blob: 8e9a395ab6f0b8182d24bb301e404645854ab96f [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "llvm/Bitcode/BitstreamWriter.h"
16#include "llvm/Bitcode/LLVMBitCodes.h"
17#include "ValueEnumerator.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/InlineAsm.h"
21#include "llvm/Instructions.h"
22#include "llvm/Module.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include "llvm/TypeSymbolTable.h"
24#include "llvm/ValueSymbolTable.h"
25#include "llvm/Support/MathExtras.h"
26using namespace llvm;
27
28/// These are manifest constants used by the bitcode writer. They do not need to
29/// be kept in sync with the reader, but need to be consistent within this file.
30enum {
31 CurVersion = 0,
32
33 // VALUE_SYMTAB_BLOCK abbrev id's.
34 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
35 VST_ENTRY_7_ABBREV,
36 VST_ENTRY_6_ABBREV,
37 VST_BBENTRY_6_ABBREV,
38
39 // CONSTANTS_BLOCK abbrev id's.
40 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41 CONSTANTS_INTEGER_ABBREV,
42 CONSTANTS_CE_CAST_Abbrev,
43 CONSTANTS_NULL_Abbrev,
44
45 // FUNCTION_BLOCK abbrev id's.
46 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47 FUNCTION_INST_BINOP_ABBREV,
48 FUNCTION_INST_CAST_ABBREV,
49 FUNCTION_INST_RET_VOID_ABBREV,
50 FUNCTION_INST_RET_VAL_ABBREV,
51 FUNCTION_INST_UNREACHABLE_ABBREV
52};
53
54
55static unsigned GetEncodedCastOpcode(unsigned Opcode) {
56 switch (Opcode) {
57 default: assert(0 && "Unknown cast instruction!");
58 case Instruction::Trunc : return bitc::CAST_TRUNC;
59 case Instruction::ZExt : return bitc::CAST_ZEXT;
60 case Instruction::SExt : return bitc::CAST_SEXT;
61 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
62 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
63 case Instruction::UIToFP : return bitc::CAST_UITOFP;
64 case Instruction::SIToFP : return bitc::CAST_SITOFP;
65 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
66 case Instruction::FPExt : return bitc::CAST_FPEXT;
67 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
68 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
69 case Instruction::BitCast : return bitc::CAST_BITCAST;
70 }
71}
72
73static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
74 switch (Opcode) {
75 default: assert(0 && "Unknown binary instruction!");
76 case Instruction::Add: return bitc::BINOP_ADD;
77 case Instruction::Sub: return bitc::BINOP_SUB;
78 case Instruction::Mul: return bitc::BINOP_MUL;
79 case Instruction::UDiv: return bitc::BINOP_UDIV;
80 case Instruction::FDiv:
81 case Instruction::SDiv: return bitc::BINOP_SDIV;
82 case Instruction::URem: return bitc::BINOP_UREM;
83 case Instruction::FRem:
84 case Instruction::SRem: return bitc::BINOP_SREM;
85 case Instruction::Shl: return bitc::BINOP_SHL;
86 case Instruction::LShr: return bitc::BINOP_LSHR;
87 case Instruction::AShr: return bitc::BINOP_ASHR;
88 case Instruction::And: return bitc::BINOP_AND;
89 case Instruction::Or: return bitc::BINOP_OR;
90 case Instruction::Xor: return bitc::BINOP_XOR;
91 }
92}
93
94
95
96static void WriteStringRecord(unsigned Code, const std::string &Str,
97 unsigned AbbrevToUse, BitstreamWriter &Stream) {
98 SmallVector<unsigned, 64> Vals;
99
100 // Code: [strchar x N]
101 for (unsigned i = 0, e = Str.size(); i != e; ++i)
102 Vals.push_back(Str[i]);
103
104 // Emit the finished record.
105 Stream.EmitRecord(Code, Vals, AbbrevToUse);
106}
107
108// Emit information about parameter attributes.
109static void WriteParamAttrTable(const ValueEnumerator &VE,
110 BitstreamWriter &Stream) {
Chris Lattner1c8733e2008-03-12 17:45:29 +0000111 const std::vector<PAListPtr> &Attrs = VE.getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000112 if (Attrs.empty()) return;
113
114 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
115
116 SmallVector<uint64_t, 64> Record;
117 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
Chris Lattner1c8733e2008-03-12 17:45:29 +0000118 const PAListPtr &A = Attrs[i];
119 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
120 const ParamAttrsWithIndex &PAWI = A.getSlot(i);
121 Record.push_back(PAWI.Index);
122 Record.push_back(PAWI.Attrs);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000123 }
124
125 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
126 Record.clear();
127 }
128
129 Stream.ExitBlock();
130}
131
132/// WriteTypeTable - Write out the type table for a module.
133static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
134 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
135
136 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
137 SmallVector<uint64_t, 64> TypeVals;
138
139 // Abbrev for TYPE_CODE_POINTER.
140 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
141 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
143 Log2_32_Ceil(VE.getTypes().size()+1)));
Christopher Lamb20a39e92007-12-12 08:44:39 +0000144 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000145 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
146
147 // Abbrev for TYPE_CODE_FUNCTION.
148 Abbv = new BitCodeAbbrev();
149 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
Chris Lattner70b644d2007-11-27 17:48:06 +0000151 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
154 Log2_32_Ceil(VE.getTypes().size()+1)));
155 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
156
157 // Abbrev for TYPE_CODE_STRUCT.
