blob: 627510d87d379615cfff99b5fa0428227c86a465 [file] [log] [blame]
Misha Brukman91b5ca82004-07-26 18:45:48 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000011// pseudo registers into register stack instructions. This pass uses live
Chris Lattner847df252004-01-30 22:25:18 +000012// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000015// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
Chris Lattner847df252004-01-30 22:25:18 +000020//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000021// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
Chris Lattnera960d952003-01-13 01:01:59 +000023//
24//===----------------------------------------------------------------------===//
25
Chris Lattner95b2c7d2006-12-19 22:59:26 +000026#define DEBUG_TYPE "x86-codegen"
Chris Lattnera960d952003-01-13 01:01:59 +000027#include "X86.h"
28#include "X86InstrInfo.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000029#include "llvm/ADT/DepthFirstIterator.h"
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000030#include "llvm/ADT/DenseMap.h"
Owen Andersoneaa009d2008-08-14 21:01:00 +000031#include "llvm/ADT/SmallPtrSet.h"
Evan Chengddd2a452006-11-15 20:56:39 +000032#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000033#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000035#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/Passes.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000039#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetMachine.h"
Chris Lattnera960d952003-01-13 01:01:59 +000044#include <algorithm>
Chris Lattnerf2e49d42003-12-20 09:58:55 +000045using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000046
Chris Lattner95b2c7d2006-12-19 22:59:26 +000047STATISTIC(NumFXCH, "Number of fxch instructions inserted");
48STATISTIC(NumFP , "Number of floating point instructions");
Chris Lattnera960d952003-01-13 01:01:59 +000049
Chris Lattner95b2c7d2006-12-19 22:59:26 +000050namespace {
Nick Lewycky6726b6d2009-10-25 06:33:48 +000051 struct FPS : public MachineFunctionPass {
Devang Patel19974732007-05-03 01:11:54 +000052 static char ID;
Dan Gohmanae73dc12008-09-04 17:05:41 +000053 FPS() : MachineFunctionPass(&ID) {}
Devang Patel794fd752007-05-01 21:15:47 +000054
Evan Chengbbeeb2a2008-09-22 20:58:04 +000055 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Dan Gohmandf090552009-08-01 00:26:16 +000056 AU.setPreservesCFG();
Evan Cheng8b56a902008-09-22 22:21:38 +000057 AU.addPreservedID(MachineLoopInfoID);
58 AU.addPreservedID(MachineDominatorsID);
Evan Chengbbeeb2a2008-09-22 20:58:04 +000059 MachineFunctionPass::getAnalysisUsage(AU);
60 }
61
Chris Lattnera960d952003-01-13 01:01:59 +000062 virtual bool runOnMachineFunction(MachineFunction &MF);
63
64 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
65
Chris Lattnera960d952003-01-13 01:01:59 +000066 private:
Evan Cheng32644ac2006-12-01 10:11:51 +000067 const TargetInstrInfo *TII; // Machine instruction info.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000068
69 // Two CFG edges are related if they leave the same block, or enter the same
70 // block. The transitive closure of an edge under this relation is a
71 // LiveBundle. It represents a set of CFG edges where the live FP stack
72 // registers must be allocated identically in the x87 stack.
73 //
74 // A LiveBundle is usually all the edges leaving a block, or all the edges
75 // entering a block, but it can contain more edges if critical edges are
76 // present.
77 //
78 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
79 // but the exact mapping of FP registers to stack slots is fixed later.
80 struct LiveBundle {
81 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
82 unsigned Mask;
83
84 // Number of pre-assigned live registers in FixStack. This is 0 when the
85 // stack order has not yet been fixed.
86 unsigned FixCount;
87
88 // Assigned stack order for live-in registers.
89 // FixStack[i] == getStackEntry(i) for all i < FixCount.
90 unsigned char FixStack[8];
91
92 LiveBundle(unsigned m = 0) : Mask(m), FixCount(0) {}
93
94 // Have the live registers been assigned a stack order yet?
95 bool isFixed() const { return !Mask || FixCount; }
96 };
97
98 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
99 // with no live FP registers.
100 SmallVector<LiveBundle, 8> LiveBundles;
101
102 // Map each MBB in the current function to an (ingoing, outgoing) index into
103 // LiveBundles. Blocks with no FP registers live in or out map to (0, 0)
104 // and are not actually stored in the map.
105 DenseMap<MachineBasicBlock*, std::pair<unsigned, unsigned> > BlockBundle;
106
107 // Return a bitmask of FP registers in block's live-in list.
108 unsigned calcLiveInMask(MachineBasicBlock *MBB) {
109 unsigned Mask = 0;
110 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
111 E = MBB->livein_end(); I != E; ++I) {
112 unsigned Reg = *I - X86::FP0;
113 if (Reg < 8)
114 Mask |= 1 << Reg;
115 }
116 return Mask;
117 }
118
119 // Partition all the CFG edges into LiveBundles.
120 void bundleCFG(MachineFunction &MF);
121
Evan Cheng32644ac2006-12-01 10:11:51 +0000122 MachineBasicBlock *MBB; // Current basic block
123 unsigned Stack[8]; // FP<n> Registers in each stack slot...
