blob: 5943cc1ebd362e415f6bf0a0df27884584810a97 [file] [log] [blame]
Chris Lattner310968c2005-01-07 07:44:53 +00001//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
Misha Brukmanf976c852005-04-21 22:55:34 +00002//
Chris Lattner310968c2005-01-07 07:44:53 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanf976c852005-04-21 22:55:34 +00007//
Chris Lattner310968c2005-01-07 07:44:53 +00008//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
Owen Anderson07000c62006-05-12 06:33:49 +000015#include "llvm/Target/TargetData.h"
Chris Lattner310968c2005-01-07 07:44:53 +000016#include "llvm/Target/TargetMachine.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000017#include "llvm/Target/MRegisterInfo.h"
Chris Lattnerdc879292006-03-31 00:28:56 +000018#include "llvm/DerivedTypes.h"
Chris Lattner310968c2005-01-07 07:44:53 +000019#include "llvm/CodeGen/SelectionDAG.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000020#include "llvm/ADT/StringExtras.h"
Owen Anderson718cb662007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +000022#include "llvm/Support/MathExtras.h"
Chris Lattner310968c2005-01-07 07:44:53 +000023using namespace llvm;
24
Evan Cheng56966222007-01-12 02:11:51 +000025/// InitLibcallNames - Set default libcall names.
26///
Evan Cheng79cca502007-01-12 22:51:10 +000027static void InitLibcallNames(const char **Names) {
Evan Cheng56966222007-01-12 02:11:51 +000028 Names[RTLIB::SHL_I32] = "__ashlsi3";
29 Names[RTLIB::SHL_I64] = "__ashldi3";
30 Names[RTLIB::SRL_I32] = "__lshrsi3";
31 Names[RTLIB::SRL_I64] = "__lshrdi3";
32 Names[RTLIB::SRA_I32] = "__ashrsi3";
33 Names[RTLIB::SRA_I64] = "__ashrdi3";
34 Names[RTLIB::MUL_I32] = "__mulsi3";
35 Names[RTLIB::MUL_I64] = "__muldi3";
36 Names[RTLIB::SDIV_I32] = "__divsi3";
37 Names[RTLIB::SDIV_I64] = "__divdi3";
38 Names[RTLIB::UDIV_I32] = "__udivsi3";
39 Names[RTLIB::UDIV_I64] = "__udivdi3";
40 Names[RTLIB::SREM_I32] = "__modsi3";
41 Names[RTLIB::SREM_I64] = "__moddi3";
42 Names[RTLIB::UREM_I32] = "__umodsi3";
43 Names[RTLIB::UREM_I64] = "__umoddi3";
44 Names[RTLIB::NEG_I32] = "__negsi2";
45 Names[RTLIB::NEG_I64] = "__negdi2";
46 Names[RTLIB::ADD_F32] = "__addsf3";
47 Names[RTLIB::ADD_F64] = "__adddf3";
48 Names[RTLIB::SUB_F32] = "__subsf3";
49 Names[RTLIB::SUB_F64] = "__subdf3";
50 Names[RTLIB::MUL_F32] = "__mulsf3";
51 Names[RTLIB::MUL_F64] = "__muldf3";
52 Names[RTLIB::DIV_F32] = "__divsf3";
53 Names[RTLIB::DIV_F64] = "__divdf3";
54 Names[RTLIB::REM_F32] = "fmodf";
55 Names[RTLIB::REM_F64] = "fmod";
56 Names[RTLIB::NEG_F32] = "__negsf2";
57 Names[RTLIB::NEG_F64] = "__negdf2";
58 Names[RTLIB::POWI_F32] = "__powisf2";
59 Names[RTLIB::POWI_F64] = "__powidf2";
60 Names[RTLIB::SQRT_F32] = "sqrtf";
61 Names[RTLIB::SQRT_F64] = "sqrt";
62 Names[RTLIB::SIN_F32] = "sinf";
63 Names[RTLIB::SIN_F64] = "sin";
64 Names[RTLIB::COS_F32] = "cosf";
65 Names[RTLIB::COS_F64] = "cos";
66 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
67 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
68 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
69 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
70 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
71 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
Dale Johannesen73328d12007-09-19 23:55:34 +000072 Names[RTLIB::FPTOSINT_LD_I64] = "__fixxfdi";
Evan Cheng56966222007-01-12 02:11:51 +000073 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
74 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
75 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
76 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
Dale Johannesen73328d12007-09-19 23:55:34 +000077 Names[RTLIB::FPTOUINT_LD_I32] = "__fixunsxfsi";
78 Names[RTLIB::FPTOUINT_LD_I64] = "__fixunsxfdi";
Evan Cheng56966222007-01-12 02:11:51 +000079 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
80 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
81 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
82 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
Dale Johannesen73328d12007-09-19 23:55:34 +000083 Names[RTLIB::SINTTOFP_I64_LD] = "__floatdixf";
Evan Cheng56966222007-01-12 02:11:51 +000084 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
85 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
86 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
87 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
88 Names[RTLIB::OEQ_F32] = "__eqsf2";
89 Names[RTLIB::OEQ_F64] = "__eqdf2";
90 Names[RTLIB::UNE_F32] = "__nesf2";
91 Names[RTLIB::UNE_F64] = "__nedf2";
92 Names[RTLIB::OGE_F32] = "__gesf2";
93 Names[RTLIB::OGE_F64] = "__gedf2";
94 Names[RTLIB::OLT_F32] = "__ltsf2";
95 Names[RTLIB::OLT_F64] = "__ltdf2";
96 Names[RTLIB::OLE_F32] = "__lesf2";
97 Names[RTLIB::OLE_F64] = "__ledf2";
98 Names[RTLIB::OGT_F32] = "__gtsf2";
99 Names[RTLIB::OGT_F64] = "__gtdf2";
100 Names[RTLIB::UO_F32] = "__unordsf2";
101 Names[RTLIB::UO_F64] = "__unorddf2";
Evan Chengd385fd62007-01-31 09:29:11 +0000102 Names[RTLIB::O_F32] = "__unordsf2";
103 Names[RTLIB::O_F64] = "__unorddf2";
104}
105
106/// InitCmpLibcallCCs - Set default comparison libcall CC.
107///
108static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
109 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
110 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
111 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
112 CCs[RTLIB::UNE_F32] = ISD::SETNE;
113 CCs[RTLIB::UNE_F64] = ISD::SETNE;
114 CCs[RTLIB::OGE_F32] = ISD::SETGE;
115 CCs[RTLIB::OGE_F64] = ISD::SETGE;
116 CCs[RTLIB::OLT_F32] = ISD::SETLT;
117 CCs[RTLIB::OLT_F64] = ISD::SETLT;
118 CCs[RTLIB::OLE_F32] = ISD::SETLE;
119 CCs[RTLIB::OLE_F64] = ISD::SETLE;
120 CCs[RTLIB::OGT_F32] = ISD::SETGT;
121 CCs[RTLIB::OGT_F64] = ISD::SETGT;
122 CCs[RTLIB::UO_F32] = ISD::SETNE;
123 CCs[RTLIB::UO_F64] = ISD::SETNE;
124 CCs[RTLIB::O_F32] = ISD::SETEQ;
125 CCs[RTLIB::O_F64] = ISD::SETEQ;
Evan Cheng56966222007-01-12 02:11:51 +0000126}
127
Chris Lattner310968c2005-01-07 07:44:53 +0000128TargetLowering::TargetLowering(TargetMachine &tm)
Chris Lattner3e6e8cc2006-01-29 08:41:12 +0000129 : TM(tm), TD(TM.getTargetData()) {
Evan Cheng33143dc2006-03-03 06:58:59 +0000130 assert(ISD::BUILTIN_OP_END <= 156 &&
Chris Lattner310968c2005-01-07 07:44:53 +0000131 "Fixed size array in TargetLowering is not large enough!");
Chris Lattnercba82f92005-01-16 07:28:11 +0000132 // All operations default to being supported.
133 memset(OpActions, 0, sizeof(OpActions));
Evan Chengc5484282006-10-04 00:56:09 +0000134 memset(LoadXActions, 0, sizeof(LoadXActions));
Evan Cheng8b2794a2006-10-13 21:14:26 +0000135 memset(&StoreXActions, 0, sizeof(StoreXActions));
Dan Gohman93f81e22007-07-09 20:49:44 +0000136 memset(&IndexedModeActions, 0, sizeof(IndexedModeActions));
Dale Johannesen5411a392007-08-09 01:04:01 +0000137 memset(&ConvertActions, 0, sizeof(ConvertActions));
Dan Gohman93f81e22007-07-09 20:49:44 +0000138
139 // Set all indexed load / store to expand.
