blob: 56ce189fca6820ca346d632f6e63a8d6c6012b42 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
3// This file defines a simple peephole instruction selector for the x86 platform
4//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
11#include "llvm/iTerminators.h"
Brian Gaeke1749d632002-11-07 17:59:21 +000012#include "llvm/iOperators.h"
Brian Gaekea1719c92002-10-31 23:03:59 +000013#include "llvm/iOther.h"
Chris Lattner51b49a92002-11-02 19:45:49 +000014#include "llvm/iPHINode.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "llvm/iMemory.h"
Chris Lattner72614082002-10-25 22:55:53 +000016#include "llvm/Type.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000017#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000018#include "llvm/Pass.h"
Chris Lattner341a9372002-10-29 17:43:55 +000019#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000020#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/Target/TargetMachine.h"
Chris Lattner72614082002-10-25 22:55:53 +000022#include "llvm/Support/InstVisitor.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000023#include "llvm/Target/MRegisterInfo.h"
24#include <map>
Chris Lattner72614082002-10-25 22:55:53 +000025
Chris Lattner06925362002-11-17 21:56:38 +000026using namespace MOTy; // Get Use, Def, UseAndDef
27
Chris Lattner72614082002-10-25 22:55:53 +000028namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000029 struct ISel : public FunctionPass, InstVisitor<ISel> {
30 TargetMachine &TM;
Chris Lattner341a9372002-10-29 17:43:55 +000031 MachineFunction *F; // The function we are compiling into
32 MachineBasicBlock *BB; // The current MBB we are compiling
Chris Lattner72614082002-10-25 22:55:53 +000033
34 unsigned CurReg;
35 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
36
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000037 ISel(TargetMachine &tm)
38 : TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
Chris Lattner72614082002-10-25 22:55:53 +000039
40 /// runOnFunction - Top level implementation of instruction selection for
41 /// the entire function.
42 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000043 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000044 F = &MachineFunction::construct(&Fn, TM);
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000045 visit(Fn);
Chris Lattner72614082002-10-25 22:55:53 +000046 RegMap.clear();
Chris Lattner94e8ee22002-11-21 17:26:58 +000047 CurReg = MRegisterInfo::FirstVirtualRegister;
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000048 F = 0;
Chris Lattner72614082002-10-25 22:55:53 +000049 return false; // We never modify the LLVM itself.
50 }
51
52 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000053 /// block. This simply creates a new MachineBasicBlock to emit code into
54 /// and adds it to the current MachineFunction. Subsequent visit* for
55 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +000056 ///
57 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner42c77862002-10-30 00:47:40 +000058 BB = new MachineBasicBlock(&LLVM_BB);
Chris Lattner72614082002-10-25 22:55:53 +000059 // FIXME: Use the auto-insert form when it's available
60 F->getBasicBlockList().push_back(BB);
61 }
62
63 // Visitation methods for various instructions. These methods simply emit
64 // fixed X86 code for each instruction.
