blob: 713a82b6b2f7c971ce68b05deac803a183b7f329 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "llvm/Bitcode/BitstreamWriter.h"
16#include "llvm/Bitcode/LLVMBitCodes.h"
17#include "ValueEnumerator.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/InlineAsm.h"
21#include "llvm/Instructions.h"
22#include "llvm/Module.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include "llvm/TypeSymbolTable.h"
24#include "llvm/ValueSymbolTable.h"
25#include "llvm/Support/MathExtras.h"
26using namespace llvm;
27
28/// These are manifest constants used by the bitcode writer. They do not need to
29/// be kept in sync with the reader, but need to be consistent within this file.
30enum {
31 CurVersion = 0,
32
33 // VALUE_SYMTAB_BLOCK abbrev id's.
34 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
35 VST_ENTRY_7_ABBREV,
36 VST_ENTRY_6_ABBREV,
37 VST_BBENTRY_6_ABBREV,
38
39 // CONSTANTS_BLOCK abbrev id's.
40 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41 CONSTANTS_INTEGER_ABBREV,
42 CONSTANTS_CE_CAST_Abbrev,
43 CONSTANTS_NULL_Abbrev,
44
45 // FUNCTION_BLOCK abbrev id's.
46 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47 FUNCTION_INST_BINOP_ABBREV,
48 FUNCTION_INST_CAST_ABBREV,
49 FUNCTION_INST_RET_VOID_ABBREV,
50 FUNCTION_INST_RET_VAL_ABBREV,
51 FUNCTION_INST_UNREACHABLE_ABBREV
52};
53
54
55static unsigned GetEncodedCastOpcode(unsigned Opcode) {
56 switch (Opcode) {
57 default: assert(0 && "Unknown cast instruction!");
58 case Instruction::Trunc : return bitc::CAST_TRUNC;
59 case Instruction::ZExt : return bitc::CAST_ZEXT;
60 case Instruction::SExt : return bitc::CAST_SEXT;
61 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
62 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
63 case Instruction::UIToFP : return bitc::CAST_UITOFP;
64 case Instruction::SIToFP : return bitc::CAST_SITOFP;
65 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
66 case Instruction::FPExt : return bitc::CAST_FPEXT;
67 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
68 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
69 case Instruction::BitCast : return bitc::CAST_BITCAST;
70 }
71}
72
73static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
74 switch (Opcode) {
75 default: assert(0 && "Unknown binary instruction!");
76 case Instruction::Add: return bitc::BINOP_ADD;
77 case Instruction::Sub: return bitc::BINOP_SUB;
78 case Instruction::Mul: return bitc::BINOP_MUL;
79 case Instruction::UDiv: return bitc::BINOP_UDIV;
80 case Instruction::FDiv:
81 case Instruction::SDiv: return bitc::BINOP_SDIV;
82 case Instruction::URem: return bitc::BINOP_UREM;
83 case Instruction::FRem:
84 case Instruction::SRem: return bitc::BINOP_SREM;
85 case Instruction::Shl: return bitc::BINOP_SHL;
86 case Instruction::LShr: return bitc::BINOP_LSHR;
87 case Instruction::AShr: return bitc::BINOP_ASHR;
88 case Instruction::And: return bitc::BINOP_AND;
89 case Instruction::Or: return bitc::BINOP_OR;
90 case Instruction::Xor: return bitc::BINOP_XOR;
91 }
92}
93
94
95
96static void WriteStringRecord(unsigned Code, const std::string &Str,
97 unsigned AbbrevToUse, BitstreamWriter &Stream) {
98 SmallVector<unsigned, 64> Vals;
99
100 // Code: [strchar x N]
101 for (unsigned i = 0, e = Str.size(); i != e; ++i)
102 Vals.push_back(Str[i]);
103
104 // Emit the finished record.
105 Stream.EmitRecord(Code, Vals, AbbrevToUse);
106}
107
108// Emit information about parameter attributes.
109static void WriteParamAttrTable(const ValueEnumerator &VE,
110 BitstreamWriter &Stream) {
Chris Lattner1c8733e2008-03-12 17:45:29 +0000111 const std::vector<PAListPtr> &Attrs = VE.getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000112 if (Attrs.empty()) return;
113
114 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
115
116 SmallVector<uint64_t, 64> Record;
117 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
Chris Lattner1c8733e2008-03-12 17:45:29 +0000118 const PAListPtr &A = Attrs[i];
119 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
120 const ParamAttrsWithIndex &PAWI = A.getSlot(i);
121 Record.push_back(PAWI.Index);
122 Record.push_back(PAWI.Attrs);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000123 }
124
125 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
126 Record.clear();
127 }
128
129 Stream.ExitBlock();
130}
131
132/// WriteTypeTable - Write out the type table for a module.
133static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
134 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
135
136 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
137 SmallVector<uint64_t, 64> TypeVals;
138
139 // Abbrev for TYPE_CODE_POINTER.
140 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
141 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
143 Log2_32_Ceil(VE.getTypes().size()+1)));
Christopher Lamb20a39e92007-12-12 08:44:39 +0000144 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000145 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
146
147 // Abbrev for TYPE_CODE_FUNCTION.
148 Abbv = new BitCodeAbbrev();
149 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
Chris Lattner70b644d2007-11-27 17:48:06 +0000151 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
154 Log2_32_Ceil(VE.getTypes().size()+1)));
155 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
156
157 // Abbrev for TYPE_CODE_STRUCT.