158 Abbv = new BitCodeAbbrev();
159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
163 Log2_32_Ceil(VE.getTypes().size()+1)));
164 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
165
166 // Abbrev for TYPE_CODE_ARRAY.
167 Abbv = new BitCodeAbbrev();
168 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
171 Log2_32_Ceil(VE.getTypes().size()+1)));
172 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
173
174 // Emit an entry count so the reader can reserve space.
175 TypeVals.push_back(TypeList.size());
176 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
177 TypeVals.clear();
178
179 // Loop over all of the types, emitting each in turn.
180 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
181 const Type *T = TypeList[i].first;
182 int AbbrevToUse = 0;
183 unsigned Code = 0;
184
185 switch (T->getTypeID()) {
186 default: assert(0 && "Unknown type!");
187 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
188 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
189 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
Dale Johannesenf325d9f2007-08-03 01:03:46 +0000190 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
191 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
192 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000193 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
194 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
195 case Type::IntegerTyID:
196 // INTEGER: [width]
197 Code = bitc::TYPE_CODE_INTEGER;
198 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
199 break;
Duncan Sandsc7ef4d12007-12-11 12:20:47 +0000200 case Type::PointerTyID: {
Christopher Lamb44d62f62007-12-11 08:59:05 +0000201 const PointerType *PTy = cast<PointerType>(T);
Christopher Lamb20a39e92007-12-12 08:44:39 +0000202 // POINTER: [pointee type, address space]
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000203 Code = bitc::TYPE_CODE_POINTER;
Christopher Lamb44d62f62007-12-11 08:59:05 +0000204 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
Christopher Lamb20a39e92007-12-12 08:44:39 +0000205 unsigned AddressSpace = PTy->getAddressSpace();
206 TypeVals.push_back(AddressSpace);
207 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000208 break;
Duncan Sandsc7ef4d12007-12-11 12:20:47 +0000209 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000210 case Type::FunctionTyID: {
211 const FunctionType *FT = cast<FunctionType>(T);
Chris Lattner70b644d2007-11-27 17:48:06 +0000212 // FUNCTION: [isvararg, attrid, retty, paramty x N]
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000213 Code = bitc::TYPE_CODE_FUNCTION;
214 TypeVals.push_back(FT->isVarArg());
Chris Lattner70b644d2007-11-27 17:48:06 +0000215 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000216 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
217 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
218 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
219 AbbrevToUse = FunctionAbbrev;
220 break;
221 }
222 case Type::StructTyID: {
223 const StructType *ST = cast<StructType>(T);
224 // STRUCT: [ispacked, eltty x N]
225 Code = bitc::TYPE_CODE_STRUCT;
226 TypeVals.push_back(ST->isPacked());
227 // Output all of the element types.
228 for (StructType::element_iterator I = ST->element_begin(),
229 E = ST->element_end(); I != E; ++I)
230 TypeVals.push_back(VE.getTypeID(*I));
231 AbbrevToUse = StructAbbrev;
232 break;
233 }
234 case Type::ArrayTyID: {
235 const ArrayType *AT = cast<ArrayType>(T);
236 // ARRAY: [numelts, eltty]
237 Code = bitc::TYPE_CODE_ARRAY;
238 TypeVals.push_back(AT->getNumElements());
239 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
240 AbbrevToUse = ArrayAbbrev;
241 break;
242 }
243 case Type::VectorTyID: {
244 const VectorType *VT = cast<VectorType>(T);
245 // VECTOR [numelts, eltty]
246 Code = bitc::TYPE_CODE_VECTOR;
247 TypeVals.push_back(VT->getNumElements());
248 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
249 break;
250 }
251 }
252
253 // Emit the finished record.
254 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
255 TypeVals.clear();
256 }
257
258 Stream.ExitBlock();
259}
260
261static unsigned getEncodedLinkage(const GlobalValue *GV) {
262 switch (GV->getLinkage()) {
263 default: assert(0 && "Invalid linkage!");
264 case GlobalValue::GhostLinkage: // Map ghost linkage onto external.
265 case GlobalValue::ExternalLinkage: return 0;
266 case GlobalValue::WeakLinkage: return 1;
267 case GlobalValue::AppendingLinkage: return 2;
268 case GlobalValue::InternalLinkage: return 3;
269 case GlobalValue::LinkOnceLinkage: return 4;
270 case GlobalValue::DLLImportLinkage: return 5;
271 case GlobalValue::DLLExportLinkage: return 6;
272 case GlobalValue::ExternalWeakLinkage: return 7;
Dale Johannesen49c44122008-05-14 20:12:51 +0000273 case GlobalValue::CommonLinkage: return 8;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000274 }
275}
276
277static unsigned getEncodedVisibility(const GlobalValue *GV) {
278 switch (GV->getVisibility()) {
279 default: assert(0 && "Invalid visibility!");
280 case GlobalValue::DefaultVisibility: return 0;
281 case GlobalValue::HiddenVisibility: return 1;
282 case GlobalValue::ProtectedVisibility: return 2;
283 }
284}
285
286// Emit top-level description of module, including target triple, inline asm,
287// descriptors for global variables, and function prototype info.
288static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
289 BitstreamWriter &Stream) {
290 // Emit the list of dependent libraries for the Module.
291 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
292 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
293
294 // Emit various pieces of data attached to a module.
