blob: 637234251ea44528e17c9810d4a24ee847c236c3 [file] [log] [blame]
Chris Lattnerd28b0d72004-06-25 04:24:22 +00001//===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattnere995a2a2004-05-23 21:00:47 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattnere995a2a2004-05-23 21:00:47 +00008//===----------------------------------------------------------------------===//
9//
Daniel Berlinaad15882007-09-16 21:45:02 +000010// This file defines an implementation of Andersen's interprocedural alias
11// analysis
Chris Lattnere995a2a2004-05-23 21:00:47 +000012//
13// In pointer analysis terms, this is a subset-based, flow-insensitive,
Daniel Berlinaad15882007-09-16 21:45:02 +000014// field-sensitive, and context-insensitive algorithm pointer algorithm.
Chris Lattnere995a2a2004-05-23 21:00:47 +000015//
16// This algorithm is implemented as three stages:
17// 1. Object identification.
18// 2. Inclusion constraint identification.
Daniel Berlind81ccc22007-09-24 19:45:49 +000019// 3. Offline constraint graph optimization
20// 4. Inclusion constraint solving.
Chris Lattnere995a2a2004-05-23 21:00:47 +000021//
22// The object identification stage identifies all of the memory objects in the
23// program, which includes globals, heap allocated objects, and stack allocated
24// objects.
25//
26// The inclusion constraint identification stage finds all inclusion constraints
27// in the program by scanning the program, looking for pointer assignments and
28// other statements that effect the points-to graph. For a statement like "A =
29// B", this statement is processed to indicate that A can point to anything that
Daniel Berlinaad15882007-09-16 21:45:02 +000030// B can point to. Constraints can handle copies, loads, and stores, and
31// address taking.
Chris Lattnere995a2a2004-05-23 21:00:47 +000032//
Daniel Berline6f04792007-09-24 22:20:45 +000033// The offline constraint graph optimization portion includes offline variable
Daniel Berlinc864edb2008-03-05 19:31:47 +000034// substitution algorithms intended to compute pointer and location
Daniel Berline6f04792007-09-24 22:20:45 +000035// equivalences. Pointer equivalences are those pointers that will have the
36// same points-to sets, and location equivalences are those variables that
Daniel Berlinc864edb2008-03-05 19:31:47 +000037// always appear together in points-to sets. It also includes an offline
38// cycle detection algorithm that allows cycles to be collapsed sooner
39// during solving.
Daniel Berlind81ccc22007-09-24 19:45:49 +000040//
Chris Lattnere995a2a2004-05-23 21:00:47 +000041// The inclusion constraint solving phase iteratively propagates the inclusion
42// constraints until a fixed point is reached. This is an O(N^3) algorithm.
43//
Daniel Berlinaad15882007-09-16 21:45:02 +000044// Function constraints are handled as if they were structs with X fields.
45// Thus, an access to argument X of function Y is an access to node index
46// getNode(Y) + X. This representation allows handling of indirect calls
Daniel Berlind81ccc22007-09-24 19:45:49 +000047// without any issues. To wit, an indirect call Y(a,b) is equivalent to
Daniel Berlinaad15882007-09-16 21:45:02 +000048// *(Y + 1) = a, *(Y + 2) = b.
49// The return node for a function is always located at getNode(F) +
50// CallReturnPos. The arguments start at getNode(F) + CallArgPos.
Chris Lattnere995a2a2004-05-23 21:00:47 +000051//
Chris Lattnerc7ca32b2004-06-05 20:12:36 +000052// Future Improvements:
Daniel Berlinc864edb2008-03-05 19:31:47 +000053// Use of BDD's.
Chris Lattnere995a2a2004-05-23 21:00:47 +000054//===----------------------------------------------------------------------===//
55
56#define DEBUG_TYPE "anders-aa"
57#include "llvm/Constants.h"
58#include "llvm/DerivedTypes.h"
59#include "llvm/Instructions.h"
60#include "llvm/Module.h"
61#include "llvm/Pass.h"
Torok Edwin7d696d82009-07-11 13:10:19 +000062#include "llvm/Support/ErrorHandling.h"
Chris Lattnere995a2a2004-05-23 21:00:47 +000063#include "llvm/Support/InstIterator.h"
64#include "llvm/Support/InstVisitor.h"
65#include "llvm/Analysis/AliasAnalysis.h"
Victor Hernandez46e83122009-09-18 21:34:51 +000066#include "llvm/Analysis/MallocHelper.h"
Jeff Cohen534927d2005-01-08 22:01:16 +000067#include "llvm/Analysis/Passes.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000068#include "llvm/Support/Debug.h"
Owen Anderson2e693102009-06-24 22:16:52 +000069#include "llvm/System/Atomic.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000070#include "llvm/ADT/Statistic.h"
Daniel Berlinaad15882007-09-16 21:45:02 +000071#include "llvm/ADT/SparseBitVector.h"
Chris Lattnerbe207732007-09-30 00:47:20 +000072#include "llvm/ADT/DenseSet.h"
Jeff Cohenca5183d2007-03-05 00:00:42 +000073#include <algorithm>
Chris Lattnere995a2a2004-05-23 21:00:47 +000074#include <set>
Daniel Berlinaad15882007-09-16 21:45:02 +000075#include <list>
Dan Gohmanc9235d22008-03-21 23:51:57 +000076#include <map>
Daniel Berlinaad15882007-09-16 21:45:02 +000077#include <stack>
78#include <vector>
Daniel Berlin3a3f1632007-12-12 00:37:04 +000079#include <queue>
80
81// Determining the actual set of nodes the universal set can consist of is very
82// expensive because it means propagating around very large sets. We rely on
83// other analysis being able to determine which nodes can never be pointed to in
84// order to disambiguate further than "points-to anything".
85#define FULL_UNIVERSAL 0
Chris Lattnere995a2a2004-05-23 21:00:47 +000086
Daniel Berlinaad15882007-09-16 21:45:02 +000087using namespace llvm;
Daniel Dunbare317bcc2009-08-23 10:29:55 +000088#ifndef NDEBUG
Daniel Berlind81ccc22007-09-24 19:45:49 +000089STATISTIC(NumIters , "Number of iterations to reach convergence");
Daniel Dunbare317bcc2009-08-23 10:29:55 +000090#endif
Daniel Berlind81ccc22007-09-24 19:45:49 +000091STATISTIC(NumConstraints, "Number of constraints");
92STATISTIC(NumNodes , "Number of nodes");
93STATISTIC(NumUnified , "Number of variables unified");
Daniel Berlin3a3f1632007-12-12 00:37:04 +000094STATISTIC(NumErased , "Number of redundant constraints erased");
Chris Lattnere995a2a2004-05-23 21:00:47 +000095
Dan Gohman844731a2008-05-13 00:00:25 +000096static const unsigned SelfRep = (unsigned)-1;
97static const unsigned Unvisited = (unsigned)-1;
98// Position of the function return node relative to the function node.
99static const unsigned CallReturnPos = 1;
100// Position of the function call node relative to the function node.
101static const unsigned CallFirstArgPos = 2;
Daniel Berlind81ccc22007-09-24 19:45:49 +0000102
Dan Gohman844731a2008-05-13 00:00:25 +0000103namespace {
Daniel Berlind81ccc22007-09-24 19:45:49 +0000104 struct BitmapKeyInfo {
105 static inline SparseBitVector<> *getEmptyKey() {
106 return reinterpret_cast<SparseBitVector<> *>(-1);
107 }
108 static inline SparseBitVector<> *getTombstoneKey() {
109 return reinterpret_cast<SparseBitVector<> *>(-2);
110 }
111 static unsigned getHashValue(const SparseBitVector<> *bitmap) {
112 return bitmap->getHashValue();
113 }
114 static bool isEqual(const SparseBitVector<> *LHS,
115 const SparseBitVector<> *RHS) {
116 if (LHS == RHS)
117 return true;
118 else if (LHS == getEmptyKey() || RHS == getEmptyKey()
119 || LHS == getTombstoneKey() || RHS == getTombstoneKey())
120 return false;
121
122 return *LHS == *RHS;
123 }
124
125 static bool isPod() { return true; }
126 };
Daniel Berlinaad15882007-09-16 21:45:02 +0000127
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000128 class Andersens : public ModulePass, public AliasAnalysis,
129 private InstVisitor<Andersens> {
Hartmut Kaiser081fdf22007-10-25 23:49:14 +0000130 struct Node;
Daniel Berlinaad15882007-09-16 21:45:02 +0000131
132 /// Constraint - Objects of this structure are used to represent the various
133 /// constraints identified by the algorithm. The constraints are 'copy',
134 /// for statements like "A = B", 'load' for statements like "A = *B",
135 /// 'store' for statements like "*A = B", and AddressOf for statements like
136 /// A = alloca; The Offset is applied as *(A + K) = B for stores,
137 /// A = *(B + K) for loads, and A = B + K for copies. It is
Daniel Berlind81ccc22007-09-24 19:45:49 +0000138 /// illegal on addressof constraints (because it is statically
Daniel Berlinaad15882007-09-16 21:45:02 +0000139 /// resolvable to A = &C where C = B + K)
140
141 struct Constraint {
142 enum ConstraintType { Copy, Load, Store, AddressOf } Type;
143 unsigned Dest;
144 unsigned Src;
145 unsigned Offset;
146
147 Constraint(ConstraintType Ty, unsigned D, unsigned S, unsigned O = 0)
148 : Type(Ty), Dest(D), Src(S), Offset(O) {
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +0000149 assert((Offset == 0 || Ty != AddressOf) &&
Daniel Berlinaad15882007-09-16 21:45:02 +0000150 "Offset is illegal on addressof constraints");
151 }
Daniel Berlin336c6c02007-09-29 00:50:40 +0000152
Daniel Berlinc7a12ae2007-09-27 15:42:23 +0000153 bool operator==(const Constraint &RHS) const {
154 return RHS.Type == Type
155 && RHS.Dest == Dest
156 && RHS.Src == Src
157 && RHS.Offset == Offset;
158 }
Daniel Berlin336c6c02007-09-29 00:50:40 +0000159
160 bool operator!=(const Constraint &RHS) const {
161 return !(*this == RHS);
162 }
163
Daniel Berlinc7a12ae2007-09-27 15:42:23 +0000164 bool operator<(const Constraint &RHS) const {
165 if (RHS.Type != Type)
166 return RHS.Type < Type;
167 else if (RHS.Dest != Dest)
168 return RHS.Dest < Dest;
169 else if (RHS.Src != Src)
170 return RHS.Src < Src;
171 return RHS.Offset < Offset;
172 }
Daniel Berlinaad15882007-09-16 21:45:02 +0000173 };
174
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000175 // Information DenseSet requires implemented in order to be able to do
176 // it's thing
177 struct PairKeyInfo {
178 static inline std::pair<unsigned, unsigned> getEmptyKey() {
Scott Michelacddf9d2008-03-18 16:55:06 +0000179 return std::make_pair(~0U, ~0U);
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000180 }
181 static inline std::pair<unsigned, unsigned> getTombstoneKey() {
Scott Michelacddf9d2008-03-18 16:55:06 +0000182 return std::make_pair(~0U - 1, ~0U - 1);
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000183 }
184 static unsigned getHashValue(const std::pair<unsigned, unsigned> &P) {
185 return P.first ^ P.second;
186 }
187 static unsigned isEqual(const std::pair<unsigned, unsigned> &LHS,
188 const std::pair<unsigned, unsigned> &RHS) {
189 return LHS == RHS;
190 }
191 };
192
Daniel Berlin336c6c02007-09-29 00:50:40 +0000193 struct ConstraintKeyInfo {
194 static inline Constraint getEmptyKey() {
Scott Michelacddf9d2008-03-18 16:55:06 +0000195 return Constraint(Constraint::Copy, ~0U, ~0U, ~0U);
Daniel Berlin336c6c02007-09-29 00:50:40 +0000196 }
197 static inline Constraint getTombstoneKey() {
Scott Michelacddf9d2008-03-18 16:55:06 +0000198 return Constraint(Constraint::Copy, ~0U - 1, ~0U - 1, ~0U - 1);
Daniel Berlin336c6c02007-09-29 00:50:40 +0000199 }
200 static unsigned getHashValue(const Constraint &C) {
201 return C.Src ^ C.Dest ^ C.Type ^ C.Offset;
202 }
203 static bool isEqual(const Constraint &LHS,
204 const Constraint &RHS) {
205 return LHS.Type == RHS.Type && LHS.Dest == RHS.Dest
206 && LHS.Src == RHS.Src && LHS.Offset == RHS.Offset;
207 }
208 };
209
Daniel Berlind81ccc22007-09-24 19:45:49 +0000210 // Node class - This class is used to represent a node in the constraint
Daniel Berline6f04792007-09-24 22:20:45 +0000211 // graph. Due to various optimizations, it is not always the case that
212 // there is a mapping from a Node to a Value. In particular, we add
213 // artificial Node's that represent the set of pointed-to variables shared
214 // for each location equivalent Node.
Daniel Berlinaad15882007-09-16 21:45:02 +0000215 struct Node {
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000216 private:
Owen Anderson5ec56cc2009-06-30 05:33:46 +0000217 static volatile sys::cas_flag Counter;
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000218
219 public:
Daniel Berlind81ccc22007-09-24 19:45:49 +0000220 Value *Val;
Daniel Berlinaad15882007-09-16 21:45:02 +0000221 SparseBitVector<> *Edges;
222 SparseBitVector<> *PointsTo;
223 SparseBitVector<> *OldPointsTo;
Daniel Berlinaad15882007-09-16 21:45:02 +0000224 std::list<Constraint> Constraints;
225
Daniel Berlind81ccc22007-09-24 19:45:49 +0000226 // Pointer and location equivalence labels
227 unsigned PointerEquivLabel;
228 unsigned LocationEquivLabel;
229 // Predecessor edges, both real and implicit
230 SparseBitVector<> *PredEdges;
231 SparseBitVector<> *ImplicitPredEdges;
232 // Set of nodes that point to us, only use for location equivalence.
233 SparseBitVector<> *PointedToBy;
234 // Number of incoming edges, used during variable substitution to early
235 // free the points-to sets
236 unsigned NumInEdges;
Daniel Berline6f04792007-09-24 22:20:45 +0000237 // True if our points-to set is in the Set2PEClass map
Daniel Berlind81ccc22007-09-24 19:45:49 +0000238 bool StoredInHash;
Daniel Berline6f04792007-09-24 22:20:45 +0000239 // True if our node has no indirect constraints (complex or otherwise)
Daniel Berlind81ccc22007-09-24 19:45:49 +0000240 bool Direct;
241 // True if the node is address taken, *or* it is part of a group of nodes
242 // that must be kept together. This is set to true for functions and
243 // their arg nodes, which must be kept at the same position relative to
244 // their base function node.
Daniel Berlind81ccc22007-09-24 19:45:49 +0000245 bool AddressTaken;
Daniel Berlinaad15882007-09-16 21:45:02 +0000246
Daniel Berlind81ccc22007-09-24 19:45:49 +0000247 // Nodes in cycles (or in equivalence classes) are united together using a
248 // standard union-find representation with path compression. NodeRep
249 // gives the index into GraphNodes for the representative Node.
250 unsigned NodeRep;
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000251
252 // Modification timestamp. Assigned from Counter.
253 // Used for work list prioritization.
254 unsigned Timestamp;
Daniel Berlind81ccc22007-09-24 19:45:49 +0000255
Dan Gohmanded2b0d2007-12-14 15:41:34 +0000256 explicit Node(bool direct = true) :
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000257 Val(0), Edges(0), PointsTo(0), OldPointsTo(0),
Daniel Berlind81ccc22007-09-24 19:45:49 +0000258 PointerEquivLabel(0), LocationEquivLabel(0), PredEdges(0),
259 ImplicitPredEdges(0), PointedToBy(0), NumInEdges(0),
260 StoredInHash(false), Direct(direct), AddressTaken(false),
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000261 NodeRep(SelfRep), Timestamp(0) { }
Daniel Berlinaad15882007-09-16 21:45:02 +0000262
Chris Lattnere995a2a2004-05-23 21:00:47 +0000263 Node *setValue(Value *V) {
264 assert(Val == 0 && "Value already set for this node!");
265 Val = V;
266 return this;
267 }
268
269 /// getValue - Return the LLVM value corresponding to this node.
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000270 ///
Chris Lattnere995a2a2004-05-23 21:00:47 +0000271 Value *getValue() const { return Val; }
272
Chris Lattnere995a2a2004-05-23 21:00:47 +0000273 /// addPointerTo - Add a pointer to the list of pointees of this node,
274 /// returning true if this caused a new pointer to be added, or false if
275 /// we already knew about the points-to relation.
Daniel Berlinaad15882007-09-16 21:45:02 +0000276 bool addPointerTo(unsigned Node) {
277 return PointsTo->test_and_set(Node);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000278 }
279
280 /// intersects - Return true if the points-to set of this node intersects
281 /// with the points-to set of the specified node.
282 bool intersects(Node *N) const;
283
284 /// intersectsIgnoring - Return true if the points-to set of this node
285 /// intersects with the points-to set of the specified node on any nodes
286 /// except for the specified node to ignore.
Daniel Berlinaad15882007-09-16 21:45:02 +0000287 bool intersectsIgnoring(Node *N, unsigned) const;
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000288
289 // Timestamp a node (used for work list prioritization)
290 void Stamp() {
Owen Anderson2d7f78e2009-06-25 16:32:45 +0000291 Timestamp = sys::AtomicIncrement(&Counter);
292 --Timestamp;
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000293 }
294
Andrew Lenharth52d34d92008-03-20 15:36:44 +0000295 bool isRep() const {
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000296 return( (int) NodeRep < 0 );
297 }
298 };
299
300 struct WorkListElement {
301 Node* node;
302 unsigned Timestamp;
303 WorkListElement(Node* n, unsigned t) : node(n), Timestamp(t) {}
304
305 // Note that we reverse the sense of the comparison because we
306 // actually want to give low timestamps the priority over high,
307 // whereas priority is typically interpreted as a greater value is
308 // given high priority.
309 bool operator<(const WorkListElement& that) const {
310 return( this->Timestamp > that.Timestamp );
311 }
312 };
313
314 // Priority-queue based work list specialized for Nodes.
315 class WorkList {
316 std::priority_queue<WorkListElement> Q;
317
318 public:
319 void insert(Node* n) {
320 Q.push( WorkListElement(n, n->Timestamp) );
321 }
322
323 // We automatically discard non-representative nodes and nodes
324 // that were in the work list twice (we keep a copy of the
325 // timestamp in the work list so we can detect this situation by
326 // comparing against the node's current timestamp).