158 Abbv = new BitCodeAbbrev();
159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
163 Log2_32_Ceil(VE.getTypes().size()+1)));
164 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
165
166 // Abbrev for TYPE_CODE_ARRAY.
167 Abbv = new BitCodeAbbrev();
168 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
171 Log2_32_Ceil(VE.getTypes().size()+1)));
172 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
173
174 // Emit an entry count so the reader can reserve space.
175 TypeVals.push_back(TypeList.size());
176 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
177 TypeVals.clear();
178
179 // Loop over all of the types, emitting each in turn.
180 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
181 const Type *T = TypeList[i].first;
182 int AbbrevToUse = 0;
183 unsigned Code = 0;
184
185 switch (T->getTypeID()) {
186 default: assert(0 && "Unknown type!");
187 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
188 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
189 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
Dale Johannesenf325d9f2007-08-03 01:03:46 +0000190 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
191 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
192 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000193 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
194 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
195 case Type::IntegerTyID:
196 // INTEGER: [width]
197 Code = bitc::TYPE_CODE_INTEGER;
198 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
199 break;
Duncan Sandsc7ef4d12007-12-11 12:20:47 +0000200 case Type::PointerTyID: {
Christopher Lamb44d62f62007-12-11 08:59:05 +0000201 const PointerType *PTy = cast<PointerType>(T);
Christopher Lamb20a39e92007-12-12 08:44:39 +0000202 // POINTER: [pointee type, address space]
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000203 Code = bitc::TYPE_CODE_POINTER;
Christopher Lamb44d62f62007-12-11 08:59:05 +0000204 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
Christopher Lamb20a39e92007-12-12 08:44:39 +0000205 unsigned AddressSpace = PTy->getAddressSpace();
206 TypeVals.push_back(AddressSpace);
207 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000208 break;
Duncan Sandsc7ef4d12007-12-11 12:20:47 +0000209 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000210 case Type::FunctionTyID: {
211 const FunctionType *FT = cast<FunctionType>(T);
Chris Lattner70b644d2007-11-27 17:48:06 +0000212 // FUNCTION: [isvararg, attrid, retty, paramty x N]
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000213 Code = bitc::TYPE_CODE_FUNCTION;
214 TypeVals.push_back(FT->isVarArg());
Chris Lattner70b644d2007-11-27 17:48:06 +0000215 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000216 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
217 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
218 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
219 AbbrevToUse = FunctionAbbrev;
220 break;
221 }
222 case Type::StructTyID: {
223 const StructType *ST = cast<StructType>(T);
224 // STRUCT: [ispacked, eltty x N]
225 Code = bitc::TYPE_CODE_STRUCT;
226 TypeVals.push_back(ST->isPacked());
227 // Output all of the element types.
228 for (StructType::element_iterator I = ST->element_begin(),
229 E = ST->element_end(); I != E; ++I)
230 TypeVals.push_back(VE.getTypeID(*I));
231 AbbrevToUse = StructAbbrev;
232 break;
233 }
234 case Type::ArrayTyID: {
235 const ArrayType *AT = cast<ArrayType>(T);
236 // ARRAY: [numelts, eltty]
237 Code = bitc::TYPE_CODE_ARRAY;
238 TypeVals.push_back(AT->getNumElements());
239 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
240 AbbrevToUse = ArrayAbbrev;
241 break;
242 }
243 case Type::VectorTyID: {
244 const VectorType *VT = cast<VectorType>(T);
245 // VECTOR [numelts, eltty]
246 Code = bitc::TYPE_CODE_VECTOR;
247 TypeVals.push_back(VT->getNumElements());
248 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
249 break;
250 }
251 }
252
253 // Emit the finished record.
254 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
255 TypeVals.clear();
256 }
257
258 Stream.ExitBlock();
259}
260
261static unsigned getEncodedLinkage(const GlobalValue *GV) {
262 switch (GV->getLinkage()) {
263 default: assert(0 && "Invalid linkage!");
264 case GlobalValue::GhostLinkage: // Map ghost linkage onto external.
265 case GlobalValue::ExternalLinkage: return 0;
266 case GlobalValue::WeakLinkage: return 1;
267 case GlobalValue::AppendingLinkage: return 2;
268 case GlobalValue::InternalLinkage: return 3;
269 case GlobalValue::LinkOnceLinkage: return 4;
270 case GlobalValue::DLLImportLinkage: return 5;
271 case GlobalValue::DLLExportLinkage: return 6;
272 case GlobalValue::ExternalWeakLinkage: return 7;
273 }
274}
275
276static unsigned getEncodedVisibility(const GlobalValue *GV) {
277 switch (GV->getVisibility()) {
278 default: assert(0 && "Invalid visibility!");
279 case GlobalValue::DefaultVisibility: return 0;
280 case GlobalValue::HiddenVisibility: return 1;
281 case GlobalValue::ProtectedVisibility: return 2;
282 }
283}
284
285// Emit top-level description of module, including target triple, inline asm,
286// descriptors for global variables, and function prototype info.
287static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
288 BitstreamWriter &Stream) {
289 // Emit the list of dependent libraries for the Module.
290 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
291 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
292
293 // Emit various pieces of data attached to a module.