124 unsigned RegMap[8]; // Track which stack slot contains each register
125 unsigned StackTop; // The current top of the FP stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000126
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000127 // Set up our stack model to match the incoming registers to MBB.
128 void setupBlockStack();
129
130 // Shuffle live registers to match the expectations of successor blocks.
131 void finishBlockStack();
132
Chris Lattnera960d952003-01-13 01:01:59 +0000133 void dumpStack() const {
David Greenef5c95a62010-01-05 01:29:34 +0000134 dbgs() << "Stack contents:";
Chris Lattnera960d952003-01-13 01:01:59 +0000135 for (unsigned i = 0; i != StackTop; ++i) {
David Greenef5c95a62010-01-05 01:29:34 +0000136 dbgs() << " FP" << Stack[i];
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000137 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
Chris Lattnera960d952003-01-13 01:01:59 +0000138 }
David Greenef5c95a62010-01-05 01:29:34 +0000139 dbgs() << "\n";
Chris Lattnera960d952003-01-13 01:01:59 +0000140 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000141
Chris Lattner447ff682008-03-11 03:23:40 +0000142 /// isStackEmpty - Return true if the FP stack is empty.
143 bool isStackEmpty() const {
144 return StackTop == 0;
145 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000146
Chris Lattnera960d952003-01-13 01:01:59 +0000147 // getSlot - Return the stack slot number a particular register number is
Chris Lattner447ff682008-03-11 03:23:40 +0000148 // in.
Chris Lattnera960d952003-01-13 01:01:59 +0000149 unsigned getSlot(unsigned RegNo) const {
150 assert(RegNo < 8 && "Regno out of range!");
151 return RegMap[RegNo];
152 }
153
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000154 // isLive - Is RegNo currently live in the stack?
155 bool isLive(unsigned RegNo) const {
156 unsigned Slot = getSlot(RegNo);
157 return Slot < StackTop && Stack[Slot] == RegNo;
158 }
159
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +0000160 // getScratchReg - Return an FP register that is not currently in use.
161 unsigned getScratchReg() {
162 for (int i = 7; i >= 0; --i)
163 if (!isLive(i))
164 return i;
165 llvm_unreachable("Ran out of scratch FP registers");
166 }
167
Chris Lattner447ff682008-03-11 03:23:40 +0000168 // getStackEntry - Return the X86::FP<n> register in register ST(i).
Chris Lattnera960d952003-01-13 01:01:59 +0000169 unsigned getStackEntry(unsigned STi) const {
170 assert(STi < StackTop && "Access past stack top!");
171 return Stack[StackTop-1-STi];
172 }
173
174 // getSTReg - Return the X86::ST(i) register which contains the specified
Chris Lattner447ff682008-03-11 03:23:40 +0000175 // FP<RegNo> register.
Chris Lattnera960d952003-01-13 01:01:59 +0000176 unsigned getSTReg(unsigned RegNo) const {
Brian Gaeked0fde302003-11-11 22:41:34 +0000177 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +0000178 }
179
Chris Lattner447ff682008-03-11 03:23:40 +0000180 // pushReg - Push the specified FP<n> register onto the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000181 void pushReg(unsigned Reg) {
182 assert(Reg < 8 && "Register number out of range!");
183 assert(StackTop < 8 && "Stack overflow!");
184 Stack[StackTop] = Reg;
185 RegMap[Reg] = StackTop++;
186 }
187
188 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattner447ff682008-03-11 03:23:40 +0000189 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000190 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattner447ff682008-03-11 03:23:40 +0000191 if (isAtTop(RegNo)) return;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000192
Chris Lattner447ff682008-03-11 03:23:40 +0000193 unsigned STReg = getSTReg(RegNo);
194 unsigned RegOnTop = getStackEntry(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000195
Chris Lattner447ff682008-03-11 03:23:40 +0000196 // Swap the slots the regs are in.
197 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Chris Lattnera960d952003-01-13 01:01:59 +0000198
Chris Lattner447ff682008-03-11 03:23:40 +0000199 // Swap stack slot contents.
200 assert(RegMap[RegOnTop] < StackTop);
201 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Chris Lattnera960d952003-01-13 01:01:59 +0000202
Chris Lattner447ff682008-03-11 03:23:40 +0000203 // Emit an fxch to update the runtime processors version of the state.
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000204 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
Dan Gohmanfe601042010-06-22 15:08:57 +0000205 ++NumFXCH;
Chris Lattnera960d952003-01-13 01:01:59 +0000206 }
207
Chris Lattner0526f012004-04-01 04:06:09 +0000208 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000209 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000210 unsigned STReg = getSTReg(RegNo);
211 pushReg(AsReg); // New register on top of stack
212
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000213 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
Chris Lattnera960d952003-01-13 01:01:59 +0000214 }
215
216 // popStackAfter - Pop the current value off of the top of the FP stack
217 // after the specified instruction.
218 void popStackAfter(MachineBasicBlock::iterator &I);
219
Chris Lattner0526f012004-04-01 04:06:09 +0000220 // freeStackSlotAfter - Free the specified register from the register stack,
221 // so that it is no longer in a register. If the register is currently at
222 // the top of the stack, we just pop the current instruction, otherwise we
223 // store the current top-of-stack into the specified slot, then pop the top
224 // of stack.
