 --> X == C2-C1
1293 if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1294 return DAG.getSetCC(VT, N0.getOperand(0),
1295 DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1296 N0.getValueType()), Cond);
1297 }
1298
1299 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1300 if (N0.getOpcode() == ISD::XOR)
1301 // If we know that all of the inverted bits are zero, don't bother
1302 // performing the inversion.
Dan Gohmanea859be2007-06-22 14:59:07 +00001303 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
Evan Chengfa1eb272007-02-08 22:13:59 +00001304 return DAG.getSetCC(VT, N0.getOperand(0),
1305 DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
1306 N0.getValueType()), Cond);
1307 }
1308
1309 // Turn (C1-X) == C2 --> X == C1-C2
1310 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1311 if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1312 return DAG.getSetCC(VT, N0.getOperand(1),
1313 DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
1314 N0.getValueType()), Cond);
1315 }
1316 }
1317 }
1318
1319 // Simplify (X+Z) == X --> Z == 0
1320 if (N0.getOperand(0) == N1)
1321 return DAG.getSetCC(VT, N0.getOperand(1),
1322 DAG.getConstant(0, N0.getValueType()), Cond);
1323 if (N0.getOperand(1) == N1) {
1324 if (DAG.isCommutativeBinOp(N0.getOpcode()))
1325 return DAG.getSetCC(VT, N0.getOperand(0),
1326 DAG.getConstant(0, N0.getValueType()), Cond);
Chris Lattner2ad913b2007-05-19 00:43:44 +00001327 else if (N0.Val->hasOneUse()) {
Evan Chengfa1eb272007-02-08 22:13:59 +00001328 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1329 // (Z-X) == X --> Z == X<<1
1330 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1331 N1,
1332 DAG.getConstant(1, getShiftAmountTy()));
1333 if (!DCI.isCalledByLegalizer())
1334 DCI.AddToWorklist(SH.Val);
1335 return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1336 }
1337 }
1338 }
1339
1340 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1341 N1.getOpcode() == ISD::XOR) {
1342 // Simplify X == (X+Z) --> Z == 0
1343 if (N1.getOperand(0) == N0) {
1344 return DAG.getSetCC(VT, N1.getOperand(1),
1345 DAG.getConstant(0, N1.getValueType()), Cond);
1346 } else if (N1.getOperand(1) == N0) {
1347 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1348 return DAG.getSetCC(VT, N1.getOperand(0),
1349 DAG.getConstant(0, N1.getValueType()), Cond);
Chris Lattner7667c0b2007-05-19 00:46:51 +00001350 } else if (N1.Val->hasOneUse()) {
Evan Chengfa1eb272007-02-08 22:13:59 +00001351 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1352 // X == (Z-X) --> X<<1 == Z
1353 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1354 DAG.getConstant(1, getShiftAmountTy()));
1355 if (!DCI.isCalledByLegalizer())
1356 DCI.AddToWorklist(SH.Val);
1357 return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1358 }
1359 }
1360 }
1361 }
1362
1363 // Fold away ALL boolean setcc's.
1364 SDOperand Temp;
1365 if (N0.getValueType() == MVT::i1 && foldBooleans) {
1366 switch (Cond) {
1367 default: assert(0 && "Unknown integer setcc!");
1368 case ISD::SETEQ: // X == Y -> (X^Y)^1
1369 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1370 N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1371 if (!DCI.isCalledByLegalizer())
1372 DCI.AddToWorklist(Temp.Val);
1373 break;
1374 case ISD::SETNE: // X != Y --> (X^Y)
1375 N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1376 break;
1377 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> X^1 & Y
1378 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> X^1 & Y
1379 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1380 N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1381 if (!DCI.isCalledByLegalizer())
1382 DCI.AddToWorklist(Temp.Val);
1383 break;
1384 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> Y^1 & X
1385 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> Y^1 & X
1386 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1387 N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1388 if (!DCI.isCalledByLegalizer())
1389 DCI.AddToWorklist(Temp.Val);
1390 break;
1391 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> X^1 | Y
1392 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> X^1 | Y
1393 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1394 N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1395 if (!DCI.isCalledByLegalizer())
1396 DCI.AddToWorklist(Temp.Val);
1397 break;
1398 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> Y^1 | X
1399 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> Y^1 | X
1400 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1401 N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1402 break;
1403 }
1404 if (VT != MVT::i1) {
1405 if (!DCI.isCalledByLegalizer())
1406 DCI.AddToWorklist(N0.Val);
1407 // FIXME: If running after legalize, we probably can't do this.