294 if (!M->getTargetTriple().empty())
295 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
296 0/*TODO*/, Stream);
297 if (!M->getDataLayout().empty())
298 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
299 0/*TODO*/, Stream);
300 if (!M->getModuleInlineAsm().empty())
301 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
302 0/*TODO*/, Stream);
303
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000304 // Emit information about sections and collectors, computing how many there
305 // are. Also compute the maximum alignment value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000306 std::map<std::string, unsigned> SectionMap;
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000307 std::map<std::string, unsigned> CollectorMap;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000308 unsigned MaxAlignment = 0;
309 unsigned MaxGlobalType = 0;
310 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
311 GV != E; ++GV) {
312 MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
313 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
314
315 if (!GV->hasSection()) continue;
316 // Give section names unique ID's.
317 unsigned &Entry = SectionMap[GV->getSection()];
318 if (Entry != 0) continue;
319 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
320 0/*TODO*/, Stream);
321 Entry = SectionMap.size();
322 }
323 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
324 MaxAlignment = std::max(MaxAlignment, F->getAlignment());
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000325 if (F->hasSection()) {
326 // Give section names unique ID's.
327 unsigned &Entry = SectionMap[F->getSection()];
328 if (!Entry) {
329 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
330 0/*TODO*/, Stream);
331 Entry = SectionMap.size();
332 }
333 }
334 if (F->hasCollector()) {
335 // Same for collector names.
336 unsigned &Entry = CollectorMap[F->getCollector()];
337 if (!Entry) {
338 WriteStringRecord(bitc::MODULE_CODE_COLLECTORNAME, F->getCollector(),
339 0/*TODO*/, Stream);
340 Entry = CollectorMap.size();
341 }
342 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000343 }
344
345 // Emit abbrev for globals, now that we know # sections and max alignment.
346 unsigned SimpleGVarAbbrev = 0;
347 if (!M->global_empty()) {
348 // Add an abbrev for common globals with no visibility or thread localness.
349 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
350 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
352 Log2_32_Ceil(MaxGlobalType+1)));
353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage.
356 if (MaxAlignment == 0) // Alignment.
357 Abbv->Add(BitCodeAbbrevOp(0));
358 else {
359 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
361 Log2_32_Ceil(MaxEncAlignment+1)));
362 }
363 if (SectionMap.empty()) // Section.
364 Abbv->Add(BitCodeAbbrevOp(0));
365 else
366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
367 Log2_32_Ceil(SectionMap.size()+1)));
368 // Don't bother emitting vis + thread local.
369 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
370 }
371
372 // Emit the global variable information.
373 SmallVector<unsigned, 64> Vals;
374 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
375 GV != E; ++GV) {
376 unsigned AbbrevToUse = 0;
377
378 // GLOBALVAR: [type, isconst, initid,
379 // linkage, alignment, section, visibility, threadlocal]
380 Vals.push_back(VE.getTypeID(GV->getType()));
381 Vals.push_back(GV->isConstant());
382 Vals.push_back(GV->isDeclaration() ? 0 :
383 (VE.getValueID(GV->getInitializer()) + 1));
384 Vals.push_back(getEncodedLinkage(GV));
385 Vals.push_back(Log2_32(GV->getAlignment())+1);
386 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
387 if (GV->isThreadLocal() ||
388 GV->getVisibility() != GlobalValue::DefaultVisibility) {
389 Vals.push_back(getEncodedVisibility(GV));
390 Vals.push_back(GV->isThreadLocal());
391 } else {
392 AbbrevToUse = SimpleGVarAbbrev;
393 }
394
395 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
396 Vals.clear();
397 }
398
399 // Emit the function proto information.
400 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000401 // FUNCTION: [type, callingconv, isproto, paramattr,
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000402 // linkage, alignment, section, visibility, collector]
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000403 Vals.push_back(VE.getTypeID(F->getType()));
404 Vals.push_back(F->getCallingConv());
405 Vals.push_back(F->isDeclaration());
406 Vals.push_back(getEncodedLinkage(F));
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000407 Vals.push_back(VE.getParamAttrID(F->getParamAttrs()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000408 Vals.push_back(Log2_32(F->getAlignment())+1);
409 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
410 Vals.push_back(getEncodedVisibility(F));
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000411 Vals.push_back(F->hasCollector() ? CollectorMap[F->getCollector()] : 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000412
413 unsigned AbbrevToUse = 0;
414 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
415 Vals.clear();
416 }
417
418
419 // Emit the alias information.
420 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
421 AI != E; ++AI) {
422 Vals.push_back(VE.getTypeID(AI->getType()));
423 Vals.push_back(VE.getValueID(AI->getAliasee()));
424 Vals.push_back(getEncodedLinkage(AI));
Anton Korobeynikov902a0112008-03-11 21:40:17 +0000425 Vals.push_back(getEncodedVisibility(AI));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000426 unsigned AbbrevToUse = 0;
427 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
428 Vals.clear();
429 }
430}
431
432
433static void WriteConstants(unsigned FirstVal, unsigned LastVal,
434 const ValueEnumerator &VE,
435 BitstreamWriter &Stream, bool isGlobal) {
436 if (FirstVal == LastVal) return;
437
438 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
439
440 unsigned AggregateAbbrev = 0;
441 unsigned String8Abbrev = 0;
442 unsigned CString7Abbrev = 0;
443 unsigned CString6Abbrev = 0;
444 // If this is a constant pool for the module, emit module-specific abbrevs.