Evan Cheng5ff839f2006-11-09 18:56:43 +0000140 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
141 for (unsigned IM = (unsigned)ISD::PRE_INC;
142 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
143 setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
144 setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
145 }
146 }
Chris Lattner310968c2005-01-07 07:44:53 +0000147
Owen Andersona69571c2006-05-03 01:29:57 +0000148 IsLittleEndian = TD->isLittleEndian();
Chris Lattnercf9668f2006-10-06 22:52:08 +0000149 UsesGlobalOffsetTable = false;
Owen Andersona69571c2006-05-03 01:29:57 +0000150 ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
Chris Lattnerd6e49672005-01-19 03:36:14 +0000151 ShiftAmtHandling = Undefined;
Chris Lattner310968c2005-01-07 07:44:53 +0000152 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
Owen Anderson718cb662007-09-07 04:06:50 +0000153 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
Evan Chenga03a5dc2006-02-14 08:38:30 +0000154 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
Reid Spencer0f9beca2005-08-27 19:09:02 +0000155 allowUnalignedMemoryAccesses = false;
Anton Korobeynikovd27a2582006-12-10 23:12:42 +0000156 UseUnderscoreSetJmp = false;
157 UseUnderscoreLongJmp = false;
Chris Lattner66180392007-02-25 01:28:05 +0000158 SelectIsExpensive = false;
Nate Begeman405e3ec2005-10-21 00:02:42 +0000159 IntDivIsCheap = false;
160 Pow2DivIsCheap = false;
Chris Lattneree4a7652006-01-25 18:57:15 +0000161 StackPointerRegisterToSaveRestore = 0;
Jim Laskey9bb3c932007-02-22 18:04:49 +0000162 ExceptionPointerRegister = 0;
163 ExceptionSelectorRegister = 0;
Chris Lattnerdfe89342007-09-21 17:06:39 +0000164 SetCCResultContents = UndefinedSetCCResult;
Evan Cheng0577a222006-01-25 18:52:42 +0000165 SchedPreferenceInfo = SchedulingForLatency;
Chris Lattner7acf5f32006-09-05 17:39:15 +0000166 JumpBufSize = 0;
Duraid Madina0c9e0ff2006-09-04 07:44:11 +0000167 JumpBufAlignment = 0;
Evan Chengd60483e2007-05-16 23:45:53 +0000168 IfCvtBlockSizeLimit = 2;
Evan Cheng56966222007-01-12 02:11:51 +0000169
170 InitLibcallNames(LibcallRoutineNames);
Evan Chengd385fd62007-01-31 09:29:11 +0000171 InitCmpLibcallCCs(CmpLibcallCCs);
Chris Lattner310968c2005-01-07 07:44:53 +0000172}
173
Chris Lattnercba82f92005-01-16 07:28:11 +0000174TargetLowering::~TargetLowering() {}
175
Chris Lattner310968c2005-01-07 07:44:53 +0000176/// computeRegisterProperties - Once all of the register classes are added,
177/// this allows us to compute derived properties we expose.
178void TargetLowering::computeRegisterProperties() {
Nate Begeman6a648612005-11-29 05:45:29 +0000179 assert(MVT::LAST_VALUETYPE <= 32 &&
Chris Lattnerbb97d812005-01-16 01:10:58 +0000180 "Too many value types for ValueTypeActions to hold!");
181
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000182 // Everything defaults to needing one register.
183 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
Dan Gohmanb9f10192007-06-21 14:42:22 +0000184 NumRegistersForVT[i] = 1;
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000185 RegisterTypeForVT[i] = TransformToType[i] = i;
186 }
187 // ...except isVoid, which doesn't need any registers.
188 NumRegistersForVT[MVT::isVoid] = 0;
Misha Brukmanf976c852005-04-21 22:55:34 +0000189
Chris Lattner310968c2005-01-07 07:44:53 +0000190 // Find the largest integer register class.
191 unsigned LargestIntReg = MVT::i128;
192 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
193 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
194
195 // Every integer value type larger than this largest register takes twice as
196 // many registers to represent as the previous ValueType.
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000197 for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
198 MVT::isInteger(ExpandedReg); ++ExpandedReg) {
Dan Gohmanb9f10192007-06-21 14:42:22 +0000199 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000200 RegisterTypeForVT[ExpandedReg] = LargestIntReg;
201 TransformToType[ExpandedReg] = ExpandedReg - 1;
202 ValueTypeActions.setTypeAction(ExpandedReg, Expand);
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000203 }
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000204
205 // Inspect all of the ValueType's smaller than the largest integer
206 // register to see which ones need promotion.
207 MVT::ValueType LegalIntReg = LargestIntReg;
208 for (MVT::ValueType IntReg = LargestIntReg - 1;
209 IntReg >= MVT::i1; --IntReg) {
210 if (isTypeLegal(IntReg)) {
211 LegalIntReg = IntReg;
212 } else {
213 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
214 ValueTypeActions.setTypeAction(IntReg, Promote);
215 }
216 }
217
218 // Decide how to handle f64. If the target does not have native f64 support,
219 // expand it to i64 and we will be generating soft float library calls.
220 if (!isTypeLegal(MVT::f64)) {
221 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
222 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
223 TransformToType[MVT::f64] = MVT::i64;
224 ValueTypeActions.setTypeAction(MVT::f64, Expand);
225 }
226
227 // Decide how to handle f32. If the target does not have native support for
228 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
229 if (!isTypeLegal(MVT::f32)) {
230 if (isTypeLegal(MVT::f64)) {
231 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
232 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
233 TransformToType[MVT::f32] = MVT::f64;
234 ValueTypeActions.setTypeAction(MVT::f32, Promote);
235 } else {
236 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
237 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
238 TransformToType[MVT::f32] = MVT::i32;
239 ValueTypeActions.setTypeAction(MVT::f32, Expand);
240 }
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000241 }
Nate Begeman4ef3b812005-11-22 01:29:36 +0000242
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000243 // Loop over all of the vector value types to see which need transformations.
244 for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
Evan Cheng677274b2006-03-23 23:24:51 +0000245 i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000246 if (!isTypeLegal(i)) {
247 MVT::ValueType IntermediateVT, RegisterVT;
248 unsigned NumIntermediates;
249 NumRegistersForVT[i] =
250 getVectorTypeBreakdown(i,
251 IntermediateVT, NumIntermediates,
252 RegisterVT);
253 RegisterTypeForVT[i] = RegisterVT;
254 TransformToType[i] = MVT::Other; // this isn't actually used
255 ValueTypeActions.setTypeAction(i, Expand);
Dan Gohman7f321562007-06-25 16:23:39 +0000256 }
Chris Lattner3a5935842006-03-16 19:50:01 +0000257 }
Chris Lattnerbb97d812005-01-16 01:10:58 +0000258}
Chris Lattnercba82f92005-01-16 07:28:11 +0000259
Evan Cheng72261582005-12-20 06:22:03 +0000260const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
261 return NULL;
262}
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000263
Dan Gohman7f321562007-06-25 16:23:39 +0000264/// getVectorTypeBreakdown - Vector types are broken down into some number of
265/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
Chris Lattnerdc879292006-03-31 00:28:56 +0000266/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
Dan Gohman7f321562007-06-25 16:23:39 +0000267/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
Chris Lattnerdc879292006-03-31 00:28:56 +0000268///
Dan Gohman7f321562007-06-25 16:23:39 +0000269/// This method returns the number of registers needed, and the VT for each
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000270/// register. It also returns the VT and quantity of the intermediate values
271/// before they are promoted/expanded.
Chris Lattnerdc879292006-03-31 00:28:56 +0000272///
Dan Gohman7f321562007-06-25 16:23:39 +0000273unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000274 MVT::ValueType &IntermediateVT,
275 unsigned &NumIntermediates,
276 MVT::ValueType &RegisterVT) const {
Chris Lattnerdc879292006-03-31 00:28:56 +0000277 // Figure out the right, legal destination reg to copy into.
Dan Gohman7f321562007-06-25 16:23:39 +0000278 unsigned NumElts = MVT::getVectorNumElements(VT);
279 MVT::ValueType EltTy = MVT::getVectorElementType(VT);
Chris Lattnerdc879292006-03-31 00:28:56 +0000280
281 unsigned NumVectorRegs = 1;
282
283 // Divide the input until we get to a supported size. This will always
284 // end with a scalar if the target doesn't support vectors.
Dan Gohman7f321562007-06-25 16:23:39 +0000285 while (NumElts > 1 &&
286 !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000287 NumElts >>= 1;
288 NumVectorRegs <<= 1;
289 }
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000290
291 NumIntermediates = NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000292
Dan Gohman7f321562007-06-25 16:23:39 +0000293 MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
294 if (!isTypeLegal(NewVT))
295 NewVT = EltTy;
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000296 IntermediateVT = NewVT;
Chris Lattnerdc879292006-03-31 00:28:56 +0000297
Dan Gohman7f321562007-06-25 16:23:39 +0000298 MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000299 RegisterVT = DestVT;
Dan Gohman7f321562007-06-25 16:23:39 +0000300 if (DestVT < NewVT) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000301 // Value is expanded, e.g. i64 -> i16.
Dan Gohman7f321562007-06-25 16:23:39 +0000302 return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
Chris Lattnerdc879292006-03-31 00:28:56 +0000303 } else {
304 // Otherwise, promotion or legal types use the same number of registers as
305 // the vector decimated to the appropriate level.