1408 N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1409 }
1410 return N0;
1411 }
1412
1413 // Could not fold it.
1414 return SDOperand();
1415}
1416
Chris Lattner00ffed02006-03-01 04:52:55 +00001417SDOperand TargetLowering::
1418PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1419 // Default implementation: no optimization.
1420 return SDOperand();
1421}
1422
Chris Lattnereb8146b2006-02-04 02:13:02 +00001423//===----------------------------------------------------------------------===//
1424// Inline Assembler Implementation Methods
1425//===----------------------------------------------------------------------===//
1426
1427TargetLowering::ConstraintType
Chris Lattner4234f572007-03-25 02:14:49 +00001428TargetLowering::getConstraintType(const std::string &Constraint) const {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001429 // FIXME: lots more standard ones to handle.
Chris Lattner4234f572007-03-25 02:14:49 +00001430 if (Constraint.size() == 1) {
1431 switch (Constraint[0]) {
1432 default: break;
1433 case 'r': return C_RegisterClass;
1434 case 'm': // memory
1435 case 'o': // offsetable
1436 case 'V': // not offsetable
1437 return C_Memory;
1438 case 'i': // Simple Integer or Relocatable Constant
1439 case 'n': // Simple Integer
1440 case 's': // Relocatable Constant
Chris Lattnerc13dd1c2007-03-25 04:35:41 +00001441 case 'X': // Allow ANY value.
Chris Lattner4234f572007-03-25 02:14:49 +00001442 case 'I': // Target registers.
1443 case 'J':
1444 case 'K':
1445 case 'L':
1446 case 'M':
1447 case 'N':
1448 case 'O':
1449 case 'P':
1450 return C_Other;
1451 }
Chris Lattnereb8146b2006-02-04 02:13:02 +00001452 }
Chris Lattner065421f2007-03-25 02:18:14 +00001453
1454 if (Constraint.size() > 1 && Constraint[0] == '{' &&
1455 Constraint[Constraint.size()-1] == '}')
1456 return C_Register;
Chris Lattner4234f572007-03-25 02:14:49 +00001457 return C_Unknown;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001458}
1459
Chris Lattner48884cd2007-08-25 00:47:38 +00001460/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1461/// vector. If it is invalid, don't add anything to Ops.
1462void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1463 char ConstraintLetter,
1464 std::vector<SDOperand> &Ops,
1465 SelectionDAG &DAG) {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001466 switch (ConstraintLetter) {
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001467 default: break;
Dale Johanneseneb57ea72007-11-05 21:20:28 +00001468 case 'X': // Allows any operand; labels (basic block) use this.
1469 if (Op.getOpcode() == ISD::BasicBlock) {
1470 Ops.push_back(Op);
1471 return;
1472 }
1473 // fall through
Chris Lattnereb8146b2006-02-04 02:13:02 +00001474 case 'i': // Simple Integer or Relocatable Constant
1475 case 'n': // Simple Integer
Dale Johanneseneb57ea72007-11-05 21:20:28 +00001476 case 's': { // Relocatable Constant
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001477 // These operands are interested in values of the form (GV+C), where C may
1478 // be folded in as an offset of GV, or it may be explicitly added. Also, it
1479 // is possible and fine if either GV or C are missing.
1480 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1481 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1482
1483 // If we have "(add GV, C)", pull out GV/C
1484 if (Op.getOpcode() == ISD::ADD) {
1485 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1486 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1487 if (C == 0 || GA == 0) {
1488 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1489 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1490 }
1491 if (C == 0 || GA == 0)
1492 C = 0, GA = 0;
1493 }
1494
1495 // If we find a valid operand, map to the TargetXXX version so that the
1496 // value itself doesn't get selected.
1497 if (GA) { // Either &GV or &GV+C
1498 if (ConstraintLetter != 'n') {
1499 int64_t Offs = GA->getOffset();
1500 if (C) Offs += C->getValue();
Chris Lattner48884cd2007-08-25 00:47:38 +00001501 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1502 Op.getValueType(), Offs));
1503 return;
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001504 }
1505 }
1506 if (C) { // just C, no GV.
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001507 // Simple constants are not allowed for 's'.