445 if (isGlobal) {
446 // Abbrev for CST_CODE_AGGREGATE.
447 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
448 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
451 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
452
453 // Abbrev for CST_CODE_STRING.
454 Abbv = new BitCodeAbbrev();
455 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
458 String8Abbrev = Stream.EmitAbbrev(Abbv);
459 // Abbrev for CST_CODE_CSTRING.
460 Abbv = new BitCodeAbbrev();
461 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
464 CString7Abbrev = Stream.EmitAbbrev(Abbv);
465 // Abbrev for CST_CODE_CSTRING.
466 Abbv = new BitCodeAbbrev();
467 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
470 CString6Abbrev = Stream.EmitAbbrev(Abbv);
471 }
472
473 SmallVector<uint64_t, 64> Record;
474
475 const ValueEnumerator::ValueList &Vals = VE.getValues();
476 const Type *LastTy = 0;
477 for (unsigned i = FirstVal; i != LastVal; ++i) {
478 const Value *V = Vals[i].first;
479 // If we need to switch types, do so now.
480 if (V->getType() != LastTy) {
481 LastTy = V->getType();
482 Record.push_back(VE.getTypeID(LastTy));
483 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
484 CONSTANTS_SETTYPE_ABBREV);
485 Record.clear();
486 }
487
488 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
489 Record.push_back(unsigned(IA->hasSideEffects()));
490
491 // Add the asm string.
492 const std::string &AsmStr = IA->getAsmString();
493 Record.push_back(AsmStr.size());
494 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
495 Record.push_back(AsmStr[i]);
496
497 // Add the constraint string.
498 const std::string &ConstraintStr = IA->getConstraintString();
499 Record.push_back(ConstraintStr.size());
500 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
501 Record.push_back(ConstraintStr[i]);
502 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
503 Record.clear();
504 continue;
505 }
506 const Constant *C = cast<Constant>(V);
507 unsigned Code = -1U;
508 unsigned AbbrevToUse = 0;
509 if (C->isNullValue()) {
510 Code = bitc::CST_CODE_NULL;
511 } else if (isa<UndefValue>(C)) {
512 Code = bitc::CST_CODE_UNDEF;
513 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
514 if (IV->getBitWidth() <= 64) {
515 int64_t V = IV->getSExtValue();
516 if (V >= 0)
517 Record.push_back(V << 1);
518 else
519 Record.push_back((-V << 1) | 1);
520 Code = bitc::CST_CODE_INTEGER;
521 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
522 } else { // Wide integers, > 64 bits in size.
523 // We have an arbitrary precision integer value to write whose
524 // bit width is > 64. However, in canonical unsigned integer
525 // format it is likely that the high bits are going to be zero.
526 // So, we only write the number of active words.
527 unsigned NWords = IV->getValue().getActiveWords();
528 const uint64_t *RawWords = IV->getValue().getRawData();
529 for (unsigned i = 0; i != NWords; ++i) {
530 int64_t V = RawWords[i];
531 if (V >= 0)
532 Record.push_back(V << 1);
533 else
534 Record.push_back((-V << 1) | 1);
535 }
536 Code = bitc::CST_CODE_WIDE_INTEGER;
537 }
538 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
539 Code = bitc::CST_CODE_FLOAT;
Dale Johannesene617f912007-08-09 22:51:36 +0000540 const Type *Ty = CFP->getType();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +0000541 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
542 Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue());
Dale Johannesen1616e902007-09-11 18:32:33 +0000543 } else if (Ty == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +0000544 // api needed to prevent premature destruction
545 APInt api = CFP->getValueAPF().convertToAPInt();
546 const uint64_t *p = api.getRawData();
Dale Johannesen1616e902007-09-11 18:32:33 +0000547 Record.push_back(p[0]);
548 Record.push_back((uint16_t)p[1]);
Dale Johannesen2aef5692007-10-11 18:07:22 +0000549 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +0000550 APInt api = CFP->getValueAPF().convertToAPInt();
551 const uint64_t *p = api.getRawData();
Dale Johannesen1616e902007-09-11 18:32:33 +0000552 Record.push_back(p[0]);
553 Record.push_back(p[1]);
Dale Johannesene617f912007-08-09 22:51:36 +0000554 } else {
555 assert (0 && "Unknown FP type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000556 }
557 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
558 // Emit constant strings specially.
559 unsigned NumOps = C->getNumOperands();
560 // If this is a null-terminated string, use the denser CSTRING encoding.
561 if (C->getOperand(NumOps-1)->isNullValue()) {
562 Code = bitc::CST_CODE_CSTRING;
563 --NumOps; // Don't encode the null, which isn't allowed by char6.