327 Node* pop() {
328 while( !Q.empty() ) {
329 WorkListElement x = Q.top(); Q.pop();
330 Node* INode = x.node;
331
332 if( INode->isRep() &&
333 INode->Timestamp == x.Timestamp ) {
334 return(x.node);
335 }
336 }
337 return(0);
338 }
339
340 bool empty() {
341 return Q.empty();
342 }
Chris Lattnere995a2a2004-05-23 21:00:47 +0000343 };
344
345 /// GraphNodes - This vector is populated as part of the object
346 /// identification stage of the analysis, which populates this vector with a
347 /// node for each memory object and fills in the ValueNodes map.
348 std::vector<Node> GraphNodes;
349
350 /// ValueNodes - This map indicates the Node that a particular Value* is
351 /// represented by. This contains entries for all pointers.
Daniel Berlind81ccc22007-09-24 19:45:49 +0000352 DenseMap<Value*, unsigned> ValueNodes;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000353
354 /// ObjectNodes - This map contains entries for each memory object in the
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000355 /// program: globals, alloca's and mallocs.
Daniel Berlind81ccc22007-09-24 19:45:49 +0000356 DenseMap<Value*, unsigned> ObjectNodes;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000357
358 /// ReturnNodes - This map contains an entry for each function in the
359 /// program that returns a value.
Daniel Berlind81ccc22007-09-24 19:45:49 +0000360 DenseMap<Function*, unsigned> ReturnNodes;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000361
362 /// VarargNodes - This map contains the entry used to represent all pointers
363 /// passed through the varargs portion of a function call for a particular
364 /// function. An entry is not present in this map for functions that do not
365 /// take variable arguments.
Daniel Berlind81ccc22007-09-24 19:45:49 +0000366 DenseMap<Function*, unsigned> VarargNodes;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000367
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000368
Chris Lattnere995a2a2004-05-23 21:00:47 +0000369 /// Constraints - This vector contains a list of all of the constraints
370 /// identified by the program.
371 std::vector<Constraint> Constraints;
372
Daniel Berlind81ccc22007-09-24 19:45:49 +0000373 // Map from graph node to maximum K value that is allowed (for functions,
Daniel Berlinaad15882007-09-16 21:45:02 +0000374 // this is equivalent to the number of arguments + CallFirstArgPos)
375 std::map<unsigned, unsigned> MaxK;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000376
377 /// This enum defines the GraphNodes indices that correspond to important
378 /// fixed sets.
379 enum {
380 UniversalSet = 0,
381 NullPtr = 1,
Daniel Berlind81ccc22007-09-24 19:45:49 +0000382 NullObject = 2,
383 NumberSpecialNodes
Chris Lattnere995a2a2004-05-23 21:00:47 +0000384 };
Daniel Berlind81ccc22007-09-24 19:45:49 +0000385 // Stack for Tarjan's
Daniel Berlinaad15882007-09-16 21:45:02 +0000386 std::stack<unsigned> SCCStack;
Daniel Berlinaad15882007-09-16 21:45:02 +0000387 // Map from Graph Node to DFS number
388 std::vector<unsigned> Node2DFS;
389 // Map from Graph Node to Deleted from graph.
390 std::vector<bool> Node2Deleted;
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000391 // Same as Node Maps, but implemented as std::map because it is faster to
392 // clear
393 std::map<unsigned, unsigned> Tarjan2DFS;
394 std::map<unsigned, bool> Tarjan2Deleted;
395 // Current DFS number
Daniel Berlinaad15882007-09-16 21:45:02 +0000396 unsigned DFSNumber;
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000397
398 // Work lists.
399 WorkList w1, w2;
400 WorkList *CurrWL, *NextWL; // "current" and "next" work lists
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000401
Daniel Berlind81ccc22007-09-24 19:45:49 +0000402 // Offline variable substitution related things
403
404 // Temporary rep storage, used because we can't collapse SCC's in the
405 // predecessor graph by uniting the variables permanently, we can only do so
406 // for the successor graph.
407 std::vector<unsigned> VSSCCRep;
408 // Mapping from node to whether we have visited it during SCC finding yet.
409 std::vector<bool> Node2Visited;
410 // During variable substitution, we create unknowns to represent the unknown
411 // value that is a dereference of a variable. These nodes are known as
412 // "ref" nodes (since they represent the value of dereferences).
413 unsigned FirstRefNode;
414 // During HVN, we create represent address taken nodes as if they were
415 // unknown (since HVN, unlike HU, does not evaluate unions).
416 unsigned FirstAdrNode;
417 // Current pointer equivalence class number
418 unsigned PEClass;
419 // Mapping from points-to sets to equivalence classes
420 typedef DenseMap<SparseBitVector<> *, unsigned, BitmapKeyInfo> BitVectorMap;
421 BitVectorMap Set2PEClass;
422 // Mapping from pointer equivalences to the representative node. -1 if we
423 // have no representative node for this pointer equivalence class yet.
424 std::vector<int> PEClass2Node;
425 // Mapping from pointer equivalences to representative node. This includes
426 // pointer equivalent but not location equivalent variables. -1 if we have
427 // no representative node for this pointer equivalence class yet.
428 std::vector<int> PENLEClass2Node;
Daniel Berlinc864edb2008-03-05 19:31:47 +0000429 // Union/Find for HCD
430 std::vector<unsigned> HCDSCCRep;
431 // HCD's offline-detected cycles; "Statically DeTected"
432 // -1 if not part of such a cycle, otherwise a representative node.
433 std::vector<int> SDT;
434 // Whether to use SDT (UniteNodes can use it during solving, but not before)
435 bool SDTActive;
Daniel Berlind81ccc22007-09-24 19:45:49 +0000436
Chris Lattnere995a2a2004-05-23 21:00:47 +0000437 public:
Daniel Berlinaad15882007-09-16 21:45:02 +0000438 static char ID;
Dan Gohmanae73dc12008-09-04 17:05:41 +0000439 Andersens() : ModulePass(&ID) {}
Devang Patel1cee94f2008-03-18 00:39:19 +0000440
Chris Lattnerb12914b2004-09-20 04:48:05 +0000441 bool runOnModule(Module &M) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000442 InitializeAliasAnalysis(this);
443 IdentifyObjects(M);
444 CollectConstraints(M);
Daniel Berlind81ccc22007-09-24 19:45:49 +0000445#undef DEBUG_TYPE
446#define DEBUG_TYPE "anders-aa-constraints"
Chris Lattnere995a2a2004-05-23 21:00:47 +0000447 DEBUG(PrintConstraints());
Daniel Berlind81ccc22007-09-24 19:45:49 +0000448#undef DEBUG_TYPE
449#define DEBUG_TYPE "anders-aa"
Chris Lattnere995a2a2004-05-23 21:00:47 +0000450 SolveConstraints();
451 DEBUG(PrintPointsToGraph());
452
453 // Free the constraints list, as we don't need it to respond to alias
454 // requests.
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000455 std::vector<Constraint>().swap(Constraints);
Andrew Lenharth52d34d92008-03-20 15:36:44 +0000456 //These are needed for Print() (-analyze in opt)
457 //ObjectNodes.clear();
458 //ReturnNodes.clear();
459 //VarargNodes.clear();
Chris Lattnere995a2a2004-05-23 21:00:47 +0000460 return false;
461 }
462
463 void releaseMemory() {
464 // FIXME: Until we have transitively required passes working correctly,
465 // this cannot be enabled! Otherwise, using -count-aa with the pass
466 // causes memory to be freed too early. :(
467#if 0
468 // The memory objects and ValueNodes data structures at the only ones that
469 // are still live after construction.
470 std::vector<Node>().swap(GraphNodes);
471 ValueNodes.clear();
472#endif
473 }
474
475 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
476 AliasAnalysis::getAnalysisUsage(AU);
477 AU.setPreservesAll(); // Does not transform code
478 }
479
480 //------------------------------------------------
481 // Implement the AliasAnalysis API
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000482 //
Chris Lattnere995a2a2004-05-23 21:00:47 +0000483 AliasResult alias(const Value *V1, unsigned V1Size,
484 const Value *V2, unsigned V2Size);
Reid Spencer3a9ec242006-08-28 01:02:49 +0000485 virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
486 virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000487 void getMustAliases(Value *P, std::vector<Value*> &RetVals);
488 bool pointsToConstantMemory(const Value *P);
489
490 virtual void deleteValue(Value *V) {
491 ValueNodes.erase(V);
492 getAnalysis<AliasAnalysis>().deleteValue(V);
493 }
494
495 virtual void copyValue(Value *From, Value *To) {
496 ValueNodes[To] = ValueNodes[From];
497 getAnalysis<AliasAnalysis>().copyValue(From, To);
498 }
499
500 private:
501 /// getNode - Return the node corresponding to the specified pointer scalar.
502 ///
Daniel Berlinaad15882007-09-16 21:45:02 +0000503 unsigned getNode(Value *V) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000504 if (Constant *C = dyn_cast<Constant>(V))
Chris Lattnerdf9b7bc2004-08-16 05:38:02 +0000505 if (!isa<GlobalValue>(C))
506 return getNodeForConstantPointer(C);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000507
Daniel Berlind81ccc22007-09-24 19:45:49 +0000508 DenseMap<Value*, unsigned>::iterator I = ValueNodes.find(V);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000509 if (I == ValueNodes.end()) {
Jim Laskey16d42c62006-07-11 18:25:13 +0000510#ifndef NDEBUG
511 V->dump();
512#endif
Torok Edwinc23197a2009-07-14 16:55:14 +0000513 llvm_unreachable("Value does not have a node in the points-to graph!");
Chris Lattnere995a2a2004-05-23 21:00:47 +0000514 }
Daniel Berlinaad15882007-09-16 21:45:02 +0000515 return I->second;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000516 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000517
Chris Lattnere995a2a2004-05-23 21:00:47 +0000518 /// getObject - Return the node corresponding to the memory object for the
519 /// specified global or allocation instruction.
Andrew Lenharth52d34d92008-03-20 15:36:44 +0000520 unsigned getObject(Value *V) const {
Daniel Berlind81ccc22007-09-24 19:45:49 +0000521 DenseMap<Value*, unsigned>::iterator I = ObjectNodes.find(V);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000522 assert(I != ObjectNodes.end() &&
523 "Value does not have an object in the points-to graph!");
Daniel Berlinaad15882007-09-16 21:45:02 +0000524 return I->second;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000525 }
526
527 /// getReturnNode - Return the node representing the return value for the
528 /// specified function.
Andrew Lenharth52d34d92008-03-20 15:36:44 +0000529 unsigned getReturnNode(Function *F) const {
Daniel Berlind81ccc22007-09-24 19:45:49 +0000530 DenseMap<Function*, unsigned>::iterator I = ReturnNodes.find(F);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000531 assert(I != ReturnNodes.end() && "Function does not return a value!");
Daniel Berlinaad15882007-09-16 21:45:02 +0000532 return I->second;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000533 }
534
535 /// getVarargNode - Return the node representing the variable arguments
536 /// formal for the specified function.
Andrew Lenharth52d34d92008-03-20 15:36:44 +0000537 unsigned getVarargNode(Function *F) const {
Daniel Berlind81ccc22007-09-24 19:45:49 +0000538 DenseMap<Function*, unsigned>::iterator I = VarargNodes.find(F);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000539 assert(I != VarargNodes.end() && "Function does not take var args!");
Daniel Berlinaad15882007-09-16 21:45:02 +0000540 return I->second;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000541 }
542
543 /// getNodeValue - Get the node for the specified LLVM value and set the
544 /// value for it to be the specified value.
Daniel Berlinaad15882007-09-16 21:45:02 +0000545 unsigned getNodeValue(Value &V) {
546 unsigned Index = getNode(&V);
547 GraphNodes[Index].setValue(&V);
548 return Index;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000549 }
550
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000551 unsigned UniteNodes(unsigned First, unsigned Second,
552 bool UnionByRank = true);
Daniel Berlinaad15882007-09-16 21:45:02 +0000553 unsigned FindNode(unsigned Node);
Andrew Lenharth52d34d92008-03-20 15:36:44 +0000554 unsigned FindNode(unsigned Node) const;
Daniel Berlinaad15882007-09-16 21:45:02 +0000555
Chris Lattnere995a2a2004-05-23 21:00:47 +0000556 void IdentifyObjects(Module &M);
557 void CollectConstraints(Module &M);
Daniel Berlinaad15882007-09-16 21:45:02 +0000558 bool AnalyzeUsesOfFunction(Value *);
559 void CreateConstraintGraph();
Daniel Berlind81ccc22007-09-24 19:45:49 +0000560 void OptimizeConstraints();
561 unsigned FindEquivalentNode(unsigned, unsigned);
562 void ClumpAddressTaken();
563 void RewriteConstraints();
564 void HU();
565 void HVN();
Daniel Berlinc864edb2008-03-05 19:31:47 +0000566 void HCD();
567 void Search(unsigned Node);
Daniel Berlind81ccc22007-09-24 19:45:49 +0000568 void UnitePointerEquivalences();
Chris Lattnere995a2a2004-05-23 21:00:47 +0000569 void SolveConstraints();
Daniel Berlin3a3f1632007-12-12 00:37:04 +0000570 bool QueryNode(unsigned Node);
Daniel Berlind81ccc22007-09-24 19:45:49 +0000571 void Condense(unsigned Node);
572 void HUValNum(unsigned Node);
573 void HVNValNum(unsigned Node);
Daniel Berlinaad15882007-09-16 21:45:02 +0000574 unsigned getNodeForConstantPointer(Constant *C);
575 unsigned getNodeForConstantPointerTarget(Constant *C);
576 void AddGlobalInitializerConstraints(unsigned, Constant *C);
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000577
Chris Lattnere995a2a2004-05-23 21:00:47 +0000578 void AddConstraintsForNonInternalLinkage(Function *F);
579 void AddConstraintsForCall(CallSite CS, Function *F);
Chris Lattner8a446432005-03-29 06:09:07 +0000580 bool AddConstraintsForExternalCall(CallSite CS, Function *F);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000581
582
Andrew Lenharth52d34d92008-03-20 15:36:44 +0000583 void PrintNode(const Node *N) const;
584 void PrintConstraints() const ;
585 void PrintConstraint(const Constraint &) const;
586 void PrintLabels() const;
587 void PrintPointsToGraph() const;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000588
589 //===------------------------------------------------------------------===//
590 // Instruction visitation methods for adding constraints
591 //
592 friend class InstVisitor<Andersens>;
593 void visitReturnInst(ReturnInst &RI);
594 void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); }
Victor Hernandez46e83122009-09-18 21:34:51 +0000595 void visitCallInst(CallInst &CI) {
Victor Hernandez7b929da2009-10-23 21:09:37 +0000596 if (isMalloc(&CI)) visitAlloc(CI);
Victor Hernandez46e83122009-09-18 21:34:51 +0000597 else visitCallSite(CallSite(&CI));
598 }
Chris Lattnere995a2a2004-05-23 21:00:47 +0000599 void visitCallSite(CallSite CS);
Victor Hernandez7b929da2009-10-23 21:09:37 +0000600 void visitAllocaInst(AllocaInst &I);
601 void visitAlloc(Instruction &I);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000602 void visitLoadInst(LoadInst &LI);
603 void visitStoreInst(StoreInst &SI);
604 void visitGetElementPtrInst(GetElementPtrInst &GEP);
605 void visitPHINode(PHINode &PN);
606 void visitCastInst(CastInst &CI);
Reid Spencere4d87aa2006-12-23 06:05:41 +0000607 void visitICmpInst(ICmpInst &ICI) {} // NOOP!
608 void visitFCmpInst(FCmpInst &ICI) {} // NOOP!
Chris Lattnere995a2a2004-05-23 21:00:47 +0000609 void visitSelectInst(SelectInst &SI);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000610 void visitVAArg(VAArgInst &I);
611 void visitInstruction(Instruction &I);
Daniel Berlinaad15882007-09-16 21:45:02 +0000612
Andrew Lenharth52d34d92008-03-20 15:36:44 +0000613 //===------------------------------------------------------------------===//
614 // Implement Analyize interface
615 //
Chris Lattner45cfe542009-08-23 06:03:38 +0000616 void print(raw_ostream &O, const Module*) const {
Andrew Lenharth52d34d92008-03-20 15:36:44 +0000617 PrintPointsToGraph();
618 }
Chris Lattnere995a2a2004-05-23 21:00:47 +0000619 };
Chris Lattnere995a2a2004-05-23 21:00:47 +0000620}
621
Dan Gohman844731a2008-05-13 00:00:25 +0000622char Andersens::ID = 0;
623static RegisterPass<Andersens>
Chris Lattnerb80e1ab2009-08-28 00:45:47 +0000624X("anders-aa", "Andersen's Interprocedural Alias Analysis (experimental)",
625 false, true);
Dan Gohman844731a2008-05-13 00:00:25 +0000626static RegisterAnalysisGroup<AliasAnalysis> Y(X);
627
628// Initialize Timestamp Counter (static).
Owen Anderson5ec56cc2009-06-30 05:33:46 +0000629volatile llvm::sys::cas_flag Andersens::Node::Counter = 0;
Dan Gohman844731a2008-05-13 00:00:25 +0000630
Jeff Cohen534927d2005-01-08 22:01:16 +0000631ModulePass *llvm::createAndersensPass() { return new Andersens(); }
632
Chris Lattnere995a2a2004-05-23 21:00:47 +0000633//===----------------------------------------------------------------------===//
634// AliasAnalysis Interface Implementation
635//===----------------------------------------------------------------------===//
636
637AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size,
638 const Value *V2, unsigned V2Size) {
Daniel Berlinaad15882007-09-16 21:45:02 +0000639 Node *N1 = &GraphNodes[FindNode(getNode(const_cast<Value*>(V1)))];
640 Node *N2 = &GraphNodes[FindNode(getNode(const_cast<Value*>(V2)))];
Chris Lattnere995a2a2004-05-23 21:00:47 +0000641
642 // Check to see if the two pointers are known to not alias. They don't alias
643 // if their points-to sets do not intersect.
Daniel Berlinaad15882007-09-16 21:45:02 +0000644 if (!N1->intersectsIgnoring(N2, NullObject))
Chris Lattnere995a2a2004-05-23 21:00:47 +0000645 return NoAlias;
646
647 return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
648}
649
Chris Lattnerf392c642005-03-28 06:21:17 +0000650AliasAnalysis::ModRefResult
651Andersens::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
652 // The only thing useful that we can contribute for mod/ref information is
653 // when calling external function calls: if we know that memory never escapes
654 // from the program, it cannot be modified by an external call.
655 //
656 // NOTE: This is not really safe, at least not when the entire program is not
657 // available. The deal is that the external function could call back into the
658 // program and modify stuff. We ignore this technical niggle for now. This
659 // is, after all, a "research quality" implementation of Andersen's analysis.