Chris Lattner48884cd2007-08-25 00:47:38 +00001508 if (ConstraintLetter != 's') {
1509 Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1510 return;
1511 }
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001512 }
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001513 break;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001514 }
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001515 }
Chris Lattnereb8146b2006-02-04 02:13:02 +00001516}
1517
Chris Lattner4ccb0702006-01-26 20:37:03 +00001518std::vector<unsigned> TargetLowering::
Chris Lattner1efa40f2006-02-22 00:56:39 +00001519getRegClassForInlineAsmConstraint(const std::string &Constraint,
1520 MVT::ValueType VT) const {
1521 return std::vector<unsigned>();
1522}
1523
1524
1525std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
Chris Lattner4217ca8dc2006-02-21 23:11:00 +00001526getRegForInlineAsmConstraint(const std::string &Constraint,
1527 MVT::ValueType VT) const {
Chris Lattner1efa40f2006-02-22 00:56:39 +00001528 if (Constraint[0] != '{')
1529 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattnera55079a2006-02-01 01:29:47 +00001530 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1531
1532 // Remove the braces from around the name.
1533 std::string RegName(Constraint.begin()+1, Constraint.end()-1);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001534
1535 // Figure out which register class contains this reg.
Chris Lattner4ccb0702006-01-26 20:37:03 +00001536 const MRegisterInfo *RI = TM.getRegisterInfo();
Chris Lattner1efa40f2006-02-22 00:56:39 +00001537 for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1538 E = RI->regclass_end(); RCI != E; ++RCI) {
1539 const TargetRegisterClass *RC = *RCI;
Chris Lattnerb3befd42006-02-22 23:00:51 +00001540
1541 // If none of the the value types for this register class are valid, we
1542 // can't use it. For example, 64-bit reg classes on 32-bit targets.
1543 bool isLegal = false;
1544 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1545 I != E; ++I) {
1546 if (isTypeLegal(*I)) {
1547 isLegal = true;
1548 break;
1549 }
1550 }
1551
1552 if (!isLegal) continue;
1553
Chris Lattner1efa40f2006-02-22 00:56:39 +00001554 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1555 I != E; ++I) {
Chris Lattnerb3befd42006-02-22 23:00:51 +00001556 if (StringsEqualNoCase(RegName, RI->get(*I).Name))
Chris Lattner1efa40f2006-02-22 00:56:39 +00001557 return std::make_pair(*I, RC);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001558 }
Chris Lattner4ccb0702006-01-26 20:37:03 +00001559 }
Chris Lattnera55079a2006-02-01 01:29:47 +00001560
Chris Lattner1efa40f2006-02-22 00:56:39 +00001561 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattner4ccb0702006-01-26 20:37:03 +00001562}
Evan Cheng30b37b52006-03-13 23:18:16 +00001563
1564//===----------------------------------------------------------------------===//
1565// Loop Strength Reduction hooks
1566//===----------------------------------------------------------------------===//
1567
Chris Lattner1436bb62007-03-30 23:14:50 +00001568/// isLegalAddressingMode - Return true if the addressing mode represented
1569/// by AM is legal for this target, for a load/store of the specified type.
1570bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1571 const Type *Ty) const {
1572 // The default implementation of this implements a conservative RISCy, r+r and
1573 // r+i addr mode.
1574
1575 // Allows a sign-extended 16-bit immediate field.
1576 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1577 return false;
1578
1579 // No global is ever allowed as a base.
1580 if (AM.BaseGV)
1581 return false;
1582
1583 // Only support r+r,
1584 switch (AM.Scale) {
1585 case 0: // "r+i" or just "i", depending on HasBaseReg.
1586 break;
1587 case 1:
1588 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
1589 return false;
1590 // Otherwise we have r+r or r+i.
1591 break;
1592 case 2:
1593 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
1594 return false;
1595 // Allow 2*r as r+r.
1596 break;
1597 }
1598
1599 return true;
1600}
1601
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001602// Magic for divide replacement
1603
1604struct ms {
1605 int64_t m; // magic number
1606 int64_t s; // shift amount
1607};
1608
1609struct mu {
1610 uint64_t m; // magic number
1611 int64_t a; // add indicator
1612 int64_t s; // shift amount
1613};
1614
1615/// magic - calculate the magic numbers required to codegen an integer sdiv as
1616/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1617/// or -1.