65 //
Brian Gaekefa8d5712002-11-22 11:07:01 +000066
67 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +000068 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +000069 void visitBranchInst(BranchInst &BI);
Brian Gaekefa8d5712002-11-22 11:07:01 +000070 void visitCallInst(CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +000071
72 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +000073 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +000074 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
75 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattnerca9671d2002-11-02 20:28:58 +000076 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +000077
Chris Lattnerf01729e2002-11-02 20:54:46 +000078 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
79 void visitRem(BinaryOperator &B) { visitDivRem(B); }
80 void visitDivRem(BinaryOperator &B);
81
Chris Lattnere2954c82002-11-02 20:04:26 +000082 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +000083 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
84 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
85 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +000086
87 // Binary comparison operators
Chris Lattner05093a52002-11-21 15:52:38 +000088 void visitSetCCInst(SetCondInst &I, unsigned OpNum);
89 void visitSetEQ(SetCondInst &I) { visitSetCCInst(I, 0); }
90 void visitSetNE(SetCondInst &I) { visitSetCCInst(I, 1); }
91 void visitSetLT(SetCondInst &I) { visitSetCCInst(I, 2); }
92 void visitSetGT(SetCondInst &I) { visitSetCCInst(I, 3); }
93 void visitSetLE(SetCondInst &I) { visitSetCCInst(I, 4); }
94 void visitSetGE(SetCondInst &I) { visitSetCCInst(I, 5); }
Chris Lattner6fc3c522002-11-17 21:11:55 +000095
96 // Memory Instructions
97 void visitLoadInst(LoadInst &I);
98 void visitStoreInst(StoreInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +000099
100 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000101 void visitShiftInst(ShiftInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000102 void visitPHINode(PHINode &I);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000103 void visitCastInst(CastInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000104
105 void visitInstruction(Instruction &I) {
106 std::cerr << "Cannot instruction select: " << I;
107 abort();
108 }
109
Brian Gaekec2505982002-11-30 11:57:28 +0000110 void promote32 (const unsigned targetReg, Value *v);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000111
112 /// copyConstantToRegister - Output the instructions required to put the
113 /// specified constant into the specified register.
114 ///
115 void copyConstantToRegister(Constant *C, unsigned Reg);
116
Chris Lattner72614082002-10-25 22:55:53 +0000117 /// getReg - This method turns an LLVM value into a register number. This
118 /// is guaranteed to produce the same register number for a particular value
119 /// every time it is queried.
120 ///
121 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
122 unsigned getReg(Value *V) {
123 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000124 if (Reg == 0) {
Chris Lattner72614082002-10-25 22:55:53 +0000125 Reg = CurReg++;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000126 RegMap[V] = Reg;
127
128 // Add the mapping of regnumber => reg class to MachineFunction
129 F->addRegMap(Reg,
130 TM.getRegisterInfo()->getRegClassForType(V->getType()));
131 }
Chris Lattner72614082002-10-25 22:55:53 +0000132
Chris Lattner6f8fd252002-10-27 21:23:43 +0000133 // If this operand is a constant, emit the code to copy the constant into
134 // the register here...
135 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000136 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattnerc5291f52002-10-27 21:16:59 +0000137 copyConstantToRegister(C, Reg);
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000138 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
139 // Move the address of the global into the register
140 BuildMI(BB, X86::MOVir32, 1, Reg).addReg(GV);
141 } else {
142 assert(0 && "Don't know how to handle a value of this type!");
143 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000144
Chris Lattner72614082002-10-25 22:55:53 +0000145 return Reg;
146 }
Chris Lattner72614082002-10-25 22:55:53 +0000147 };
148}
149
Chris Lattner43189d12002-11-17 20:07:45 +0000150/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
151/// Representation.
152///
153enum TypeClass {
154 cByte, cShort, cInt, cLong, cFloat, cDouble
155};
156
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000157/// getClass - Turn a primitive type into a "class" number which is based on the
158/// size of the type, and whether or not it is floating point.
159///
Chris Lattner43189d12002-11-17 20:07:45 +0000160static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000161 switch (Ty->getPrimitiveID()) {
162 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000163 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000164 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000165 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000166 case Type::IntTyID:
167 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000168 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000169
170 case Type::LongTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000171 case Type::ULongTyID: return cLong; // Longs are class #3
172 case Type::FloatTyID: return cFloat; // Float is class #4
173 case Type::DoubleTyID: return cDouble; // Doubles are class #5
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000174 default:
175 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000176 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000177 }
178}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000179
Chris Lattner06925362002-11-17 21:56:38 +0000180
Chris Lattnerc5291f52002-10-27 21:16:59 +0000181/// copyConstantToRegister - Output the instructions required to put the
182/// specified constant into the specified register.