660 if (Function *F = CS.getCalledFunction())
Reid Spencer5cbf9852007-01-30 20:08:39 +0000661 if (F->isDeclaration()) {
Daniel Berlinaad15882007-09-16 21:45:02 +0000662 Node *N1 = &GraphNodes[FindNode(getNode(P))];
Chris Lattnerf392c642005-03-28 06:21:17 +0000663
Daniel Berlinaad15882007-09-16 21:45:02 +0000664 if (N1->PointsTo->empty())
665 return NoModRef;
Daniel Berlind3bf1ae2008-03-18 22:22:53 +0000666#if FULL_UNIVERSAL
667 if (!UniversalSet->PointsTo->test(FindNode(getNode(P))))
668 return NoModRef; // Universal set does not contain P
669#else
Daniel Berlinaad15882007-09-16 21:45:02 +0000670 if (!N1->PointsTo->test(UniversalSet))
Chris Lattnerf392c642005-03-28 06:21:17 +0000671 return NoModRef; // P doesn't point to the universal set.
Daniel Berlind3bf1ae2008-03-18 22:22:53 +0000672#endif
Chris Lattnerf392c642005-03-28 06:21:17 +0000673 }
674
675 return AliasAnalysis::getModRefInfo(CS, P, Size);
676}
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000677
Reid Spencer3a9ec242006-08-28 01:02:49 +0000678AliasAnalysis::ModRefResult
679Andersens::getModRefInfo(CallSite CS1, CallSite CS2) {
680 return AliasAnalysis::getModRefInfo(CS1,CS2);
681}
682
Chris Lattnere995a2a2004-05-23 21:00:47 +0000683/// getMustAlias - We can provide must alias information if we know that a
684/// pointer can only point to a specific function or the null pointer.
685/// Unfortunately we cannot determine must-alias information for global
686/// variables or any other memory memory objects because we do not track whether
687/// a pointer points to the beginning of an object or a field of it.
688void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) {
Daniel Berlinaad15882007-09-16 21:45:02 +0000689 Node *N = &GraphNodes[FindNode(getNode(P))];
690 if (N->PointsTo->count() == 1) {
691 Node *Pointee = &GraphNodes[N->PointsTo->find_first()];
692 // If a function is the only object in the points-to set, then it must be
693 // the destination. Note that we can't handle global variables here,
694 // because we don't know if the pointer is actually pointing to a field of
695 // the global or to the beginning of it.
696 if (Value *V = Pointee->getValue()) {
697 if (Function *F = dyn_cast<Function>(V))
698 RetVals.push_back(F);
699 } else {
700 // If the object in the points-to set is the null object, then the null
701 // pointer is a must alias.
702 if (Pointee == &GraphNodes[NullObject])
Owen Andersona7235ea2009-07-31 20:28:14 +0000703 RetVals.push_back(Constant::getNullValue(P->getType()));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000704 }
705 }
Chris Lattnere995a2a2004-05-23 21:00:47 +0000706 AliasAnalysis::getMustAliases(P, RetVals);
707}
708
709/// pointsToConstantMemory - If we can determine that this pointer only points
710/// to constant memory, return true. In practice, this means that if the
711/// pointer can only point to constant globals, functions, or the null pointer,
712/// return true.
713///
714bool Andersens::pointsToConstantMemory(const Value *P) {
Dan Gohman6a551e72008-02-21 17:33:24 +0000715 Node *N = &GraphNodes[FindNode(getNode(const_cast<Value*>(P)))];
Daniel Berlinaad15882007-09-16 21:45:02 +0000716 unsigned i;
717
718 for (SparseBitVector<>::iterator bi = N->PointsTo->begin();
719 bi != N->PointsTo->end();
720 ++bi) {
721 i = *bi;
722 Node *Pointee = &GraphNodes[i];
723 if (Value *V = Pointee->getValue()) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000724 if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) &&
725 !cast<GlobalVariable>(V)->isConstant()))
726 return AliasAnalysis::pointsToConstantMemory(P);
727 } else {
Daniel Berlinaad15882007-09-16 21:45:02 +0000728 if (i != NullObject)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000729 return AliasAnalysis::pointsToConstantMemory(P);
730 }
731 }
732
733 return true;
734}
735
736//===----------------------------------------------------------------------===//
737// Object Identification Phase
738//===----------------------------------------------------------------------===//
739
740/// IdentifyObjects - This stage scans the program, adding an entry to the
741/// GraphNodes list for each memory object in the program (global stack or
742/// heap), and populates the ValueNodes and ObjectNodes maps for these objects.
743///
744void Andersens::IdentifyObjects(Module &M) {
745 unsigned NumObjects = 0;
746
747 // Object #0 is always the universal set: the object that we don't know
748 // anything about.
749 assert(NumObjects == UniversalSet && "Something changed!");
750 ++NumObjects;
751
752 // Object #1 always represents the null pointer.
753 assert(NumObjects == NullPtr && "Something changed!");
754 ++NumObjects;
755
756 // Object #2 always represents the null object (the object pointed to by null)
757 assert(NumObjects == NullObject && "Something changed!");
758 ++NumObjects;
759
760 // Add all the globals first.
Chris Lattner493f6362005-03-27 22:03:46 +0000761 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
762 I != E; ++I) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000763 ObjectNodes[I] = NumObjects++;
764 ValueNodes[I] = NumObjects++;
765 }
766
767 // Add nodes for all of the functions and the instructions inside of them.
768 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
769 // The function itself is a memory object.
Daniel Berlinaad15882007-09-16 21:45:02 +0000770 unsigned First = NumObjects;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000771 ValueNodes[F] = NumObjects++;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000772 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
773 ReturnNodes[F] = NumObjects++;
774 if (F->getFunctionType()->isVarArg())
775 VarargNodes[F] = NumObjects++;
776
Daniel Berlinaad15882007-09-16 21:45:02 +0000777
Chris Lattnere995a2a2004-05-23 21:00:47 +0000778 // Add nodes for all of the incoming pointer arguments.
Chris Lattner493f6362005-03-27 22:03:46 +0000779 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
780 I != E; ++I)
Daniel Berlind81ccc22007-09-24 19:45:49 +0000781 {
782 if (isa<PointerType>(I->getType()))
783 ValueNodes[I] = NumObjects++;
784 }
Daniel Berlinaad15882007-09-16 21:45:02 +0000785 MaxK[First] = NumObjects - First;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000786
787 // Scan the function body, creating a memory object for each heap/stack
788 // allocation in the body of the function and a node to represent all
789 // pointer values defined by instructions and used as operands.
790 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
791 // If this is an heap or stack allocation, create a node for the memory
792 // object.
793 if (isa<PointerType>(II->getType())) {
794 ValueNodes[&*II] = NumObjects++;
Victor Hernandez7b929da2009-10-23 21:09:37 +0000795 if (AllocaInst *AI = dyn_cast<AllocaInst>(&*II))
Chris Lattnere995a2a2004-05-23 21:00:47 +0000796 ObjectNodes[AI] = NumObjects++;
Victor Hernandez46e83122009-09-18 21:34:51 +0000797 else if (isMalloc(&*II))
798 ObjectNodes[&*II] = NumObjects++;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000799 }
Nick Lewycky4ac0e8d2007-11-22 03:07:37 +0000800
801 // Calls to inline asm need to be added as well because the callee isn't
802 // referenced anywhere else.
803 if (CallInst *CI = dyn_cast<CallInst>(&*II)) {
804 Value *Callee = CI->getCalledValue();
805 if (isa<InlineAsm>(Callee))
806 ValueNodes[Callee] = NumObjects++;
807 }
Chris Lattnere995a2a2004-05-23 21:00:47 +0000808 }
809 }
810
811 // Now that we know how many objects to create, make them all now!
812 GraphNodes.resize(NumObjects);
813 NumNodes += NumObjects;
814}
815
816//===----------------------------------------------------------------------===//
817// Constraint Identification Phase
818//===----------------------------------------------------------------------===//
819
820/// getNodeForConstantPointer - Return the node corresponding to the constant
821/// pointer itself.
Daniel Berlinaad15882007-09-16 21:45:02 +0000822unsigned Andersens::getNodeForConstantPointer(Constant *C) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000823 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
824
Chris Lattner267a1b02005-03-27 18:58:23 +0000825 if (isa<ConstantPointerNull>(C) || isa<UndefValue>(C))
Daniel Berlinaad15882007-09-16 21:45:02 +0000826 return NullPtr;
Reid Spencere8404342004-07-18 00:18:30 +0000827 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
828 return getNode(GV);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000829 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
830 switch (CE->getOpcode()) {
831 case Instruction::GetElementPtr:
832 return getNodeForConstantPointer(CE->getOperand(0));
Reid Spencer3da59db2006-11-27 01:05:10 +0000833 case Instruction::IntToPtr:
Daniel Berlinaad15882007-09-16 21:45:02 +0000834 return UniversalSet;
Reid Spencer3da59db2006-11-27 01:05:10 +0000835 case Instruction::BitCast:
836 return getNodeForConstantPointer(CE->getOperand(0));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000837 default:
Daniel Dunbar3f0e8302009-07-24 09:53:24 +0000838 errs() << "Constant Expr not yet handled: " << *CE << "\n";
Torok Edwinc23197a2009-07-14 16:55:14 +0000839 llvm_unreachable(0);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000840 }
841 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +0000842 llvm_unreachable("Unknown constant pointer!");
Chris Lattnere995a2a2004-05-23 21:00:47 +0000843 }
Chris Lattner1fc37392004-05-27 20:57:01 +0000844 return 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000845}
846
847/// getNodeForConstantPointerTarget - Return the node POINTED TO by the
848/// specified constant pointer.
Daniel Berlinaad15882007-09-16 21:45:02 +0000849unsigned Andersens::getNodeForConstantPointerTarget(Constant *C) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000850 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
851
852 if (isa<ConstantPointerNull>(C))
Daniel Berlinaad15882007-09-16 21:45:02 +0000853 return NullObject;
Reid Spencere8404342004-07-18 00:18:30 +0000854 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
855 return getObject(GV);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000856 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
857 switch (CE->getOpcode()) {
858 case Instruction::GetElementPtr:
859 return getNodeForConstantPointerTarget(CE->getOperand(0));
Reid Spencer3da59db2006-11-27 01:05:10 +0000860 case Instruction::IntToPtr:
Daniel Berlinaad15882007-09-16 21:45:02 +0000861 return UniversalSet;
Reid Spencer3da59db2006-11-27 01:05:10 +0000862 case Instruction::BitCast:
863 return getNodeForConstantPointerTarget(CE->getOperand(0));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000864 default:
Daniel Dunbar3f0e8302009-07-24 09:53:24 +0000865 errs() << "Constant Expr not yet handled: " << *CE << "\n";
Torok Edwinc23197a2009-07-14 16:55:14 +0000866 llvm_unreachable(0);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000867 }
868 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +0000869 llvm_unreachable("Unknown constant pointer!");
Chris Lattnere995a2a2004-05-23 21:00:47 +0000870 }
Chris Lattner1fc37392004-05-27 20:57:01 +0000871 return 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000872}
873
874/// AddGlobalInitializerConstraints - Add inclusion constraints for the memory
875/// object N, which contains values indicated by C.
Daniel Berlinaad15882007-09-16 21:45:02 +0000876void Andersens::AddGlobalInitializerConstraints(unsigned NodeIndex,
877 Constant *C) {
Dan Gohmanb64aa112008-05-22 23:43:22 +0000878 if (C->getType()->isSingleValueType()) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000879 if (isa<PointerType>(C->getType()))
Daniel Berlinaad15882007-09-16 21:45:02 +0000880 Constraints.push_back(Constraint(Constraint::Copy, NodeIndex,
881 getNodeForConstantPointer(C)));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000882 } else if (C->isNullValue()) {
Daniel Berlinaad15882007-09-16 21:45:02 +0000883 Constraints.push_back(Constraint(Constraint::Copy, NodeIndex,
884 NullObject));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000885 return;
Chris Lattner8a446432005-03-29 06:09:07 +0000886 } else if (!isa<UndefValue>(C)) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000887 // If this is an array or struct, include constraints for each element.
888 assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C));
889 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
Daniel Berlinaad15882007-09-16 21:45:02 +0000890 AddGlobalInitializerConstraints(NodeIndex,
891 cast<Constant>(C->getOperand(i)));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000892 }
893}
894
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000895/// AddConstraintsForNonInternalLinkage - If this function does not have
896/// internal linkage, realize that we can't trust anything passed into or
897/// returned by this function.
Chris Lattnere995a2a2004-05-23 21:00:47 +0000898void Andersens::AddConstraintsForNonInternalLinkage(Function *F) {
Chris Lattnere4d5c442005-03-15 04:54:21 +0000899 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000900 if (isa<PointerType>(I->getType()))
901 // If this is an argument of an externally accessible function, the
902 // incoming pointer might point to anything.
903 Constraints.push_back(Constraint(Constraint::Copy, getNode(I),
Daniel Berlinaad15882007-09-16 21:45:02 +0000904 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000905}
906
Chris Lattner8a446432005-03-29 06:09:07 +0000907/// AddConstraintsForCall - If this is a call to a "known" function, add the
908/// constraints and return true. If this is a call to an unknown function,
909/// return false.
910bool Andersens::AddConstraintsForExternalCall(CallSite CS, Function *F) {
Reid Spencer5cbf9852007-01-30 20:08:39 +0000911 assert(F->isDeclaration() && "Not an external function!");
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000912
913 // These functions don't induce any points-to constraints.
Chris Lattner175b9632005-03-29 20:36:05 +0000914 if (F->getName() == "atoi" || F->getName() == "atof" ||
915 F->getName() == "atol" || F->getName() == "atoll" ||
916 F->getName() == "remove" || F->getName() == "unlink" ||
917 F->getName() == "rename" || F->getName() == "memcmp" ||
Chris Lattner824b9582008-11-21 16:42:48 +0000918 F->getName() == "llvm.memset" ||
Chris Lattner175b9632005-03-29 20:36:05 +0000919 F->getName() == "strcmp" || F->getName() == "strncmp" ||
920 F->getName() == "execl" || F->getName() == "execlp" ||
921 F->getName() == "execle" || F->getName() == "execv" ||
922 F->getName() == "execvp" || F->getName() == "chmod" ||
923 F->getName() == "puts" || F->getName() == "write" ||
924 F->getName() == "open" || F->getName() == "create" ||
925 F->getName() == "truncate" || F->getName() == "chdir" ||
926 F->getName() == "mkdir" || F->getName() == "rmdir" ||
927 F->getName() == "read" || F->getName() == "pipe" ||
928 F->getName() == "wait" || F->getName() == "time" ||
929 F->getName() == "stat" || F->getName() == "fstat" ||
930 F->getName() == "lstat" || F->getName() == "strtod" ||
931 F->getName() == "strtof" || F->getName() == "strtold" ||
932 F->getName() == "fopen" || F->getName() == "fdopen" ||
933 F->getName() == "freopen" ||
934 F->getName() == "fflush" || F->getName() == "feof" ||
935 F->getName() == "fileno" || F->getName() == "clearerr" ||
936 F->getName() == "rewind" || F->getName() == "ftell" ||
937 F->getName() == "ferror" || F->getName() == "fgetc" ||
938 F->getName() == "fgetc" || F->getName() == "_IO_getc" ||
939 F->getName() == "fwrite" || F->getName() == "fread" ||
940 F->getName() == "fgets" || F->getName() == "ungetc" ||
941 F->getName() == "fputc" ||
942 F->getName() == "fputs" || F->getName() == "putc" ||
943 F->getName() == "ftell" || F->getName() == "rewind" ||
944 F->getName() == "_IO_putc" || F->getName() == "fseek" ||
945 F->getName() == "fgetpos" || F->getName() == "fsetpos" ||
946 F->getName() == "printf" || F->getName() == "fprintf" ||
947 F->getName() == "sprintf" || F->getName() == "vprintf" ||
948 F->getName() == "vfprintf" || F->getName() == "vsprintf" ||
949 F->getName() == "scanf" || F->getName() == "fscanf" ||
950 F->getName() == "sscanf" || F->getName() == "__assert_fail" ||
951 F->getName() == "modf")
Chris Lattner8a446432005-03-29 06:09:07 +0000952 return true;
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000953
Chris Lattner175b9632005-03-29 20:36:05 +0000954
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000955 // These functions do induce points-to edges.
Chris Lattner824b9582008-11-21 16:42:48 +0000956 if (F->getName() == "llvm.memcpy" ||
957 F->getName() == "llvm.memmove" ||
Chris Lattner4de57fd2005-03-29 06:52:20 +0000958 F->getName() == "memmove") {
Daniel Berlinaad15882007-09-16 21:45:02 +0000959
Nick Lewycky3037eda2008-12-27 16:20:53 +0000960 const FunctionType *FTy = F->getFunctionType();
961 if (FTy->getNumParams() > 1 &&
962 isa<PointerType>(FTy->getParamType(0)) &&
963 isa<PointerType>(FTy->getParamType(1))) {
964
965 // *Dest = *Src, which requires an artificial graph node to represent the
966 // constraint. It is broken up into *Dest = temp, temp = *Src
967 unsigned FirstArg = getNode(CS.getArgument(0));
968 unsigned SecondArg = getNode(CS.getArgument(1));
969 unsigned TempArg = GraphNodes.size();
970 GraphNodes.push_back(Node());
971 Constraints.push_back(Constraint(Constraint::Store,
972 FirstArg, TempArg));
973 Constraints.push_back(Constraint(Constraint::Load,
974 TempArg, SecondArg));
975 // In addition, Dest = Src
976 Constraints.push_back(Constraint(Constraint::Copy,
977 FirstArg, SecondArg));
978 return true;
979 }
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000980 }
981
Chris Lattner77b50562005-03-29 20:04:24 +0000982 // Result = Arg0
983 if (F->getName() == "realloc" || F->getName() == "strchr" ||
984 F->getName() == "strrchr" || F->getName() == "strstr" ||
985 F->getName() == "strtok") {
Nick Lewycky3037eda2008-12-27 16:20:53 +0000986 const FunctionType *FTy = F->getFunctionType();
987 if (FTy->getNumParams() > 0 &&
988 isa<PointerType>(FTy->getParamType(0))) {
989 Constraints.push_back(Constraint(Constraint::Copy,
990 getNode(CS.getInstruction()),
991 getNode(CS.getArgument(0))));
992 return true;
993 }
Chris Lattner8a446432005-03-29 06:09:07 +0000994 }
995
996 return false;
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000997}
998
999
Chris Lattnere995a2a2004-05-23 21:00:47 +00001000
Daniel Berlinaad15882007-09-16 21:45:02 +00001001/// AnalyzeUsesOfFunction - Look at all of the users of the specified function.
1002/// If this is used by anything complex (i.e., the address escapes), return
1003/// true.