295 if (!M->getTargetTriple().empty())
296 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
297 0/*TODO*/, Stream);
298 if (!M->getDataLayout().empty())
299 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
300 0/*TODO*/, Stream);
301 if (!M->getModuleInlineAsm().empty())
302 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
303 0/*TODO*/, Stream);
304
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000305 // Emit information about sections and collectors, computing how many there
306 // are. Also compute the maximum alignment value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000307 std::map<std::string, unsigned> SectionMap;
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000308 std::map<std::string, unsigned> CollectorMap;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000309 unsigned MaxAlignment = 0;
310 unsigned MaxGlobalType = 0;
311 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
312 GV != E; ++GV) {
313 MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
314 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
315
316 if (!GV->hasSection()) continue;
317 // Give section names unique ID's.
318 unsigned &Entry = SectionMap[GV->getSection()];
319 if (Entry != 0) continue;
320 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
321 0/*TODO*/, Stream);
322 Entry = SectionMap.size();
323 }
324 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
325 MaxAlignment = std::max(MaxAlignment, F->getAlignment());
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000326 if (F->hasSection()) {
327 // Give section names unique ID's.
328 unsigned &Entry = SectionMap[F->getSection()];
329 if (!Entry) {
330 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
331 0/*TODO*/, Stream);
332 Entry = SectionMap.size();
333 }
334 }
335 if (F->hasCollector()) {
336 // Same for collector names.
337 unsigned &Entry = CollectorMap[F->getCollector()];
338 if (!Entry) {
339 WriteStringRecord(bitc::MODULE_CODE_COLLECTORNAME, F->getCollector(),
340 0/*TODO*/, Stream);
341 Entry = CollectorMap.size();
342 }
343 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000344 }
345
346 // Emit abbrev for globals, now that we know # sections and max alignment.
347 unsigned SimpleGVarAbbrev = 0;
348 if (!M->global_empty()) {
349 // Add an abbrev for common globals with no visibility or thread localness.
350 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
351 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
353 Log2_32_Ceil(MaxGlobalType+1)));
354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage.
357 if (MaxAlignment == 0) // Alignment.
358 Abbv->Add(BitCodeAbbrevOp(0));
359 else {
360 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
362 Log2_32_Ceil(MaxEncAlignment+1)));
363 }
364 if (SectionMap.empty()) // Section.
365 Abbv->Add(BitCodeAbbrevOp(0));
366 else
367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
368 Log2_32_Ceil(SectionMap.size()+1)));
369 // Don't bother emitting vis + thread local.
370 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
371 }
372
373 // Emit the global variable information.
374 SmallVector<unsigned, 64> Vals;
375 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
376 GV != E; ++GV) {
377 unsigned AbbrevToUse = 0;
378
379 // GLOBALVAR: [type, isconst, initid,
380 // linkage, alignment, section, visibility, threadlocal]
381 Vals.push_back(VE.getTypeID(GV->getType()));
382 Vals.push_back(GV->isConstant());
383 Vals.push_back(GV->isDeclaration() ? 0 :
384 (VE.getValueID(GV->getInitializer()) + 1));
385 Vals.push_back(getEncodedLinkage(GV));
386 Vals.push_back(Log2_32(GV->getAlignment())+1);
387 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
388 if (GV->isThreadLocal() ||
389 GV->getVisibility() != GlobalValue::DefaultVisibility) {
390 Vals.push_back(getEncodedVisibility(GV));
391 Vals.push_back(GV->isThreadLocal());
392 } else {
393 AbbrevToUse = SimpleGVarAbbrev;
394 }
395
396 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
397 Vals.clear();
398 }
399
400 // Emit the function proto information.
401 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000402 // FUNCTION: [type, callingconv, isproto, paramattr,
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000403 // linkage, alignment, section, visibility, collector]
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000404 Vals.push_back(VE.getTypeID(F->getType()));
405 Vals.push_back(F->getCallingConv());
406 Vals.push_back(F->isDeclaration());
407 Vals.push_back(getEncodedLinkage(F));
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000408 Vals.push_back(VE.getParamAttrID(F->getParamAttrs()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000409 Vals.push_back(Log2_32(F->getAlignment())+1);
410 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
411 Vals.push_back(getEncodedVisibility(F));
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000412 Vals.push_back(F->hasCollector() ? CollectorMap[F->getCollector()] : 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000413
414 unsigned AbbrevToUse = 0;
415 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
416 Vals.clear();
417 }
418
419
420 // Emit the alias information.
421 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
422 AI != E; ++AI) {
423 Vals.push_back(VE.getTypeID(AI->getType()));
424 Vals.push_back(VE.getValueID(AI->getAliasee()));
425 Vals.push_back(getEncodedLinkage(AI));
Anton Korobeynikov902a0112008-03-11 21:40:17 +0000426 Vals.push_back(getEncodedVisibility(AI));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000427 unsigned AbbrevToUse = 0;
428 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
429 Vals.clear();
430 }
431}
432
433
434static void WriteConstants(unsigned FirstVal, unsigned LastVal,
435 const ValueEnumerator &VE,
436 BitstreamWriter &Stream, bool isGlobal) {
437 if (FirstVal == LastVal) return;
438
439 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
440
441 unsigned AggregateAbbrev = 0;
442 unsigned String8Abbrev = 0;
443 unsigned CString7Abbrev = 0;
444 unsigned CString6Abbrev = 0;
445 // If this is a constant pool for the module, emit module-specific abbrevs.