183///
184void ISel::copyConstantToRegister(Constant *C, unsigned R) {
185 assert (!isa<ConstantExpr>(C) && "Constant expressions not yet handled!\n");
186
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000187 if (C->getType()->isIntegral()) {
188 unsigned Class = getClass(C->getType());
189 assert(Class != 3 && "Type not handled yet!");
190
191 static const unsigned IntegralOpcodeTab[] = {
192 X86::MOVir8, X86::MOVir16, X86::MOVir32
193 };
194
195 if (C->getType()->isSigned()) {
196 ConstantSInt *CSI = cast<ConstantSInt>(C);
197 BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue());
198 } else {
199 ConstantUInt *CUI = cast<ConstantUInt>(C);
200 BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
201 }
202 } else {
203 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000204 }
205}
206
Chris Lattner06925362002-11-17 21:56:38 +0000207
Brian Gaeke1749d632002-11-07 17:59:21 +0000208/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
209/// register, then move it to wherever the result should be.
210/// We handle FP setcc instructions by pushing them, doing a
211/// compare-and-pop-twice, and then copying the concodes to the main
212/// processor's concodes (I didn't make this up, it's in the Intel manual)
213///
Chris Lattner05093a52002-11-21 15:52:38 +0000214void ISel::visitSetCCInst(SetCondInst &I, unsigned OpNum) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000215 // The arguments are already supposed to be of the same type.
Chris Lattner05093a52002-11-21 15:52:38 +0000216 const Type *CompTy = I.getOperand(0)->getType();
217 unsigned reg1 = getReg(I.getOperand(0));
218 unsigned reg2 = getReg(I.getOperand(1));
219
220 unsigned Class = getClass(CompTy);
221 switch (Class) {
222 // Emit: cmp <var1>, <var2> (do the comparison). We can
223 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
224 // 32-bit.
225 case cByte:
226 BuildMI (BB, X86::CMPrr8, 2).addReg (reg1).addReg (reg2);
227 break;
228 case cShort:
229 BuildMI (BB, X86::CMPrr16, 2).addReg (reg1).addReg (reg2);
230 break;
231 case cInt:
232 BuildMI (BB, X86::CMPrr32, 2).addReg (reg1).addReg (reg2);
233 break;
234
235 // Push the variables on the stack with fldl opcodes.
236 // FIXME: assuming var1, var2 are in memory, if not, spill to
237 // stack first
238 case cFloat: // Floats
Chris Lattner3a9a6932002-11-21 22:49:20 +0000239 BuildMI (BB, X86::FLDr4, 1).addReg (reg1);
240 BuildMI (BB, X86::FLDr4, 1).addReg (reg2);
Chris Lattner05093a52002-11-21 15:52:38 +0000241 break;
242 case cDouble: // Doubles
Chris Lattner3a9a6932002-11-21 22:49:20 +0000243 BuildMI (BB, X86::FLDr8, 1).addReg (reg1);
244 BuildMI (BB, X86::FLDr8, 1).addReg (reg2);
Chris Lattner05093a52002-11-21 15:52:38 +0000245 break;
246 case cLong:
247 default:
248 visitInstruction(I);
249 }
250
251 if (CompTy->isFloatingPoint()) {
252 // (Non-trapping) compare and pop twice.
253 BuildMI (BB, X86::FUCOMPP, 0);
254 // Move fp status word (concodes) to ax.
255 BuildMI (BB, X86::FNSTSWr8, 1, X86::AX);
256 // Load real concodes from ax.
257 BuildMI (BB, X86::SAHF, 1).addReg(X86::AH);
258 }
259
Brian Gaeke1749d632002-11-07 17:59:21 +0000260 // Emit setOp instruction (extract concode; clobbers ax),
261 // using the following mapping:
262 // LLVM -> X86 signed X86 unsigned
263 // ----- ----- -----
264 // seteq -> sete sete
265 // setne -> setne setne
266 // setlt -> setl setb
267 // setgt -> setg seta
268 // setle -> setle setbe
269 // setge -> setge setae
Chris Lattner05093a52002-11-21 15:52:38 +0000270
271 static const unsigned OpcodeTab[2][6] = {
Chris Lattner4b4e9dd2002-11-21 16:19:42 +0000272 {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAr, X86::SETBEr, X86::SETAEr},
273 {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGr, X86::SETLEr, X86::SETGEr},
Chris Lattner05093a52002-11-21 15:52:38 +0000274 };
275
276 BuildMI(BB, OpcodeTab[CompTy->isSigned()][OpNum], 0, X86::AL);
277
Brian Gaeke1749d632002-11-07 17:59:21 +0000278 // Put it in the result using a move.