1004bool Andersens::AnalyzeUsesOfFunction(Value *V) {
1005
1006 if (!isa<PointerType>(V->getType())) return true;
1007
1008 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
Dan Gohman104eac12009-08-11 17:20:16 +00001009 if (isa<LoadInst>(*UI)) {
Daniel Berlinaad15882007-09-16 21:45:02 +00001010 return false;
1011 } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1012 if (V == SI->getOperand(1)) {
1013 return false;
1014 } else if (SI->getOperand(1)) {
1015 return true; // Storing the pointer
1016 }
1017 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1018 if (AnalyzeUsesOfFunction(GEP)) return true;
Victor Hernandez66284e02009-10-24 04:23:03 +00001019 } else if (isa<FreeInst>(*UI) || isFreeCall(*UI)) {
1020 return false;
Daniel Berlinaad15882007-09-16 21:45:02 +00001021 } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
1022 // Make sure that this is just the function being called, not that it is
1023 // passing into the function.
1024 for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
1025 if (CI->getOperand(i) == V) return true;
1026 } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
1027 // Make sure that this is just the function being called, not that it is
1028 // passing into the function.
Gabor Greif03a5f132009-09-03 02:02:59 +00001029 for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i)
Daniel Berlinaad15882007-09-16 21:45:02 +00001030 if (II->getOperand(i) == V) return true;
1031 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
1032 if (CE->getOpcode() == Instruction::GetElementPtr ||
1033 CE->getOpcode() == Instruction::BitCast) {
1034 if (AnalyzeUsesOfFunction(CE))
1035 return true;
1036 } else {
1037 return true;
1038 }
1039 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
1040 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1041 return true; // Allow comparison against null.
Daniel Berlinaad15882007-09-16 21:45:02 +00001042 } else {
1043 return true;
1044 }
1045 return false;
1046}
1047
Chris Lattnere995a2a2004-05-23 21:00:47 +00001048/// CollectConstraints - This stage scans the program, adding a constraint to
1049/// the Constraints list for each instruction in the program that induces a
1050/// constraint, and setting up the initial points-to graph.
1051///
1052void Andersens::CollectConstraints(Module &M) {
1053 // First, the universal set points to itself.
Daniel Berlinaad15882007-09-16 21:45:02 +00001054 Constraints.push_back(Constraint(Constraint::AddressOf, UniversalSet,
1055 UniversalSet));
1056 Constraints.push_back(Constraint(Constraint::Store, UniversalSet,
1057 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001058
1059 // Next, the null pointer points to the null object.
Daniel Berlinaad15882007-09-16 21:45:02 +00001060 Constraints.push_back(Constraint(Constraint::AddressOf, NullPtr, NullObject));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001061
1062 // Next, add any constraints on global variables and their initializers.
Chris Lattner493f6362005-03-27 22:03:46 +00001063 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1064 I != E; ++I) {
Chris Lattnere995a2a2004-05-23 21:00:47 +00001065 // Associate the address of the global object as pointing to the memory for
1066 // the global: &G = <G memory>
Daniel Berlinaad15882007-09-16 21:45:02 +00001067 unsigned ObjectIndex = getObject(I);
1068 Node *Object = &GraphNodes[ObjectIndex];
Chris Lattnere995a2a2004-05-23 21:00:47 +00001069 Object->setValue(I);
Daniel Berlinaad15882007-09-16 21:45:02 +00001070 Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(*I),
1071 ObjectIndex));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001072
Dan Gohman82555732009-08-19 18:20:44 +00001073 if (I->hasDefinitiveInitializer()) {
Daniel Berlinaad15882007-09-16 21:45:02 +00001074 AddGlobalInitializerConstraints(ObjectIndex, I->getInitializer());
Chris Lattnere995a2a2004-05-23 21:00:47 +00001075 } else {
1076 // If it doesn't have an initializer (i.e. it's defined in another
1077 // translation unit), it points to the universal set.
Daniel Berlinaad15882007-09-16 21:45:02 +00001078 Constraints.push_back(Constraint(Constraint::Copy, ObjectIndex,
1079 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001080 }
1081 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001082
Chris Lattnere995a2a2004-05-23 21:00:47 +00001083 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
Chris Lattnere995a2a2004-05-23 21:00:47 +00001084 // Set up the return value node.
1085 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
Daniel Berlinaad15882007-09-16 21:45:02 +00001086 GraphNodes[getReturnNode(F)].setValue(F);
Chris Lattnere995a2a2004-05-23 21:00:47 +00001087 if (F->getFunctionType()->isVarArg())
Daniel Berlinaad15882007-09-16 21:45:02 +00001088 GraphNodes[getVarargNode(F)].setValue(F);
Chris Lattnere995a2a2004-05-23 21:00:47 +00001089
1090 // Set up incoming argument nodes.
Chris Lattner493f6362005-03-27 22:03:46 +00001091 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
1092 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +00001093 if (isa<PointerType>(I->getType()))
1094 getNodeValue(*I);
1095
Daniel Berlinaad15882007-09-16 21:45:02 +00001096 // At some point we should just add constraints for the escaping functions
1097 // at solve time, but this slows down solving. For now, we simply mark
1098 // address taken functions as escaping and treat them as external.
Rafael Espindolabb46f522009-01-15 20:18:42 +00001099 if (!F->hasLocalLinkage() || AnalyzeUsesOfFunction(F))
Chris Lattnere995a2a2004-05-23 21:00:47 +00001100 AddConstraintsForNonInternalLinkage(F);
1101
Reid Spencer5cbf9852007-01-30 20:08:39 +00001102 if (!F->isDeclaration()) {
Chris Lattnere995a2a2004-05-23 21:00:47 +00001103 // Scan the function body, creating a memory object for each heap/stack
1104 // allocation in the body of the function and a node to represent all
1105 // pointer values defined by instructions and used as operands.
1106 visit(F);
Chris Lattner8a446432005-03-29 06:09:07 +00001107 } else {
Chris Lattnere995a2a2004-05-23 21:00:47 +00001108 // External functions that return pointers return the universal set.
1109 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
1110 Constraints.push_back(Constraint(Constraint::Copy,
1111 getReturnNode(F),
Daniel Berlinaad15882007-09-16 21:45:02 +00001112 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001113
1114 // Any pointers that are passed into the function have the universal set
1115 // stored into them.
Chris Lattner493f6362005-03-27 22:03:46 +00001116 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
1117 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +00001118 if (isa<PointerType>(I->getType())) {
1119 // Pointers passed into external functions could have anything stored
1120 // through them.
1121 Constraints.push_back(Constraint(Constraint::Store, getNode(I),
Daniel Berlinaad15882007-09-16 21:45:02 +00001122 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001123 // Memory objects passed into external function calls can have the
1124 // universal set point to them.
Daniel Berlin3a3f1632007-12-12 00:37:04 +00001125#if FULL_UNIVERSAL
Chris Lattnere995a2a2004-05-23 21:00:47 +00001126 Constraints.push_back(Constraint(Constraint::Copy,
Daniel Berlinaad15882007-09-16 21:45:02 +00001127 UniversalSet,
Chris Lattnere995a2a2004-05-23 21:00:47 +00001128 getNode(I)));
Daniel Berlin3a3f1632007-12-12 00:37:04 +00001129#else
1130 Constraints.push_back(Constraint(Constraint::Copy,
1131 getNode(I),
1132 UniversalSet));
1133#endif
Chris Lattnere995a2a2004-05-23 21:00:47 +00001134 }
1135
1136 // If this is an external varargs function, it can also store pointers
1137 // into any pointers passed through the varargs section.
1138 if (F->getFunctionType()->isVarArg())
1139 Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F),
Daniel Berlinaad15882007-09-16 21:45:02 +00001140 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001141 }
1142 }
1143 NumConstraints += Constraints.size();
1144}
1145
1146
1147void Andersens::visitInstruction(Instruction &I) {
1148#ifdef NDEBUG
1149 return; // This function is just a big assert.
1150#endif
1151 if (isa<BinaryOperator>(I))
1152 return;
1153 // Most instructions don't have any effect on pointer values.
1154 switch (I.getOpcode()) {
1155 case Instruction::Br:
1156 case Instruction::Switch:
1157 case Instruction::Unwind:
Chris Lattnerc17edbd2004-10-16 18:16:19 +00001158 case Instruction::Unreachable:
Chris Lattnere995a2a2004-05-23 21:00:47 +00001159 case Instruction::Free:
Reid Spencere4d87aa2006-12-23 06:05:41 +00001160 case Instruction::ICmp:
1161 case Instruction::FCmp:
Chris Lattnere995a2a2004-05-23 21:00:47 +00001162 return;
1163 default:
1164 // Is this something we aren't handling yet?
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00001165 errs() << "Unknown instruction: " << I;
Torok Edwinc23197a2009-07-14 16:55:14 +00001166 llvm_unreachable(0);
Chris Lattnere995a2a2004-05-23 21:00:47 +00001167 }
1168}
1169
Victor Hernandez7b929da2009-10-23 21:09:37 +00001170void Andersens::visitAllocaInst(AllocaInst &I) {
1171 visitAlloc(I);
1172}
1173
1174void Andersens::visitAlloc(Instruction &I) {
Victor Hernandez46e83122009-09-18 21:34:51 +00001175 unsigned ObjectIndex = getObject(&I);
1176 GraphNodes[ObjectIndex].setValue(&I);
1177 Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(I),
Daniel Berlinaad15882007-09-16 21:45:02 +00001178 ObjectIndex));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001179}
1180
1181void Andersens::visitReturnInst(ReturnInst &RI) {
1182 if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType()))
1183 // return V --> <Copy/retval{F}/v>
1184 Constraints.push_back(Constraint(Constraint::Copy,
1185 getReturnNode(RI.getParent()->getParent()),
1186 getNode(RI.getOperand(0))));
1187}
1188
1189void Andersens::visitLoadInst(LoadInst &LI) {
1190 if (isa<PointerType>(LI.getType()))
1191 // P1 = load P2 --> <Load/P1/P2>
1192 Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI),
1193 getNode(LI.getOperand(0))));
1194}
1195
1196void Andersens::visitStoreInst(StoreInst &SI) {
1197 if (isa<PointerType>(SI.getOperand(0)->getType()))
1198 // store P1, P2 --> <Store/P2/P1>
1199 Constraints.push_back(Constraint(Constraint::Store,
1200 getNode(SI.getOperand(1)),
1201 getNode(SI.getOperand(0))));
1202}
1203
1204void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1205 // P1 = getelementptr P2, ... --> <Copy/P1/P2>
1206 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP),
1207 getNode(GEP.getOperand(0))));
1208}
1209
1210void Andersens::visitPHINode(PHINode &PN) {
1211 if (isa<PointerType>(PN.getType())) {
Daniel Berlinaad15882007-09-16 21:45:02 +00001212 unsigned PNN = getNodeValue(PN);
Chris Lattnere995a2a2004-05-23 21:00:47 +00001213 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1214 // P1 = phi P2, P3 --> <Copy/P1/P2>, <Copy/P1/P3>, ...
1215 Constraints.push_back(Constraint(Constraint::Copy, PNN,
1216 getNode(PN.getIncomingValue(i))));
1217 }
1218}
1219
1220void Andersens::visitCastInst(CastInst &CI) {
1221 Value *Op = CI.getOperand(0);
1222 if (isa<PointerType>(CI.getType())) {
1223 if (isa<PointerType>(Op->getType())) {
1224 // P1 = cast P2 --> <Copy/P1/P2>
1225 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
1226 getNode(CI.getOperand(0))));
1227 } else {
1228 // P1 = cast int --> <Copy/P1/Univ>
Chris Lattner175b9632005-03-29 20:36:05 +00001229#if 0
Chris Lattnere995a2a2004-05-23 21:00:47 +00001230 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
Daniel Berlinaad15882007-09-16 21:45:02 +00001231 UniversalSet));
Chris Lattnerbd135c72005-04-05 01:12:03 +00001232#else
1233 getNodeValue(CI);
Chris Lattner175b9632005-03-29 20:36:05 +00001234#endif
Chris Lattnere995a2a2004-05-23 21:00:47 +00001235 }
1236 } else if (isa<PointerType>(Op->getType())) {
1237 // int = cast P1 --> <Copy/Univ/P1>
Chris Lattner175b9632005-03-29 20:36:05 +00001238#if 0
Chris Lattnere995a2a2004-05-23 21:00:47 +00001239 Constraints.push_back(Constraint(Constraint::Copy,
Daniel Berlinaad15882007-09-16 21:45:02 +00001240 UniversalSet,
Chris Lattnere995a2a2004-05-23 21:00:47 +00001241 getNode(CI.getOperand(0))));
Chris Lattnerbd135c72005-04-05 01:12:03 +00001242#else
1243 getNode(CI.getOperand(0));
Chris Lattner175b9632005-03-29 20:36:05 +00001244#endif
Chris Lattnere995a2a2004-05-23 21:00:47 +00001245 }
1246}
1247
1248void Andersens::visitSelectInst(SelectInst &SI) {
1249 if (isa<PointerType>(SI.getType())) {
Daniel Berlinaad15882007-09-16 21:45:02 +00001250 unsigned SIN = getNodeValue(SI);
Chris Lattnere995a2a2004-05-23 21:00:47 +00001251 // P1 = select C, P2, P3 ---> <Copy/P1/P2>, <Copy/P1/P3>
1252 Constraints.push_back(Constraint(Constraint::Copy, SIN,
1253 getNode(SI.getOperand(1))));
1254 Constraints.push_back(Constraint(Constraint::Copy, SIN,
1255 getNode(SI.getOperand(2))));
1256 }
1257}
1258
Chris Lattnere995a2a2004-05-23 21:00:47 +00001259void Andersens::visitVAArg(VAArgInst &I) {
Torok Edwinc23197a2009-07-14 16:55:14 +00001260 llvm_unreachable("vaarg not handled yet!");
Chris Lattnere995a2a2004-05-23 21:00:47 +00001261}
1262
1263/// AddConstraintsForCall - Add constraints for a call with actual arguments
1264/// specified by CS to the function specified by F. Note that the types of
1265/// arguments might not match up in the case where this is an indirect call and
1266/// the function pointer has been casted. If this is the case, do something
1267/// reasonable.
1268void Andersens::AddConstraintsForCall(CallSite CS, Function *F) {
Daniel Berlinaad15882007-09-16 21:45:02 +00001269 Value *CallValue = CS.getCalledValue();
1270 bool IsDeref = F == NULL;
1271
1272 // If this is a call to an external function, try to handle it directly to get
1273 // some taste of context sensitivity.
1274 if (F && F->isDeclaration() && AddConstraintsForExternalCall(CS, F))
Chris Lattner8a446432005-03-29 06:09:07 +00001275 return;
1276
Chris Lattnere995a2a2004-05-23 21:00:47 +00001277 if (isa<PointerType>(CS.getType())) {
Daniel Berlinaad15882007-09-16 21:45:02 +00001278 unsigned CSN = getNode(CS.getInstruction());
1279 if (!F || isa<PointerType>(F->getFunctionType()->getReturnType())) {
1280 if (IsDeref)
1281 Constraints.push_back(Constraint(Constraint::Load, CSN,
1282 getNode(CallValue), CallReturnPos));
1283 else
1284 Constraints.push_back(Constraint(Constraint::Copy, CSN,
1285 getNode(CallValue) + CallReturnPos));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001286 } else {
1287 // If the function returns a non-pointer value, handle this just like we
1288 // treat a nonpointer cast to pointer.
1289 Constraints.push_back(Constraint(Constraint::Copy, CSN,
Daniel Berlinaad15882007-09-16 21:45:02 +00001290 UniversalSet));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001291 }
Daniel Berlinaad15882007-09-16 21:45:02 +00001292 } else if (F && isa<PointerType>(F->getFunctionType()->getReturnType())) {
Daniel Berlin3a3f1632007-12-12 00:37:04 +00001293#if FULL_UNIVERSAL
Chris Lattnere995a2a2004-05-23 21:00:47 +00001294 Constraints.push_back(Constraint(Constraint::Copy,
Daniel Berlinaad15882007-09-16 21:45:02 +00001295 UniversalSet,
1296 getNode(CallValue) + CallReturnPos));
Daniel Berlin3a3f1632007-12-12 00:37:04 +00001297#else
1298 Constraints.push_back(Constraint(Constraint::Copy,
1299 getNode(CallValue) + CallReturnPos,
1300 UniversalSet));
1301#endif
1302
1303
Chris Lattnere995a2a2004-05-23 21:00:47 +00001304 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001305
Chris Lattnere995a2a2004-05-23 21:00:47 +00001306 CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end();
Daniel Berlind3bf1ae2008-03-18 22:22:53 +00001307 bool external = !F || F->isDeclaration();
Daniel Berlinaad15882007-09-16 21:45:02 +00001308 if (F) {
1309 // Direct Call
1310 Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
Daniel Berlind3bf1ae2008-03-18 22:22:53 +00001311 for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI)
1312 {
1313#if !FULL_UNIVERSAL
1314 if (external && isa<PointerType>((*ArgI)->getType()))
1315 {
1316 // Add constraint that ArgI can now point to anything due to
1317 // escaping, as can everything it points to. The second portion of
1318 // this should be taken care of by universal = *universal
1319 Constraints.push_back(Constraint(Constraint::Copy,
1320 getNode(*ArgI),
1321 UniversalSet));
1322 }
Daniel Berlin3a3f1632007-12-12 00:37:04 +00001323#endif
Daniel Berlind3bf1ae2008-03-18 22:22:53 +00001324 if (isa<PointerType>(AI->getType())) {
1325 if (isa<PointerType>((*ArgI)->getType())) {
1326 // Copy the actual argument into the formal argument.
1327 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
1328 getNode(*ArgI)));
1329 } else {
1330 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
1331 UniversalSet));
1332 }
1333 } else if (isa<PointerType>((*ArgI)->getType())) {
1334#if FULL_UNIVERSAL
1335 Constraints.push_back(Constraint(Constraint::Copy,
1336 UniversalSet,
1337 getNode(*ArgI)));
1338#else
1339 Constraints.push_back(Constraint(Constraint::Copy,
1340 getNode(*ArgI),
1341 UniversalSet));
1342#endif
1343 }
Daniel Berlinaad15882007-09-16 21:45:02 +00001344 }
1345 } else {
1346 //Indirect Call
1347 unsigned ArgPos = CallFirstArgPos;
1348 for (; ArgI != ArgE; ++ArgI) {
Chris Lattnere995a2a2004-05-23 21:00:47 +00001349 if (isa<PointerType>((*ArgI)->getType())) {
1350 // Copy the actual argument into the formal argument.
Daniel Berlinaad15882007-09-16 21:45:02 +00001351 Constraints.push_back(Constraint(Constraint::Store,
1352 getNode(CallValue),
1353 getNode(*ArgI), ArgPos++));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001354 } else {
Daniel Berlinaad15882007-09-16 21:45:02 +00001355 Constraints.push_back(Constraint(Constraint::Store,
1356 getNode (CallValue),
1357 UniversalSet, ArgPos++));
Chris Lattnere995a2a2004-05-23 21:00:47 +00001358 }
Chris Lattnere995a2a2004-05-23 21:00:47 +00001359 }
Daniel Berlinaad15882007-09-16 21:45:02 +00001360 }
Chris Lattnere995a2a2004-05-23 21:00:47 +00001361 // Copy all pointers passed through the varargs section to the varargs node.