225 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
226
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000227 // freeStackSlotBefore - Just the pop, no folding. Return the inserted
228 // instruction.
229 MachineBasicBlock::iterator
230 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
231
232 // Adjust the live registers to be the set in Mask.
233 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
234
235 // Shuffle the top FixCount stack entries susch that FP reg FixStack[0] is
236 //st(0), FP reg FixStack[1] is st(1) etc.
237 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
238 MachineBasicBlock::iterator I);
239
Chris Lattnera960d952003-01-13 01:01:59 +0000240 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
241
242 void handleZeroArgFP(MachineBasicBlock::iterator &I);
243 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner4a06f352004-02-02 19:23:15 +0000244 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000245 void handleTwoArgFP(MachineBasicBlock::iterator &I);
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000246 void handleCompareFP(MachineBasicBlock::iterator &I);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000247 void handleCondMovFP(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000248 void handleSpecialFP(MachineBasicBlock::iterator &I);
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000249
250 bool translateCopy(MachineInstr*);
Chris Lattnera960d952003-01-13 01:01:59 +0000251 };
Devang Patel19974732007-05-03 01:11:54 +0000252 char FPS::ID = 0;
Chris Lattnera960d952003-01-13 01:01:59 +0000253}
254
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000255FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000256
Chris Lattner3cc83842008-01-14 06:41:29 +0000257/// getFPReg - Return the X86::FPx register number for the specified operand.
258/// For example, this returns 3 for X86::FP3.
259static unsigned getFPReg(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000260 assert(MO.isReg() && "Expected an FP register!");
Chris Lattner3cc83842008-01-14 06:41:29 +0000261 unsigned Reg = MO.getReg();
262 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
263 return Reg - X86::FP0;
264}
265
Chris Lattnera960d952003-01-13 01:01:59 +0000266/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
267/// register references into FP stack references.
268///
269bool FPS::runOnMachineFunction(MachineFunction &MF) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000270 // We only need to run this pass if there are any FP registers used in this
271 // function. If it is all integer, there is nothing for us to do!
Chris Lattner42e25b32005-01-23 23:13:59 +0000272 bool FPIsUsed = false;
273
274 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
275 for (unsigned i = 0; i <= 6; ++i)
Chris Lattner84bc5422007-12-31 04:13:23 +0000276 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000277 FPIsUsed = true;
278 break;
279 }
280
281 // Early exit.
282 if (!FPIsUsed) return false;
283
Evan Cheng32644ac2006-12-01 10:11:51 +0000284 TII = MF.getTarget().getInstrInfo();
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000285
286 // Prepare cross-MBB liveness.
287 bundleCFG(MF);
288
Chris Lattnera960d952003-01-13 01:01:59 +0000289 StackTop = 0;
290
Chris Lattner847df252004-01-30 22:25:18 +0000291 // Process the function in depth first order so that we process at least one
292 // of the predecessors for every reachable block in the function.
Owen Andersoneaa009d2008-08-14 21:01:00 +0000293 SmallPtrSet<MachineBasicBlock*, 8> Processed;
Chris Lattner22686842004-05-01 21:27:53 +0000294 MachineBasicBlock *Entry = MF.begin();
Chris Lattner847df252004-01-30 22:25:18 +0000295
296 bool Changed = false;
Owen Andersoneaa009d2008-08-14 21:01:00 +0000297 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
Chris Lattner847df252004-01-30 22:25:18 +0000298 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
299 I != E; ++I)
Chris Lattner22686842004-05-01 21:27:53 +0000300 Changed |= processBasicBlock(MF, **I);
Chris Lattner847df252004-01-30 22:25:18 +0000301
Chris Lattnerba3598c2009-09-08 04:55:44 +0000302 // Process any unreachable blocks in arbitrary order now.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000303 if (MF.size() != Processed.size())
304 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
305 if (Processed.insert(BB))
306 Changed |= processBasicBlock(MF, *BB);
Chris Lattnerba3598c2009-09-08 04:55:44 +0000307
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000308 BlockBundle.clear();
309 LiveBundles.clear();
310
Chris Lattnera960d952003-01-13 01:01:59 +0000311 return Changed;
312}
313
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000314/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
315/// live-out sets for the FP registers. Consistent means that the set of
316/// registers live-out from a block is identical to the live-in set of all
317/// successors. This is not enforced by the normal live-in lists since
318/// registers may be implicitly defined, or not used by all successors.
319void FPS::bundleCFG(MachineFunction &MF) {
320 assert(LiveBundles.empty() && "Stale data in LiveBundles");
321 assert(BlockBundle.empty() && "Stale data in BlockBundle");
322 SmallPtrSet<MachineBasicBlock*, 8> PropDown, PropUp;
323
324 // LiveBundle[0] is the empty live-in set.
325 LiveBundles.resize(1);
326
327 // First gather the actual live-in masks for all MBBs.
328 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
329 MachineBasicBlock *MBB = I;
330 const unsigned Mask = calcLiveInMask(MBB);
331 if (!Mask)
332 continue;
333 // Ingoing bundle index.
334 unsigned &Idx = BlockBundle[MBB].first;
335 // Already assigned an ingoing bundle?
336 if (Idx)
337 continue;
338 // Allocate a new LiveBundle struct for this block's live-ins.