446 if (isGlobal) {
447 // Abbrev for CST_CODE_AGGREGATE.
448 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
449 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
452 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
453
454 // Abbrev for CST_CODE_STRING.
455 Abbv = new BitCodeAbbrev();
456 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
459 String8Abbrev = Stream.EmitAbbrev(Abbv);
460 // Abbrev for CST_CODE_CSTRING.
461 Abbv = new BitCodeAbbrev();
462 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
465 CString7Abbrev = Stream.EmitAbbrev(Abbv);
466 // Abbrev for CST_CODE_CSTRING.
467 Abbv = new BitCodeAbbrev();
468 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
471 CString6Abbrev = Stream.EmitAbbrev(Abbv);
472 }
473
474 SmallVector<uint64_t, 64> Record;
475
476 const ValueEnumerator::ValueList &Vals = VE.getValues();
477 const Type *LastTy = 0;
478 for (unsigned i = FirstVal; i != LastVal; ++i) {
479 const Value *V = Vals[i].first;
480 // If we need to switch types, do so now.
481 if (V->getType() != LastTy) {
482 LastTy = V->getType();
483 Record.push_back(VE.getTypeID(LastTy));
484 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
485 CONSTANTS_SETTYPE_ABBREV);
486 Record.clear();
487 }
488
489 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
490 Record.push_back(unsigned(IA->hasSideEffects()));
491
492 // Add the asm string.
493 const std::string &AsmStr = IA->getAsmString();
494 Record.push_back(AsmStr.size());
495 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
496 Record.push_back(AsmStr[i]);
497
498 // Add the constraint string.
499 const std::string &ConstraintStr = IA->getConstraintString();
500 Record.push_back(ConstraintStr.size());
501 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
502 Record.push_back(ConstraintStr[i]);
503 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
504 Record.clear();
505 continue;
506 }
507 const Constant *C = cast<Constant>(V);
508 unsigned Code = -1U;
509 unsigned AbbrevToUse = 0;
510 if (C->isNullValue()) {
511 Code = bitc::CST_CODE_NULL;
512 } else if (isa<UndefValue>(C)) {
513 Code = bitc::CST_CODE_UNDEF;
514 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
515 if (IV->getBitWidth() <= 64) {
516 int64_t V = IV->getSExtValue();
517 if (V >= 0)
518 Record.push_back(V << 1);
519 else
520 Record.push_back((-V << 1) | 1);
521 Code = bitc::CST_CODE_INTEGER;
522 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
523 } else { // Wide integers, > 64 bits in size.
524 // We have an arbitrary precision integer value to write whose
525 // bit width is > 64. However, in canonical unsigned integer
526 // format it is likely that the high bits are going to be zero.
527 // So, we only write the number of active words.
528 unsigned NWords = IV->getValue().getActiveWords();
529 const uint64_t *RawWords = IV->getValue().getRawData();
530 for (unsigned i = 0; i != NWords; ++i) {
531 int64_t V = RawWords[i];
532 if (V >= 0)
533 Record.push_back(V << 1);
534 else
535 Record.push_back((-V << 1) | 1);
536 }
537 Code = bitc::CST_CODE_WIDE_INTEGER;
538 }
539 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
540 Code = bitc::CST_CODE_FLOAT;
Dale Johannesene617f912007-08-09 22:51:36 +0000541 const Type *Ty = CFP->getType();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +0000542 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
543 Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue());
Dale Johannesen1616e902007-09-11 18:32:33 +0000544 } else if (Ty == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +0000545 // api needed to prevent premature destruction
546 APInt api = CFP->getValueAPF().convertToAPInt();
547 const uint64_t *p = api.getRawData();
Dale Johannesen1616e902007-09-11 18:32:33 +0000548 Record.push_back(p[0]);
549 Record.push_back((uint16_t)p[1]);
Dale Johannesen2aef5692007-10-11 18:07:22 +0000550 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +0000551 APInt api = CFP->getValueAPF().convertToAPInt();
552 const uint64_t *p = api.getRawData();
Dale Johannesen1616e902007-09-11 18:32:33 +0000553 Record.push_back(p[0]);
554 Record.push_back(p[1]);
Dale Johannesene617f912007-08-09 22:51:36 +0000555 } else {
556 assert (0 && "Unknown FP type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000557 }
558 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
559 // Emit constant strings specially.
560 unsigned NumOps = C->getNumOperands();
561 // If this is a null-terminated string, use the denser CSTRING encoding.
562 if (C->getOperand(NumOps-1)->isNullValue()) {
563 Code = bitc::CST_CODE_CSTRING;
564 --NumOps; // Don't encode the null, which isn't allowed by char6.