Daniel Berlinaad15882007-09-16 21:45:02 +00001362 if (F && F->getFunctionType()->isVarArg())
Chris Lattnere995a2a2004-05-23 21:00:47 +00001363 for (; ArgI != ArgE; ++ArgI)
1364 if (isa<PointerType>((*ArgI)->getType()))
1365 Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F),
1366 getNode(*ArgI)));
1367 // If more arguments are passed in than we track, just drop them on the floor.
1368}
1369
1370void Andersens::visitCallSite(CallSite CS) {
1371 if (isa<PointerType>(CS.getType()))
1372 getNodeValue(*CS.getInstruction());
1373
1374 if (Function *F = CS.getCalledFunction()) {
1375 AddConstraintsForCall(CS, F);
1376 } else {
Daniel Berlinaad15882007-09-16 21:45:02 +00001377 AddConstraintsForCall(CS, NULL);
Chris Lattnere995a2a2004-05-23 21:00:47 +00001378 }
1379}
1380
1381//===----------------------------------------------------------------------===//
1382// Constraint Solving Phase
1383//===----------------------------------------------------------------------===//
1384
1385/// intersects - Return true if the points-to set of this node intersects
1386/// with the points-to set of the specified node.
1387bool Andersens::Node::intersects(Node *N) const {
Daniel Berlinaad15882007-09-16 21:45:02 +00001388 return PointsTo->intersects(N->PointsTo);
Chris Lattnere995a2a2004-05-23 21:00:47 +00001389}
1390
1391/// intersectsIgnoring - Return true if the points-to set of this node
1392/// intersects with the points-to set of the specified node on any nodes
1393/// except for the specified node to ignore.
Daniel Berlinaad15882007-09-16 21:45:02 +00001394bool Andersens::Node::intersectsIgnoring(Node *N, unsigned Ignoring) const {
1395 // TODO: If we are only going to call this with the same value for Ignoring,
1396 // we should move the special values out of the points-to bitmap.
1397 bool WeHadIt = PointsTo->test(Ignoring);
1398 bool NHadIt = N->PointsTo->test(Ignoring);
1399 bool Result = false;
1400 if (WeHadIt)
1401 PointsTo->reset(Ignoring);
1402 if (NHadIt)
1403 N->PointsTo->reset(Ignoring);
1404 Result = PointsTo->intersects(N->PointsTo);
1405 if (WeHadIt)
1406 PointsTo->set(Ignoring);
1407 if (NHadIt)
1408 N->PointsTo->set(Ignoring);
1409 return Result;
Chris Lattnere995a2a2004-05-23 21:00:47 +00001410}
1411
Daniel Berlind81ccc22007-09-24 19:45:49 +00001412
1413/// Clump together address taken variables so that the points-to sets use up
1414/// less space and can be operated on faster.
1415
1416void Andersens::ClumpAddressTaken() {
1417#undef DEBUG_TYPE
1418#define DEBUG_TYPE "anders-aa-renumber"
1419 std::vector<unsigned> Translate;
1420 std::vector<Node> NewGraphNodes;
1421
1422 Translate.resize(GraphNodes.size());
1423 unsigned NewPos = 0;
1424
1425 for (unsigned i = 0; i < Constraints.size(); ++i) {
1426 Constraint &C = Constraints[i];
1427 if (C.Type == Constraint::AddressOf) {
1428 GraphNodes[C.Src].AddressTaken = true;
1429 }
1430 }
1431 for (unsigned i = 0; i < NumberSpecialNodes; ++i) {
1432 unsigned Pos = NewPos++;
1433 Translate[i] = Pos;
1434 NewGraphNodes.push_back(GraphNodes[i]);
Chris Lattnerbbbfa992009-08-23 06:35:02 +00001435 DEBUG(errs() << "Renumbering node " << i << " to node " << Pos << "\n");
Daniel Berlind81ccc22007-09-24 19:45:49 +00001436 }
1437
1438 // I believe this ends up being faster than making two vectors and splicing
1439 // them.
1440 for (unsigned i = NumberSpecialNodes; i < GraphNodes.size(); ++i) {
1441 if (GraphNodes[i].AddressTaken) {
1442 unsigned Pos = NewPos++;
1443 Translate[i] = Pos;
1444 NewGraphNodes.push_back(GraphNodes[i]);
Chris Lattnerbbbfa992009-08-23 06:35:02 +00001445 DEBUG(errs() << "Renumbering node " << i << " to node " << Pos << "\n");
Daniel Berlind81ccc22007-09-24 19:45:49 +00001446 }
1447 }
1448
1449 for (unsigned i = NumberSpecialNodes; i < GraphNodes.size(); ++i) {
1450 if (!GraphNodes[i].AddressTaken) {
1451 unsigned Pos = NewPos++;
1452 Translate[i] = Pos;
1453 NewGraphNodes.push_back(GraphNodes[i]);
Chris Lattnerbbbfa992009-08-23 06:35:02 +00001454 DEBUG(errs() << "Renumbering node " << i << " to node " << Pos << "\n");
Daniel Berlind81ccc22007-09-24 19:45:49 +00001455 }
1456 }
1457
1458 for (DenseMap<Value*, unsigned>::iterator Iter = ValueNodes.begin();
1459 Iter != ValueNodes.end();
1460 ++Iter)
1461 Iter->second = Translate[Iter->second];
1462
1463 for (DenseMap<Value*, unsigned>::iterator Iter = ObjectNodes.begin();
1464 Iter != ObjectNodes.end();
1465 ++Iter)
1466 Iter->second = Translate[Iter->second];
1467
1468 for (DenseMap<Function*, unsigned>::iterator Iter = ReturnNodes.begin();
1469 Iter != ReturnNodes.end();
1470 ++Iter)
1471 Iter->second = Translate[Iter->second];
1472
1473 for (DenseMap<Function*, unsigned>::iterator Iter = VarargNodes.begin();
1474 Iter != VarargNodes.end();
1475 ++Iter)
1476 Iter->second = Translate[Iter->second];
1477
1478 for (unsigned i = 0; i < Constraints.size(); ++i) {
1479 Constraint &C = Constraints[i];
1480 C.Src = Translate[C.Src];
1481 C.Dest = Translate[C.Dest];
1482 }
1483
1484 GraphNodes.swap(NewGraphNodes);
1485#undef DEBUG_TYPE
1486#define DEBUG_TYPE "anders-aa"
1487}
1488
1489/// The technique used here is described in "Exploiting Pointer and Location
1490/// Equivalence to Optimize Pointer Analysis. In the 14th International Static
1491/// Analysis Symposium (SAS), August 2007." It is known as the "HVN" algorithm,
1492/// and is equivalent to value numbering the collapsed constraint graph without
1493/// evaluating unions. This is used as a pre-pass to HU in order to resolve
1494/// first order pointer dereferences and speed up/reduce memory usage of HU.
1495/// Running both is equivalent to HRU without the iteration
1496/// HVN in more detail:
1497/// Imagine the set of constraints was simply straight line code with no loops
1498/// (we eliminate cycles, so there are no loops), such as:
1499/// E = &D
1500/// E = &C
1501/// E = F
1502/// F = G
1503/// G = F
1504/// Applying value numbering to this code tells us:
1505/// G == F == E
1506///
1507/// For HVN, this is as far as it goes. We assign new value numbers to every
1508/// "address node", and every "reference node".
1509/// To get the optimal result for this, we use a DFS + SCC (since all nodes in a
1510/// cycle must have the same value number since the = operation is really
1511/// inclusion, not overwrite), and value number nodes we receive points-to sets
1512/// before we value our own node.
1513/// The advantage of HU over HVN is that HU considers the inclusion property, so
1514/// that if you have
1515/// E = &D
1516/// E = &C
1517/// E = F
1518/// F = G
1519/// F = &D
1520/// G = F
1521/// HU will determine that G == F == E. HVN will not, because it cannot prove
1522/// that the points to information ends up being the same because they all
1523/// receive &D from E anyway.
1524
1525void Andersens::HVN() {
Chris Lattnerbbbfa992009-08-23 06:35:02 +00001526 DEBUG(errs() << "Beginning HVN\n");
Daniel Berlind81ccc22007-09-24 19:45:49 +00001527 // Build a predecessor graph. This is like our constraint graph with the
1528 // edges going in the opposite direction, and there are edges for all the
1529 // constraints, instead of just copy constraints. We also build implicit
1530 // edges for constraints are implied but not explicit. I.E for the constraint
1531 // a = &b, we add implicit edges *a = b. This helps us capture more cycles
1532 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1533 Constraint &C = Constraints[i];
1534 if (C.Type == Constraint::AddressOf) {
1535 GraphNodes[C.Src].AddressTaken = true;
1536 GraphNodes[C.Src].Direct = false;
1537
1538 // Dest = &src edge
1539 unsigned AdrNode = C.Src + FirstAdrNode;
1540 if (!GraphNodes[C.Dest].PredEdges)
1541 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1542 GraphNodes[C.Dest].PredEdges->set(AdrNode);
1543
1544 // *Dest = src edge
1545 unsigned RefNode = C.Dest + FirstRefNode;
1546 if (!GraphNodes[RefNode].ImplicitPredEdges)
1547 GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
1548 GraphNodes[RefNode].ImplicitPredEdges->set(C.Src);
1549 } else if (C.Type == Constraint::Load) {
1550 if (C.Offset == 0) {
1551 // dest = *src edge
1552 if (!GraphNodes[C.Dest].PredEdges)
1553 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1554 GraphNodes[C.Dest].PredEdges->set(C.Src + FirstRefNode);
1555 } else {
1556 GraphNodes[C.Dest].Direct = false;
1557 }
1558 } else if (C.Type == Constraint::Store) {
1559 if (C.Offset == 0) {
1560 // *dest = src edge
1561 unsigned RefNode = C.Dest + FirstRefNode;
1562 if (!GraphNodes[RefNode].PredEdges)
1563 GraphNodes[RefNode].PredEdges = new SparseBitVector<>;
1564 GraphNodes[RefNode].PredEdges->set(C.Src);
1565 }
1566 } else {
1567 // Dest = Src edge and *Dest = *Src edge
1568 if (!GraphNodes[C.Dest].PredEdges)
1569 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1570 GraphNodes[C.Dest].PredEdges->set(C.Src);
1571 unsigned RefNode = C.Dest + FirstRefNode;
1572 if (!GraphNodes[RefNode].ImplicitPredEdges)
1573 GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
1574 GraphNodes[RefNode].ImplicitPredEdges->set(C.Src + FirstRefNode);
1575 }
1576 }
1577 PEClass = 1;
1578 // Do SCC finding first to condense our predecessor graph
1579 DFSNumber = 0;
1580 Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
1581 Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
1582 Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
1583
1584 for (unsigned i = 0; i < FirstRefNode; ++i) {
1585 unsigned Node = VSSCCRep[i];
1586 if (!Node2Visited[Node])
1587 HVNValNum(Node);
1588 }
1589 for (BitVectorMap::iterator Iter = Set2PEClass.begin();
1590 Iter != Set2PEClass.end();
1591 ++Iter)
1592 delete Iter->first;
1593 Set2PEClass.clear();
1594 Node2DFS.clear();
1595 Node2Deleted.clear();
1596 Node2Visited.clear();
Chris Lattnerbbbfa992009-08-23 06:35:02 +00001597 DEBUG(errs() << "Finished HVN\n");
Daniel Berlind81ccc22007-09-24 19:45:49 +00001598
1599}
1600
1601/// This is the workhorse of HVN value numbering. We combine SCC finding at the
1602/// same time because it's easy.
1603void Andersens::HVNValNum(unsigned NodeIndex) {
1604 unsigned MyDFS = DFSNumber++;
1605 Node *N = &GraphNodes[NodeIndex];
1606 Node2Visited[NodeIndex] = true;
1607 Node2DFS[NodeIndex] = MyDFS;
1608
1609 // First process all our explicit edges
1610 if (N->PredEdges)
1611 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1612 Iter != N->PredEdges->end();
1613 ++Iter) {
1614 unsigned j = VSSCCRep[*Iter];
1615 if (!Node2Deleted[j]) {
1616 if (!Node2Visited[j])
1617 HVNValNum(j);
1618 if (Node2DFS[NodeIndex] > Node2DFS[j])
1619 Node2DFS[NodeIndex] = Node2DFS[j];
1620 }
1621 }
1622
1623 // Now process all the implicit edges
1624 if (N->ImplicitPredEdges)
1625 for (SparseBitVector<>::iterator Iter = N->ImplicitPredEdges->begin();
1626 Iter != N->ImplicitPredEdges->end();
1627 ++Iter) {
1628 unsigned j = VSSCCRep[*Iter];
1629 if (!Node2Deleted[j]) {
1630 if (!Node2Visited[j])
1631 HVNValNum(j);
1632 if (Node2DFS[NodeIndex] > Node2DFS[j])
1633 Node2DFS[NodeIndex] = Node2DFS[j];
1634 }
1635 }
1636
1637 // See if we found any cycles
1638 if (MyDFS == Node2DFS[NodeIndex]) {
1639 while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
1640 unsigned CycleNodeIndex = SCCStack.top();
1641 Node *CycleNode = &GraphNodes[CycleNodeIndex];
1642 VSSCCRep[CycleNodeIndex] = NodeIndex;
1643 // Unify the nodes
1644 N->Direct &= CycleNode->Direct;
1645
1646 if (CycleNode->PredEdges) {
1647 if (!N->PredEdges)
1648 N->PredEdges = new SparseBitVector<>;
1649 *(N->PredEdges) |= CycleNode->PredEdges;
1650 delete CycleNode->PredEdges;
1651 CycleNode->PredEdges = NULL;
1652 }
1653 if (CycleNode->ImplicitPredEdges) {
1654 if (!N->ImplicitPredEdges)
1655 N->ImplicitPredEdges = new SparseBitVector<>;
1656 *(N->ImplicitPredEdges) |= CycleNode->ImplicitPredEdges;
1657 delete CycleNode->ImplicitPredEdges;
1658 CycleNode->ImplicitPredEdges = NULL;
1659 }
1660
1661 SCCStack.pop();
1662 }
1663
1664 Node2Deleted[NodeIndex] = true;
1665
1666 if (!N->Direct) {
1667 GraphNodes[NodeIndex].PointerEquivLabel = PEClass++;
1668 return;
1669 }
1670
1671 // Collect labels of successor nodes
1672 bool AllSame = true;
1673 unsigned First = ~0;
1674 SparseBitVector<> *Labels = new SparseBitVector<>;
1675 bool Used = false;
1676
1677 if (N->PredEdges)
1678 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1679 Iter != N->PredEdges->end();
1680 ++Iter) {
1681 unsigned j = VSSCCRep[*Iter];
1682 unsigned Label = GraphNodes[j].PointerEquivLabel;
1683 // Ignore labels that are equal to us or non-pointers
1684 if (j == NodeIndex || Label == 0)
1685 continue;
1686 if (First == (unsigned)~0)
1687 First = Label;
1688 else if (First != Label)
1689 AllSame = false;
1690 Labels->set(Label);
1691 }
1692
1693 // We either have a non-pointer, a copy of an existing node, or a new node.
1694 // Assign the appropriate pointer equivalence label.
1695 if (Labels->empty()) {
1696 GraphNodes[NodeIndex].PointerEquivLabel = 0;
1697 } else if (AllSame) {
1698 GraphNodes[NodeIndex].PointerEquivLabel = First;
1699 } else {
1700 GraphNodes[NodeIndex].PointerEquivLabel = Set2PEClass[Labels];
1701 if (GraphNodes[NodeIndex].PointerEquivLabel == 0) {
1702 unsigned EquivClass = PEClass++;
1703 Set2PEClass[Labels] = EquivClass;
1704 GraphNodes[NodeIndex].PointerEquivLabel = EquivClass;
1705 Used = true;
1706 }
1707 }
1708 if (!Used)
1709 delete Labels;
1710 } else {
1711 SCCStack.push(NodeIndex);
1712 }
1713}
1714
1715/// The technique used here is described in "Exploiting Pointer and Location
1716/// Equivalence to Optimize Pointer Analysis. In the 14th International Static
1717/// Analysis Symposium (SAS), August 2007." It is known as the "HU" algorithm,
1718/// and is equivalent to value numbering the collapsed constraint graph
1719/// including evaluating unions.
1720void Andersens::HU() {
Chris Lattnerbbbfa992009-08-23 06:35:02 +00001721 DEBUG(errs() << "Beginning HU\n");
Daniel Berlind81ccc22007-09-24 19:45:49 +00001722 // Build a predecessor graph. This is like our constraint graph with the
1723 // edges going in the opposite direction, and there are edges for all the
1724 // constraints, instead of just copy constraints. We also build implicit
1725 // edges for constraints are implied but not explicit. I.E for the constraint
1726 // a = &b, we add implicit edges *a = b. This helps us capture more cycles
1727 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1728 Constraint &C = Constraints[i];
1729 if (C.Type == Constraint::AddressOf) {
1730 GraphNodes[C.Src].AddressTaken = true;
1731 GraphNodes[C.Src].Direct = false;
1732
1733 GraphNodes[C.Dest].PointsTo->set(C.Src);
1734 // *Dest = src edge
1735 unsigned RefNode = C.Dest + FirstRefNode;
1736 if (!GraphNodes[RefNode].ImplicitPredEdges)
1737 GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
1738 GraphNodes[RefNode].ImplicitPredEdges->set(C.Src);
1739 GraphNodes[C.Src].PointedToBy->set(C.Dest);
1740 } else if (C.Type == Constraint::Load) {
1741 if (C.Offset == 0) {
1742 // dest = *src edge
1743 if (!GraphNodes[C.Dest].PredEdges)
1744 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1745 GraphNodes[C.Dest].PredEdges->set(C.Src + FirstRefNode);
1746 } else {
1747 GraphNodes[C.Dest].Direct = false;
1748 }
1749 } else if (C.Type == Constraint::Store) {
1750 if (C.Offset == 0) {
1751 // *dest = src edge
1752 unsigned RefNode = C.Dest + FirstRefNode;
1753 if (!GraphNodes[RefNode].PredEdges)
1754 GraphNodes[RefNode].PredEdges = new SparseBitVector<>;
1755 GraphNodes[RefNode].PredEdges->set(C.Src);
1756 }
1757 } else {
1758 // Dest = Src edge and *Dest = *Src edg
1759 if (!GraphNodes[C.Dest].PredEdges)
1760 GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
1761 GraphNodes[C.Dest].PredEdges->set(C.Src);
1762 unsigned RefNode = C.Dest + FirstRefNode;
1763 if (!GraphNodes[RefNode].ImplicitPredEdges)
1764 GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
1765 GraphNodes[RefNode].ImplicitPredEdges->set(C.Src + FirstRefNode);
1766 }
1767 }
1768 PEClass = 1;
1769 // Do SCC finding first to condense our predecessor graph
1770 DFSNumber = 0;
1771 Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
1772 Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
1773 Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
1774
1775 for (unsigned i = 0; i < FirstRefNode; ++i) {
1776 if (FindNode(i) == i) {
1777 unsigned Node = VSSCCRep[i];
1778 if (!Node2Visited[Node])
1779 Condense(Node);
1780 }
1781 }
1782
1783 // Reset tables for actual labeling
1784 Node2DFS.clear();
1785 Node2Visited.clear();
1786 Node2Deleted.clear();
1787 // Pre-grow our densemap so that we don't get really bad behavior
1788 Set2PEClass.resize(GraphNodes.size());
1789
1790 // Visit the condensed graph and generate pointer equivalence labels.