339 const unsigned BundleIdx = Idx = LiveBundles.size();
340 DEBUG(dbgs() << "Creating LB#" << BundleIdx << ": in:BB#"
341 << MBB->getNumber());
342 LiveBundles.push_back(Mask);
343 LiveBundle &Bundle = LiveBundles.back();
344
345 // Make sure all predecessors have the same live-out set.
346 PropUp.insert(MBB);
347
348 // Keep pushing liveness up and down the CFG until convergence.
349 // Only critical edges cause iteration here, but when they do, multiple
350 // blocks can be assigned to the same LiveBundle index.
351 do {
352 // Assign BundleIdx as liveout from predecessors in PropUp.
353 for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropUp.begin(),
354 E = PropUp.end(); I != E; ++I) {
355 MachineBasicBlock *MBB = *I;
356 for (MachineBasicBlock::const_pred_iterator LinkI = MBB->pred_begin(),
357 LinkE = MBB->pred_end(); LinkI != LinkE; ++LinkI) {
358 MachineBasicBlock *PredMBB = *LinkI;
359 // PredMBB's liveout bundle should be set to LIIdx.
360 unsigned &Idx = BlockBundle[PredMBB].second;
361 if (Idx) {
362 assert(Idx == BundleIdx && "Inconsistent CFG");
363 continue;
364 }
365 Idx = BundleIdx;
366 DEBUG(dbgs() << " out:BB#" << PredMBB->getNumber());
367 // Propagate to siblings.
368 if (PredMBB->succ_size() > 1)
369 PropDown.insert(PredMBB);
370 }
371 }
372 PropUp.clear();
373
374 // Assign BundleIdx as livein to successors in PropDown.
375 for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropDown.begin(),
376 E = PropDown.end(); I != E; ++I) {
377 MachineBasicBlock *MBB = *I;
378 for (MachineBasicBlock::const_succ_iterator LinkI = MBB->succ_begin(),
379 LinkE = MBB->succ_end(); LinkI != LinkE; ++LinkI) {
380 MachineBasicBlock *SuccMBB = *LinkI;
381 // LinkMBB's livein bundle should be set to BundleIdx.
382 unsigned &Idx = BlockBundle[SuccMBB].first;
383 if (Idx) {
384 assert(Idx == BundleIdx && "Inconsistent CFG");
385 continue;
386 }
387 Idx = BundleIdx;
388 DEBUG(dbgs() << " in:BB#" << SuccMBB->getNumber());
389 // Propagate to siblings.
390 if (SuccMBB->pred_size() > 1)
391 PropUp.insert(SuccMBB);
392 // Also accumulate the bundle liveness mask from the liveins here.
393 Bundle.Mask |= calcLiveInMask(SuccMBB);
394 }
395 }
396 PropDown.clear();
397 } while (!PropUp.empty());
398 DEBUG({
399 dbgs() << " live:";
400 for (unsigned i = 0; i < 8; ++i)
401 if (Bundle.Mask & (1<<i))
402 dbgs() << " %FP" << i;
403 dbgs() << '\n';
404 });
405 }
406}
407
Chris Lattnera960d952003-01-13 01:01:59 +0000408/// processBasicBlock - Loop over all of the instructions in the basic block,
409/// transforming FP instructions into their stack form.
410///
411bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
Chris Lattnera960d952003-01-13 01:01:59 +0000412 bool Changed = false;
413 MBB = &BB;
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000414
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000415 setupBlockStack();
416
Chris Lattnera960d952003-01-13 01:01:59 +0000417 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000418 MachineInstr *MI = I;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000419 uint64_t Flags = MI->getDesc().TSFlags;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000420
Chris Lattnere12ecf22008-03-11 19:50:13 +0000421 unsigned FPInstClass = Flags & X86II::FPTypeMask;
Chris Lattner518bb532010-02-09 19:54:29 +0000422 if (MI->isInlineAsm())
Chris Lattnere12ecf22008-03-11 19:50:13 +0000423 FPInstClass = X86II::SpecialFP;
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000424
425 if (MI->isCopy() && translateCopy(MI))
426 FPInstClass = X86II::SpecialFP;
427
Chris Lattnere12ecf22008-03-11 19:50:13 +0000428 if (FPInstClass == X86II::NotFP)
Chris Lattner847df252004-01-30 22:25:18 +0000429 continue; // Efficiently ignore non-fp insts!
Chris Lattnera960d952003-01-13 01:01:59 +0000430
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000431 MachineInstr *PrevMI = 0;
Alkis Evlogimenosf81af212004-02-14 01:18:34 +0000432 if (I != BB.begin())
Chris Lattner6fa2f9c2008-03-09 07:05:32 +0000433 PrevMI = prior(I);
Chris Lattnera960d952003-01-13 01:01:59 +0000434
435 ++NumFP; // Keep track of # of pseudo instrs
David Greenef5c95a62010-01-05 01:29:34 +0000436 DEBUG(dbgs() << "\nFPInst:\t" << *MI);
Chris Lattnera960d952003-01-13 01:01:59 +0000437
438 // Get dead variables list now because the MI pointer may be deleted as part
439 // of processing!