Chris Lattner05093a52002-11-21 15:52:38 +0000279 BuildMI (BB, X86::MOVrr8, 1, getReg(I)).addReg(X86::AL);
Brian Gaeke1749d632002-11-07 17:59:21 +0000280}
Chris Lattner51b49a92002-11-02 19:45:49 +0000281
Brian Gaekec2505982002-11-30 11:57:28 +0000282/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
283/// operand, in the specified target register.
284void
285ISel::promote32 (const unsigned targetReg, Value *v)
286{
287 unsigned vReg = getReg (v);
288 unsigned Class = getClass (v->getType ());
289 bool isUnsigned = v->getType ()->isUnsigned ();
290 assert (((Class == cByte) || (Class == cShort) || (Class == cInt))
291 && "Unpromotable operand class in promote32");
292 switch (Class)
293 {
294 case cByte:
295 // Extend value into target register (8->32)
296 if (isUnsigned)
297 BuildMI (BB, X86::MOVZXr32r8, 1, targetReg).addReg (vReg);
298 else
299 BuildMI (BB, X86::MOVSXr32r8, 1, targetReg).addReg (vReg);
300 break;
301 case cShort:
302 // Extend value into target register (16->32)
303 if (isUnsigned)
304 BuildMI (BB, X86::MOVZXr32r16, 1, targetReg).addReg (vReg);
305 else
306 BuildMI (BB, X86::MOVSXr32r16, 1, targetReg).addReg (vReg);
307 break;
308 case cInt:
309 // Move value into target register (32->32)
310 BuildMI (BB, X86::MOVrr32, 1, targetReg).addReg (vReg);
311 break;
312 }
313}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000314
Chris Lattner72614082002-10-25 22:55:53 +0000315/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
316/// we have the following possibilities:
317///
318/// ret void: No return value, simply emit a 'ret' instruction
319/// ret sbyte, ubyte : Extend value into EAX and return
320/// ret short, ushort: Extend value into EAX and return
321/// ret int, uint : Move value into EAX and return
322/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000323/// ret long, ulong : Move value into EAX/EDX and return
324/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000325///
Brian Gaekec2505982002-11-30 11:57:28 +0000326void
327ISel::visitReturnInst (ReturnInst &I)
328{
329 if (I.getNumOperands () == 0)
330 {
331 // Emit a 'ret' instruction
332 BuildMI (BB, X86::RET, 0);
333 return;
334 }
335 Value *rv = I.getOperand (0);
336 unsigned Class = getClass (rv->getType ());
337 switch (Class)
338 {
339 // integral return values: extend or move into EAX and return.
340 case cByte:
341 case cShort:
342 case cInt:
343 promote32 (X86::EAX, rv);
344 break;
345 // ret float/double: top of FP stack
346 // FLD <val>
347 case cFloat: // Floats
348 BuildMI (BB, X86::FLDr4, 1).addReg (getReg (rv));
349 break;
350 case cDouble: // Doubles
351 BuildMI (BB, X86::FLDr8, 1).addReg (getReg (rv));
352 break;
353 case cLong:
354 // ret long: use EAX(least significant 32 bits)/EDX (most
355 // significant 32)...uh, I think so Brain, but how do i call
356 // up the two parts of the value from inside this mouse
357 // cage? *zort*
358 default:
359 visitInstruction (I);
360 }
Chris Lattner43189d12002-11-17 20:07:45 +0000361 // Emit a 'ret' instruction
Brian Gaekec2505982002-11-30 11:57:28 +0000362 BuildMI (BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000363}
364
Chris Lattner51b49a92002-11-02 19:45:49 +0000365/// visitBranchInst - Handle conditional and unconditional branches here. Note
366/// that since code layout is frozen at this point, that if we are trying to
367/// jump to a block that is the immediate successor of the current block, we can
368/// just make a fall-through. (but we don't currently).