564 } else {
565 Code = bitc::CST_CODE_STRING;
566 AbbrevToUse = String8Abbrev;
567 }
568 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
569 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
570 for (unsigned i = 0; i != NumOps; ++i) {
571 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
572 Record.push_back(V);
573 isCStr7 &= (V & 128) == 0;
574 if (isCStrChar6)
575 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
576 }
577
578 if (isCStrChar6)
579 AbbrevToUse = CString6Abbrev;
580 else if (isCStr7)
581 AbbrevToUse = CString7Abbrev;
582 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
583 isa<ConstantVector>(V)) {
584 Code = bitc::CST_CODE_AGGREGATE;
585 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
586 Record.push_back(VE.getValueID(C->getOperand(i)));
587 AbbrevToUse = AggregateAbbrev;
588 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
589 switch (CE->getOpcode()) {
590 default:
591 if (Instruction::isCast(CE->getOpcode())) {
592 Code = bitc::CST_CODE_CE_CAST;
593 Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
594 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
595 Record.push_back(VE.getValueID(C->getOperand(0)));
596 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
597 } else {
598 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
599 Code = bitc::CST_CODE_CE_BINOP;
600 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
601 Record.push_back(VE.getValueID(C->getOperand(0)));
602 Record.push_back(VE.getValueID(C->getOperand(1)));
603 }
604 break;
605 case Instruction::GetElementPtr:
606 Code = bitc::CST_CODE_CE_GEP;
607 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
608 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
609 Record.push_back(VE.getValueID(C->getOperand(i)));
610 }
611 break;
612 case Instruction::Select:
613 Code = bitc::CST_CODE_CE_SELECT;
614 Record.push_back(VE.getValueID(C->getOperand(0)));
615 Record.push_back(VE.getValueID(C->getOperand(1)));
616 Record.push_back(VE.getValueID(C->getOperand(2)));
617 break;
618 case Instruction::ExtractElement:
619 Code = bitc::CST_CODE_CE_EXTRACTELT;
620 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
621 Record.push_back(VE.getValueID(C->getOperand(0)));
622 Record.push_back(VE.getValueID(C->getOperand(1)));
623 break;
624 case Instruction::InsertElement:
625 Code = bitc::CST_CODE_CE_INSERTELT;
626 Record.push_back(VE.getValueID(C->getOperand(0)));
627 Record.push_back(VE.getValueID(C->getOperand(1)));
628 Record.push_back(VE.getValueID(C->getOperand(2)));
629 break;
630 case Instruction::ShuffleVector:
631 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
632 Record.push_back(VE.getValueID(C->getOperand(0)));
633 Record.push_back(VE.getValueID(C->getOperand(1)));
634 Record.push_back(VE.getValueID(C->getOperand(2)));
635 break;
636 case Instruction::ICmp:
637 case Instruction::FCmp:
638 Code = bitc::CST_CODE_CE_CMP;
639 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
640 Record.push_back(VE.getValueID(C->getOperand(0)));
641 Record.push_back(VE.getValueID(C->getOperand(1)));
642 Record.push_back(CE->getPredicate());
643 break;
644 }
645 } else {
646 assert(0 && "Unknown constant!");
647 }
648 Stream.EmitRecord(Code, Record, AbbrevToUse);
649 Record.clear();
650 }
651
652 Stream.ExitBlock();
653}
654
655static void WriteModuleConstants(const ValueEnumerator &VE,
656 BitstreamWriter &Stream) {
657 const ValueEnumerator::ValueList &Vals = VE.getValues();
658
659 // Find the first constant to emit, which is the first non-globalvalue value.
660 // We know globalvalues have been emitted by WriteModuleInfo.
661 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
662 if (!isa<GlobalValue>(Vals[i].first)) {
663 WriteConstants(i, Vals.size(), VE, Stream, true);
664 return;
665 }
666 }
667}
668
669/// PushValueAndType - The file has to encode both the value and type id for
670/// many values, because we need to know what type to create for forward
671/// references. However, most operands are not forward references, so this type
672/// field is not needed.
673///
674/// This function adds V's value ID to Vals. If the value ID is higher than the
675/// instruction ID, then it is a forward reference, and it also includes the
676/// type ID.
677static bool PushValueAndType(Value *V, unsigned InstID,
678 SmallVector<unsigned, 64> &Vals,
679 ValueEnumerator &VE) {
680 unsigned ValID = VE.getValueID(V);
681 Vals.push_back(ValID);
682 if (ValID >= InstID) {
683 Vals.push_back(VE.getTypeID(V->getType()));
684 return true;
685 }
686 return false;
687}
688
689/// WriteInstruction - Emit an instruction to the specified stream.