Evan Chengddd2a452006-11-15 20:56:39 +0000440 SmallVector<unsigned, 8> DeadRegs;
441 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
442 const MachineOperand &MO = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +0000443 if (MO.isReg() && MO.isDead())
Evan Chengddd2a452006-11-15 20:56:39 +0000444 DeadRegs.push_back(MO.getReg());
445 }
Chris Lattnera960d952003-01-13 01:01:59 +0000446
Chris Lattnere12ecf22008-03-11 19:50:13 +0000447 switch (FPInstClass) {
Chris Lattner4a06f352004-02-02 19:23:15 +0000448 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000449 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
Chris Lattner4a06f352004-02-02 19:23:15 +0000450 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
Evan Cheng5cd3e9f2006-11-11 10:21:44 +0000451 case X86II::TwoArgFP: handleTwoArgFP(I); break;
Chris Lattnerab8decc2004-06-11 04:41:24 +0000452 case X86II::CompareFP: handleCompareFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000453 case X86II::CondMovFP: handleCondMovFP(I); break;
Chris Lattner4a06f352004-02-02 19:23:15 +0000454 case X86II::SpecialFP: handleSpecialFP(I); break;
Torok Edwinc23197a2009-07-14 16:55:14 +0000455 default: llvm_unreachable("Unknown FP Type!");
Chris Lattnera960d952003-01-13 01:01:59 +0000456 }
457
458 // Check to see if any of the values defined by this instruction are dead
459 // after definition. If so, pop them.
Evan Chengddd2a452006-11-15 20:56:39 +0000460 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
461 unsigned Reg = DeadRegs[i];
Chris Lattnera960d952003-01-13 01:01:59 +0000462 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
David Greenef5c95a62010-01-05 01:29:34 +0000463 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000464 freeStackSlotAfter(I, Reg-X86::FP0);
Chris Lattnera960d952003-01-13 01:01:59 +0000465 }
466 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000467
Chris Lattnera960d952003-01-13 01:01:59 +0000468 // Print out all of the instructions expanded to if -debug
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000469 DEBUG(
470 MachineBasicBlock::iterator PrevI(PrevMI);
471 if (I == PrevI) {
David Greenef5c95a62010-01-05 01:29:34 +0000472 dbgs() << "Just deleted pseudo instruction\n";
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000473 } else {
474 MachineBasicBlock::iterator Start = I;
475 // Rewind to first instruction newly inserted.
476 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
David Greenef5c95a62010-01-05 01:29:34 +0000477 dbgs() << "Inserted instructions:\n\t";
478 Start->print(dbgs(), &MF.getTarget());
Chris Lattner7896c9f2009-12-03 00:50:42 +0000479 while (++Start != llvm::next(I)) {}
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000480 }
481 dumpStack();
482 );
Chris Lattnera960d952003-01-13 01:01:59 +0000483
484 Changed = true;
485 }
486
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000487 finishBlockStack();
488
Chris Lattnera960d952003-01-13 01:01:59 +0000489 return Changed;
490}
491
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000492/// setupBlockStack - Use the BlockBundle map to set up our model of the stack
493/// to match predecessors' live out stack.
494void FPS::setupBlockStack() {
495 DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
496 << " derived from " << MBB->getName() << ".\n");
497 StackTop = 0;
498 const LiveBundle &Bundle = LiveBundles[BlockBundle.lookup(MBB).first];
499
500 if (!Bundle.Mask) {
501 DEBUG(dbgs() << "Block has no FP live-ins.\n");
502 return;
503 }
504
505 // Depth-first iteration should ensure that we always have an assigned stack.
506 assert(Bundle.isFixed() && "Reached block before any predecessors");
507
508 // Push the fixed live-in registers.
509 for (unsigned i = Bundle.FixCount; i > 0; --i) {
510 MBB->addLiveIn(X86::ST0+i-1);
511 DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
512 << unsigned(Bundle.FixStack[i-1]) << '\n');
513 pushReg(Bundle.FixStack[i-1]);
514 }
515
516 // Kill off unwanted live-ins. This can happen with a critical edge.
517 // FIXME: We could keep these live registers around as zombies. They may need
518 // to be revived at the end of a short block. It might save a few instrs.
519 adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
520 DEBUG(MBB->dump());
521}
522
523/// finishBlockStack - Revive live-outs that are implicitly defined out of
524/// MBB. Shuffle live registers to match the expected fixed stack of any
525/// predecessors, and ensure that all predecessors are expecting the same
526/// stack.
527void FPS::finishBlockStack() {
528 // The RET handling below takes care of return blocks for us.
529 if (MBB->succ_empty())
530 return;
531
532 DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
533 << " derived from " << MBB->getName() << ".\n");
534
535 unsigned BundleIdx = BlockBundle.lookup(MBB).second;
536 LiveBundle &Bundle = LiveBundles[BundleIdx];
537
538 // We may need to kill and define some registers to match successors.
539 // FIXME: This can probably be combined with the shuffle below.
540 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
541 adjustLiveRegs(Bundle.Mask, Term);
542
543 if (!Bundle.Mask) {
544 DEBUG(dbgs() << "No live-outs.\n");
545 return;
546 }
547
548 // Has the stack order been fixed yet?