565 } else {
566 Code = bitc::CST_CODE_STRING;
567 AbbrevToUse = String8Abbrev;
568 }
569 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
570 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
571 for (unsigned i = 0; i != NumOps; ++i) {
572 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
573 Record.push_back(V);
574 isCStr7 &= (V & 128) == 0;
575 if (isCStrChar6)
576 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
577 }
578
579 if (isCStrChar6)
580 AbbrevToUse = CString6Abbrev;
581 else if (isCStr7)
582 AbbrevToUse = CString7Abbrev;
583 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
584 isa<ConstantVector>(V)) {
585 Code = bitc::CST_CODE_AGGREGATE;
586 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
587 Record.push_back(VE.getValueID(C->getOperand(i)));
588 AbbrevToUse = AggregateAbbrev;
589 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
590 switch (CE->getOpcode()) {
591 default:
592 if (Instruction::isCast(CE->getOpcode())) {
593 Code = bitc::CST_CODE_CE_CAST;
594 Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
595 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
596 Record.push_back(VE.getValueID(C->getOperand(0)));
597 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
598 } else {
599 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
600 Code = bitc::CST_CODE_CE_BINOP;
601 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
602 Record.push_back(VE.getValueID(C->getOperand(0)));
603 Record.push_back(VE.getValueID(C->getOperand(1)));
604 }
605 break;
606 case Instruction::GetElementPtr:
607 Code = bitc::CST_CODE_CE_GEP;
608 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
609 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
610 Record.push_back(VE.getValueID(C->getOperand(i)));
611 }
612 break;
613 case Instruction::Select:
614 Code = bitc::CST_CODE_CE_SELECT;
615 Record.push_back(VE.getValueID(C->getOperand(0)));
616 Record.push_back(VE.getValueID(C->getOperand(1)));
617 Record.push_back(VE.getValueID(C->getOperand(2)));
618 break;
619 case Instruction::ExtractElement:
620 Code = bitc::CST_CODE_CE_EXTRACTELT;
621 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
622 Record.push_back(VE.getValueID(C->getOperand(0)));
623 Record.push_back(VE.getValueID(C->getOperand(1)));
624 break;
625 case Instruction::InsertElement:
626 Code = bitc::CST_CODE_CE_INSERTELT;
627 Record.push_back(VE.getValueID(C->getOperand(0)));
628 Record.push_back(VE.getValueID(C->getOperand(1)));
629 Record.push_back(VE.getValueID(C->getOperand(2)));
630 break;
631 case Instruction::ShuffleVector:
632 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
633 Record.push_back(VE.getValueID(C->getOperand(0)));
634 Record.push_back(VE.getValueID(C->getOperand(1)));
635 Record.push_back(VE.getValueID(C->getOperand(2)));
636 break;
637 case Instruction::ICmp:
638 case Instruction::FCmp:
Nate Begeman646fa482008-05-12 19:01:56 +0000639 case Instruction::VICmp:
640 case Instruction::VFCmp:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000641 Code = bitc::CST_CODE_CE_CMP;
642 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
643 Record.push_back(VE.getValueID(C->getOperand(0)));
644 Record.push_back(VE.getValueID(C->getOperand(1)));
645 Record.push_back(CE->getPredicate());
646 break;
647 }
648 } else {
649 assert(0 && "Unknown constant!");
650 }
651 Stream.EmitRecord(Code, Record, AbbrevToUse);
652 Record.clear();
653 }
654
655 Stream.ExitBlock();
656}
657
658static void WriteModuleConstants(const ValueEnumerator &VE,
659 BitstreamWriter &Stream) {
660 const ValueEnumerator::ValueList &Vals = VE.getValues();
661
662 // Find the first constant to emit, which is the first non-globalvalue value.
663 // We know globalvalues have been emitted by WriteModuleInfo.
664 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
665 if (!isa<GlobalValue>(Vals[i].first)) {
666 WriteConstants(i, Vals.size(), VE, Stream, true);
667 return;
668 }
669 }
670}
671
672/// PushValueAndType - The file has to encode both the value and type id for
673/// many values, because we need to know what type to create for forward
674/// references. However, most operands are not forward references, so this type
675/// field is not needed.
676///
677/// This function adds V's value ID to Vals. If the value ID is higher than the
678/// instruction ID, then it is a forward reference, and it also includes the
679/// type ID.
680static bool PushValueAndType(Value *V, unsigned InstID,
681 SmallVector<unsigned, 64> &Vals,
682 ValueEnumerator &VE) {
683 unsigned ValID = VE.getValueID(V);
684 Vals.push_back(ValID);
685 if (ValID >= InstID) {
686 Vals.push_back(VE.getTypeID(V->getType()));
687 return true;
688 }
689 return false;
690}
691
692/// WriteInstruction - Emit an instruction to the specified stream.