690static void WriteInstruction(const Instruction &I, unsigned InstID,
691 ValueEnumerator &VE, BitstreamWriter &Stream,
692 SmallVector<unsigned, 64> &Vals) {
693 unsigned Code = 0;
694 unsigned AbbrevToUse = 0;
695 switch (I.getOpcode()) {
696 default:
697 if (Instruction::isCast(I.getOpcode())) {
698 Code = bitc::FUNC_CODE_INST_CAST;
699 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
700 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
701 Vals.push_back(VE.getTypeID(I.getType()));
702 Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
703 } else {
704 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
705 Code = bitc::FUNC_CODE_INST_BINOP;
706 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
707 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
708 Vals.push_back(VE.getValueID(I.getOperand(1)));
709 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
710 }
711 break;
712
713 case Instruction::GetElementPtr:
714 Code = bitc::FUNC_CODE_INST_GEP;
715 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
716 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
717 break;
718 case Instruction::Select:
719 Code = bitc::FUNC_CODE_INST_SELECT;
720 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
721 Vals.push_back(VE.getValueID(I.getOperand(2)));
722 Vals.push_back(VE.getValueID(I.getOperand(0)));
723 break;
724 case Instruction::ExtractElement:
725 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
726 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
727 Vals.push_back(VE.getValueID(I.getOperand(1)));
728 break;
729 case Instruction::InsertElement:
730 Code = bitc::FUNC_CODE_INST_INSERTELT;
731 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
732 Vals.push_back(VE.getValueID(I.getOperand(1)));
733 Vals.push_back(VE.getValueID(I.getOperand(2)));
734 break;
735 case Instruction::ShuffleVector:
736 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
737 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
738 Vals.push_back(VE.getValueID(I.getOperand(1)));
739 Vals.push_back(VE.getValueID(I.getOperand(2)));
740 break;
741 case Instruction::ICmp:
742 case Instruction::FCmp:
743 Code = bitc::FUNC_CODE_INST_CMP;
744 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
745 Vals.push_back(VE.getValueID(I.getOperand(1)));
746 Vals.push_back(cast<CmpInst>(I).getPredicate());
747 break;
Devang Patel774ee9e2008-02-22 02:49:49 +0000748 case Instruction::GetResult:
749 Code = bitc::FUNC_CODE_INST_GETRESULT;
750 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
Devang Patelb7fbc8b2008-02-26 01:29:32 +0000751 Vals.push_back(cast<GetResultInst>(I).getIndex());
Devang Patel774ee9e2008-02-22 02:49:49 +0000752 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000753
Devang Patelb7fbc8b2008-02-26 01:29:32 +0000754 case Instruction::Ret:
755 {
756 Code = bitc::FUNC_CODE_INST_RET;
757 unsigned NumOperands = I.getNumOperands();
Devang Patelb7fbc8b2008-02-26 01:29:32 +0000758 if (NumOperands == 0)
759 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
760 else if (NumOperands == 1) {
761 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
762 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
763 } else {
764 for (unsigned i = 0, e = NumOperands; i != e; ++i)
765 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
766 }
767 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000768 break;
769 case Instruction::Br:
770 Code = bitc::FUNC_CODE_INST_BR;
771 Vals.push_back(VE.getValueID(I.getOperand(0)));
772 if (cast<BranchInst>(I).isConditional()) {
773 Vals.push_back(VE.getValueID(I.getOperand(1)));
774 Vals.push_back(VE.getValueID(I.getOperand(2)));
775 }
776 break;
777 case Instruction::Switch:
778 Code = bitc::FUNC_CODE_INST_SWITCH;
779 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
780 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
781 Vals.push_back(VE.getValueID(I.getOperand(i)));
782 break;
783 case Instruction::Invoke: {
784 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
785 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
786 Code = bitc::FUNC_CODE_INST_INVOKE;
787
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000788 const InvokeInst *II = cast<InvokeInst>(&I);
789 Vals.push_back(VE.getParamAttrID(II->getParamAttrs()));
790 Vals.push_back(II->getCallingConv());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000791 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest
792 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest
793 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
794
795 // Emit value #'s for the fixed parameters.
796 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
797 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param.
798
799 // Emit type/value pairs for varargs params.
800 if (FTy->isVarArg()) {
801 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
802 i != e; ++i)
803 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
804 }
805 break;
806 }
807 case Instruction::Unwind:
808 Code = bitc::FUNC_CODE_INST_UNWIND;
809 break;
810 case Instruction::Unreachable:
811 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
812 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
813 break;
814
815 case Instruction::PHI:
816 Code = bitc::FUNC_CODE_INST_PHI;
817 Vals.push_back(VE.getTypeID(I.getType()));
818 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
819 Vals.push_back(VE.getValueID(I.getOperand(i)));
820 break;
821
822 case Instruction::Malloc:
823 Code = bitc::FUNC_CODE_INST_MALLOC;
824 Vals.push_back(VE.getTypeID(I.getType()));
825 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
826 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
827 break;
828
829 case Instruction::Free:
830 Code = bitc::FUNC_CODE_INST_FREE;
831 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
832 break;
833
834 case Instruction::Alloca:
835 Code = bitc::FUNC_CODE_INST_ALLOCA;
836 Vals.push_back(VE.getTypeID(I.getType()));
837 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
838 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
839 break;
840
841 case Instruction::Load:
842 Code = bitc::FUNC_CODE_INST_LOAD;
843 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
844 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
845
846 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
847 Vals.push_back(cast<LoadInst>(I).isVolatile());
848 break;
849 case Instruction::Store:
Christopher Lamb44d62f62007-12-11 08:59:05 +0000850 Code = bitc::FUNC_CODE_INST_STORE2;
851 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
852 Vals.push_back(VE.getValueID(I.getOperand(0))); // val.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000853 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
854 Vals.push_back(cast<StoreInst>(I).isVolatile());
855 break;
856 case Instruction::Call: {
857 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
858 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
859
860 Code = bitc::FUNC_CODE_INST_CALL;
861
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000862 const CallInst *CI = cast<CallInst>(&I);
863 Vals.push_back(VE.getParamAttrID(CI->getParamAttrs()));
864 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
865 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000866
867 // Emit value #'s for the fixed parameters.
868 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
869 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param.
870
871 // Emit type/value pairs for varargs params.
872 if (FTy->isVarArg()) {
873 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
874 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
875 i != e; ++i)
876 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs
877 }
878 break;
879 }
880 case Instruction::VAArg:
881 Code = bitc::FUNC_CODE_INST_VAARG;
882 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
883 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
884 Vals.push_back(VE.getTypeID(I.getType())); // restype.
885 break;
886 }
887
888 Stream.EmitRecord(Code, Vals, AbbrevToUse);
889 Vals.clear();
890}
891
892// Emit names for globals/functions etc.
