blob: 292f8f432d6193a547f339cf0b04fa8b016432c1 [file] [log] [blame]
Dan Gohmanbc5cbb82008-11-12 22:55:05 +00001//===-- X86FloatingPoint.cpp - FP_REG_KILL inserter -----------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which inserts FP_REG_KILL instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-codegen"
15#include "X86.h"
16#include "X86InstrInfo.h"
17#include "X86Subtarget.h"
18#include "llvm/Instructions.h"
19#include "llvm/CodeGen/MachineFunctionPass.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/Passes.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/Compiler.h"
26#include "llvm/Support/CFG.h"
27#include "llvm/ADT/Statistic.h"
28using namespace llvm;
29
30STATISTIC(NumFPKill, "Number of FP_REG_KILL instructions added");
31
32namespace {
33 struct VISIBILITY_HIDDEN FPRegKiller : public MachineFunctionPass {
34 static char ID;
35 FPRegKiller() : MachineFunctionPass(&ID) {}
36
37 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Dan Gohmandf090552009-08-01 00:26:16 +000038 AU.setPreservesCFG();
Dan Gohmanbc5cbb82008-11-12 22:55:05 +000039 AU.addPreservedID(MachineLoopInfoID);
40 AU.addPreservedID(MachineDominatorsID);
41 MachineFunctionPass::getAnalysisUsage(AU);
42 }
43
44 virtual bool runOnMachineFunction(MachineFunction &MF);
45
46 virtual const char *getPassName() const { return "X86 FP_REG_KILL inserter"; }
47 };
48 char FPRegKiller::ID = 0;
49}
50
51FunctionPass *llvm::createX87FPRegKillInserterPass() { return new FPRegKiller(); }
52
53bool FPRegKiller::runOnMachineFunction(MachineFunction &MF) {
54 // If we are emitting FP stack code, scan the basic block to determine if this
55 // block defines any FP values. If so, put an FP_REG_KILL instruction before
56 // the terminator of the block.
57
58 // Note that FP stack instructions are used in all modes for long double,
59 // so we always need to do this check.
60 // Also note that it's possible for an FP stack register to be live across
61 // an instruction that produces multiple basic blocks (SSE CMOV) so we
62 // must check all the generated basic blocks.
63
64 // Scan all of the machine instructions in these MBBs, checking for FP
65 // stores. (RFP32 and RFP64 will not exist in SSE mode, but RFP80 might.)
66
67 // Fast-path: If nothing is using the x87 registers, we don't need to do
68 // any scanning.
69 MachineRegisterInfo &MRI = MF.getRegInfo();
70 if (MRI.getRegClassVirtRegs(X86::RFP80RegisterClass).empty() &&
71 MRI.getRegClassVirtRegs(X86::RFP64RegisterClass).empty() &&
72 MRI.getRegClassVirtRegs(X86::RFP32RegisterClass).empty())
73 return false;
74
75 bool Changed = false;
76 const X86Subtarget &Subtarget = MF.getTarget().getSubtarget<X86Subtarget>();
77 MachineFunction::iterator MBBI = MF.begin();
78 MachineFunction::iterator EndMBB = MF.end();
79 for (; MBBI != EndMBB; ++MBBI) {
80 MachineBasicBlock *MBB = MBBI;
81
82 // If this block returns, ignore it. We don't want to insert an FP_REG_KILL
83 // before the return.
84 if (!MBB->empty()) {
85 MachineBasicBlock::iterator EndI = MBB->end();
86 --EndI;
87 if (EndI->getDesc().isReturn())
88 continue;
89 }
90
91 bool ContainsFPCode = false;
92 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
93 !ContainsFPCode && I != E; ++I) {
94 if (I->getNumOperands() != 0 && I->getOperand(0).isReg()) {
95 const TargetRegisterClass *clas;
96 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) {
97 if (I->getOperand(op).isReg() && I->getOperand(op).isDef() &&
98 TargetRegisterInfo::isVirtualRegister(I->getOperand(op).getReg()) &&
99 ((clas = MRI.getRegClass(I->getOperand(op).getReg())) ==
100 X86::RFP32RegisterClass ||
101 clas == X86::RFP64RegisterClass ||
102 clas == X86::RFP80RegisterClass)) {
103 ContainsFPCode = true;
104 break;
105 }
106 }
107 }
108 }
109 // Check PHI nodes in successor blocks. These PHI's will be lowered to have
110 // a copy of the input value in this block. In SSE mode, we only care about
111 // 80-bit values.
112 if (!ContainsFPCode) {
113 // Final check, check LLVM BB's that are successors to the LLVM BB
114 // corresponding to BB for FP PHI nodes.
115 const BasicBlock *LLVMBB = MBB->getBasicBlock();
116 const PHINode *PN;
117 for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB);
118 !ContainsFPCode && SI != E; ++SI) {
119 for (BasicBlock::const_iterator II = SI->begin();
120 (PN = dyn_cast<PHINode>(II)); ++II) {
121 if (PN->getType()==Type::X86_FP80Ty ||
122 (!Subtarget.hasSSE1() && PN->getType()->isFloatingPoint()) ||
123 (!Subtarget.hasSSE2() && PN->getType()==Type::DoubleTy)) {
124 ContainsFPCode = true;
125 break;
126 }
127 }
128 }
129 }
130 // Finally, if we found any FP code, emit the FP_REG_KILL instruction.
131 if (ContainsFPCode) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000132 BuildMI(*MBB, MBBI->getFirstTerminator(), DebugLoc::getUnknownLoc(),
Dan Gohmanbc5cbb82008-11-12 22:55:05 +0000133 MF.getTarget().getInstrInfo()->get(X86::FP_REG_KILL));
134 ++NumFPKill;
135 Changed = true;
136 }
137 }
138
139 return Changed;
140}