693static void WriteInstruction(const Instruction &I, unsigned InstID,
694 ValueEnumerator &VE, BitstreamWriter &Stream,
695 SmallVector<unsigned, 64> &Vals) {
696 unsigned Code = 0;
697 unsigned AbbrevToUse = 0;
698 switch (I.getOpcode()) {
699 default:
700 if (Instruction::isCast(I.getOpcode())) {
701 Code = bitc::FUNC_CODE_INST_CAST;
702 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
703 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
704 Vals.push_back(VE.getTypeID(I.getType()));
705 Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
706 } else {
707 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
708 Code = bitc::FUNC_CODE_INST_BINOP;
709 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
710 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
711 Vals.push_back(VE.getValueID(I.getOperand(1)));
712 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
713 }
714 break;
715
716 case Instruction::GetElementPtr:
717 Code = bitc::FUNC_CODE_INST_GEP;
718 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
719 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
720 break;
721 case Instruction::Select:
722 Code = bitc::FUNC_CODE_INST_SELECT;
723 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
724 Vals.push_back(VE.getValueID(I.getOperand(2)));
725 Vals.push_back(VE.getValueID(I.getOperand(0)));
726 break;
727 case Instruction::ExtractElement:
728 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
729 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
730 Vals.push_back(VE.getValueID(I.getOperand(1)));
731 break;
732 case Instruction::InsertElement:
733 Code = bitc::FUNC_CODE_INST_INSERTELT;
734 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
735 Vals.push_back(VE.getValueID(I.getOperand(1)));
736 Vals.push_back(VE.getValueID(I.getOperand(2)));
737 break;
738 case Instruction::ShuffleVector:
739 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
740 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
741 Vals.push_back(VE.getValueID(I.getOperand(1)));
742 Vals.push_back(VE.getValueID(I.getOperand(2)));
743 break;
744 case Instruction::ICmp:
745 case Instruction::FCmp:
Nate Begeman646fa482008-05-12 19:01:56 +0000746 case Instruction::VICmp:
747 case Instruction::VFCmp:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000748 Code = bitc::FUNC_CODE_INST_CMP;
749 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
750 Vals.push_back(VE.getValueID(I.getOperand(1)));
751 Vals.push_back(cast<CmpInst>(I).getPredicate());
752 break;
Devang Patel774ee9e2008-02-22 02:49:49 +0000753 case Instruction::GetResult:
754 Code = bitc::FUNC_CODE_INST_GETRESULT;
755 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
Devang Patelb7fbc8b2008-02-26 01:29:32 +0000756 Vals.push_back(cast<GetResultInst>(I).getIndex());
Devang Patel774ee9e2008-02-22 02:49:49 +0000757 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000758
Devang Patelb7fbc8b2008-02-26 01:29:32 +0000759 case Instruction::Ret:
760 {
761 Code = bitc::FUNC_CODE_INST_RET;
762 unsigned NumOperands = I.getNumOperands();
Devang Patelb7fbc8b2008-02-26 01:29:32 +0000763 if (NumOperands == 0)
764 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
765 else if (NumOperands == 1) {
766 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
767 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
768 } else {
769 for (unsigned i = 0, e = NumOperands; i != e; ++i)
770 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
771 }
772 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000773 break;
774 case Instruction::Br:
775 Code = bitc::FUNC_CODE_INST_BR;
776 Vals.push_back(VE.getValueID(I.getOperand(0)));
777 if (cast<BranchInst>(I).isConditional()) {
778 Vals.push_back(VE.getValueID(I.getOperand(1)));
779 Vals.push_back(VE.getValueID(I.getOperand(2)));
780 }
781 break;
782 case Instruction::Switch:
783 Code = bitc::FUNC_CODE_INST_SWITCH;
784 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
785 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
786 Vals.push_back(VE.getValueID(I.getOperand(i)));
787 break;
788 case Instruction::Invoke: {
789 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
790 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
791 Code = bitc::FUNC_CODE_INST_INVOKE;
792
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000793 const InvokeInst *II = cast<InvokeInst>(&I);
794 Vals.push_back(VE.getParamAttrID(II->getParamAttrs()));
795 Vals.push_back(II->getCallingConv());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000796 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest
797 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest
798 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
799
800 // Emit value #'s for the fixed parameters.
801 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
802 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param.
803
804 // Emit type/value pairs for varargs params.
805 if (FTy->isVarArg()) {
806 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
807 i != e; ++i)
808 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
809 }
810 break;
811 }
812 case Instruction::Unwind:
813 Code = bitc::FUNC_CODE_INST_UNWIND;
814 break;
815 case Instruction::Unreachable:
816 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
817 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
818 break;
819
820 case Instruction::PHI:
821 Code = bitc::FUNC_CODE_INST_PHI;
822 Vals.push_back(VE.getTypeID(I.getType()));
823 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
824 Vals.push_back(VE.getValueID(I.getOperand(i)));
825 break;
826
827 case Instruction::Malloc:
828 Code = bitc::FUNC_CODE_INST_MALLOC;
829 Vals.push_back(VE.getTypeID(I.getType()));
830 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
831 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
832 break;
833
834 case Instruction::Free:
835 Code = bitc::FUNC_CODE_INST_FREE;
836 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
837 break;
838
839 case Instruction::Alloca:
840 Code = bitc::FUNC_CODE_INST_ALLOCA;
841 Vals.push_back(VE.getTypeID(I.getType()));
842 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
843 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
844 break;
845
846 case Instruction::Load:
847 Code = bitc::FUNC_CODE_INST_LOAD;
848 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
849 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
850
851 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
852 Vals.push_back(cast<LoadInst>(I).isVolatile());
853 break;
854 case Instruction::Store:
Christopher Lamb44d62f62007-12-11 08:59:05 +0000855 Code = bitc::FUNC_CODE_INST_STORE2;
856 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
857 Vals.push_back(VE.getValueID(I.getOperand(0))); // val.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000858 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
859 Vals.push_back(cast<StoreInst>(I).isVolatile());
860 break;
861 case Instruction::Call: {
862 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
863 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
864
865 Code = bitc::FUNC_CODE_INST_CALL;
866
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000867 const CallInst *CI = cast<CallInst>(&I);
868 Vals.push_back(VE.getParamAttrID(CI->getParamAttrs()));
869 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
870 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000871
872 // Emit value #'s for the fixed parameters.
873 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
874 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param.
875
876 // Emit type/value pairs for varargs params.
877 if (FTy->isVarArg()) {
878 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
879 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
880 i != e; ++i)
881 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs
882 }
883 break;
884 }
885 case Instruction::VAArg:
886 Code = bitc::FUNC_CODE_INST_VAARG;
887 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
888 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
889 Vals.push_back(VE.getTypeID(I.getType())); // restype.
890 break;
891 }
892
893 Stream.EmitRecord(Code, Vals, AbbrevToUse);
894 Vals.clear();
895}
896
897// Emit names for globals/functions etc.