549 DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
550 if (Bundle.isFixed()) {
551 DEBUG(dbgs() << "Shuffling stack to match.\n");
552 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
553 } else {
554 // Not fixed yet, we get to choose.
555 DEBUG(dbgs() << "Fixing stack order now.\n");
556 Bundle.FixCount = StackTop;
557 for (unsigned i = 0; i < StackTop; ++i)
558 Bundle.FixStack[i] = getStackEntry(i);
559 }
560}
561
562
Chris Lattnera960d952003-01-13 01:01:59 +0000563//===----------------------------------------------------------------------===//
564// Efficient Lookup Table Support
565//===----------------------------------------------------------------------===//
566
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000567namespace {
568 struct TableEntry {
569 unsigned from;
570 unsigned to;
571 bool operator<(const TableEntry &TE) const { return from < TE.from; }
Jeff Cohen9471c8a2006-01-26 20:41:32 +0000572 friend bool operator<(const TableEntry &TE, unsigned V) {
573 return TE.from < V;
574 }
575 friend bool operator<(unsigned V, const TableEntry &TE) {
576 return V < TE.from;
577 }
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000578 };
579}
Chris Lattnera960d952003-01-13 01:01:59 +0000580
Evan Chenga022bdf2008-07-21 20:02:45 +0000581#ifndef NDEBUG
Chris Lattnera960d952003-01-13 01:01:59 +0000582static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
583 for (unsigned i = 0; i != NumEntries-1; ++i)
584 if (!(Table[i] < Table[i+1])) return false;
585 return true;
586}
Evan Chenga022bdf2008-07-21 20:02:45 +0000587#endif
Chris Lattnera960d952003-01-13 01:01:59 +0000588
589static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
590 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
591 if (I != Table+N && I->from == Opcode)
592 return I->to;
593 return -1;
594}
595
Chris Lattnera960d952003-01-13 01:01:59 +0000596#ifdef NDEBUG
597#define ASSERT_SORTED(TABLE)
598#else
599#define ASSERT_SORTED(TABLE) \
600 { static bool TABLE##Checked = false; \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000601 if (!TABLE##Checked) { \
Owen Anderson718cb662007-09-07 04:06:50 +0000602 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Chris Lattnera960d952003-01-13 01:01:59 +0000603 "All lookup tables must be sorted for efficient access!"); \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000604 TABLE##Checked = true; \
605 } \
Chris Lattnera960d952003-01-13 01:01:59 +0000606 }
607#endif
608
Chris Lattner58fe4592005-12-21 07:47:04 +0000609//===----------------------------------------------------------------------===//
610// Register File -> Register Stack Mapping Methods
611//===----------------------------------------------------------------------===//
612
613// OpcodeTable - Sorted map of register instructions to their stack version.
614// The first element is an register file pseudo instruction, the second is the
615// concrete X86 instruction which uses the register stack.
616//
617static const TableEntry OpcodeTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000618 { X86::ABS_Fp32 , X86::ABS_F },
619 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000620 { X86::ABS_Fp80 , X86::ABS_F },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000621 { X86::ADD_Fp32m , X86::ADD_F32m },
622 { X86::ADD_Fp64m , X86::ADD_F64m },
623 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000624 { X86::ADD_Fp80m32 , X86::ADD_F32m },
625 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000626 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
627 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000628 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000629 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
630 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000631 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000632 { X86::CHS_Fp32 , X86::CHS_F },
633 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000634 { X86::CHS_Fp80 , X86::CHS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000635 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
636 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000637 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000638 { X86::CMOVB_Fp32 , X86::CMOVB_F },
639 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000640 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000641 { X86::CMOVE_Fp32 , X86::CMOVE_F },
642 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000643 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000644 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
645 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000646 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000647 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
648 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000649 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000650 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
651 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000652 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000653 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
654 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000655 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000656 { X86::CMOVP_Fp32 , X86::CMOVP_F },
657 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000658 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000659 { X86::COS_Fp32 , X86::COS_F },
660 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000661 { X86::COS_Fp80 , X86::COS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000662 { X86::DIVR_Fp32m , X86::DIVR_F32m },
663 { X86::DIVR_Fp64m , X86::DIVR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000664 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000665 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
666 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000667 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
668 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000669 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000670 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
671 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000672 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000673 { X86::DIV_Fp32m , X86::DIV_F32m },
674 { X86::DIV_Fp64m , X86::DIV_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000675 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000676 { X86::DIV_Fp80m32 , X86::DIV_F32m },
677 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000678 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
679 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000680 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000681 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
682 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000683 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000684 { X86::ILD_Fp16m32 , X86::ILD_F16m },
685 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000686 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000687 { X86::ILD_Fp32m32 , X86::ILD_F32m },
688 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000689 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000690 { X86::ILD_Fp64m32 , X86::ILD_F64m },
691 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000692 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000693 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
694 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesena996d522007-08-07 01:17:37 +0000695 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000696 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