1618static ms magic32(int32_t d) {
1619 int32_t p;
1620 uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1621 const uint32_t two31 = 0x80000000U;
1622 struct ms mag;
1623
1624 ad = abs(d);
1625 t = two31 + ((uint32_t)d >> 31);
1626 anc = t - 1 - t%ad; // absolute value of nc
1627 p = 31; // initialize p
1628 q1 = two31/anc; // initialize q1 = 2p/abs(nc)
1629 r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1630 q2 = two31/ad; // initialize q2 = 2p/abs(d)
1631 r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
1632 do {
1633 p = p + 1;
1634 q1 = 2*q1; // update q1 = 2p/abs(nc)
1635 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1636 if (r1 >= anc) { // must be unsigned comparison
1637 q1 = q1 + 1;
1638 r1 = r1 - anc;
1639 }
1640 q2 = 2*q2; // update q2 = 2p/abs(d)
1641 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1642 if (r2 >= ad) { // must be unsigned comparison
1643 q2 = q2 + 1;
1644 r2 = r2 - ad;
1645 }
1646 delta = ad - r2;
1647 } while (q1 < delta || (q1 == delta && r1 == 0));
1648
1649 mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1650 if (d < 0) mag.m = -mag.m; // resulting magic number
1651 mag.s = p - 32; // resulting shift
1652 return mag;
1653}
1654
1655/// magicu - calculate the magic numbers required to codegen an integer udiv as
1656/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1657static mu magicu32(uint32_t d) {
1658 int32_t p;
1659 uint32_t nc, delta, q1, r1, q2, r2;
1660 struct mu magu;
1661 magu.a = 0; // initialize "add" indicator
1662 nc = - 1 - (-d)%d;
1663 p = 31; // initialize p
1664 q1 = 0x80000000/nc; // initialize q1 = 2p/nc
1665 r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
1666 q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
1667 r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
1668 do {
1669 p = p + 1;
1670 if (r1 >= nc - r1 ) {
1671 q1 = 2*q1 + 1; // update q1
1672 r1 = 2*r1 - nc; // update r1
1673 }
1674 else {
1675 q1 = 2*q1; // update q1
1676 r1 = 2*r1; // update r1
1677 }
1678 if (r2 + 1 >= d - r2) {
1679 if (q2 >= 0x7FFFFFFF) magu.a = 1;
1680 q2 = 2*q2 + 1; // update q2
1681 r2 = 2*r2 + 1 - d; // update r2
1682 }
1683 else {
1684 if (q2 >= 0x80000000) magu.a = 1;
1685 q2 = 2*q2; // update q2
1686 r2 = 2*r2 + 1; // update r2
1687 }
1688 delta = d - 1 - r2;
1689 } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1690 magu.m = q2 + 1; // resulting magic number
1691 magu.s = p - 32; // resulting shift
1692 return magu;
1693}
1694
1695/// magic - calculate the magic numbers required to codegen an integer sdiv as
1696/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1697/// or -1.
1698static ms magic64(int64_t d) {
1699 int64_t p;
1700 uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1701 const uint64_t two63 = 9223372036854775808ULL; // 2^63
1702 struct ms mag;
1703
1704 ad = d >= 0 ? d : -d;
1705 t = two63 + ((uint64_t)d >> 63);
1706 anc = t - 1 - t%ad; // absolute value of nc
1707 p = 63; // initialize p
1708 q1 = two63/anc; // initialize q1 = 2p/abs(nc)
1709 r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1710 q2 = two63/ad; // initialize q2 = 2p/abs(d)
1711 r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d))
1712 do {
1713 p = p + 1;
1714 q1 = 2*q1; // update q1 = 2p/abs(nc)
1715 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1716 if (r1 >= anc) { // must be unsigned comparison
1717 q1 = q1 + 1;
1718 r1 = r1 - anc;
1719 }
1720 q2 = 2*q2; // update q2 = 2p/abs(d)
1721 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1722 if (r2 >= ad) { // must be unsigned comparison
1723 q2 = q2 + 1;
1724 r2 = r2 - ad;
1725 }
1726 delta = ad - r2;
1727 } while (q1 < delta || (q1 == delta && r1 == 0));
1728
1729 mag.m = q2 + 1;
1730 if (d < 0) mag.m = -mag.m; // resulting magic number
1731 mag.s = p - 64; // resulting shift
1732 return mag;
1733}
1734
1735/// magicu - calculate the magic numbers required to codegen an integer udiv as
1736/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1737static mu magicu64(uint64_t d)
1738{
1739 int64_t p;
1740 uint64_t nc, delta, q1, r1, q2, r2;
1741 struct mu magu;
1742 magu.a = 0; // initialize "add" indicator
1743 nc = - 1 - (-d)%d;
1744 p = 63; // initialize p
1745 q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc
1746 r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc)
1747 q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d
1748 r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d)
1749 do {
1750 p = p + 1;
1751 if (r1 >= nc - r1 ) {
1752 q1 = 2*q1 + 1; // update q1
1753 r1 = 2*r1 - nc; // update r1
1754 }
1755 else {
1756 q1 = 2*q1; // update q1
1757 r1 = 2*r1; // update r1
1758 }
1759 if (r2 + 1 >= d - r2) {
1760 if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1761 q2 = 2*q2 + 1; // update q2
1762 r2 = 2*r2 + 1 - d; // update r2
1763 }
1764 else {
1765 if (q2 >= 0x8000000000000000ull) magu.a = 1;
1766 q2 = 2*q2; // update q2
1767 r2 = 2*r2 + 1; // update r2
1768 }
1769 delta = d - 1 - r2;
Andrew Lenharth3e348492006-05-16 17:45:23 +00001770 } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001771 magu.m = q2 + 1; // resulting magic number
1772 magu.s = p - 64; // resulting shift
1773 return magu;
1774}
1775
1776/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1777/// return a DAG expression to select that will generate the same value by
1778/// multiplying by a magic number. See:
1779/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1780SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00001781 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001782 MVT::ValueType VT = N->getValueType(0);
1783
1784 // Check to see if we can do this.