Chris Lattner79227e22006-03-31 00:46:36 +0000306 return NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000307 }
308
Evan Chenge9b3da12006-05-17 18:10:06 +0000309 return 1;
Chris Lattnerdc879292006-03-31 00:28:56 +0000310}
311
Chris Lattnereb8146b2006-02-04 02:13:02 +0000312//===----------------------------------------------------------------------===//
313// Optimization Methods
314//===----------------------------------------------------------------------===//
315
Nate Begeman368e18d2006-02-16 21:11:51 +0000316/// ShrinkDemandedConstant - Check to see if the specified operand of the
317/// specified instruction is a constant integer. If so, check to see if there
318/// are any bits set in the constant that are not demanded. If so, shrink the
319/// constant and return true.
320bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
321 uint64_t Demanded) {
Chris Lattnerec665152006-02-26 23:36:02 +0000322 // FIXME: ISD::SELECT, ISD::SELECT_CC
Nate Begeman368e18d2006-02-16 21:11:51 +0000323 switch(Op.getOpcode()) {
324 default: break;
Nate Begemande996292006-02-03 22:24:05 +0000325 case ISD::AND:
Nate Begeman368e18d2006-02-16 21:11:51 +0000326 case ISD::OR:
327 case ISD::XOR:
328 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
329 if ((~Demanded & C->getValue()) != 0) {
330 MVT::ValueType VT = Op.getValueType();
331 SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
332 DAG.getConstant(Demanded & C->getValue(),
333 VT));
334 return CombineTo(Op, New);
Nate Begemande996292006-02-03 22:24:05 +0000335 }
Nate Begemande996292006-02-03 22:24:05 +0000336 break;
337 }
338 return false;
339}
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000340
Nate Begeman368e18d2006-02-16 21:11:51 +0000341/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
342/// DemandedMask bits of the result of Op are ever used downstream. If we can
343/// use this information to simplify Op, create a new simplified DAG node and
344/// return true, returning the original and new nodes in Old and New. Otherwise,
345/// analyze the expression and return a mask of KnownOne and KnownZero bits for
346/// the expression (used to simplify the caller). The KnownZero/One bits may
347/// only be accurate for those bits in the DemandedMask.
348bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
349 uint64_t &KnownZero,
350 uint64_t &KnownOne,
351 TargetLoweringOpt &TLO,
352 unsigned Depth) const {
353 KnownZero = KnownOne = 0; // Don't know anything.
Chris Lattner3fc5b012007-05-17 18:19:23 +0000354
355 // The masks are not wide enough to represent this type! Should use APInt.
356 if (Op.getValueType() == MVT::i128)
357 return false;
358
Nate Begeman368e18d2006-02-16 21:11:51 +0000359 // Other users may use these bits.
360 if (!Op.Val->hasOneUse()) {
361 if (Depth != 0) {
362 // If not at the root, Just compute the KnownZero/KnownOne bits to
363 // simplify things downstream.
Dan Gohmanea859be2007-06-22 14:59:07 +0000364 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
Nate Begeman368e18d2006-02-16 21:11:51 +0000365 return false;
366 }
367 // If this is the root being simplified, allow it to have multiple uses,
368 // just set the DemandedMask to all bits.
369 DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
370 } else if (DemandedMask == 0) {
371 // Not demanding any bits from Op.
372 if (Op.getOpcode() != ISD::UNDEF)
373 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
374 return false;
375 } else if (Depth == 6) { // Limit search depth.
376 return false;
377 }
378
379 uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000380 switch (Op.getOpcode()) {
381 case ISD::Constant:
Nate Begeman368e18d2006-02-16 21:11:51 +0000382 // We know all of the bits for a constant!
383 KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
384 KnownZero = ~KnownOne & DemandedMask;
Chris Lattnerec665152006-02-26 23:36:02 +0000385 return false; // Don't fall through, will infinitely loop.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000386 case ISD::AND:
Chris Lattner81cd3552006-02-27 00:36:27 +0000387 // If the RHS is a constant, check to see if the LHS would be zero without
388 // using the bits from the RHS. Below, we use knowledge about the RHS to
389 // simplify the LHS, here we're using information from the LHS to simplify
390 // the RHS.
391 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
392 uint64_t LHSZero, LHSOne;
Dan Gohmanea859be2007-06-22 14:59:07 +0000393 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
394 LHSZero, LHSOne, Depth+1);
Chris Lattner81cd3552006-02-27 00:36:27 +0000395 // If the LHS already has zeros where RHSC does, this and is dead.
396 if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
397 return TLO.CombineTo(Op, Op.getOperand(0));
398 // If any of the set bits in the RHS are known zero on the LHS, shrink
399 // the constant.
400 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
401 return true;
402 }
403
Nate Begeman368e18d2006-02-16 21:11:51 +0000404 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
405 KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000406 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000407 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Nate Begeman368e18d2006-02-16 21:11:51 +0000408 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
409 KnownZero2, KnownOne2, TLO, Depth+1))
410 return true;
411 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
412
413 // If all of the demanded bits are known one on one side, return the other.
414 // These bits cannot contribute to the result of the 'and'.
415 if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
416 return TLO.CombineTo(Op, Op.getOperand(0));
417 if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
418 return TLO.CombineTo(Op, Op.getOperand(1));
419 // If all of the demanded bits in the inputs are known zeros, return zero.
420 if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
421 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
422 // If the RHS is a constant, see if we can simplify it.
423 if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
424 return true;
Chris Lattner5f0c6582006-02-27 00:22:28 +0000425
Nate Begeman368e18d2006-02-16 21:11:51 +0000426 // Output known-1 bits are only known if set in both the LHS & RHS.
427 KnownOne &= KnownOne2;
428 // Output known-0 are known to be clear if zero in either the LHS | RHS.
429 KnownZero |= KnownZero2;
430 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000431 case ISD::OR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000432 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
433 KnownOne, TLO, Depth+1))
434 return true;
435 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
436 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
437 KnownZero2, KnownOne2, TLO, Depth+1))
438 return true;
439 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
440
441 // If all of the demanded bits are known zero on one side, return the other.
442 // These bits cannot contribute to the result of the 'or'.
Jeff Cohen5755b172006-02-17 02:12:18 +0000443 if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
Nate Begeman368e18d2006-02-16 21:11:51 +0000444 return TLO.CombineTo(Op, Op.getOperand(0));
Jeff Cohen5755b172006-02-17 02:12:18 +0000445 if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
Nate Begeman368e18d2006-02-16 21:11:51 +0000446 return TLO.CombineTo(Op, Op.getOperand(1));
447 // If all of the potentially set bits on one side are known to be set on
448 // the other side, just use the 'other' side.
449 if ((DemandedMask & (~KnownZero) & KnownOne2) ==
450 (DemandedMask & (~KnownZero)))
451 return TLO.CombineTo(Op, Op.getOperand(0));
452 if ((DemandedMask & (~KnownZero2) & KnownOne) ==
453 (DemandedMask & (~KnownZero2)))
454 return TLO.CombineTo(Op, Op.getOperand(1));
455 // If the RHS is a constant, see if we can simplify it.
456 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
457 return true;
458
459 // Output known-0 bits are only known if clear in both the LHS & RHS.
460 KnownZero &= KnownZero2;
461 // Output known-1 are known to be set if set in either the LHS | RHS.
462 KnownOne |= KnownOne2;
463 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000464 case ISD::XOR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000465 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
466 KnownOne, TLO, Depth+1))
467 return true;
468 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
469 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
470 KnownOne2, TLO, Depth+1))
471 return true;
472 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
473
474 // If all of the demanded bits are known zero on one side, return the other.
475 // These bits cannot contribute to the result of the 'xor'.
476 if ((DemandedMask & KnownZero) == DemandedMask)
477 return TLO.CombineTo(Op, Op.getOperand(0));
478 if ((DemandedMask & KnownZero2) == DemandedMask)
479 return TLO.CombineTo(Op, Op.getOperand(1));
Chris Lattner3687c1a2006-11-27 21:50:02 +0000480
481 // If all of the unknown bits are known to be zero on one side or the other
482 // (but not both) turn this into an *inclusive* or.
483 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
484 if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
485 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
486 Op.getOperand(0),
487 Op.getOperand(1)));
Nate Begeman368e18d2006-02-16 21:11:51 +0000488
489 // Output known-0 bits are known if clear or set in both the LHS & RHS.
490 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
491 // Output known-1 are known to be set if set in only one of the LHS, RHS.
492 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
493
Nate Begeman368e18d2006-02-16 21:11:51 +0000494 // If all of the demanded bits on one side are known, and all of the set
495 // bits on that side are also known to be set on the other side, turn this
496 // into an AND, as we know the bits will be cleared.
497 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
498 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
499 if ((KnownOne & KnownOne2) == KnownOne) {
500 MVT::ValueType VT = Op.getValueType();
501 SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
502 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
503 ANDC));
504 }
505 }
506
507 // If the RHS is a constant, see if we can simplify it.
508 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
509 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
510 return true;
511
512 KnownZero = KnownZeroOut;
513 KnownOne = KnownOneOut;
514 break;
515 case ISD::SETCC:
516 // If we know the result of a setcc has the top bits zero, use this info.