898static void WriteValueSymbolTable(const ValueSymbolTable &VST,
899 const ValueEnumerator &VE,
900 BitstreamWriter &Stream) {
901 if (VST.empty()) return;
902 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
903
904 // FIXME: Set up the abbrev, we know how many values there are!
905 // FIXME: We know if the type names can use 7-bit ascii.
906 SmallVector<unsigned, 64> NameVals;
907
908 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
909 SI != SE; ++SI) {
910
911 const ValueName &Name = *SI;
912
913 // Figure out the encoding to use for the name.
914 bool is7Bit = true;
915 bool isChar6 = true;
916 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
917 C != E; ++C) {
918 if (isChar6)
919 isChar6 = BitCodeAbbrevOp::isChar6(*C);
920 if ((unsigned char)*C & 128) {
921 is7Bit = false;
922 break; // don't bother scanning the rest.
923 }
924 }
925
926 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
927
928 // VST_ENTRY: [valueid, namechar x N]
929 // VST_BBENTRY: [bbid, namechar x N]
930 unsigned Code;
931 if (isa<BasicBlock>(SI->getValue())) {
932 Code = bitc::VST_CODE_BBENTRY;
933 if (isChar6)
934 AbbrevToUse = VST_BBENTRY_6_ABBREV;
935 } else {
936 Code = bitc::VST_CODE_ENTRY;
937 if (isChar6)
938 AbbrevToUse = VST_ENTRY_6_ABBREV;
939 else if (is7Bit)
940 AbbrevToUse = VST_ENTRY_7_ABBREV;
941 }
942
943 NameVals.push_back(VE.getValueID(SI->getValue()));
944 for (const char *P = Name.getKeyData(),
945 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
946 NameVals.push_back((unsigned char)*P);
947
948 // Emit the finished record.
949 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
950 NameVals.clear();
951 }
952 Stream.ExitBlock();
953}
954
955/// WriteFunction - Emit a function body to the module stream.
956static void WriteFunction(const Function &F, ValueEnumerator &VE,
957 BitstreamWriter &Stream) {
958 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
959 VE.incorporateFunction(F);
960
961 SmallVector<unsigned, 64> Vals;
962
963 // Emit the number of basic blocks, so the reader can create them ahead of
964 // time.
965 Vals.push_back(VE.getBasicBlocks().size());
966 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
967 Vals.clear();
968
969 // If there are function-local constants, emit them now.
970 unsigned CstStart, CstEnd;
971 VE.getFunctionConstantRange(CstStart, CstEnd);
972 WriteConstants(CstStart, CstEnd, VE, Stream, false);
973
974 // Keep a running idea of what the instruction ID is.
975 unsigned InstID = CstEnd;
976
977 // Finally, emit all the instructions, in order.
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +0000978 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000979 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
980 I != E; ++I) {
981 WriteInstruction(*I, InstID, VE, Stream, Vals);
982 if (I->getType() != Type::VoidTy)
983 ++InstID;
984 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000985
986 // Emit names for all the instructions etc.
987 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
988
989 VE.purgeFunction();
990 Stream.ExitBlock();
991}
992
993/// WriteTypeSymbolTable - Emit a block for the specified type symtab.
994static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
995 const ValueEnumerator &VE,
996 BitstreamWriter &Stream) {
997 if (TST.empty()) return;
998
999 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1000
1001 // 7-bit fixed width VST_CODE_ENTRY strings.
1002 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1003 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1005 Log2_32_Ceil(VE.getTypes().size()+1)));
1006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1008 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1009
1010 SmallVector<unsigned, 64> NameVals;
1011
1012 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1013 TI != TE; ++TI) {
1014 // TST_ENTRY: [typeid, namechar x N]
1015 NameVals.push_back(VE.getTypeID(TI->second));
1016
1017 const std::string &Str = TI->first;
1018 bool is7Bit = true;
1019 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1020 NameVals.push_back((unsigned char)Str[i]);
1021 if (Str[i] & 128)
1022 is7Bit = false;
1023 }
1024
1025 // Emit the finished record.
1026 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1027 NameVals.clear();
1028 }
1029
1030 Stream.ExitBlock();
1031}
1032
1033// Emit blockinfo, which defines the standard abbreviations etc.
1034static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1035 // We only want to emit block info records for blocks that have multiple
1036 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
1037 // blocks can defined their abbrevs inline.
1038 Stream.EnterBlockInfoBlock(2);
1039
1040 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1041 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1046 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1047 Abbv) != VST_ENTRY_8_ABBREV)
1048 assert(0 && "Unexpected abbrev ordering!");
1049 }
1050
1051 { // 7-bit fixed width VST_ENTRY strings.
1052 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1053 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1057 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1058 Abbv) != VST_ENTRY_7_ABBREV)
1059 assert(0 && "Unexpected abbrev ordering!");
1060 }
1061 { // 6-bit char6 VST_ENTRY strings.
1062 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1063 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1067 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1068 Abbv) != VST_ENTRY_6_ABBREV)
1069 assert(0 && "Unexpected abbrev ordering!");
1070 }
1071 { // 6-bit char6 VST_BBENTRY strings.
1072 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1073 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1077 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1078 Abbv) != VST_BBENTRY_6_ABBREV)
1079 assert(0 && "Unexpected abbrev ordering!");
1080 }
1081
1082
1083
1084 { // SETTYPE abbrev for CONSTANTS_BLOCK.