893static void WriteValueSymbolTable(const ValueSymbolTable &VST,
894 const ValueEnumerator &VE,
895 BitstreamWriter &Stream) {
896 if (VST.empty()) return;
897 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
898
899 // FIXME: Set up the abbrev, we know how many values there are!
900 // FIXME: We know if the type names can use 7-bit ascii.
901 SmallVector<unsigned, 64> NameVals;
902
903 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
904 SI != SE; ++SI) {
905
906 const ValueName &Name = *SI;
907
908 // Figure out the encoding to use for the name.
909 bool is7Bit = true;
910 bool isChar6 = true;
911 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
912 C != E; ++C) {
913 if (isChar6)
914 isChar6 = BitCodeAbbrevOp::isChar6(*C);
915 if ((unsigned char)*C & 128) {
916 is7Bit = false;
917 break; // don't bother scanning the rest.
918 }
919 }
920
921 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
922
923 // VST_ENTRY: [valueid, namechar x N]
924 // VST_BBENTRY: [bbid, namechar x N]
925 unsigned Code;
926 if (isa<BasicBlock>(SI->getValue())) {
927 Code = bitc::VST_CODE_BBENTRY;
928 if (isChar6)
929 AbbrevToUse = VST_BBENTRY_6_ABBREV;
930 } else {
931 Code = bitc::VST_CODE_ENTRY;
932 if (isChar6)
933 AbbrevToUse = VST_ENTRY_6_ABBREV;
934 else if (is7Bit)
935 AbbrevToUse = VST_ENTRY_7_ABBREV;
936 }
937
938 NameVals.push_back(VE.getValueID(SI->getValue()));
939 for (const char *P = Name.getKeyData(),
940 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
941 NameVals.push_back((unsigned char)*P);
942
943 // Emit the finished record.
944 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
945 NameVals.clear();
946 }
947 Stream.ExitBlock();
948}
949
950/// WriteFunction - Emit a function body to the module stream.
951static void WriteFunction(const Function &F, ValueEnumerator &VE,
952 BitstreamWriter &Stream) {
953 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
954 VE.incorporateFunction(F);
955
956 SmallVector<unsigned, 64> Vals;
957
958 // Emit the number of basic blocks, so the reader can create them ahead of
959 // time.
960 Vals.push_back(VE.getBasicBlocks().size());
961 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
962 Vals.clear();
963
964 // If there are function-local constants, emit them now.
965 unsigned CstStart, CstEnd;
966 VE.getFunctionConstantRange(CstStart, CstEnd);
967 WriteConstants(CstStart, CstEnd, VE, Stream, false);
968
969 // Keep a running idea of what the instruction ID is.
970 unsigned InstID = CstEnd;
971
972 // Finally, emit all the instructions, in order.
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +0000973 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000974 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
975 I != E; ++I) {
976 WriteInstruction(*I, InstID, VE, Stream, Vals);
977 if (I->getType() != Type::VoidTy)
978 ++InstID;
979 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000980
981 // Emit names for all the instructions etc.
982 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
983
984 VE.purgeFunction();
985 Stream.ExitBlock();
986}
987
988/// WriteTypeSymbolTable - Emit a block for the specified type symtab.
989static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
990 const ValueEnumerator &VE,
991 BitstreamWriter &Stream) {
992 if (TST.empty()) return;
993
994 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
995
996 // 7-bit fixed width VST_CODE_ENTRY strings.
997 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
998 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1000 Log2_32_Ceil(VE.getTypes().size()+1)));
1001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1003 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1004
1005 SmallVector<unsigned, 64> NameVals;
1006
1007 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1008 TI != TE; ++TI) {
1009 // TST_ENTRY: [typeid, namechar x N]
1010 NameVals.push_back(VE.getTypeID(TI->second));
1011
1012 const std::string &Str = TI->first;
1013 bool is7Bit = true;
1014 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1015 NameVals.push_back((unsigned char)Str[i]);
1016 if (Str[i] & 128)
1017 is7Bit = false;
1018 }
1019
1020 // Emit the finished record.
1021 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1022 NameVals.clear();
1023 }
1024
1025 Stream.ExitBlock();
1026}
1027
1028// Emit blockinfo, which defines the standard abbreviations etc.
1029static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1030 // We only want to emit block info records for blocks that have multiple
1031 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
1032 // blocks can defined their abbrevs inline.
1033 Stream.EnterBlockInfoBlock(2);
1034
1035 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1036 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1041 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1042 Abbv) != VST_ENTRY_8_ABBREV)
1043 assert(0 && "Unexpected abbrev ordering!");
1044 }
1045
1046 { // 7-bit fixed width VST_ENTRY strings.
1047 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1048 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1052 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1053 Abbv) != VST_ENTRY_7_ABBREV)
1054 assert(0 && "Unexpected abbrev ordering!");
1055 }
1056 { // 6-bit char6 VST_ENTRY strings.
1057 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1058 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1062 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1063 Abbv) != VST_ENTRY_6_ABBREV)
1064 assert(0 && "Unexpected abbrev ordering!");
1065 }
1066 { // 6-bit char6 VST_BBENTRY strings.
1067 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1068 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1072 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1073 Abbv) != VST_BBENTRY_6_ABBREV)
1074 assert(0 && "Unexpected abbrev ordering!");
1075 }
1076
1077
1078
1079 { // SETTYPE abbrev for CONSTANTS_BLOCK.