1791 Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
1792 for (unsigned i = 0; i < FirstRefNode; ++i) {
1793 if (FindNode(i) == i) {
1794 unsigned Node = VSSCCRep[i];
1795 if (!Node2Visited[Node])
1796 HUValNum(Node);
1797 }
1798 }
1799 // PEClass nodes will be deleted by the deleting of N->PointsTo in our caller.
1800 Set2PEClass.clear();
Chris Lattnerbbbfa992009-08-23 06:35:02 +00001801 DEBUG(errs() << "Finished HU\n");
Daniel Berlind81ccc22007-09-24 19:45:49 +00001802}
1803
1804
1805/// Implementation of standard Tarjan SCC algorithm as modified by Nuutilla.
1806void Andersens::Condense(unsigned NodeIndex) {
1807 unsigned MyDFS = DFSNumber++;
1808 Node *N = &GraphNodes[NodeIndex];
1809 Node2Visited[NodeIndex] = true;
1810 Node2DFS[NodeIndex] = MyDFS;
1811
1812 // First process all our explicit edges
1813 if (N->PredEdges)
1814 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1815 Iter != N->PredEdges->end();
1816 ++Iter) {
1817 unsigned j = VSSCCRep[*Iter];
1818 if (!Node2Deleted[j]) {
1819 if (!Node2Visited[j])
1820 Condense(j);
1821 if (Node2DFS[NodeIndex] > Node2DFS[j])
1822 Node2DFS[NodeIndex] = Node2DFS[j];
1823 }
1824 }
1825
1826 // Now process all the implicit edges
1827 if (N->ImplicitPredEdges)
1828 for (SparseBitVector<>::iterator Iter = N->ImplicitPredEdges->begin();
1829 Iter != N->ImplicitPredEdges->end();
1830 ++Iter) {
1831 unsigned j = VSSCCRep[*Iter];
1832 if (!Node2Deleted[j]) {
1833 if (!Node2Visited[j])
1834 Condense(j);
1835 if (Node2DFS[NodeIndex] > Node2DFS[j])
1836 Node2DFS[NodeIndex] = Node2DFS[j];
1837 }
1838 }
1839
1840 // See if we found any cycles
1841 if (MyDFS == Node2DFS[NodeIndex]) {
1842 while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
1843 unsigned CycleNodeIndex = SCCStack.top();
1844 Node *CycleNode = &GraphNodes[CycleNodeIndex];
1845 VSSCCRep[CycleNodeIndex] = NodeIndex;
1846 // Unify the nodes
1847 N->Direct &= CycleNode->Direct;
1848
1849 *(N->PointsTo) |= CycleNode->PointsTo;
1850 delete CycleNode->PointsTo;
1851 CycleNode->PointsTo = NULL;
1852 if (CycleNode->PredEdges) {
1853 if (!N->PredEdges)
1854 N->PredEdges = new SparseBitVector<>;
1855 *(N->PredEdges) |= CycleNode->PredEdges;
1856 delete CycleNode->PredEdges;
1857 CycleNode->PredEdges = NULL;
1858 }
1859 if (CycleNode->ImplicitPredEdges) {
1860 if (!N->ImplicitPredEdges)
1861 N->ImplicitPredEdges = new SparseBitVector<>;
1862 *(N->ImplicitPredEdges) |= CycleNode->ImplicitPredEdges;
1863 delete CycleNode->ImplicitPredEdges;
1864 CycleNode->ImplicitPredEdges = NULL;
1865 }
1866 SCCStack.pop();
1867 }
1868
1869 Node2Deleted[NodeIndex] = true;
1870
1871 // Set up number of incoming edges for other nodes
1872 if (N->PredEdges)
1873 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1874 Iter != N->PredEdges->end();
1875 ++Iter)
1876 ++GraphNodes[VSSCCRep[*Iter]].NumInEdges;
1877 } else {
1878 SCCStack.push(NodeIndex);
1879 }
1880}
1881
1882void Andersens::HUValNum(unsigned NodeIndex) {
1883 Node *N = &GraphNodes[NodeIndex];
1884 Node2Visited[NodeIndex] = true;
1885
1886 // Eliminate dereferences of non-pointers for those non-pointers we have
1887 // already identified. These are ref nodes whose non-ref node:
1888 // 1. Has already been visited determined to point to nothing (and thus, a
1889 // dereference of it must point to nothing)
1890 // 2. Any direct node with no predecessor edges in our graph and with no
1891 // points-to set (since it can't point to anything either, being that it
1892 // receives no points-to sets and has none).
1893 if (NodeIndex >= FirstRefNode) {
1894 unsigned j = VSSCCRep[FindNode(NodeIndex - FirstRefNode)];
1895 if ((Node2Visited[j] && !GraphNodes[j].PointerEquivLabel)
1896 || (GraphNodes[j].Direct && !GraphNodes[j].PredEdges
1897 && GraphNodes[j].PointsTo->empty())){
1898 return;
1899 }
1900 }
1901 // Process all our explicit edges
1902 if (N->PredEdges)
1903 for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
1904 Iter != N->PredEdges->end();
1905 ++Iter) {
1906 unsigned j = VSSCCRep[*Iter];
1907 if (!Node2Visited[j])
1908 HUValNum(j);
1909
1910 // If this edge turned out to be the same as us, or got no pointer
1911 // equivalence label (and thus points to nothing) , just decrement our
1912 // incoming edges and continue.
1913 if (j == NodeIndex || GraphNodes[j].PointerEquivLabel == 0) {
1914 --GraphNodes[j].NumInEdges;
1915 continue;
1916 }
1917
1918 *(N->PointsTo) |= GraphNodes[j].PointsTo;
1919
1920 // If we didn't end up storing this in the hash, and we're done with all
1921 // the edges, we don't need the points-to set anymore.
1922 --GraphNodes[j].NumInEdges;
1923 if (!GraphNodes[j].NumInEdges && !GraphNodes[j].StoredInHash) {
1924 delete GraphNodes[j].PointsTo;
1925 GraphNodes[j].PointsTo = NULL;
1926 }
1927 }
1928 // If this isn't a direct node, generate a fresh variable.
1929 if (!N->Direct) {
1930 N->PointsTo->set(FirstRefNode + NodeIndex);
1931 }
1932
1933 // See If we have something equivalent to us, if not, generate a new
1934 // equivalence class.
1935 if (N->PointsTo->empty()) {
1936 delete N->PointsTo;
1937 N->PointsTo = NULL;
1938 } else {
1939 if (N->Direct) {
1940 N->PointerEquivLabel = Set2PEClass[N->PointsTo];
1941 if (N->PointerEquivLabel == 0) {
1942 unsigned EquivClass = PEClass++;
1943 N->StoredInHash = true;
1944 Set2PEClass[N->PointsTo] = EquivClass;
1945 N->PointerEquivLabel = EquivClass;
1946 }
1947 } else {
1948 N->PointerEquivLabel = PEClass++;
1949 }
1950 }
1951}
1952
1953/// Rewrite our list of constraints so that pointer equivalent nodes are
1954/// replaced by their the pointer equivalence class representative.
1955void Andersens::RewriteConstraints() {
1956 std::vector<Constraint> NewConstraints;
Chris Lattnerbe207732007-09-30 00:47:20 +00001957 DenseSet<Constraint, ConstraintKeyInfo> Seen;
Daniel Berlind81ccc22007-09-24 19:45:49 +00001958
1959 PEClass2Node.clear();
1960 PENLEClass2Node.clear();
1961
1962 // We may have from 1 to Graphnodes + 1 equivalence classes.
1963 PEClass2Node.insert(PEClass2Node.begin(), GraphNodes.size() + 1, -1);
1964 PENLEClass2Node.insert(PENLEClass2Node.begin(), GraphNodes.size() + 1, -1);
1965
1966 // Rewrite constraints, ignoring non-pointer constraints, uniting equivalent
1967 // nodes, and rewriting constraints to use the representative nodes.
1968 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1969 Constraint &C = Constraints[i];
1970 unsigned RHSNode = FindNode(C.Src);
1971 unsigned LHSNode = FindNode(C.Dest);
1972 unsigned RHSLabel = GraphNodes[VSSCCRep[RHSNode]].PointerEquivLabel;
1973 unsigned LHSLabel = GraphNodes[VSSCCRep[LHSNode]].PointerEquivLabel;
1974
1975 // First we try to eliminate constraints for things we can prove don't point
1976 // to anything.
1977 if (LHSLabel == 0) {
1978 DEBUG(PrintNode(&GraphNodes[LHSNode]));
Chris Lattnerbbbfa992009-08-23 06:35:02 +00001979 DEBUG(errs() << " is a non-pointer, ignoring constraint.\n");
Daniel Berlind81ccc22007-09-24 19:45:49 +00001980 continue;
1981 }
1982 if (RHSLabel == 0) {
1983 DEBUG(PrintNode(&GraphNodes[RHSNode]));
Chris Lattnerbbbfa992009-08-23 06:35:02 +00001984 DEBUG(errs() << " is a non-pointer, ignoring constraint.\n");
Daniel Berlind81ccc22007-09-24 19:45:49 +00001985 continue;
1986 }
1987 // This constraint may be useless, and it may become useless as we translate
1988 // it.
1989 if (C.Src == C.Dest && C.Type == Constraint::Copy)
1990 continue;
Daniel Berlinc7a12ae2007-09-27 15:42:23 +00001991
Daniel Berlind81ccc22007-09-24 19:45:49 +00001992 C.Src = FindEquivalentNode(RHSNode, RHSLabel);
1993 C.Dest = FindEquivalentNode(FindNode(LHSNode), LHSLabel);
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00001994 if ((C.Src == C.Dest && C.Type == Constraint::Copy)
Chris Lattnerbe207732007-09-30 00:47:20 +00001995 || Seen.count(C))
Daniel Berlind81ccc22007-09-24 19:45:49 +00001996 continue;
1997
Chris Lattnerbe207732007-09-30 00:47:20 +00001998 Seen.insert(C);
Daniel Berlind81ccc22007-09-24 19:45:49 +00001999 NewConstraints.push_back(C);
2000 }
2001 Constraints.swap(NewConstraints);
2002 PEClass2Node.clear();
2003}
2004
2005/// See if we have a node that is pointer equivalent to the one being asked
2006/// about, and if so, unite them and return the equivalent node. Otherwise,
2007/// return the original node.
2008unsigned Andersens::FindEquivalentNode(unsigned NodeIndex,
2009 unsigned NodeLabel) {
2010 if (!GraphNodes[NodeIndex].AddressTaken) {
2011 if (PEClass2Node[NodeLabel] != -1) {
2012 // We found an existing node with the same pointer label, so unify them.
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002013 // We specifically request that Union-By-Rank not be used so that
2014 // PEClass2Node[NodeLabel] U= NodeIndex and not the other way around.
2015 return UniteNodes(PEClass2Node[NodeLabel], NodeIndex, false);
Daniel Berlind81ccc22007-09-24 19:45:49 +00002016 } else {
2017 PEClass2Node[NodeLabel] = NodeIndex;
2018 PENLEClass2Node[NodeLabel] = NodeIndex;
2019 }
2020 } else if (PENLEClass2Node[NodeLabel] == -1) {
2021 PENLEClass2Node[NodeLabel] = NodeIndex;
2022 }
2023
2024 return NodeIndex;
2025}
2026
Andrew Lenharth52d34d92008-03-20 15:36:44 +00002027void Andersens::PrintLabels() const {
Daniel Berlind81ccc22007-09-24 19:45:49 +00002028 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2029 if (i < FirstRefNode) {
2030 PrintNode(&GraphNodes[i]);
2031 } else if (i < FirstAdrNode) {
Chris Lattnerbbbfa992009-08-23 06:35:02 +00002032 DEBUG(errs() << "REF(");
Daniel Berlind81ccc22007-09-24 19:45:49 +00002033 PrintNode(&GraphNodes[i-FirstRefNode]);
Chris Lattnerbbbfa992009-08-23 06:35:02 +00002034 DEBUG(errs() <<")");
Daniel Berlind81ccc22007-09-24 19:45:49 +00002035 } else {
Chris Lattnerbbbfa992009-08-23 06:35:02 +00002036 DEBUG(errs() << "ADR(");
Daniel Berlind81ccc22007-09-24 19:45:49 +00002037 PrintNode(&GraphNodes[i-FirstAdrNode]);
Chris Lattnerbbbfa992009-08-23 06:35:02 +00002038 DEBUG(errs() <<")");
Daniel Berlind81ccc22007-09-24 19:45:49 +00002039 }
2040
Chris Lattnerbbbfa992009-08-23 06:35:02 +00002041 DEBUG(errs() << " has pointer label " << GraphNodes[i].PointerEquivLabel
Daniel Berlind81ccc22007-09-24 19:45:49 +00002042 << " and SCC rep " << VSSCCRep[i]
2043 << " and is " << (GraphNodes[i].Direct ? "Direct" : "Not direct")
Chris Lattnerbbbfa992009-08-23 06:35:02 +00002044 << "\n");
Daniel Berlind81ccc22007-09-24 19:45:49 +00002045 }
2046}
2047
Daniel Berlinc864edb2008-03-05 19:31:47 +00002048/// The technique used here is described in "The Ant and the
2049/// Grasshopper: Fast and Accurate Pointer Analysis for Millions of
2050/// Lines of Code. In Programming Language Design and Implementation
2051/// (PLDI), June 2007." It is known as the "HCD" (Hybrid Cycle
2052/// Detection) algorithm. It is called a hybrid because it performs an
2053/// offline analysis and uses its results during the solving (online)
2054/// phase. This is just the offline portion; the results of this
2055/// operation are stored in SDT and are later used in SolveContraints()
2056/// and UniteNodes().
2057void Andersens::HCD() {
Chris Lattnerbbbfa992009-08-23 06:35:02 +00002058 DEBUG(errs() << "Starting HCD.\n");
Daniel Berlinc864edb2008-03-05 19:31:47 +00002059 HCDSCCRep.resize(GraphNodes.size());
2060
2061 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2062 GraphNodes[i].Edges = new SparseBitVector<>;
2063 HCDSCCRep[i] = i;
2064 }
2065
2066 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2067 Constraint &C = Constraints[i];
2068 assert (C.Src < GraphNodes.size() && C.Dest < GraphNodes.size());
2069 if (C.Type == Constraint::AddressOf) {
2070 continue;
2071 } else if (C.Type == Constraint::Load) {
2072 if( C.Offset == 0 )
2073 GraphNodes[C.Dest].Edges->set(C.Src + FirstRefNode);
2074 } else if (C.Type == Constraint::Store) {
2075 if( C.Offset == 0 )
2076 GraphNodes[C.Dest + FirstRefNode].Edges->set(C.Src);
2077 } else {
2078 GraphNodes[C.Dest].Edges->set(C.Src);
2079 }
2080 }
2081
2082 Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
2083 Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
2084 Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
2085 SDT.insert(SDT.begin(), GraphNodes.size() / 2, -1);
2086
2087 DFSNumber = 0;
2088 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2089 unsigned Node = HCDSCCRep[i];
2090 if (!Node2Deleted[Node])
2091 Search(Node);
2092 }
2093
2094 for (unsigned i = 0; i < GraphNodes.size(); ++i)
2095 if (GraphNodes[i].Edges != NULL) {
2096 delete GraphNodes[i].Edges;
2097 GraphNodes[i].Edges = NULL;
2098 }
2099
2100 while( !SCCStack.empty() )
2101 SCCStack.pop();
2102
2103 Node2DFS.clear();
2104 Node2Visited.clear();
2105 Node2Deleted.clear();
2106 HCDSCCRep.clear();
Chris Lattnerbbbfa992009-08-23 06:35:02 +00002107 DEBUG(errs() << "HCD complete.\n");
Daniel Berlinc864edb2008-03-05 19:31:47 +00002108}
2109
2110// Component of HCD:
2111// Use Nuutila's variant of Tarjan's algorithm to detect
2112// Strongly-Connected Components (SCCs). For non-trivial SCCs
2113// containing ref nodes, insert the appropriate information in SDT.
2114void Andersens::Search(unsigned Node) {
2115 unsigned MyDFS = DFSNumber++;
2116
2117 Node2Visited[Node] = true;
2118 Node2DFS[Node] = MyDFS;
2119
2120 for (SparseBitVector<>::iterator Iter = GraphNodes[Node].Edges->begin(),
2121 End = GraphNodes[Node].Edges->end();
2122 Iter != End;
2123 ++Iter) {
2124 unsigned J = HCDSCCRep[*Iter];
2125 assert(GraphNodes[J].isRep() && "Debug check; must be representative");
2126 if (!Node2Deleted[J]) {
2127 if (!Node2Visited[J])
2128 Search(J);
2129 if (Node2DFS[Node] > Node2DFS[J])
2130 Node2DFS[Node] = Node2DFS[J];
2131 }
2132 }
2133
2134 if( MyDFS != Node2DFS[Node] ) {
2135 SCCStack.push(Node);
2136 return;
2137 }
2138
2139 // This node is the root of a SCC, so process it.
2140 //
2141 // If the SCC is "non-trivial" (not a singleton) and contains a reference
2142 // node, we place this SCC into SDT. We unite the nodes in any case.
2143 if (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
2144 SparseBitVector<> SCC;
2145
2146 SCC.set(Node);
2147
2148 bool Ref = (Node >= FirstRefNode);
2149
2150 Node2Deleted[Node] = true;
2151
2152 do {
2153 unsigned P = SCCStack.top(); SCCStack.pop();
2154 Ref |= (P >= FirstRefNode);
2155 SCC.set(P);
2156 HCDSCCRep[P] = Node;
2157 } while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS);
2158
2159 if (Ref) {
2160 unsigned Rep = SCC.find_first();
2161 assert(Rep < FirstRefNode && "The SCC didn't have a non-Ref node!");
2162
2163 SparseBitVector<>::iterator i = SCC.begin();
2164
2165 // Skip over the non-ref nodes
2166 while( *i < FirstRefNode )
2167 ++i;
2168
2169 while( i != SCC.end() )
2170 SDT[ (*i++) - FirstRefNode ] = Rep;
2171 }
2172 }
2173}
2174
2175
Daniel Berlind81ccc22007-09-24 19:45:49 +00002176/// Optimize the constraints by performing offline variable substitution and
2177/// other optimizations.