517 if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
518 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
519 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000520 case ISD::SELECT:
Nate Begeman368e18d2006-02-16 21:11:51 +0000521 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
522 KnownOne, TLO, Depth+1))
523 return true;
524 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
525 KnownOne2, TLO, Depth+1))
526 return true;
527 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
528 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
529
530 // If the operands are constants, see if we can simplify them.
531 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
532 return true;
533
534 // Only known if known in both the LHS and RHS.
535 KnownOne &= KnownOne2;
536 KnownZero &= KnownZero2;
537 break;
Chris Lattnerec665152006-02-26 23:36:02 +0000538 case ISD::SELECT_CC:
539 if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
540 KnownOne, TLO, Depth+1))
541 return true;
542 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
543 KnownOne2, TLO, Depth+1))
544 return true;
545 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
546 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
547
548 // If the operands are constants, see if we can simplify them.
549 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
550 return true;
551
552 // Only known if known in both the LHS and RHS.
553 KnownOne &= KnownOne2;
554 KnownZero &= KnownZero2;
555 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000556 case ISD::SHL:
Nate Begeman368e18d2006-02-16 21:11:51 +0000557 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Chris Lattner895c4ab2007-04-17 21:14:16 +0000558 unsigned ShAmt = SA->getValue();
559 SDOperand InOp = Op.getOperand(0);
560
561 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
562 // single shift. We can do this if the bottom bits (which are shifted
563 // out) are never demanded.
564 if (InOp.getOpcode() == ISD::SRL &&
565 isa<ConstantSDNode>(InOp.getOperand(1))) {
566 if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
567 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
568 unsigned Opc = ISD::SHL;
569 int Diff = ShAmt-C1;
570 if (Diff < 0) {
571 Diff = -Diff;
572 Opc = ISD::SRL;
573 }
574
575 SDOperand NewSA =
Chris Lattner4e7e6cd2007-05-30 16:30:06 +0000576 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000577 MVT::ValueType VT = Op.getValueType();
Chris Lattner0a16a1f2007-04-18 03:01:40 +0000578 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
Chris Lattner895c4ab2007-04-17 21:14:16 +0000579 InOp.getOperand(0), NewSA));
580 }
581 }
582
583 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
Nate Begeman368e18d2006-02-16 21:11:51 +0000584 KnownZero, KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000585 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000586 KnownZero <<= SA->getValue();
587 KnownOne <<= SA->getValue();
588 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000589 }
590 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000591 case ISD::SRL:
592 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
593 MVT::ValueType VT = Op.getValueType();
594 unsigned ShAmt = SA->getValue();
Chris Lattner895c4ab2007-04-17 21:14:16 +0000595 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
596 unsigned VTSize = MVT::getSizeInBits(VT);
597 SDOperand InOp = Op.getOperand(0);
598
599 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
600 // single shift. We can do this if the top bits (which are shifted out)
601 // are never demanded.
602 if (InOp.getOpcode() == ISD::SHL &&
603 isa<ConstantSDNode>(InOp.getOperand(1))) {
604 if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
605 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
606 unsigned Opc = ISD::SRL;
607 int Diff = ShAmt-C1;
608 if (Diff < 0) {
609 Diff = -Diff;
610 Opc = ISD::SHL;
611 }
612
613 SDOperand NewSA =
Chris Lattner8c7d2d52007-04-17 22:53:02 +0000614 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000615 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
616 InOp.getOperand(0), NewSA));
617 }
618 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000619
620 // Compute the new bits that are at the top now.
Chris Lattner895c4ab2007-04-17 21:14:16 +0000621 if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000622 KnownZero, KnownOne, TLO, Depth+1))
623 return true;
624 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
625 KnownZero &= TypeMask;
626 KnownOne &= TypeMask;
627 KnownZero >>= ShAmt;
628 KnownOne >>= ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000629
630 uint64_t HighBits = (1ULL << ShAmt)-1;
Chris Lattner895c4ab2007-04-17 21:14:16 +0000631 HighBits <<= VTSize - ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000632 KnownZero |= HighBits; // High bits known zero.
Nate Begeman368e18d2006-02-16 21:11:51 +0000633 }
634 break;
635 case ISD::SRA:
636 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
637 MVT::ValueType VT = Op.getValueType();
638 unsigned ShAmt = SA->getValue();
639
640 // Compute the new bits that are at the top now.
Nate Begeman368e18d2006-02-16 21:11:51 +0000641 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
642
Chris Lattner1b737132006-05-08 17:22:53 +0000643 uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
644
645 // If any of the demanded bits are produced by the sign extension, we also
646 // demand the input sign bit.
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000647 uint64_t HighBits = (1ULL << ShAmt)-1;
648 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
Chris Lattner1b737132006-05-08 17:22:53 +0000649 if (HighBits & DemandedMask)
650 InDemandedMask |= MVT::getIntVTSignBit(VT);
651
652 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000653 KnownZero, KnownOne, TLO, Depth+1))
654 return true;
655 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
656 KnownZero &= TypeMask;
657 KnownOne &= TypeMask;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000658 KnownZero >>= ShAmt;
659 KnownOne >>= ShAmt;
Nate Begeman368e18d2006-02-16 21:11:51 +0000660
661 // Handle the sign bits.
662 uint64_t SignBit = MVT::getIntVTSignBit(VT);
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000663 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
Nate Begeman368e18d2006-02-16 21:11:51 +0000664
665 // If the input sign bit is known to be zero, or if none of the top bits
666 // are demanded, turn this into an unsigned shift right.
667 if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
668 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
669 Op.getOperand(1)));
670 } else if (KnownOne & SignBit) { // New bits are known one.
671 KnownOne |= HighBits;
672 }
673 }
674 break;
675 case ISD::SIGN_EXTEND_INREG: {
Nate Begeman368e18d2006-02-16 21:11:51 +0000676 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
677
Chris Lattnerec665152006-02-26 23:36:02 +0000678 // Sign extension. Compute the demanded bits in the result that are not
Nate Begeman368e18d2006-02-16 21:11:51 +0000679 // present in the input.
Chris Lattnerec665152006-02-26 23:36:02 +0000680 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
Nate Begeman368e18d2006-02-16 21:11:51 +0000681
Chris Lattnerec665152006-02-26 23:36:02 +0000682 // If none of the extended bits are demanded, eliminate the sextinreg.
683 if (NewBits == 0)
684 return TLO.CombineTo(Op, Op.getOperand(0));
685
Nate Begeman368e18d2006-02-16 21:11:51 +0000686 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
687 int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
688
Chris Lattnerec665152006-02-26 23:36:02 +0000689 // Since the sign extended bits are demanded, we know that the sign
Nate Begeman368e18d2006-02-16 21:11:51 +0000690 // bit is demanded.
Chris Lattnerec665152006-02-26 23:36:02 +0000691 InputDemandedBits |= InSignBit;
Nate Begeman368e18d2006-02-16 21:11:51 +0000692
693 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
694 KnownZero, KnownOne, TLO, Depth+1))
695 return true;
696 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
697
698 // If the sign bit of the input is known set or clear, then we know the
699 // top bits of the result.
700
Chris Lattnerec665152006-02-26 23:36:02 +0000701 // If the input sign bit is known zero, convert this into a zero extension.
702 if (KnownZero & InSignBit)
703 return TLO.CombineTo(Op,
704 TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
705
706 if (KnownOne & InSignBit) { // Input sign bit known set
Nate Begeman368e18d2006-02-16 21:11:51 +0000707 KnownOne |= NewBits;
708 KnownZero &= ~NewBits;
Chris Lattnerec665152006-02-26 23:36:02 +0000709 } else { // Input sign bit unknown
Nate Begeman368e18d2006-02-16 21:11:51 +0000710 KnownZero &= ~NewBits;
711 KnownOne &= ~NewBits;
712 }
713 break;
714 }
Chris Lattnerec665152006-02-26 23:36:02 +0000715 case ISD::CTTZ:
716 case ISD::CTLZ:
717 case ISD::CTPOP: {
718 MVT::ValueType VT = Op.getValueType();
719 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
720 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
721 KnownOne = 0;
722 break;
723 }
Evan Cheng466685d2006-10-09 20:57:25 +0000724 case ISD::LOAD: {
Evan Chengc5484282006-10-04 00:56:09 +0000725 if (ISD::isZEXTLoad(Op.Val)) {
Evan Cheng466685d2006-10-09 20:57:25 +0000726 LoadSDNode *LD = cast<LoadSDNode>(Op);
Evan Cheng2e49f092006-10-11 07:10:22 +0000727 MVT::ValueType VT = LD->getLoadedVT();
Evan Chengc5484282006-10-04 00:56:09 +0000728 KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
729 }
Chris Lattnerec665152006-02-26 23:36:02 +0000730 break;
731 }
732 case ISD::ZERO_EXTEND: {
733 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
734
735 // If none of the top bits are demanded, convert this into an any_extend.