697 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesena996d522007-08-07 01:17:37 +0000698 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000699 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
700 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesena996d522007-08-07 01:17:37 +0000701 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000702 { X86::IST_Fp16m32 , X86::IST_F16m },
703 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000704 { X86::IST_Fp16m80 , X86::IST_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000705 { X86::IST_Fp32m32 , X86::IST_F32m },
706 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000707 { X86::IST_Fp32m80 , X86::IST_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000708 { X86::IST_Fp64m32 , X86::IST_FP64m },
709 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000710 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000711 { X86::LD_Fp032 , X86::LD_F0 },
712 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000713 { X86::LD_Fp080 , X86::LD_F0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000714 { X86::LD_Fp132 , X86::LD_F1 },
715 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000716 { X86::LD_Fp180 , X86::LD_F1 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000717 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000718 { X86::LD_Fp32m64 , X86::LD_F32m },
719 { X86::LD_Fp32m80 , X86::LD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000720 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000721 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000722 { X86::LD_Fp80m , X86::LD_F80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000723 { X86::MUL_Fp32m , X86::MUL_F32m },
724 { X86::MUL_Fp64m , X86::MUL_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000725 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000726 { X86::MUL_Fp80m32 , X86::MUL_F32m },
727 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000728 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
729 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000730 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000731 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
732 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000733 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000734 { X86::SIN_Fp32 , X86::SIN_F },
735 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000736 { X86::SIN_Fp80 , X86::SIN_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000737 { X86::SQRT_Fp32 , X86::SQRT_F },
738 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000739 { X86::SQRT_Fp80 , X86::SQRT_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000740 { X86::ST_Fp32m , X86::ST_F32m },
741 { X86::ST_Fp64m , X86::ST_F64m },
742 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000743 { X86::ST_Fp80m32 , X86::ST_F32m },
744 { X86::ST_Fp80m64 , X86::ST_F64m },
745 { X86::ST_FpP80m , X86::ST_FP80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000746 { X86::SUBR_Fp32m , X86::SUBR_F32m },
747 { X86::SUBR_Fp64m , X86::SUBR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000748 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000749 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
750 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000751 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
752 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000753 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000754 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
755 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000756 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000757 { X86::SUB_Fp32m , X86::SUB_F32m },
758 { X86::SUB_Fp64m , X86::SUB_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000759 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000760 { X86::SUB_Fp80m32 , X86::SUB_F32m },
761 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000762 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
763 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000764 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000765 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
766 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000767 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000768 { X86::TST_Fp32 , X86::TST_F },
769 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000770 { X86::TST_Fp80 , X86::TST_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000771 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
772 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000773 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000774 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
775 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000776 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Chris Lattner58fe4592005-12-21 07:47:04 +0000777};
778
779static unsigned getConcreteOpcode(unsigned Opcode) {
780 ASSERT_SORTED(OpcodeTable);
Owen Anderson718cb662007-09-07 04:06:50 +0000781 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Chris Lattner58fe4592005-12-21 07:47:04 +0000782 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
783 return Opc;
784}
Chris Lattnera960d952003-01-13 01:01:59 +0000785
786//===----------------------------------------------------------------------===//
787// Helper Methods
788//===----------------------------------------------------------------------===//
789
790// PopTable - Sorted map of instructions to their popping version. The first
791// element is an instruction, the second is the version which pops.
792//
793static const TableEntry PopTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000794 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000795
Dale Johannesene377d4d2007-07-04 21:07:47 +0000796 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
797 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000798
Dale Johannesene377d4d2007-07-04 21:07:47 +0000799 { X86::IST_F16m , X86::IST_FP16m },
800 { X86::IST_F32m , X86::IST_FP32m },
Chris Lattnera960d952003-01-13 01:01:59 +0000801
Dale Johannesene377d4d2007-07-04 21:07:47 +0000802 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000803
Dale Johannesene377d4d2007-07-04 21:07:47 +0000804 { X86::ST_F32m , X86::ST_FP32m },
805 { X86::ST_F64m , X86::ST_FP64m },
806 { X86::ST_Frr , X86::ST_FPrr },
Chris Lattner113455b2003-08-03 21:56:36 +0000807
Dale Johannesene377d4d2007-07-04 21:07:47 +0000808 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
809 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000810
Dale Johannesene377d4d2007-07-04 21:07:47 +0000811 { X86::UCOM_FIr , X86::UCOM_FIPr },
Chris Lattnerc040bca2004-04-12 01:39:15 +0000812
Dale Johannesene377d4d2007-07-04 21:07:47 +0000813 { X86::UCOM_FPr , X86::UCOM_FPPr },
814 { X86::UCOM_Fr , X86::UCOM_FPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000815};
816
817/// popStackAfter - Pop the current value off of the top of the FP stack after
818/// the specified instruction. This attempts to be sneaky and combine the pop
819/// into the instruction itself if possible. The iterator is left pointing to
820/// the last instruction, be it a new pop instruction inserted, or the old
821/// instruction if it was modified in place.
822///
823void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000824 MachineInstr* MI = I;
825 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000826 ASSERT_SORTED(PopTable);
827 assert(StackTop > 0 && "Cannot pop empty stack!");
828 RegMap[Stack[--StackTop]] = ~0; // Update state
829
830 // Check to see if there is a popping version of this instruction...