1080 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1081 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1083 Log2_32_Ceil(VE.getTypes().size()+1)));
1084 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1085 Abbv) != CONSTANTS_SETTYPE_ABBREV)
1086 assert(0 && "Unexpected abbrev ordering!");
1087 }
1088
1089 { // INTEGER abbrev for CONSTANTS_BLOCK.
1090 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1091 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1093 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1094 Abbv) != CONSTANTS_INTEGER_ABBREV)
1095 assert(0 && "Unexpected abbrev ordering!");
1096 }
1097
1098 { // CE_CAST abbrev for CONSTANTS_BLOCK.
1099 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1100 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
1102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
1103 Log2_32_Ceil(VE.getTypes().size()+1)));
1104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
1105
1106 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1107 Abbv) != CONSTANTS_CE_CAST_Abbrev)
1108 assert(0 && "Unexpected abbrev ordering!");
1109 }
1110 { // NULL abbrev for CONSTANTS_BLOCK.
1111 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1112 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1113 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1114 Abbv) != CONSTANTS_NULL_Abbrev)
1115 assert(0 && "Unexpected abbrev ordering!");
1116 }
1117
1118 // FIXME: This should only use space for first class types!
1119
1120 { // INST_LOAD abbrev for FUNCTION_BLOCK.
1121 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1122 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1126 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1127 Abbv) != FUNCTION_INST_LOAD_ABBREV)
1128 assert(0 && "Unexpected abbrev ordering!");
1129 }
1130 { // INST_BINOP abbrev for FUNCTION_BLOCK.
1131 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1132 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1136 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1137 Abbv) != FUNCTION_INST_BINOP_ABBREV)
1138 assert(0 && "Unexpected abbrev ordering!");
1139 }
1140 { // INST_CAST abbrev for FUNCTION_BLOCK.
1141 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1142 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
1144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
1145 Log2_32_Ceil(VE.getTypes().size()+1)));
1146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1147 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1148 Abbv) != FUNCTION_INST_CAST_ABBREV)
1149 assert(0 && "Unexpected abbrev ordering!");
1150 }
1151
1152 { // INST_RET abbrev for FUNCTION_BLOCK.
1153 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1154 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1155 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1156 Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1157 assert(0 && "Unexpected abbrev ordering!");
1158 }
1159 { // INST_RET abbrev for FUNCTION_BLOCK.
1160 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1161 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1163 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1164 Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1165 assert(0 && "Unexpected abbrev ordering!");
1166 }
1167 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1168 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1169 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1170 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1171 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1172 assert(0 && "Unexpected abbrev ordering!");
1173 }
1174
1175 Stream.ExitBlock();
1176}
1177
1178
1179/// WriteModule - Emit the specified module to the bitstream.
1180static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1181 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1182
1183 // Emit the version number if it is non-zero.
1184 if (CurVersion) {
1185 SmallVector<unsigned, 1> Vals;
1186 Vals.push_back(CurVersion);
1187 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1188 }
1189
1190 // Analyze the module, enumerating globals, functions, etc.
1191 ValueEnumerator VE(M);
1192
1193 // Emit blockinfo, which defines the standard abbreviations etc.
1194 WriteBlockInfo(VE, Stream);
1195
1196 // Emit information about parameter attributes.
1197 WriteParamAttrTable(VE, Stream);
1198
1199 // Emit information describing all of the types in the module.
1200 WriteTypeTable(VE, Stream);
1201
1202 // Emit top-level description of module, including target triple, inline asm,
1203 // descriptors for global variables, and function prototype info.
1204 WriteModuleInfo(M, VE, Stream);
1205
1206 // Emit constants.
1207 WriteModuleConstants(VE, Stream);
1208
1209 // If we have any aggregate values in the value table, purge them - these can
1210 // only be used to initialize global variables. Doing so makes the value
1211 // namespace smaller for code in functions.
1212 int NumNonAggregates = VE.PurgeAggregateValues();
1213 if (NumNonAggregates != -1) {
1214 SmallVector<unsigned, 1> Vals;
1215 Vals.push_back(NumNonAggregates);
1216 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1217 }
1218
1219 // Emit function bodies.
1220 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1221 if (!I->isDeclaration())
1222 WriteFunction(*I, VE, Stream);
1223
1224 // Emit the type symbol table information.
1225 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1226
1227 // Emit names for globals/functions etc.
1228 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1229
1230 Stream.ExitBlock();
1231}
1232
1233
1234/// WriteBitcodeToFile - Write the specified module to the specified output
1235/// stream.
1236void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1237 std::vector<unsigned char> Buffer;
1238 BitstreamWriter Stream(Buffer);
1239
1240 Buffer.reserve(256*1024);
1241
1242 // Emit the file header.
1243 Stream.Emit((unsigned)'B', 8);
1244 Stream.Emit((unsigned)'C', 8);
1245 Stream.Emit(0x0, 4);
1246 Stream.Emit(0xC, 4);
1247 Stream.Emit(0xE, 4);
1248 Stream.Emit(0xD, 4);
1249
1250 // Emit the module.
1251 WriteModule(M, Stream);
1252
1253 // Write the generated bitstream to "Out".
1254 Out.write((char*)&Buffer.front(), Buffer.size());
1255
1256 // Make sure it hits disk now.
1257 Out.flush();
1258}