736 uint64_t NewBits = (~InMask) & DemandedMask;
737 if (NewBits == 0)
738 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
739 Op.getValueType(),
740 Op.getOperand(0)));
741
742 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
743 KnownZero, KnownOne, TLO, Depth+1))
744 return true;
745 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
746 KnownZero |= NewBits;
747 break;
748 }
749 case ISD::SIGN_EXTEND: {
750 MVT::ValueType InVT = Op.getOperand(0).getValueType();
751 uint64_t InMask = MVT::getIntVTBitMask(InVT);
752 uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
753 uint64_t NewBits = (~InMask) & DemandedMask;
754
755 // If none of the top bits are demanded, convert this into an any_extend.
756 if (NewBits == 0)
Chris Lattnerfea997a2007-02-01 04:55:59 +0000757 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
Chris Lattnerec665152006-02-26 23:36:02 +0000758 Op.getOperand(0)));
759
760 // Since some of the sign extended bits are demanded, we know that the sign
761 // bit is demanded.
762 uint64_t InDemandedBits = DemandedMask & InMask;
763 InDemandedBits |= InSignBit;
764
765 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
766 KnownOne, TLO, Depth+1))
767 return true;
768
769 // If the sign bit is known zero, convert this to a zero extend.
770 if (KnownZero & InSignBit)
771 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
772 Op.getValueType(),
773 Op.getOperand(0)));
774
775 // If the sign bit is known one, the top bits match.
776 if (KnownOne & InSignBit) {
777 KnownOne |= NewBits;
778 KnownZero &= ~NewBits;
779 } else { // Otherwise, top bits aren't known.
780 KnownOne &= ~NewBits;
781 KnownZero &= ~NewBits;
782 }
783 break;
784 }
785 case ISD::ANY_EXTEND: {
786 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
787 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
788 KnownZero, KnownOne, TLO, Depth+1))
789 return true;
790 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
791 break;
792 }
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000793 case ISD::TRUNCATE: {
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000794 // Simplify the input, using demanded bit information, and compute the known
795 // zero/one bits live out.
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000796 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
797 KnownZero, KnownOne, TLO, Depth+1))
798 return true;
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000799
800 // If the input is only used by this truncate, see if we can shrink it based
801 // on the known demanded bits.
802 if (Op.getOperand(0).Val->hasOneUse()) {
803 SDOperand In = Op.getOperand(0);
804 switch (In.getOpcode()) {
805 default: break;
806 case ISD::SRL:
807 // Shrink SRL by a constant if none of the high bits shifted in are
808 // demanded.
809 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
810 uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
811 HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
812 HighBits >>= ShAmt->getValue();
813
814 if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
815 (DemandedMask & HighBits) == 0) {
816 // None of the shifted in bits are needed. Add a truncate of the
817 // shift input, then shift it.
818 SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
819 Op.getValueType(),
820 In.getOperand(0));
821 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
822 NewTrunc, In.getOperand(1)));
823 }
824 }
825 break;
826 }
827 }
828
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000829 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
830 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
831 KnownZero &= OutMask;
832 KnownOne &= OutMask;
833 break;
834 }
Chris Lattnerec665152006-02-26 23:36:02 +0000835 case ISD::AssertZext: {
836 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
837 uint64_t InMask = MVT::getIntVTBitMask(VT);
838 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
839 KnownZero, KnownOne, TLO, Depth+1))
840 return true;
841 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
842 KnownZero |= ~InMask & DemandedMask;
843 break;
844 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000845 case ISD::ADD:
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000846 case ISD::SUB:
Chris Lattner1482b5f2006-04-02 06:15:09 +0000847 case ISD::INTRINSIC_WO_CHAIN:
848 case ISD::INTRINSIC_W_CHAIN:
849 case ISD::INTRINSIC_VOID:
850 // Just use ComputeMaskedBits to compute output bits.
Dan Gohmanea859be2007-06-22 14:59:07 +0000851 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000852 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000853 }
Chris Lattnerec665152006-02-26 23:36:02 +0000854
855 // If we know the value of all of the demanded bits, return this as a
856 // constant.
857 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
858 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
859
Nate Begeman368e18d2006-02-16 21:11:51 +0000860 return false;
861}
862
Nate Begeman368e18d2006-02-16 21:11:51 +0000863/// computeMaskedBitsForTargetNode - Determine which of the bits specified
864/// in Mask are known to be either zero or one and return them in the
865/// KnownZero/KnownOne bitsets.
866void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
867 uint64_t Mask,
868 uint64_t &KnownZero,
869 uint64_t &KnownOne,
Dan Gohmanea859be2007-06-22 14:59:07 +0000870 const SelectionDAG &DAG,
Nate Begeman368e18d2006-02-16 21:11:51 +0000871 unsigned Depth) const {
Chris Lattner1b5232a2006-04-02 06:19:46 +0000872 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
873 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
874 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
875 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000876 "Should use MaskedValueIsZero if you don't know whether Op"
877 " is a target node!");
Nate Begeman368e18d2006-02-16 21:11:51 +0000878 KnownZero = 0;
879 KnownOne = 0;
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000880}
Chris Lattner4ccb0702006-01-26 20:37:03 +0000881
Chris Lattner5c3e21d2006-05-06 09:27:13 +0000882/// ComputeNumSignBitsForTargetNode - This method can be implemented by
883/// targets that want to expose additional information about sign bits to the
884/// DAG Combiner.
885unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
886 unsigned Depth) const {
887 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
888 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
889 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
890 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
891 "Should use ComputeNumSignBits if you don't know whether Op"
892 " is a target node!");
893 return 1;
894}
895
896
Evan Chengfa1eb272007-02-08 22:13:59 +0000897/// SimplifySetCC - Try to simplify a setcc built with the specified operands
898/// and cc. If it is unable to simplify it, return a null SDOperand.
899SDOperand
900TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
901 ISD::CondCode Cond, bool foldBooleans,
902 DAGCombinerInfo &DCI) const {
903 SelectionDAG &DAG = DCI.DAG;
904
905 // These setcc operations always fold.
906 switch (Cond) {
907 default: break;
908 case ISD::SETFALSE:
909 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
910 case ISD::SETTRUE:
911 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
912 }
913
914 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
915 uint64_t C1 = N1C->getValue();
916 if (isa<ConstantSDNode>(N0.Val)) {
917 return DAG.FoldSetCC(VT, N0, N1, Cond);
918 } else {
919 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
920 // equality comparison, then we're just comparing whether X itself is
921 // zero.
922 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
923 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
924 N0.getOperand(1).getOpcode() == ISD::Constant) {
925 unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
926 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
927 ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
928 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
929 // (srl (ctlz x), 5) == 0 -> X != 0
930 // (srl (ctlz x), 5) != 1 -> X != 0
931 Cond = ISD::SETNE;
932 } else {
933 // (srl (ctlz x), 5) != 0 -> X == 0
934 // (srl (ctlz x), 5) == 1 -> X == 0
935 Cond = ISD::SETEQ;
936 }
937 SDOperand Zero = DAG.getConstant(0, N0.getValueType());
938 return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
939 Zero, Cond);
940 }
941 }
942
943 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
944 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
945 unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
946
947 // If the comparison constant has bits in the upper part, the
948 // zero-extended value could never match.
949 if (C1 & (~0ULL << InSize)) {
950 unsigned VSize = MVT::getSizeInBits(N0.getValueType());
951 switch (Cond) {
952 case ISD::SETUGT:
953 case ISD::SETUGE:
954 case ISD::SETEQ: return DAG.getConstant(0, VT);
955 case ISD::SETULT:
956 case ISD::SETULE:
957 case ISD::SETNE: return DAG.getConstant(1, VT);
958 case ISD::SETGT:
959 case ISD::SETGE:
960 // True if the sign bit of C1 is set.
Chris Lattner01ca65b2007-02-24 02:09:29 +0000961 return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +0000962 case ISD::SETLT:
963 case ISD::SETLE:
964 // True if the sign bit of C1 isn't set.
Chris Lattner01ca65b2007-02-24 02:09:29 +0000965 return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +0000966 default:
967 break;
968 }
969 }
970
971 // Otherwise, we can perform the comparison with the low bits.
972 switch (Cond) {
973 case ISD::SETEQ:
974 case ISD::SETNE:
975 case ISD::SETUGT:
976 case ISD::SETUGE:
977 case ISD::SETULT:
978 case ISD::SETULE:
979 return DAG.getSetCC(VT, N0.getOperand(0),
980 DAG.getConstant(C1, N0.getOperand(0).getValueType()),
981 Cond);
982 default:
983 break; // todo, be more careful with signed comparisons
984 }
985 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
986 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
987 MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
988 unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
989 MVT::ValueType ExtDstTy = N0.getValueType();
990 unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
991
992 // If the extended part has any inconsistent bits, it cannot ever
993 // compare equal. In other words, they have to be all ones or all
994 // zeros.
995 uint64_t ExtBits =
996 (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
997 if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
998 return DAG.getConstant(Cond == ISD::SETNE, VT);
999
1000 SDOperand ZextOp;
1001 MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1002 if (Op0Ty == ExtSrcTy) {
1003 ZextOp = N0.getOperand(0);
1004 } else {
1005 int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1006 ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1007 DAG.getConstant(Imm, Op0Ty));
1008 }
1009 if (!DCI.isCalledByLegalizer())
1010 DCI.AddToWorklist(ZextOp.Val);
1011 // Otherwise, make this a use of a zext.