369///
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000370void
371ISel::visitBranchInst (BranchInst & BI)
372{
373 if (BI.isConditional ())
374 {
375 BasicBlock *ifTrue = BI.getSuccessor (0);
376 BasicBlock *ifFalse = BI.getSuccessor (1); // this is really unobvious
Chris Lattner2df035b2002-11-02 19:27:56 +0000377
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000378 // simplest thing I can think of: compare condition with zero,
379 // followed by jump-if-equal to ifFalse, and jump-if-nonequal to
380 // ifTrue
381 unsigned int condReg = getReg (BI.getCondition ());
Chris Lattner97ad9e12002-11-21 01:59:50 +0000382 BuildMI (BB, X86::CMPri8, 2).addReg (condReg).addZImm (0);
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000383 BuildMI (BB, X86::JNE, 1).addPCDisp (BI.getSuccessor (0));
384 BuildMI (BB, X86::JE, 1).addPCDisp (BI.getSuccessor (1));
385 }
386 else // unconditional branch
387 {
388 BuildMI (BB, X86::JMP, 1).addPCDisp (BI.getSuccessor (0));
389 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000390}
391
Brian Gaeke18a20212002-11-29 12:01:58 +0000392/// visitCallInst - Push args on stack and do a procedure call instruction.
393void
394ISel::visitCallInst (CallInst & CI)
395{
396 // Push the arguments on the stack in reverse order, as specified by
397 // the ABI.
Chris Lattnerd852c152002-12-03 20:30:12 +0000398 for (unsigned i = CI.getNumOperands()-1; i >= 1; --i)
Brian Gaeke18a20212002-11-29 12:01:58 +0000399 {
400 Value *v = CI.getOperand (i);
Brian Gaeke18a20212002-11-29 12:01:58 +0000401 switch (getClass (v->getType ()))
402 {
Brian Gaekec2505982002-11-30 11:57:28 +0000403 case cByte:
404 case cShort:
Brian Gaekebb25f2f2002-12-03 00:51:09 +0000405 // Promote V to 32 bits wide, and move the result into EAX,
406 // then push EAX.
Brian Gaekec2505982002-11-30 11:57:28 +0000407 promote32 (X86::EAX, v);
408 BuildMI (BB, X86::PUSHr32, 1).addReg (X86::EAX);
409 break;
Brian Gaeke18a20212002-11-29 12:01:58 +0000410 case cInt:
411 case cFloat:
Chris Lattnerd852c152002-12-03 20:30:12 +0000412 BuildMI (BB, X86::PUSHr32, 1).addReg(getReg(v));
Brian Gaeke18a20212002-11-29 12:01:58 +0000413 break;
414 default:
Brian Gaekebb25f2f2002-12-03 00:51:09 +0000415 // FIXME: long/ulong/double args not handled.
Brian Gaeke18a20212002-11-29 12:01:58 +0000416 visitInstruction (CI);
417 break;
418 }
419 }
420 // Emit a CALL instruction with PC-relative displacement.
421 BuildMI (BB, X86::CALLpcrel32, 1).addPCDisp (CI.getCalledValue ());
Brian Gaekefa8d5712002-11-22 11:07:01 +0000422}
Chris Lattner2df035b2002-11-02 19:27:56 +0000423
Chris Lattner68aad932002-11-02 20:13:22 +0000424/// visitSimpleBinary - Implement simple binary operators for integral types...
425/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
426/// 4 for Xor.