2178void Andersens::OptimizeConstraints() {
Chris Lattnerbbbfa992009-08-23 06:35:02 +00002179 DEBUG(errs() << "Beginning constraint optimization\n");
Daniel Berlind81ccc22007-09-24 19:45:49 +00002180
Daniel Berlinc864edb2008-03-05 19:31:47 +00002181 SDTActive = false;
2182
Daniel Berlind81ccc22007-09-24 19:45:49 +00002183 // Function related nodes need to stay in the same relative position and can't
2184 // be location equivalent.
2185 for (std::map<unsigned, unsigned>::iterator Iter = MaxK.begin();
2186 Iter != MaxK.end();
2187 ++Iter) {
2188 for (unsigned i = Iter->first;
2189 i != Iter->first + Iter->second;
2190 ++i) {
2191 GraphNodes[i].AddressTaken = true;
2192 GraphNodes[i].Direct = false;
2193 }
2194 }
2195
2196 ClumpAddressTaken();
2197 FirstRefNode = GraphNodes.size();
2198 FirstAdrNode = FirstRefNode + GraphNodes.size();
2199 GraphNodes.insert(GraphNodes.end(), 2 * GraphNodes.size(),
2200 Node(false));
2201 VSSCCRep.resize(GraphNodes.size());
2202 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2203 VSSCCRep[i] = i;
2204 }
2205 HVN();
2206 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2207 Node *N = &GraphNodes[i];
2208 delete N->PredEdges;
2209 N->PredEdges = NULL;
2210 delete N->ImplicitPredEdges;
2211 N->ImplicitPredEdges = NULL;
2212 }
2213#undef DEBUG_TYPE
2214#define DEBUG_TYPE "anders-aa-labels"
2215 DEBUG(PrintLabels());
2216#undef DEBUG_TYPE
2217#define DEBUG_TYPE "anders-aa"
2218 RewriteConstraints();
2219 // Delete the adr nodes.
2220 GraphNodes.resize(FirstRefNode * 2);
2221
2222 // Now perform HU
2223 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2224 Node *N = &GraphNodes[i];
2225 if (FindNode(i) == i) {
2226 N->PointsTo = new SparseBitVector<>;
2227 N->PointedToBy = new SparseBitVector<>;
2228 // Reset our labels
2229 }
2230 VSSCCRep[i] = i;
2231 N->PointerEquivLabel = 0;
2232 }
2233 HU();
2234#undef DEBUG_TYPE
2235#define DEBUG_TYPE "anders-aa-labels"
2236 DEBUG(PrintLabels());
2237#undef DEBUG_TYPE
2238#define DEBUG_TYPE "anders-aa"
2239 RewriteConstraints();
2240 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2241 if (FindNode(i) == i) {
2242 Node *N = &GraphNodes[i];
2243 delete N->PointsTo;
Daniel Berlinc864edb2008-03-05 19:31:47 +00002244 N->PointsTo = NULL;
Daniel Berlind81ccc22007-09-24 19:45:49 +00002245 delete N->PredEdges;
Daniel Berlinc864edb2008-03-05 19:31:47 +00002246 N->PredEdges = NULL;
Daniel Berlind81ccc22007-09-24 19:45:49 +00002247 delete N->ImplicitPredEdges;
Daniel Berlinc864edb2008-03-05 19:31:47 +00002248 N->ImplicitPredEdges = NULL;
Daniel Berlind81ccc22007-09-24 19:45:49 +00002249 delete N->PointedToBy;
Daniel Berlinc864edb2008-03-05 19:31:47 +00002250 N->PointedToBy = NULL;
Daniel Berlind81ccc22007-09-24 19:45:49 +00002251 }
2252 }
Daniel Berlinc864edb2008-03-05 19:31:47 +00002253
2254 // perform Hybrid Cycle Detection (HCD)
2255 HCD();
2256 SDTActive = true;
2257
2258 // No longer any need for the upper half of GraphNodes (for ref nodes).
Daniel Berlind81ccc22007-09-24 19:45:49 +00002259 GraphNodes.erase(GraphNodes.begin() + FirstRefNode, GraphNodes.end());
Daniel Berlinc864edb2008-03-05 19:31:47 +00002260
2261 // HCD complete.
2262
Chris Lattnerbbbfa992009-08-23 06:35:02 +00002263 DEBUG(errs() << "Finished constraint optimization\n");
Daniel Berlind81ccc22007-09-24 19:45:49 +00002264 FirstRefNode = 0;
2265 FirstAdrNode = 0;
2266}
2267
2268/// Unite pointer but not location equivalent variables, now that the constraint
2269/// graph is built.
2270void Andersens::UnitePointerEquivalences() {
Chris Lattnerbbbfa992009-08-23 06:35:02 +00002271 DEBUG(errs() << "Uniting remaining pointer equivalences\n");
Daniel Berlind81ccc22007-09-24 19:45:49 +00002272 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002273 if (GraphNodes[i].AddressTaken && GraphNodes[i].isRep()) {
Daniel Berlind81ccc22007-09-24 19:45:49 +00002274 unsigned Label = GraphNodes[i].PointerEquivLabel;
2275
2276 if (Label && PENLEClass2Node[Label] != -1)
2277 UniteNodes(i, PENLEClass2Node[Label]);
2278 }
2279 }
Chris Lattnerbbbfa992009-08-23 06:35:02 +00002280 DEBUG(errs() << "Finished remaining pointer equivalences\n");
Daniel Berlind81ccc22007-09-24 19:45:49 +00002281 PENLEClass2Node.clear();
2282}
2283
2284/// Create the constraint graph used for solving points-to analysis.
2285///
Daniel Berlinaad15882007-09-16 21:45:02 +00002286void Andersens::CreateConstraintGraph() {
2287 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2288 Constraint &C = Constraints[i];
2289 assert (C.Src < GraphNodes.size() && C.Dest < GraphNodes.size());
2290 if (C.Type == Constraint::AddressOf)
2291 GraphNodes[C.Dest].PointsTo->set(C.Src);
2292 else if (C.Type == Constraint::Load)
2293 GraphNodes[C.Src].Constraints.push_back(C);
2294 else if (C.Type == Constraint::Store)
2295 GraphNodes[C.Dest].Constraints.push_back(C);
2296 else if (C.Offset != 0)
2297 GraphNodes[C.Src].Constraints.push_back(C);
2298 else
2299 GraphNodes[C.Src].Edges->set(C.Dest);
2300 }
2301}
2302
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002303// Perform DFS and cycle detection.
2304bool Andersens::QueryNode(unsigned Node) {
2305 assert(GraphNodes[Node].isRep() && "Querying a non-rep node");
Daniel Berlinaad15882007-09-16 21:45:02 +00002306 unsigned OurDFS = ++DFSNumber;
2307 SparseBitVector<> ToErase;
2308 SparseBitVector<> NewEdges;
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002309 Tarjan2DFS[Node] = OurDFS;
2310
2311 // Changed denotes a change from a recursive call that we will bubble up.
2312 // Merged is set if we actually merge a node ourselves.
2313 bool Changed = false, Merged = false;
Daniel Berlinaad15882007-09-16 21:45:02 +00002314
2315 for (SparseBitVector<>::iterator bi = GraphNodes[Node].Edges->begin();
2316 bi != GraphNodes[Node].Edges->end();
2317 ++bi) {
2318 unsigned RepNode = FindNode(*bi);
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002319 // If this edge points to a non-representative node but we are
2320 // already planning to add an edge to its representative, we have no
2321 // need for this edge anymore.
Daniel Berlinaad15882007-09-16 21:45:02 +00002322 if (RepNode != *bi && NewEdges.test(RepNode)){
2323 ToErase.set(*bi);
2324 continue;
2325 }
2326
2327 // Continue about our DFS.
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002328 if (!Tarjan2Deleted[RepNode]){
2329 if (Tarjan2DFS[RepNode] == 0) {
2330 Changed |= QueryNode(RepNode);
2331 // May have been changed by QueryNode
Daniel Berlinaad15882007-09-16 21:45:02 +00002332 RepNode = FindNode(RepNode);
2333 }
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002334 if (Tarjan2DFS[RepNode] < Tarjan2DFS[Node])
2335 Tarjan2DFS[Node] = Tarjan2DFS[RepNode];
Daniel Berlinaad15882007-09-16 21:45:02 +00002336 }
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002337
2338 // We may have just discovered that this node is part of a cycle, in
2339 // which case we can also erase it.
Daniel Berlinaad15882007-09-16 21:45:02 +00002340 if (RepNode != *bi) {
2341 ToErase.set(*bi);
2342 NewEdges.set(RepNode);
Chris Lattnere995a2a2004-05-23 21:00:47 +00002343 }
2344 }
2345
Daniel Berlinaad15882007-09-16 21:45:02 +00002346 GraphNodes[Node].Edges->intersectWithComplement(ToErase);
2347 GraphNodes[Node].Edges |= NewEdges;
2348
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002349 // If this node is a root of a non-trivial SCC, place it on our
2350 // worklist to be processed.
2351 if (OurDFS == Tarjan2DFS[Node]) {
2352 while (!SCCStack.empty() && Tarjan2DFS[SCCStack.top()] >= OurDFS) {
2353 Node = UniteNodes(Node, SCCStack.top());
Daniel Berlinaad15882007-09-16 21:45:02 +00002354
2355 SCCStack.pop();
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002356 Merged = true;
Daniel Berlinaad15882007-09-16 21:45:02 +00002357 }
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002358 Tarjan2Deleted[Node] = true;
Daniel Berlinaad15882007-09-16 21:45:02 +00002359
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002360 if (Merged)
2361 NextWL->insert(&GraphNodes[Node]);
Daniel Berlinaad15882007-09-16 21:45:02 +00002362 } else {
2363 SCCStack.push(Node);
Chris Lattnere995a2a2004-05-23 21:00:47 +00002364 }
Chris Lattnere995a2a2004-05-23 21:00:47 +00002365
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002366 return(Changed | Merged);
2367}
Chris Lattnere995a2a2004-05-23 21:00:47 +00002368
2369/// SolveConstraints - This stage iteratively processes the constraints list
2370/// propagating constraints (adding edges to the Nodes in the points-to graph)
2371/// until a fixed point is reached.
2372///
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002373/// We use a variant of the technique called "Lazy Cycle Detection", which is
2374/// described in "The Ant and the Grasshopper: Fast and Accurate Pointer
2375/// Analysis for Millions of Lines of Code. In Programming Language Design and
2376/// Implementation (PLDI), June 2007."
2377/// The paper describes performing cycle detection one node at a time, which can
2378/// be expensive if there are no cycles, but there are long chains of nodes that
2379/// it heuristically believes are cycles (because it will DFS from each node
2380/// without state from previous nodes).
2381/// Instead, we use the heuristic to build a worklist of nodes to check, then
2382/// cycle detect them all at the same time to do this more cheaply. This
2383/// catches cycles slightly later than the original technique did, but does it
2384/// make significantly cheaper.
2385
Chris Lattnere995a2a2004-05-23 21:00:47 +00002386void Andersens::SolveConstraints() {
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002387 CurrWL = &w1;
2388 NextWL = &w2;
Daniel Berlinaad15882007-09-16 21:45:02 +00002389
Daniel Berlind81ccc22007-09-24 19:45:49 +00002390 OptimizeConstraints();
2391#undef DEBUG_TYPE
2392#define DEBUG_TYPE "anders-aa-constraints"
2393 DEBUG(PrintConstraints());
2394#undef DEBUG_TYPE
2395#define DEBUG_TYPE "anders-aa"
2396
Daniel Berlinaad15882007-09-16 21:45:02 +00002397 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2398 Node *N = &GraphNodes[i];
2399 N->PointsTo = new SparseBitVector<>;
2400 N->OldPointsTo = new SparseBitVector<>;
2401 N->Edges = new SparseBitVector<>;
2402 }
2403 CreateConstraintGraph();
Daniel Berlind81ccc22007-09-24 19:45:49 +00002404 UnitePointerEquivalences();
2405 assert(SCCStack.empty() && "SCC Stack should be empty by now!");
Daniel Berlind81ccc22007-09-24 19:45:49 +00002406 Node2DFS.clear();
2407 Node2Deleted.clear();
Daniel Berlinaad15882007-09-16 21:45:02 +00002408 Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
2409 Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
2410 DFSNumber = 0;
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002411 DenseSet<Constraint, ConstraintKeyInfo> Seen;
2412 DenseSet<std::pair<unsigned,unsigned>, PairKeyInfo> EdgesChecked;
2413
2414 // Order graph and add initial nodes to work list.
Daniel Berlinaad15882007-09-16 21:45:02 +00002415 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
Daniel Berlinaad15882007-09-16 21:45:02 +00002416 Node *INode = &GraphNodes[i];
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002417
2418 // Add to work list if it's a representative and can contribute to the
2419 // calculation right now.
2420 if (INode->isRep() && !INode->PointsTo->empty()
2421 && (!INode->Edges->empty() || !INode->Constraints.empty())) {
2422 INode->Stamp();
2423 CurrWL->insert(INode);
Daniel Berlinaad15882007-09-16 21:45:02 +00002424 }
2425 }
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002426 std::queue<unsigned int> TarjanWL;
Daniel Berlinc864edb2008-03-05 19:31:47 +00002427#if !FULL_UNIVERSAL
2428 // "Rep and special variables" - in order for HCD to maintain conservative
2429 // results when !FULL_UNIVERSAL, we need to treat the special variables in
2430 // the same way that the !FULL_UNIVERSAL tweak does throughout the rest of
2431 // the analysis - it's ok to add edges from the special nodes, but never
2432 // *to* the special nodes.
2433 std::vector<unsigned int> RSV;
2434#endif
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002435 while( !CurrWL->empty() ) {
Chris Lattnerbbbfa992009-08-23 06:35:02 +00002436 DEBUG(errs() << "Starting iteration #" << ++NumIters << "\n");
Daniel Berlinaad15882007-09-16 21:45:02 +00002437
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002438 Node* CurrNode;
2439 unsigned CurrNodeIndex;
Chris Lattnere995a2a2004-05-23 21:00:47 +00002440
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002441 // Actual cycle checking code. We cycle check all of the lazy cycle
2442 // candidates from the last iteration in one go.
2443 if (!TarjanWL.empty()) {
2444 DFSNumber = 0;
2445
2446 Tarjan2DFS.clear();
2447 Tarjan2Deleted.clear();
2448 while (!TarjanWL.empty()) {
2449 unsigned int ToTarjan = TarjanWL.front();
2450 TarjanWL.pop();
2451 if (!Tarjan2Deleted[ToTarjan]
2452 && GraphNodes[ToTarjan].isRep()
2453 && Tarjan2DFS[ToTarjan] == 0)
2454 QueryNode(ToTarjan);
2455 }
2456 }
2457
2458 // Add to work list if it's a representative and can contribute to the
2459 // calculation right now.
2460 while( (CurrNode = CurrWL->pop()) != NULL ) {
2461 CurrNodeIndex = CurrNode - &GraphNodes[0];
2462 CurrNode->Stamp();
2463
2464
Daniel Berlinaad15882007-09-16 21:45:02 +00002465 // Figure out the changed points to bits
2466 SparseBitVector<> CurrPointsTo;
2467 CurrPointsTo.intersectWithComplement(CurrNode->PointsTo,
2468 CurrNode->OldPointsTo);
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002469 if (CurrPointsTo.empty())
Daniel Berlinaad15882007-09-16 21:45:02 +00002470 continue;
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002471
Daniel Berlinaad15882007-09-16 21:45:02 +00002472 *(CurrNode->OldPointsTo) |= CurrPointsTo;
Daniel Berlinc864edb2008-03-05 19:31:47 +00002473
2474 // Check the offline-computed equivalencies from HCD.
2475 bool SCC = false;
2476 unsigned Rep;
2477
2478 if (SDT[CurrNodeIndex] >= 0) {
2479 SCC = true;
2480 Rep = FindNode(SDT[CurrNodeIndex]);
2481
2482#if !FULL_UNIVERSAL
2483 RSV.clear();
2484#endif
2485 for (SparseBitVector<>::iterator bi = CurrPointsTo.begin();
2486 bi != CurrPointsTo.end(); ++bi) {
2487 unsigned Node = FindNode(*bi);
2488#if !FULL_UNIVERSAL
2489 if (Node < NumberSpecialNodes) {
2490 RSV.push_back(Node);
2491 continue;
2492 }
2493#endif
2494 Rep = UniteNodes(Rep,Node);
2495 }
2496#if !FULL_UNIVERSAL
2497 RSV.push_back(Rep);
2498#endif
2499
2500 NextWL->insert(&GraphNodes[Rep]);
2501
2502 if ( ! CurrNode->isRep() )
2503 continue;
2504 }
2505
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002506 Seen.clear();
Chris Lattnere995a2a2004-05-23 21:00:47 +00002507
Daniel Berlinaad15882007-09-16 21:45:02 +00002508 /* Now process the constraints for this node. */
2509 for (std::list<Constraint>::iterator li = CurrNode->Constraints.begin();
2510 li != CurrNode->Constraints.end(); ) {
2511 li->Src = FindNode(li->Src);
2512 li->Dest = FindNode(li->Dest);
Chris Lattnere995a2a2004-05-23 21:00:47 +00002513
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002514 // Delete redundant constraints
2515 if( Seen.count(*li) ) {
2516 std::list<Constraint>::iterator lk = li; li++;
2517
2518 CurrNode->Constraints.erase(lk);
2519 ++NumErased;
2520 continue;
2521 }
2522 Seen.insert(*li);
2523
Daniel Berlinaad15882007-09-16 21:45:02 +00002524 // Src and Dest will be the vars we are going to process.
2525 // This may look a bit ugly, but what it does is allow us to process
Daniel Berlind81ccc22007-09-24 19:45:49 +00002526 // both store and load constraints with the same code.
Daniel Berlinaad15882007-09-16 21:45:02 +00002527 // Load constraints say that every member of our RHS solution has K
2528 // added to it, and that variable gets an edge to LHS. We also union
2529 // RHS+K's solution into the LHS solution.
2530 // Store constraints say that every member of our LHS solution has K
2531 // added to it, and that variable gets an edge from RHS. We also union
2532 // RHS's solution into the LHS+K solution.
2533 unsigned *Src;
2534 unsigned *Dest;
2535 unsigned K = li->Offset;
2536 unsigned CurrMember;
2537 if (li->Type == Constraint::Load) {
2538 Src = &CurrMember;
2539 Dest = &li->Dest;
2540 } else if (li->Type == Constraint::Store) {
2541 Src = &li->Src;
2542 Dest = &CurrMember;
2543 } else {
2544 // TODO Handle offseted copy constraint
2545 li++;
2546 continue;
2547 }
Daniel Berlinc864edb2008-03-05 19:31:47 +00002548
2549 // See if we can use Hybrid Cycle Detection (that is, check
Daniel Berlinaad15882007-09-16 21:45:02 +00002550 // if it was a statically detected offline equivalence that
Daniel Berlinc864edb2008-03-05 19:31:47 +00002551 // involves pointers; if so, remove the redundant constraints).