1012 return DAG.getSetCC(VT, ZextOp,
1013 DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1014 ExtDstTy),
1015 Cond);
1016 } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1017 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1018
1019 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
1020 if (N0.getOpcode() == ISD::SETCC) {
1021 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1022 if (TrueWhenTrue)
1023 return N0;
1024
1025 // Invert the condition.
1026 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1027 CC = ISD::getSetCCInverse(CC,
1028 MVT::isInteger(N0.getOperand(0).getValueType()));
1029 return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1030 }
1031
1032 if ((N0.getOpcode() == ISD::XOR ||
1033 (N0.getOpcode() == ISD::AND &&
1034 N0.getOperand(0).getOpcode() == ISD::XOR &&
1035 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1036 isa<ConstantSDNode>(N0.getOperand(1)) &&
1037 cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1038 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
1039 // can only do this if the top bits are known zero.
Dan Gohmanea859be2007-06-22 14:59:07 +00001040 if (DAG.MaskedValueIsZero(N0,
1041 MVT::getIntVTBitMask(N0.getValueType())-1)){
Evan Chengfa1eb272007-02-08 22:13:59 +00001042 // Okay, get the un-inverted input value.
1043 SDOperand Val;
1044 if (N0.getOpcode() == ISD::XOR)
1045 Val = N0.getOperand(0);
1046 else {
1047 assert(N0.getOpcode() == ISD::AND &&
1048 N0.getOperand(0).getOpcode() == ISD::XOR);
1049 // ((X^1)&1)^1 -> X & 1
1050 Val = DAG.getNode(ISD::AND, N0.getValueType(),
1051 N0.getOperand(0).getOperand(0),
1052 N0.getOperand(1));
1053 }
1054 return DAG.getSetCC(VT, Val, N1,
1055 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1056 }
1057 }
1058 }
1059
1060 uint64_t MinVal, MaxVal;
1061 unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1062 if (ISD::isSignedIntSetCC(Cond)) {
1063 MinVal = 1ULL << (OperandBitSize-1);
1064 if (OperandBitSize != 1) // Avoid X >> 64, which is undefined.
1065 MaxVal = ~0ULL >> (65-OperandBitSize);
1066 else
1067 MaxVal = 0;
1068 } else {
1069 MinVal = 0;
1070 MaxVal = ~0ULL >> (64-OperandBitSize);
1071 }
1072
1073 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1074 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1075 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
1076 --C1; // X >= C0 --> X > (C0-1)
1077 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1078 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1079 }
1080
1081 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1082 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
1083 ++C1; // X <= C0 --> X < (C0+1)
1084 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1085 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1086 }
1087
1088 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1089 return DAG.getConstant(0, VT); // X < MIN --> false
1090 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1091 return DAG.getConstant(1, VT); // X >= MIN --> true
1092 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1093 return DAG.getConstant(0, VT); // X > MAX --> false
1094 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1095 return DAG.getConstant(1, VT); // X <= MAX --> true
1096
1097 // Canonicalize setgt X, Min --> setne X, Min
1098 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1099 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1100 // Canonicalize setlt X, Max --> setne X, Max
1101 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1102 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1103
1104 // If we have setult X, 1, turn it into seteq X, 0
1105 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1106 return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1107 ISD::SETEQ);
1108 // If we have setugt X, Max-1, turn it into seteq X, Max
1109 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1110 return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1111 ISD::SETEQ);
1112
1113 // If we have "setcc X, C0", check to see if we can shrink the immediate
1114 // by changing cc.
1115
1116 // SETUGT X, SINTMAX -> SETLT X, 0
1117 if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1118 C1 == (~0ULL >> (65-OperandBitSize)))
1119 return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1120 ISD::SETLT);
1121
1122 // FIXME: Implement the rest of these.
1123
1124 // Fold bit comparisons when we can.
1125 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1126 VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1127 if (ConstantSDNode *AndRHS =
1128 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1129 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
1130 // Perform the xform if the AND RHS is a single bit.
1131 if (isPowerOf2_64(AndRHS->getValue())) {
1132 return DAG.getNode(ISD::SRL, VT, N0,
1133 DAG.getConstant(Log2_64(AndRHS->getValue()),
1134 getShiftAmountTy()));
1135 }
1136 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1137 // (X & 8) == 8 --> (X & 8) >> 3
1138 // Perform the xform if C1 is a single bit.
1139 if (isPowerOf2_64(C1)) {
1140 return DAG.getNode(ISD::SRL, VT, N0,
1141 DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1142 }
1143 }
1144 }
1145 }
1146 } else if (isa<ConstantSDNode>(N0.Val)) {
1147 // Ensure that the constant occurs on the RHS.
1148 return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1149 }
1150
1151 if (isa<ConstantFPSDNode>(N0.Val)) {
1152 // Constant fold or commute setcc.
1153 SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1154 if (O.Val) return O;
1155 }
1156
1157 if (N0 == N1) {
1158 // We can always fold X == X for integer setcc's.
1159 if (MVT::isInteger(N0.getValueType()))
1160 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1161 unsigned UOF = ISD::getUnorderedFlavor(Cond);
1162 if (UOF == 2) // FP operators that are undefined on NaNs.
1163 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1164 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1165 return DAG.getConstant(UOF, VT);
1166 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
1167 // if it is not already.
1168 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1169 if (NewCond != Cond)
1170 return DAG.getSetCC(VT, N0, N1, NewCond);
1171 }
1172
1173 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1174 MVT::isInteger(N0.getValueType())) {
1175 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1176 N0.getOpcode() == ISD::XOR) {
1177 // Simplify (X+Y) == (X+Z) --> Y == Z
1178 if (N0.getOpcode() == N1.getOpcode()) {
1179 if (N0.getOperand(0) == N1.getOperand(0))
1180 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1181 if (N0.getOperand(1) == N1.getOperand(1))
1182 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1183 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1184 // If X op Y == Y op X, try other combinations.
1185 if (N0.getOperand(0) == N1.getOperand(1))
1186 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1187 if (N0.getOperand(1) == N1.getOperand(0))
1188 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1189 }
1190 }
1191
1192 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1193 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1194 // Turn (X+C1) == C2 --> X == C2-C1
1195 if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1196 return DAG.getSetCC(VT, N0.getOperand(0),
1197 DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1198 N0.getValueType()), Cond);
1199 }
1200
1201 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1202 if (N0.getOpcode() == ISD::XOR)
1203 // If we know that all of the inverted bits are zero, don't bother
1204 // performing the inversion.
Dan Gohmanea859be2007-06-22 14:59:07 +00001205 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
Evan Chengfa1eb272007-02-08 22:13:59 +00001206 return DAG.getSetCC(VT, N0.getOperand(0),
1207 DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
1208 N0.getValueType()), Cond);
1209 }
1210
1211 // Turn (C1-X) == C2 --> X == C1-C2
1212 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1213 if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1214 return DAG.getSetCC(VT, N0.getOperand(1),
1215 DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
1216 N0.getValueType()), Cond);
1217 }
1218 }
1219 }
1220
1221 // Simplify (X+Z) == X --> Z == 0
1222 if (N0.getOperand(0) == N1)
1223 return DAG.getSetCC(VT, N0.getOperand(1),
1224 DAG.getConstant(0, N0.getValueType()), Cond);
1225 if (N0.getOperand(1) == N1) {
1226 if (DAG.isCommutativeBinOp(N0.getOpcode()))
1227 return DAG.getSetCC(VT, N0.getOperand(0),
1228 DAG.getConstant(0, N0.getValueType()), Cond);
Chris Lattner2ad913b2007-05-19 00:43:44 +00001229 else if (N0.Val->hasOneUse()) {
Evan Chengfa1eb272007-02-08 22:13:59 +00001230 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1231 // (Z-X) == X --> Z == X<<1
1232 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1233 N1,
1234 DAG.getConstant(1, getShiftAmountTy()));
1235 if (!DCI.isCalledByLegalizer())
1236 DCI.AddToWorklist(SH.Val);
1237 return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1238 }
1239 }
1240 }
1241
1242 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1243 N1.getOpcode() == ISD::XOR) {
1244 // Simplify X == (X+Z) --> Z == 0
1245 if (N1.getOperand(0) == N0) {
1246 return DAG.getSetCC(VT, N1.getOperand(1),
1247 DAG.getConstant(0, N1.getValueType()), Cond);
1248 } else if (N1.getOperand(1) == N0) {
1249 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1250 return DAG.getSetCC(VT, N1.getOperand(0),
1251 DAG.getConstant(0, N1.getValueType()), Cond);
Chris Lattner7667c0b2007-05-19 00:46:51 +00001252 } else if (N1.Val->hasOneUse()) {
Evan Chengfa1eb272007-02-08 22:13:59 +00001253 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1254 // X == (Z-X) --> X<<1 == Z
1255 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1256 DAG.getConstant(1, getShiftAmountTy()));
1257 if (!DCI.isCalledByLegalizer())
1258 DCI.AddToWorklist(SH.Val);
1259 return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1260 }
1261 }
1262 }
1263 }
1264
1265 // Fold away ALL boolean setcc's.