427///
428void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
429 if (B.getType() == Type::BoolTy) // FIXME: Handle bools for logicals
Chris Lattnere2954c82002-11-02 20:04:26 +0000430 visitInstruction(B);
431
432 unsigned Class = getClass(B.getType());
433 if (Class > 2) // FIXME: Handle longs
434 visitInstruction(B);
435
436 static const unsigned OpcodeTab[][4] = {
Chris Lattner68aad932002-11-02 20:13:22 +0000437 // Arithmetic operators
438 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 }, // ADD
439 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 }, // SUB
440
441 // Bitwise operators
Chris Lattnere2954c82002-11-02 20:04:26 +0000442 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
443 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
444 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
445 };
446
447 unsigned Opcode = OpcodeTab[OperatorClass][Class];
448 unsigned Op0r = getReg(B.getOperand(0));
449 unsigned Op1r = getReg(B.getOperand(1));
450 BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r);
451}
452
Chris Lattnerca9671d2002-11-02 20:28:58 +0000453/// visitMul - Multiplies are not simple binary operators because they must deal
454/// with the EAX register explicitly.
455///
456void ISel::visitMul(BinaryOperator &I) {
457 unsigned Class = getClass(I.getType());
458 if (Class > 2) // FIXME: Handle longs
459 visitInstruction(I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000460
Chris Lattnerca9671d2002-11-02 20:28:58 +0000461 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
462 static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 };
463 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
464
Chris Lattner06925362002-11-17 21:56:38 +0000465 unsigned Reg = Regs[Class];
Chris Lattner06925362002-11-17 21:56:38 +0000466 unsigned Op0Reg = getReg(I.getOperand(0));
467 unsigned Op1Reg = getReg(I.getOperand(1));
Chris Lattnerca9671d2002-11-02 20:28:58 +0000468
469 // Put the first operand into one of the A registers...
470 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
471
Chris Lattner06925362002-11-17 21:56:38 +0000472 // Emit the appropriate multiply instruction...
Chris Lattner92845e32002-11-21 18:54:29 +0000473 BuildMI(BB, MulOpcode[Class], 1).addReg(Op1Reg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000474
475 // Put the result into the destination register...
476 BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +0000477}
Chris Lattnerca9671d2002-11-02 20:28:58 +0000478
Chris Lattner06925362002-11-17 21:56:38 +0000479
Chris Lattnerf01729e2002-11-02 20:54:46 +0000480/// visitDivRem - Handle division and remainder instructions... these
481/// instruction both require the same instructions to be generated, they just
482/// select the result from a different register. Note that both of these
483/// instructions work differently for signed and unsigned operands.
484///
485void ISel::visitDivRem(BinaryOperator &I) {
486 unsigned Class = getClass(I.getType());
487 if (Class > 2) // FIXME: Handle longs
488 visitInstruction(I);
489
490 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
491 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Brian Gaeke6559bb92002-11-14 22:32:30 +0000492 static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ };
Chris Lattnerf01729e2002-11-02 20:54:46 +0000493 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
494 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
495
496 static const unsigned DivOpcode[][4] = {
497 { X86::DIVrr8 , X86::DIVrr16 , X86::DIVrr32 , 0 }, // Unsigned division
498 { X86::IDIVrr8, X86::IDIVrr16, X86::IDIVrr32, 0 }, // Signed division
499 };
500
501 bool isSigned = I.getType()->isSigned();
502 unsigned Reg = Regs[Class];
503 unsigned ExtReg = ExtRegs[Class];
Chris Lattner6fc3c522002-11-17 21:11:55 +0000504 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +0000505 unsigned Op1Reg = getReg(I.getOperand(1));
506
507 // Put the first operand into one of the A registers...
508 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
509
510 if (isSigned) {
511 // Emit a sign extension instruction...
Chris Lattnera4978cc2002-12-01 23:24:58 +0000512 BuildMI(BB, ExtOpcode[Class], 0);
Chris Lattnerf01729e2002-11-02 20:54:46 +0000513 } else {
514 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
515 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
516 }
517
Chris Lattner06925362002-11-17 21:56:38 +0000518 // Emit the appropriate divide or remainder instruction...
Chris Lattner92845e32002-11-21 18:54:29 +0000519 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +0000520
Chris Lattnerf01729e2002-11-02 20:54:46 +0000521 // Figure out which register we want to pick the result out of...