1785 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1786 return SDOperand(); // BuildSDIV only operates on i32 or i64
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001787
1788 int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1789 ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1790
1791 // Multiply the numerator (operand 0) by the magic value
Dan Gohman525178c2007-10-08 18:33:35 +00001792 SDOperand Q;
1793 if (isOperationLegal(ISD::MULHS, VT))
1794 Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1795 DAG.getConstant(magics.m, VT));
1796 else if (isOperationLegal(ISD::SMUL_LOHI, VT))
1797 Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
1798 N->getOperand(0),
1799 DAG.getConstant(magics.m, VT)).Val, 1);
1800 else
1801 return SDOperand(); // No mulhs or equvialent
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001802 // If d > 0 and m < 0, add the numerator
1803 if (d > 0 && magics.m < 0) {
1804 Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1805 if (Created)
1806 Created->push_back(Q.Val);
1807 }
1808 // If d < 0 and m > 0, subtract the numerator.
1809 if (d < 0 && magics.m > 0) {
1810 Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1811 if (Created)
1812 Created->push_back(Q.Val);
1813 }
1814 // Shift right algebraic if shift value is nonzero
1815 if (magics.s > 0) {
1816 Q = DAG.getNode(ISD::SRA, VT, Q,
1817 DAG.getConstant(magics.s, getShiftAmountTy()));
1818 if (Created)
1819 Created->push_back(Q.Val);
1820 }
1821 // Extract the sign bit and add it to the quotient
1822 SDOperand T =
1823 DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1824 getShiftAmountTy()));
1825 if (Created)
1826 Created->push_back(T.Val);
1827 return DAG.getNode(ISD::ADD, VT, Q, T);
1828}
1829
1830/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1831/// return a DAG expression to select that will generate the same value by
1832/// multiplying by a magic number. See:
1833/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1834SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00001835 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001836 MVT::ValueType VT = N->getValueType(0);
1837
1838 // Check to see if we can do this.
1839 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1840 return SDOperand(); // BuildUDIV only operates on i32 or i64
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001841
1842 uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1843 mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1844
1845 // Multiply the numerator (operand 0) by the magic value
Dan Gohman525178c2007-10-08 18:33:35 +00001846 SDOperand Q;
1847 if (isOperationLegal(ISD::MULHU, VT))
1848 Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1849 DAG.getConstant(magics.m, VT));
1850 else if (isOperationLegal(ISD::UMUL_LOHI, VT))
1851 Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
1852 N->getOperand(0),
1853 DAG.getConstant(magics.m, VT)).Val, 1);
1854 else
1855 return SDOperand(); // No mulhu or equvialent
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001856 if (Created)
1857 Created->push_back(Q.Val);
1858
1859 if (magics.a == 0) {
1860 return DAG.getNode(ISD::SRL, VT, Q,
1861 DAG.getConstant(magics.s, getShiftAmountTy()));
1862 } else {
1863 SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1864 if (Created)
1865 Created->push_back(NPQ.Val);
1866 NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1867 DAG.getConstant(1, getShiftAmountTy()));
1868 if (Created)
1869 Created->push_back(NPQ.Val);
1870 NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1871 if (Created)
1872 Created->push_back(NPQ.Val);
1873 return DAG.getNode(ISD::SRL, VT, NPQ,
1874 DAG.getConstant(magics.s-1, getShiftAmountTy()));
1875 }
1876}