1266 SDOperand Temp;
1267 if (N0.getValueType() == MVT::i1 && foldBooleans) {
1268 switch (Cond) {
1269 default: assert(0 && "Unknown integer setcc!");
1270 case ISD::SETEQ: // X == Y -> (X^Y)^1
1271 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1272 N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1273 if (!DCI.isCalledByLegalizer())
1274 DCI.AddToWorklist(Temp.Val);
1275 break;
1276 case ISD::SETNE: // X != Y --> (X^Y)
1277 N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1278 break;
1279 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> X^1 & Y
1280 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> X^1 & Y
1281 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1282 N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1283 if (!DCI.isCalledByLegalizer())
1284 DCI.AddToWorklist(Temp.Val);
1285 break;
1286 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> Y^1 & X
1287 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> Y^1 & X
1288 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1289 N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1290 if (!DCI.isCalledByLegalizer())
1291 DCI.AddToWorklist(Temp.Val);
1292 break;
1293 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> X^1 | Y
1294 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> X^1 | Y
1295 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1296 N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1297 if (!DCI.isCalledByLegalizer())
1298 DCI.AddToWorklist(Temp.Val);
1299 break;
1300 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> Y^1 | X
1301 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> Y^1 | X
1302 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1303 N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1304 break;
1305 }
1306 if (VT != MVT::i1) {
1307 if (!DCI.isCalledByLegalizer())
1308 DCI.AddToWorklist(N0.Val);
1309 // FIXME: If running after legalize, we probably can't do this.
1310 N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1311 }
1312 return N0;
1313 }
1314
1315 // Could not fold it.
1316 return SDOperand();
1317}
1318
Chris Lattner00ffed02006-03-01 04:52:55 +00001319SDOperand TargetLowering::
1320PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1321 // Default implementation: no optimization.
1322 return SDOperand();
1323}
1324
Chris Lattnereb8146b2006-02-04 02:13:02 +00001325//===----------------------------------------------------------------------===//
1326// Inline Assembler Implementation Methods
1327//===----------------------------------------------------------------------===//
1328
1329TargetLowering::ConstraintType
Chris Lattner4234f572007-03-25 02:14:49 +00001330TargetLowering::getConstraintType(const std::string &Constraint) const {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001331 // FIXME: lots more standard ones to handle.
Chris Lattner4234f572007-03-25 02:14:49 +00001332 if (Constraint.size() == 1) {
1333 switch (Constraint[0]) {
1334 default: break;
1335 case 'r': return C_RegisterClass;
1336 case 'm': // memory
1337 case 'o': // offsetable
1338 case 'V': // not offsetable
1339 return C_Memory;
1340 case 'i': // Simple Integer or Relocatable Constant
1341 case 'n': // Simple Integer
1342 case 's': // Relocatable Constant
Chris Lattnerc13dd1c2007-03-25 04:35:41 +00001343 case 'X': // Allow ANY value.
Chris Lattner4234f572007-03-25 02:14:49 +00001344 case 'I': // Target registers.
1345 case 'J':
1346 case 'K':
1347 case 'L':
1348 case 'M':
1349 case 'N':
1350 case 'O':
1351 case 'P':
1352 return C_Other;
1353 }
Chris Lattnereb8146b2006-02-04 02:13:02 +00001354 }
Chris Lattner065421f2007-03-25 02:18:14 +00001355
1356 if (Constraint.size() > 1 && Constraint[0] == '{' &&
1357 Constraint[Constraint.size()-1] == '}')
1358 return C_Register;
Chris Lattner4234f572007-03-25 02:14:49 +00001359 return C_Unknown;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001360}
1361
Chris Lattner48884cd2007-08-25 00:47:38 +00001362/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1363/// vector. If it is invalid, don't add anything to Ops.
1364void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1365 char ConstraintLetter,
1366 std::vector<SDOperand> &Ops,
1367 SelectionDAG &DAG) {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001368 switch (ConstraintLetter) {
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001369 default: break;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001370 case 'i': // Simple Integer or Relocatable Constant
1371 case 'n': // Simple Integer
1372 case 's': // Relocatable Constant
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001373 case 'X': { // Allows any operand.
1374 // These operands are interested in values of the form (GV+C), where C may
1375 // be folded in as an offset of GV, or it may be explicitly added. Also, it
1376 // is possible and fine if either GV or C are missing.
1377 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1378 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1379
1380 // If we have "(add GV, C)", pull out GV/C
1381 if (Op.getOpcode() == ISD::ADD) {
1382 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1383 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1384 if (C == 0 || GA == 0) {
1385 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1386 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1387 }
1388 if (C == 0 || GA == 0)
1389 C = 0, GA = 0;
1390 }
1391
1392 // If we find a valid operand, map to the TargetXXX version so that the
1393 // value itself doesn't get selected.
1394 if (GA) { // Either &GV or &GV+C
1395 if (ConstraintLetter != 'n') {
1396 int64_t Offs = GA->getOffset();
1397 if (C) Offs += C->getValue();
Chris Lattner48884cd2007-08-25 00:47:38 +00001398 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1399 Op.getValueType(), Offs));
1400 return;
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001401 }
1402 }
1403 if (C) { // just C, no GV.
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001404 // Simple constants are not allowed for 's'.
Chris Lattner48884cd2007-08-25 00:47:38 +00001405 if (ConstraintLetter != 's') {
1406 Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1407 return;
1408 }
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001409 }
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001410 break;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001411 }
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001412 }
Chris Lattnereb8146b2006-02-04 02:13:02 +00001413}
1414
Chris Lattner4ccb0702006-01-26 20:37:03 +00001415std::vector<unsigned> TargetLowering::
Chris Lattner1efa40f2006-02-22 00:56:39 +00001416getRegClassForInlineAsmConstraint(const std::string &Constraint,
1417 MVT::ValueType VT) const {
1418 return std::vector<unsigned>();
1419}
1420
1421
1422std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
Chris Lattner4217ca8dc2006-02-21 23:11:00 +00001423getRegForInlineAsmConstraint(const std::string &Constraint,
1424 MVT::ValueType VT) const {
Chris Lattner1efa40f2006-02-22 00:56:39 +00001425 if (Constraint[0] != '{')
1426 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattnera55079a2006-02-01 01:29:47 +00001427 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1428
1429 // Remove the braces from around the name.
1430 std::string RegName(Constraint.begin()+1, Constraint.end()-1);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001431
1432 // Figure out which register class contains this reg.
Chris Lattner4ccb0702006-01-26 20:37:03 +00001433 const MRegisterInfo *RI = TM.getRegisterInfo();
Chris Lattner1efa40f2006-02-22 00:56:39 +00001434 for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1435 E = RI->regclass_end(); RCI != E; ++RCI) {
1436 const TargetRegisterClass *RC = *RCI;
Chris Lattnerb3befd42006-02-22 23:00:51 +00001437
1438 // If none of the the value types for this register class are valid, we
1439 // can't use it. For example, 64-bit reg classes on 32-bit targets.
1440 bool isLegal = false;
1441 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1442 I != E; ++I) {
1443 if (isTypeLegal(*I)) {
1444 isLegal = true;
1445 break;
1446 }
1447 }
1448
1449 if (!isLegal) continue;
1450
Chris Lattner1efa40f2006-02-22 00:56:39 +00001451 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1452 I != E; ++I) {
Chris Lattnerb3befd42006-02-22 23:00:51 +00001453 if (StringsEqualNoCase(RegName, RI->get(*I).Name))
Chris Lattner1efa40f2006-02-22 00:56:39 +00001454 return std::make_pair(*I, RC);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001455 }
Chris Lattner4ccb0702006-01-26 20:37:03 +00001456 }
Chris Lattnera55079a2006-02-01 01:29:47 +00001457
Chris Lattner1efa40f2006-02-22 00:56:39 +00001458 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattner4ccb0702006-01-26 20:37:03 +00001459}
Evan Cheng30b37b52006-03-13 23:18:16 +00001460
1461//===----------------------------------------------------------------------===//
1462// Loop Strength Reduction hooks
1463//===----------------------------------------------------------------------===//
1464
Chris Lattner1436bb62007-03-30 23:14:50 +00001465/// isLegalAddressingMode - Return true if the addressing mode represented
1466/// by AM is legal for this target, for a load/store of the specified type.
1467bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1468 const Type *Ty) const {
1469 // The default implementation of this implements a conservative RISCy, r+r and
1470 // r+i addr mode.
1471
1472 // Allows a sign-extended 16-bit immediate field.
1473 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1474 return false;
1475
1476 // No global is ever allowed as a base.
1477 if (AM.BaseGV)
1478 return false;
1479
1480 // Only support r+r,
1481 switch (AM.Scale) {
1482 case 0: // "r+i" or just "i", depending on HasBaseReg.
1483 break;
1484 case 1:
1485 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
1486 return false;
1487 // Otherwise we have r+r or r+i.
1488 break;
1489 case 2:
1490 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
1491 return false;
1492 // Allow 2*r as r+r.