522 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
523
Chris Lattnerf01729e2002-11-02 20:54:46 +0000524 // Put the result into the destination register...
525 BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000526}
Chris Lattnere2954c82002-11-02 20:04:26 +0000527
Chris Lattner06925362002-11-17 21:56:38 +0000528
Brian Gaekea1719c92002-10-31 23:03:59 +0000529/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
530/// for constant immediate shift values, and for constant immediate
531/// shift values equal to 1. Even the general case is sort of special,
532/// because the shift amount has to be in CL, not just any old register.
533///
Chris Lattnerf01729e2002-11-02 20:54:46 +0000534void ISel::visitShiftInst (ShiftInst &I) {
535 unsigned Op0r = getReg (I.getOperand(0));
536 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +0000537 bool isLeftShift = I.getOpcode() == Instruction::Shl;
538 bool isOperandSigned = I.getType()->isUnsigned();
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000539 unsigned OperandClass = getClass(I.getType());
540
541 if (OperandClass > 2)
542 visitInstruction(I); // Can't handle longs yet!
Chris Lattner796df732002-11-02 00:44:25 +0000543
Brian Gaekea1719c92002-10-31 23:03:59 +0000544 if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1)))
545 {
Chris Lattner796df732002-11-02 00:44:25 +0000546 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
547 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
548 unsigned char shAmt = CUI->getValue();
549
Chris Lattnere9913f22002-11-02 01:41:55 +0000550 static const unsigned ConstantOperand[][4] = {
551 { X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 }, // SHR
552 { X86::SARir8, X86::SARir16, X86::SARir32, 0 }, // SAR
553 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SHL
554 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000555 };
556
Chris Lattnere9913f22002-11-02 01:41:55 +0000557 const unsigned *OpTab = // Figure out the operand table to use
558 ConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000559
Brian Gaekea1719c92002-10-31 23:03:59 +0000560 // Emit: <insn> reg, shamt (shift-by-immediate opcode "ir" form.)
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000561 BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt);
Brian Gaekea1719c92002-10-31 23:03:59 +0000562 }
563 else
564 {
565 // The shift amount is non-constant.
566 //
567 // In fact, you can only shift with a variable shift amount if
568 // that amount is already in the CL register, so we have to put it
569 // there first.
570 //
Chris Lattnere9913f22002-11-02 01:41:55 +0000571
Brian Gaekea1719c92002-10-31 23:03:59 +0000572 // Emit: move cl, shiftAmount (put the shift amount in CL.)
Chris Lattnerca9671d2002-11-02 20:28:58 +0000573 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000574
575 // This is a shift right (SHR).
Chris Lattnere9913f22002-11-02 01:41:55 +0000576 static const unsigned NonConstantOperand[][4] = {
577 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 }, // SHR
578 { X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 }, // SAR
579 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SHL
580 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000581 };
582
Chris Lattnere9913f22002-11-02 01:41:55 +0000583 const unsigned *OpTab = // Figure out the operand table to use
584 NonConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000585
Chris Lattner3a9a6932002-11-21 22:49:20 +0000586 BuildMI(BB, OpTab[OperandClass], 1, DestReg).addReg(Op0r);
Brian Gaekea1719c92002-10-31 23:03:59 +0000587 }
588}
589
Chris Lattner06925362002-11-17 21:56:38 +0000590
Chris Lattner6fc3c522002-11-17 21:11:55 +0000591/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
592/// instruction.
593///
594void ISel::visitLoadInst(LoadInst &I) {
595 unsigned Class = getClass(I.getType());
596 if (Class > 2) // FIXME: Handle longs and others...
597 visitInstruction(I);
598
599 static const unsigned Opcode[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
600
601 unsigned AddressReg = getReg(I.getOperand(0));
602 addDirectMem(BuildMI(BB, Opcode[Class], 4, getReg(I)), AddressReg);
603}
604
Chris Lattner06925362002-11-17 21:56:38 +0000605
Chris Lattner6fc3c522002-11-17 21:11:55 +0000606/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
607/// instruction.