2552 if( SCC && K == 0 ) {
2553#if FULL_UNIVERSAL
2554 CurrMember = Rep;
Chris Lattnere995a2a2004-05-23 21:00:47 +00002555
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002556 if (GraphNodes[*Src].Edges->test_and_set(*Dest))
2557 if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo))
2558 NextWL->insert(&GraphNodes[*Dest]);
Daniel Berlinc864edb2008-03-05 19:31:47 +00002559#else
2560 for (unsigned i=0; i < RSV.size(); ++i) {
2561 CurrMember = RSV[i];
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002562
Daniel Berlinc864edb2008-03-05 19:31:47 +00002563 if (*Dest < NumberSpecialNodes)
2564 continue;
2565 if (GraphNodes[*Src].Edges->test_and_set(*Dest))
2566 if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo))
2567 NextWL->insert(&GraphNodes[*Dest]);
2568 }
2569#endif
2570 // since all future elements of the points-to set will be
2571 // equivalent to the current ones, the complex constraints
2572 // become redundant.
2573 //
2574 std::list<Constraint>::iterator lk = li; li++;
2575#if !FULL_UNIVERSAL
2576 // In this case, we can still erase the constraints when the
2577 // elements of the points-to sets are referenced by *Dest,
2578 // but not when they are referenced by *Src (i.e. for a Load
2579 // constraint). This is because if another special variable is
2580 // put into the points-to set later, we still need to add the
2581 // new edge from that special variable.
2582 if( lk->Type != Constraint::Load)
2583#endif
2584 GraphNodes[CurrNodeIndex].Constraints.erase(lk);
2585 } else {
2586 const SparseBitVector<> &Solution = CurrPointsTo;
2587
2588 for (SparseBitVector<>::iterator bi = Solution.begin();
2589 bi != Solution.end();
2590 ++bi) {
2591 CurrMember = *bi;
2592
2593 // Need to increment the member by K since that is where we are
2594 // supposed to copy to/from. Note that in positive weight cycles,
2595 // which occur in address taking of fields, K can go past
2596 // MaxK[CurrMember] elements, even though that is all it could point
2597 // to.
2598 if (K > 0 && K > MaxK[CurrMember])
2599 continue;
2600 else
2601 CurrMember = FindNode(CurrMember + K);
2602
2603 // Add an edge to the graph, so we can just do regular
2604 // bitmap ior next time. It may also let us notice a cycle.
2605#if !FULL_UNIVERSAL
2606 if (*Dest < NumberSpecialNodes)
2607 continue;
2608#endif
2609 if (GraphNodes[*Src].Edges->test_and_set(*Dest))
2610 if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo))
2611 NextWL->insert(&GraphNodes[*Dest]);
2612
2613 }
2614 li++;
Daniel Berlinaad15882007-09-16 21:45:02 +00002615 }
Daniel Berlinaad15882007-09-16 21:45:02 +00002616 }
2617 SparseBitVector<> NewEdges;
2618 SparseBitVector<> ToErase;
2619
2620 // Now all we have left to do is propagate points-to info along the
2621 // edges, erasing the redundant edges.
Daniel Berlinaad15882007-09-16 21:45:02 +00002622 for (SparseBitVector<>::iterator bi = CurrNode->Edges->begin();
2623 bi != CurrNode->Edges->end();
2624 ++bi) {
2625
2626 unsigned DestVar = *bi;
2627 unsigned Rep = FindNode(DestVar);
2628
Bill Wendlingf059deb2008-02-26 10:51:52 +00002629 // If we ended up with this node as our destination, or we've already
2630 // got an edge for the representative, delete the current edge.
2631 if (Rep == CurrNodeIndex ||
2632 (Rep != DestVar && NewEdges.test(Rep))) {
Daniel Berlinc864edb2008-03-05 19:31:47 +00002633 ToErase.set(DestVar);
2634 continue;
Bill Wendlingf059deb2008-02-26 10:51:52 +00002635 }
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002636
Bill Wendlingf059deb2008-02-26 10:51:52 +00002637 std::pair<unsigned,unsigned> edge(CurrNodeIndex,Rep);
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002638
2639 // This is where we do lazy cycle detection.
2640 // If this is a cycle candidate (equal points-to sets and this
2641 // particular edge has not been cycle-checked previously), add to the
2642 // list to check for cycles on the next iteration.
2643 if (!EdgesChecked.count(edge) &&
2644 *(GraphNodes[Rep].PointsTo) == *(CurrNode->PointsTo)) {
2645 EdgesChecked.insert(edge);
2646 TarjanWL.push(Rep);
Daniel Berlinaad15882007-09-16 21:45:02 +00002647 }
2648 // Union the points-to sets into the dest
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002649#if !FULL_UNIVERSAL
2650 if (Rep >= NumberSpecialNodes)
2651#endif
Daniel Berlinaad15882007-09-16 21:45:02 +00002652 if (GraphNodes[Rep].PointsTo |= CurrPointsTo) {
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002653 NextWL->insert(&GraphNodes[Rep]);
Daniel Berlinaad15882007-09-16 21:45:02 +00002654 }
2655 // If this edge's destination was collapsed, rewrite the edge.
2656 if (Rep != DestVar) {
2657 ToErase.set(DestVar);
2658 NewEdges.set(Rep);
2659 }
2660 }
2661 CurrNode->Edges->intersectWithComplement(ToErase);
2662 CurrNode->Edges |= NewEdges;
2663 }
Daniel Berlinaad15882007-09-16 21:45:02 +00002664
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002665 // Switch to other work list.
2666 WorkList* t = CurrWL; CurrWL = NextWL; NextWL = t;
2667 }
Daniel Berlinaad15882007-09-16 21:45:02 +00002668
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002669
Daniel Berlinaad15882007-09-16 21:45:02 +00002670 Node2DFS.clear();
2671 Node2Deleted.clear();
2672 for (unsigned i = 0; i < GraphNodes.size(); ++i) {
2673 Node *N = &GraphNodes[i];
2674 delete N->OldPointsTo;
2675 delete N->Edges;
Chris Lattnere995a2a2004-05-23 21:00:47 +00002676 }
Daniel Berlinc864edb2008-03-05 19:31:47 +00002677 SDTActive = false;
2678 SDT.clear();
Chris Lattnere995a2a2004-05-23 21:00:47 +00002679}
2680
Daniel Berlinaad15882007-09-16 21:45:02 +00002681//===----------------------------------------------------------------------===//
2682// Union-Find
2683//===----------------------------------------------------------------------===//
Chris Lattnere995a2a2004-05-23 21:00:47 +00002684
Daniel Berlinaad15882007-09-16 21:45:02 +00002685// Unite nodes First and Second, returning the one which is now the
2686// representative node. First and Second are indexes into GraphNodes
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002687unsigned Andersens::UniteNodes(unsigned First, unsigned Second,
2688 bool UnionByRank) {
Daniel Berlinaad15882007-09-16 21:45:02 +00002689 assert (First < GraphNodes.size() && Second < GraphNodes.size() &&
2690 "Attempting to merge nodes that don't exist");
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002691
Daniel Berlinaad15882007-09-16 21:45:02 +00002692 Node *FirstNode = &GraphNodes[First];
2693 Node *SecondNode = &GraphNodes[Second];
2694
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002695 assert (SecondNode->isRep() && FirstNode->isRep() &&
Daniel Berlinaad15882007-09-16 21:45:02 +00002696 "Trying to unite two non-representative nodes!");
2697 if (First == Second)
2698 return First;
2699
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002700 if (UnionByRank) {
2701 int RankFirst = (int) FirstNode ->NodeRep;
2702 int RankSecond = (int) SecondNode->NodeRep;
2703
2704 // Rank starts at -1 and gets decremented as it increases.
2705 // Translation: higher rank, lower NodeRep value, which is always negative.
2706 if (RankFirst > RankSecond) {
2707 unsigned t = First; First = Second; Second = t;
2708 Node* tp = FirstNode; FirstNode = SecondNode; SecondNode = tp;
2709 } else if (RankFirst == RankSecond) {
2710 FirstNode->NodeRep = (unsigned) (RankFirst - 1);
2711 }
2712 }
2713
Daniel Berlinaad15882007-09-16 21:45:02 +00002714 SecondNode->NodeRep = First;
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002715#if !FULL_UNIVERSAL
2716 if (First >= NumberSpecialNodes)
2717#endif
Daniel Berlind81ccc22007-09-24 19:45:49 +00002718 if (FirstNode->PointsTo && SecondNode->PointsTo)
2719 FirstNode->PointsTo |= *(SecondNode->PointsTo);
2720 if (FirstNode->Edges && SecondNode->Edges)
2721 FirstNode->Edges |= *(SecondNode->Edges);
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002722 if (!SecondNode->Constraints.empty())
Daniel Berlind81ccc22007-09-24 19:45:49 +00002723 FirstNode->Constraints.splice(FirstNode->Constraints.begin(),
2724 SecondNode->Constraints);
2725 if (FirstNode->OldPointsTo) {
2726 delete FirstNode->OldPointsTo;
2727 FirstNode->OldPointsTo = new SparseBitVector<>;
2728 }
Daniel Berlinaad15882007-09-16 21:45:02 +00002729
2730 // Destroy interesting parts of the merged-from node.
2731 delete SecondNode->OldPointsTo;
2732 delete SecondNode->Edges;
2733 delete SecondNode->PointsTo;
2734 SecondNode->Edges = NULL;
2735 SecondNode->PointsTo = NULL;
2736 SecondNode->OldPointsTo = NULL;
2737
2738 NumUnified++;
Chris Lattnerbbbfa992009-08-23 06:35:02 +00002739 DEBUG(errs() << "Unified Node ");
Daniel Berlinaad15882007-09-16 21:45:02 +00002740 DEBUG(PrintNode(FirstNode));
Chris Lattnerbbbfa992009-08-23 06:35:02 +00002741 DEBUG(errs() << " and Node ");
Daniel Berlinaad15882007-09-16 21:45:02 +00002742 DEBUG(PrintNode(SecondNode));
Chris Lattnerbbbfa992009-08-23 06:35:02 +00002743 DEBUG(errs() << "\n");
Daniel Berlinaad15882007-09-16 21:45:02 +00002744
Daniel Berlinc864edb2008-03-05 19:31:47 +00002745 if (SDTActive)
Duncan Sands43e2a032008-05-27 11:50:51 +00002746 if (SDT[Second] >= 0) {
Daniel Berlinc864edb2008-03-05 19:31:47 +00002747 if (SDT[First] < 0)
2748 SDT[First] = SDT[Second];
2749 else {
2750 UniteNodes( FindNode(SDT[First]), FindNode(SDT[Second]) );
2751 First = FindNode(First);
2752 }
Duncan Sands43e2a032008-05-27 11:50:51 +00002753 }
Daniel Berlinc864edb2008-03-05 19:31:47 +00002754
Daniel Berlinaad15882007-09-16 21:45:02 +00002755 return First;
2756}
2757
2758// Find the index into GraphNodes of the node representing Node, performing
2759// path compression along the way
2760unsigned Andersens::FindNode(unsigned NodeIndex) {
2761 assert (NodeIndex < GraphNodes.size()
2762 && "Attempting to find a node that can't exist");
2763 Node *N = &GraphNodes[NodeIndex];
Daniel Berlin3a3f1632007-12-12 00:37:04 +00002764 if (N->isRep())
Daniel Berlinaad15882007-09-16 21:45:02 +00002765 return NodeIndex;
2766 else
2767 return (N->NodeRep = FindNode(N->NodeRep));
2768}
Chris Lattnere995a2a2004-05-23 21:00:47 +00002769
Andrew Lenharth52d34d92008-03-20 15:36:44 +00002770// Find the index into GraphNodes of the node representing Node,
2771// don't perform path compression along the way (for Print)
2772unsigned Andersens::FindNode(unsigned NodeIndex) const {
2773 assert (NodeIndex < GraphNodes.size()
2774 && "Attempting to find a node that can't exist");
2775 const Node *N = &GraphNodes[NodeIndex];
2776 if (N->isRep())
2777 return NodeIndex;
2778 else
2779 return FindNode(N->NodeRep);
2780}
2781
Chris Lattnere995a2a2004-05-23 21:00:47 +00002782//===----------------------------------------------------------------------===//
2783// Debugging Output
2784//===----------------------------------------------------------------------===//
2785
Andrew Lenharth52d34d92008-03-20 15:36:44 +00002786void Andersens::PrintNode(const Node *N) const {
Chris Lattnere995a2a2004-05-23 21:00:47 +00002787 if (N == &GraphNodes[UniversalSet]) {
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002788 errs() << "<universal>";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002789 return;
2790 } else if (N == &GraphNodes[NullPtr]) {
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002791 errs() << "<nullptr>";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002792 return;
2793 } else if (N == &GraphNodes[NullObject]) {
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002794 errs() << "<null>";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002795 return;
2796 }
Daniel Berlinaad15882007-09-16 21:45:02 +00002797 if (!N->getValue()) {
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002798 errs() << "artificial" << (intptr_t) N;
Daniel Berlinaad15882007-09-16 21:45:02 +00002799 return;
2800 }
Chris Lattnere995a2a2004-05-23 21:00:47 +00002801
2802 assert(N->getValue() != 0 && "Never set node label!");
2803 Value *V = N->getValue();
2804 if (Function *F = dyn_cast<Function>(V)) {
2805 if (isa<PointerType>(F->getFunctionType()->getReturnType()) &&
Daniel Berlinaad15882007-09-16 21:45:02 +00002806 N == &GraphNodes[getReturnNode(F)]) {
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002807 errs() << F->getName() << ":retval";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002808 return;
Daniel Berlinaad15882007-09-16 21:45:02 +00002809 } else if (F->getFunctionType()->isVarArg() &&
2810 N == &GraphNodes[getVarargNode(F)]) {
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002811 errs() << F->getName() << ":vararg";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002812 return;
2813 }
2814 }
2815
2816 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002817 errs() << I->getParent()->getParent()->getName() << ":";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002818 else if (Argument *Arg = dyn_cast<Argument>(V))
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002819 errs() << Arg->getParent()->getName() << ":";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002820
2821 if (V->hasName())
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002822 errs() << V->getName();
Chris Lattnere995a2a2004-05-23 21:00:47 +00002823 else
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002824 errs() << "(unnamed)";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002825
Victor Hernandez7b929da2009-10-23 21:09:37 +00002826 if (isa<GlobalValue>(V) || isa<AllocaInst>(V) || isMalloc(V))
Daniel Berlinaad15882007-09-16 21:45:02 +00002827 if (N == &GraphNodes[getObject(V)])
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002828 errs() << "<mem>";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002829}
Andrew Lenharth52d34d92008-03-20 15:36:44 +00002830void Andersens::PrintConstraint(const Constraint &C) const {
Daniel Berlind81ccc22007-09-24 19:45:49 +00002831 if (C.Type == Constraint::Store) {
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002832 errs() << "*";
Daniel Berlind81ccc22007-09-24 19:45:49 +00002833 if (C.Offset != 0)
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002834 errs() << "(";
Daniel Berlind81ccc22007-09-24 19:45:49 +00002835 }
2836 PrintNode(&GraphNodes[C.Dest]);
2837 if (C.Type == Constraint::Store && C.Offset != 0)
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002838 errs() << " + " << C.Offset << ")";
2839 errs() << " = ";
Daniel Berlind81ccc22007-09-24 19:45:49 +00002840 if (C.Type == Constraint::Load) {
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002841 errs() << "*";
Daniel Berlind81ccc22007-09-24 19:45:49 +00002842 if (C.Offset != 0)
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002843 errs() << "(";
Daniel Berlind81ccc22007-09-24 19:45:49 +00002844 }
2845 else if (C.Type == Constraint::AddressOf)
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002846 errs() << "&";
Daniel Berlind81ccc22007-09-24 19:45:49 +00002847 PrintNode(&GraphNodes[C.Src]);
2848 if (C.Offset != 0 && C.Type != Constraint::Store)
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002849 errs() << " + " << C.Offset;
Daniel Berlind81ccc22007-09-24 19:45:49 +00002850 if (C.Type == Constraint::Load && C.Offset != 0)
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002851 errs() << ")";
2852 errs() << "\n";
Daniel Berlind81ccc22007-09-24 19:45:49 +00002853}
Chris Lattnere995a2a2004-05-23 21:00:47 +00002854
Andrew Lenharth52d34d92008-03-20 15:36:44 +00002855void Andersens::PrintConstraints() const {
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002856 errs() << "Constraints:\n";
Daniel Berlinaad15882007-09-16 21:45:02 +00002857
Daniel Berlind81ccc22007-09-24 19:45:49 +00002858 for (unsigned i = 0, e = Constraints.size(); i != e; ++i)
2859 PrintConstraint(Constraints[i]);
Chris Lattnere995a2a2004-05-23 21:00:47 +00002860}
2861
Andrew Lenharth52d34d92008-03-20 15:36:44 +00002862void Andersens::PrintPointsToGraph() const {
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002863 errs() << "Points-to graph:\n";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002864 for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) {
Andrew Lenharth52d34d92008-03-20 15:36:44 +00002865 const Node *N = &GraphNodes[i];
2866 if (FindNode(i) != i) {
Daniel Berlinaad15882007-09-16 21:45:02 +00002867 PrintNode(N);
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002868 errs() << "\t--> same as ";
Daniel Berlinaad15882007-09-16 21:45:02 +00002869 PrintNode(&GraphNodes[FindNode(i)]);
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002870 errs() << "\n";
Daniel Berlinaad15882007-09-16 21:45:02 +00002871 } else {
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002872 errs() << "[" << (N->PointsTo->count()) << "] ";
Daniel Berlinaad15882007-09-16 21:45:02 +00002873 PrintNode(N);
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002874 errs() << "\t--> ";
Daniel Berlinaad15882007-09-16 21:45:02 +00002875
2876 bool first = true;
2877 for (SparseBitVector<>::iterator bi = N->PointsTo->begin();
2878 bi != N->PointsTo->end();
2879 ++bi) {
2880 if (!first)
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002881 errs() << ", ";
Daniel Berlinaad15882007-09-16 21:45:02 +00002882 PrintNode(&GraphNodes[*bi]);
2883 first = false;
2884 }
Daniel Dunbar3f0e8302009-07-24 09:53:24 +00002885 errs() << "\n";
Chris Lattnere995a2a2004-05-23 21:00:47 +00002886 }
Chris Lattnere995a2a2004-05-23 21:00:47 +00002887 }
2888}