1493 break;
1494 }
1495
1496 return true;
1497}
1498
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001499// Magic for divide replacement
1500
1501struct ms {
1502 int64_t m; // magic number
1503 int64_t s; // shift amount
1504};
1505
1506struct mu {
1507 uint64_t m; // magic number
1508 int64_t a; // add indicator
1509 int64_t s; // shift amount
1510};
1511
1512/// magic - calculate the magic numbers required to codegen an integer sdiv as
1513/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1514/// or -1.
1515static ms magic32(int32_t d) {
1516 int32_t p;
1517 uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1518 const uint32_t two31 = 0x80000000U;
1519 struct ms mag;
1520
1521 ad = abs(d);
1522 t = two31 + ((uint32_t)d >> 31);
1523 anc = t - 1 - t%ad; // absolute value of nc
1524 p = 31; // initialize p
1525 q1 = two31/anc; // initialize q1 = 2p/abs(nc)
1526 r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1527 q2 = two31/ad; // initialize q2 = 2p/abs(d)
1528 r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
1529 do {
1530 p = p + 1;
1531 q1 = 2*q1; // update q1 = 2p/abs(nc)
1532 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1533 if (r1 >= anc) { // must be unsigned comparison
1534 q1 = q1 + 1;
1535 r1 = r1 - anc;
1536 }
1537 q2 = 2*q2; // update q2 = 2p/abs(d)
1538 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1539 if (r2 >= ad) { // must be unsigned comparison
1540 q2 = q2 + 1;
1541 r2 = r2 - ad;
1542 }
1543 delta = ad - r2;
1544 } while (q1 < delta || (q1 == delta && r1 == 0));
1545
1546 mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1547 if (d < 0) mag.m = -mag.m; // resulting magic number
1548 mag.s = p - 32; // resulting shift
1549 return mag;
1550}
1551
1552/// magicu - calculate the magic numbers required to codegen an integer udiv as
1553/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1554static mu magicu32(uint32_t d) {
1555 int32_t p;
1556 uint32_t nc, delta, q1, r1, q2, r2;
1557 struct mu magu;
1558 magu.a = 0; // initialize "add" indicator
1559 nc = - 1 - (-d)%d;
1560 p = 31; // initialize p
1561 q1 = 0x80000000/nc; // initialize q1 = 2p/nc
1562 r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
1563 q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
1564 r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
1565 do {
1566 p = p + 1;
1567 if (r1 >= nc - r1 ) {
1568 q1 = 2*q1 + 1; // update q1
1569 r1 = 2*r1 - nc; // update r1
1570 }
1571 else {
1572 q1 = 2*q1; // update q1
1573 r1 = 2*r1; // update r1
1574 }
1575 if (r2 + 1 >= d - r2) {
1576 if (q2 >= 0x7FFFFFFF) magu.a = 1;
1577 q2 = 2*q2 + 1; // update q2
1578 r2 = 2*r2 + 1 - d; // update r2
1579 }
1580 else {
1581 if (q2 >= 0x80000000) magu.a = 1;
1582 q2 = 2*q2; // update q2
1583 r2 = 2*r2 + 1; // update r2
1584 }
1585 delta = d - 1 - r2;
1586 } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1587 magu.m = q2 + 1; // resulting magic number
1588 magu.s = p - 32; // resulting shift
1589 return magu;
1590}
1591
1592/// magic - calculate the magic numbers required to codegen an integer sdiv as
1593/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1594/// or -1.
1595static ms magic64(int64_t d) {
1596 int64_t p;
1597 uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1598 const uint64_t two63 = 9223372036854775808ULL; // 2^63
1599 struct ms mag;
1600
1601 ad = d >= 0 ? d : -d;
1602 t = two63 + ((uint64_t)d >> 63);
1603 anc = t - 1 - t%ad; // absolute value of nc
1604 p = 63; // initialize p
1605 q1 = two63/anc; // initialize q1 = 2p/abs(nc)
1606 r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1607 q2 = two63/ad; // initialize q2 = 2p/abs(d)
1608 r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d))
1609 do {
1610 p = p + 1;
1611 q1 = 2*q1; // update q1 = 2p/abs(nc)
1612 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1613 if (r1 >= anc) { // must be unsigned comparison
1614 q1 = q1 + 1;
1615 r1 = r1 - anc;
1616 }
1617 q2 = 2*q2; // update q2 = 2p/abs(d)
1618 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1619 if (r2 >= ad) { // must be unsigned comparison
1620 q2 = q2 + 1;
1621 r2 = r2 - ad;
1622 }
1623 delta = ad - r2;
1624 } while (q1 < delta || (q1 == delta && r1 == 0));
1625
1626 mag.m = q2 + 1;
1627 if (d < 0) mag.m = -mag.m; // resulting magic number
1628 mag.s = p - 64; // resulting shift
1629 return mag;
1630}
1631
1632/// magicu - calculate the magic numbers required to codegen an integer udiv as
1633/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1634static mu magicu64(uint64_t d)
1635{
1636 int64_t p;
1637 uint64_t nc, delta, q1, r1, q2, r2;
1638 struct mu magu;
1639 magu.a = 0; // initialize "add" indicator
1640 nc = - 1 - (-d)%d;
1641 p = 63; // initialize p
1642 q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc
1643 r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc)
1644 q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d
1645 r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d)
1646 do {
1647 p = p + 1;
1648 if (r1 >= nc - r1 ) {
1649 q1 = 2*q1 + 1; // update q1
1650 r1 = 2*r1 - nc; // update r1
1651 }
1652 else {
1653 q1 = 2*q1; // update q1
1654 r1 = 2*r1; // update r1
1655 }
1656 if (r2 + 1 >= d - r2) {
1657 if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1658 q2 = 2*q2 + 1; // update q2
1659 r2 = 2*r2 + 1 - d; // update r2
1660 }
1661 else {
1662 if (q2 >= 0x8000000000000000ull) magu.a = 1;
1663 q2 = 2*q2; // update q2
1664 r2 = 2*r2 + 1; // update r2
1665 }
1666 delta = d - 1 - r2;
Andrew Lenharth3e348492006-05-16 17:45:23 +00001667 } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001668 magu.m = q2 + 1; // resulting magic number
1669 magu.s = p - 64; // resulting shift
1670 return magu;
1671}
1672
1673/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1674/// return a DAG expression to select that will generate the same value by
1675/// multiplying by a magic number. See:
1676/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1677SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00001678 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001679 MVT::ValueType VT = N->getValueType(0);
1680
1681 // Check to see if we can do this.
1682 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1683 return SDOperand(); // BuildSDIV only operates on i32 or i64
1684 if (!isOperationLegal(ISD::MULHS, VT))
1685 return SDOperand(); // Make sure the target supports MULHS.
1686
1687 int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1688 ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1689
1690 // Multiply the numerator (operand 0) by the magic value
1691 SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1692 DAG.getConstant(magics.m, VT));
1693 // If d > 0 and m < 0, add the numerator
1694 if (d > 0 && magics.m < 0) {
1695 Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1696 if (Created)
1697 Created->push_back(Q.Val);
1698 }
1699 // If d < 0 and m > 0, subtract the numerator.
1700 if (d < 0 && magics.m > 0) {
1701 Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1702 if (Created)
1703 Created->push_back(Q.Val);
1704 }
1705 // Shift right algebraic if shift value is nonzero
1706 if (magics.s > 0) {
1707 Q = DAG.getNode(ISD::SRA, VT, Q,
1708 DAG.getConstant(magics.s, getShiftAmountTy()));
1709 if (Created)
1710 Created->push_back(Q.Val);
1711 }
1712 // Extract the sign bit and add it to the quotient
1713 SDOperand T =
1714 DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1715 getShiftAmountTy()));
1716 if (Created)
1717 Created->push_back(T.Val);
1718 return DAG.getNode(ISD::ADD, VT, Q, T);
1719}
1720
1721/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1722/// return a DAG expression to select that will generate the same value by
1723/// multiplying by a magic number. See:
1724/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1725SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00001726 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001727 MVT::ValueType VT = N->getValueType(0);
1728
1729 // Check to see if we can do this.
1730 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1731 return SDOperand(); // BuildUDIV only operates on i32 or i64
1732 if (!isOperationLegal(ISD::MULHU, VT))
1733 return SDOperand(); // Make sure the target supports MULHU.
1734
1735 uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1736 mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1737
1738 // Multiply the numerator (operand 0) by the magic value
1739 SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1740 DAG.getConstant(magics.m, VT));
1741 if (Created)
1742 Created->push_back(Q.Val);
1743
1744 if (magics.a == 0) {
1745 return DAG.getNode(ISD::SRL, VT, Q,
1746 DAG.getConstant(magics.s, getShiftAmountTy()));
1747 } else {
1748 SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1749 if (Created)
1750 Created->push_back(NPQ.Val);
1751 NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1752 DAG.getConstant(1, getShiftAmountTy()));
1753 if (Created)
1754 Created->push_back(NPQ.Val);
1755 NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1756 if (Created)
1757 Created->push_back(NPQ.Val);
1758 return DAG.getNode(ISD::SRL, VT, NPQ,
1759 DAG.getConstant(magics.s-1, getShiftAmountTy()));
1760 }
1761}