608///
609void ISel::visitStoreInst(StoreInst &I) {
610 unsigned Class = getClass(I.getOperand(0)->getType());
611 if (Class > 2) // FIXME: Handle longs and others...
612 visitInstruction(I);
613
614 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
615
616 unsigned ValReg = getReg(I.getOperand(0));
617 unsigned AddressReg = getReg(I.getOperand(1));
618 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
619}
620
621
Chris Lattnere2954c82002-11-02 20:04:26 +0000622/// visitPHINode - Turn an LLVM PHI node into an X86 PHI node...
623///
624void ISel::visitPHINode(PHINode &PN) {
625 MachineInstr *MI = BuildMI(BB, X86::PHI, PN.getNumOperands(), getReg(PN));
Chris Lattner72614082002-10-25 22:55:53 +0000626
Chris Lattnere2954c82002-11-02 20:04:26 +0000627 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
628 // FIXME: This will put constants after the PHI nodes in the block, which
629 // is invalid. They should be put inline into the PHI node eventually.
630 //
631 MI->addRegOperand(getReg(PN.getIncomingValue(i)));
632 MI->addPCDispOperand(PN.getIncomingBlock(i));
633 }
Chris Lattner72614082002-10-25 22:55:53 +0000634}
635
Brian Gaekec11232a2002-11-26 10:43:30 +0000636/// visitCastInst - Here we have various kinds of copying with or without
637/// sign extension going on.
Brian Gaekefa8d5712002-11-22 11:07:01 +0000638void
639ISel::visitCastInst (CastInst &CI)
640{
Brian Gaekec11232a2002-11-26 10:43:30 +0000641//> cast larger int to smaller int --> copy least significant byte/word w/ mov?
642//
643//I'm not really sure what to do with this. We could insert a pseudo-op
644//that says take the low X bits of a Y bit register, but for now we can just
645//force the value into, say, EAX, then rip out AL or AX. The advantage of
646//the former is that the register allocator could use any register it wants,
647//but for now this obviously doesn't matter. :)
648
Chris Lattnerf18a36e2002-12-03 18:15:59 +0000649 const Type *targetType = CI.getType ();
Brian Gaeke07f02612002-12-03 07:36:03 +0000650 Value *operand = CI.getOperand (0);
651 unsigned int operandReg = getReg (operand);
Chris Lattnerf18a36e2002-12-03 18:15:59 +0000652 const Type *sourceType = operand->getType ();
Brian Gaeke07f02612002-12-03 07:36:03 +0000653 unsigned int destReg = getReg (CI);
654
655 // cast to bool:
656 if (targetType == Type::BoolTy) {
657 // Emit Compare
658 BuildMI (BB, X86::CMPri8, 2).addReg (operandReg).addZImm (0);
659 // Emit Set-if-not-zero
660 BuildMI (BB, X86::SETNEr, 1, destReg);
661 return;
662 }
Brian Gaekec11232a2002-11-26 10:43:30 +0000663
664// if size of target type == size of source type
665// Emit Mov reg(target) <- reg(source)
666
667// if size of target type > size of source type
668// if both types are integer types
669// if source type is signed
670// sbyte to short, ushort: Emit movsx 8->16
671// sbyte to int, uint: Emit movsx 8->32
672// short to int, uint: Emit movsx 16->32
673// else if source type is unsigned
674// ubyte to short, ushort: Emit movzx 8->16
675// ubyte to int, uint: Emit movzx 8->32
676// ushort to int, uint: Emit movzx 16->32
677// if both types are fp types
678// float to double: Emit fstp, fld (???)
679
Brian Gaekefa8d5712002-11-22 11:07:01 +0000680 visitInstruction (CI);
681}
Brian Gaekea1719c92002-10-31 23:03:59 +0000682
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000683/// createSimpleX86InstructionSelector - This pass converts an LLVM function
684/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +0000685/// generated code sucks but the implementation is nice and simple.
686///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000687Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
688 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +0000689}