1085 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1086 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1088 Log2_32_Ceil(VE.getTypes().size()+1)));
1089 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1090 Abbv) != CONSTANTS_SETTYPE_ABBREV)
1091 assert(0 && "Unexpected abbrev ordering!");
1092 }
1093
1094 { // INTEGER abbrev for CONSTANTS_BLOCK.
1095 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1096 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1098 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1099 Abbv) != CONSTANTS_INTEGER_ABBREV)
1100 assert(0 && "Unexpected abbrev ordering!");
1101 }
1102
1103 { // CE_CAST abbrev for CONSTANTS_BLOCK.
1104 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1105 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
1107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
1108 Log2_32_Ceil(VE.getTypes().size()+1)));
1109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
1110
1111 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1112 Abbv) != CONSTANTS_CE_CAST_Abbrev)
1113 assert(0 && "Unexpected abbrev ordering!");
1114 }
1115 { // NULL abbrev for CONSTANTS_BLOCK.
1116 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1117 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1118 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1119 Abbv) != CONSTANTS_NULL_Abbrev)
1120 assert(0 && "Unexpected abbrev ordering!");
1121 }
1122
1123 // FIXME: This should only use space for first class types!
1124
1125 { // INST_LOAD abbrev for FUNCTION_BLOCK.
1126 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1127 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1131 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1132 Abbv) != FUNCTION_INST_LOAD_ABBREV)
1133 assert(0 && "Unexpected abbrev ordering!");
1134 }
1135 { // INST_BINOP abbrev for FUNCTION_BLOCK.
1136 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1137 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1141 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1142 Abbv) != FUNCTION_INST_BINOP_ABBREV)
1143 assert(0 && "Unexpected abbrev ordering!");
1144 }
1145 { // INST_CAST abbrev for FUNCTION_BLOCK.
1146 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1147 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
1149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
1150 Log2_32_Ceil(VE.getTypes().size()+1)));
1151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1152 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1153 Abbv) != FUNCTION_INST_CAST_ABBREV)
1154 assert(0 && "Unexpected abbrev ordering!");
1155 }
1156
1157 { // INST_RET abbrev for FUNCTION_BLOCK.
1158 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1159 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1160 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1161 Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1162 assert(0 && "Unexpected abbrev ordering!");
1163 }
1164 { // INST_RET abbrev for FUNCTION_BLOCK.
1165 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1166 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1168 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1169 Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1170 assert(0 && "Unexpected abbrev ordering!");
1171 }
1172 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1173 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1174 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1175 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1176 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1177 assert(0 && "Unexpected abbrev ordering!");
1178 }
1179
1180 Stream.ExitBlock();
1181}
1182
1183
1184/// WriteModule - Emit the specified module to the bitstream.
1185static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1186 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1187
1188 // Emit the version number if it is non-zero.
1189 if (CurVersion) {
1190 SmallVector<unsigned, 1> Vals;
1191 Vals.push_back(CurVersion);
1192 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1193 }
1194
1195 // Analyze the module, enumerating globals, functions, etc.
1196 ValueEnumerator VE(M);
1197
1198 // Emit blockinfo, which defines the standard abbreviations etc.
1199 WriteBlockInfo(VE, Stream);
1200
1201 // Emit information about parameter attributes.
1202 WriteParamAttrTable(VE, Stream);
1203
1204 // Emit information describing all of the types in the module.
1205 WriteTypeTable(VE, Stream);
1206
1207 // Emit top-level description of module, including target triple, inline asm,
1208 // descriptors for global variables, and function prototype info.
1209 WriteModuleInfo(M, VE, Stream);
1210
1211 // Emit constants.
1212 WriteModuleConstants(VE, Stream);
1213
1214 // If we have any aggregate values in the value table, purge them - these can
1215 // only be used to initialize global variables. Doing so makes the value
1216 // namespace smaller for code in functions.
1217 int NumNonAggregates = VE.PurgeAggregateValues();
1218 if (NumNonAggregates != -1) {
1219 SmallVector<unsigned, 1> Vals;
1220 Vals.push_back(NumNonAggregates);
1221 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1222 }
1223
1224 // Emit function bodies.
1225 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1226 if (!I->isDeclaration())
1227 WriteFunction(*I, VE, Stream);
1228
1229 // Emit the type symbol table information.
1230 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1231
1232 // Emit names for globals/functions etc.
1233 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1234
1235 Stream.ExitBlock();
1236}
1237
1238
1239/// WriteBitcodeToFile - Write the specified module to the specified output
1240/// stream.
1241void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1242 std::vector<unsigned char> Buffer;
1243 BitstreamWriter Stream(Buffer);
1244
1245 Buffer.reserve(256*1024);
1246
1247 // Emit the file header.
1248 Stream.Emit((unsigned)'B', 8);
1249 Stream.Emit((unsigned)'C', 8);
1250 Stream.Emit(0x0, 4);
1251 Stream.Emit(0xC, 4);
1252 Stream.Emit(0xE, 4);
1253 Stream.Emit(0xD, 4);
1254
1255 // Emit the module.
1256 WriteModule(M, Stream);
1257
1258 // Write the generated bitstream to "Out".
1259 Out.write((char*)&Buffer.front(), Buffer.size());
1260
1261 // Make sure it hits disk now.
1262 Out.flush();
1263}