Owen Anderson718cb662007-09-07 04:06:50 +0000831 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000832 if (Opcode != -1) {
Chris Lattner5080f4d2008-01-11 18:10:50 +0000833 I->setDesc(TII->get(Opcode));
Dale Johannesene377d4d2007-07-04 21:07:47 +0000834 if (Opcode == X86::UCOM_FPPr)
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000835 I->RemoveOperand(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000836 } else { // Insert an explicit pop
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000837 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
Chris Lattnera960d952003-01-13 01:01:59 +0000838 }
839}
840
Chris Lattner0526f012004-04-01 04:06:09 +0000841/// freeStackSlotAfter - Free the specified register from the register stack, so
842/// that it is no longer in a register. If the register is currently at the top
843/// of the stack, we just pop the current instruction, otherwise we store the
844/// current top-of-stack into the specified slot, then pop the top of stack.
845void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
846 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
847 popStackAfter(I);
848 return;
849 }
850
851 // Otherwise, store the top of stack into the dead slot, killing the operand
852 // without having to add in an explicit xchg then pop.
853 //
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000854 I = freeStackSlotBefore(++I, FPRegNo);
855}
856
857/// freeStackSlotBefore - Free the specified register without trying any
858/// folding.
859MachineBasicBlock::iterator
860FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
Chris Lattner0526f012004-04-01 04:06:09 +0000861 unsigned STReg = getSTReg(FPRegNo);
862 unsigned OldSlot = getSlot(FPRegNo);
863 unsigned TopReg = Stack[StackTop-1];
864 Stack[OldSlot] = TopReg;
865 RegMap[TopReg] = OldSlot;
866 RegMap[FPRegNo] = ~0;
867 Stack[--StackTop] = ~0;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000868 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
869}
870
871/// adjustLiveRegs - Kill and revive registers such that exactly the FP
872/// registers with a bit in Mask are live.
873void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
874 unsigned Defs = Mask;
875 unsigned Kills = 0;
876 for (unsigned i = 0; i < StackTop; ++i) {
877 unsigned RegNo = Stack[i];
878 if (!(Defs & (1 << RegNo)))
879 // This register is live, but we don't want it.
880 Kills |= (1 << RegNo);
881 else
882 // We don't need to imp-def this live register.
883 Defs &= ~(1 << RegNo);
884 }
885 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
886
887 // Produce implicit-defs for free by using killed registers.
888 while (Kills && Defs) {
889 unsigned KReg = CountTrailingZeros_32(Kills);
890 unsigned DReg = CountTrailingZeros_32(Defs);
891 DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
892 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
893 std::swap(RegMap[KReg], RegMap[DReg]);
894 Kills &= ~(1 << KReg);
895 Defs &= ~(1 << DReg);
896 }
897
898 // Kill registers by popping.
899 if (Kills && I != MBB->begin()) {
900 MachineBasicBlock::iterator I2 = llvm::prior(I);
901 for (;;) {
902 unsigned KReg = getStackEntry(0);
903 if (!(Kills & (1 << KReg)))
904 break;
905 DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
906 popStackAfter(I2);
907 Kills &= ~(1 << KReg);
908 }
909 }
910
911 // Manually kill the rest.
912 while (Kills) {
913 unsigned KReg = CountTrailingZeros_32(Kills);
914 DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
915 freeStackSlotBefore(I, KReg);
916 Kills &= ~(1 << KReg);
917 }
918
919 // Load zeros for all the imp-defs.
920 while(Defs) {
921 unsigned DReg = CountTrailingZeros_32(Defs);
922 DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
923 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
924 pushReg(DReg);
925 Defs &= ~(1 << DReg);
926 }
927
928 // Now we should have the correct registers live.
929 DEBUG(dumpStack());
930 assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
931}
932
933/// shuffleStackTop - emit fxch instructions before I to shuffle the top
934/// FixCount entries into the order given by FixStack.
935/// FIXME: Is there a better algorithm than insertion sort?
936void FPS::shuffleStackTop(const unsigned char *FixStack,
937 unsigned FixCount,
938 MachineBasicBlock::iterator I) {
939 // Move items into place, starting from the desired stack bottom.
940 while (FixCount--) {
941 // Old register at position FixCount.
942 unsigned OldReg = getStackEntry(FixCount);
943 // Desired register at position FixCount.
944 unsigned Reg = FixStack[FixCount];
945 if (Reg == OldReg)
946 continue;
947 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
948 moveToTop(Reg, I);
949 moveToTop(OldReg, I);
950 }
951 DEBUG(dumpStack());
Chris Lattner0526f012004-04-01 04:06:09 +0000952}
953
954
Chris Lattnera960d952003-01-13 01:01:59 +0000955//===----------------------------------------------------------------------===//
956// Instruction transformation implementation
957//===----------------------------------------------------------------------===//
958
959/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner4a06f352004-02-02 19:23:15 +0000960///
Chris Lattnera960d952003-01-13 01:01:59 +0000961void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000962 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000963 unsigned DestReg = getFPReg(MI->getOperand(0));
Chris Lattnera960d952003-01-13 01:01:59 +0000964
Chris Lattner58fe4592005-12-21 07:47:04 +0000965 // Change from the pseudo instruction to the concrete instruction.
966 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000967 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +0000968
969 // Result gets pushed on the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000970 pushReg(DestReg);
971}
972
Chris Lattner4a06f352004-02-02 19:23:15 +0000973/// handleOneArgFP - fst <mem>, ST(0)
974///
Chris Lattnera960d952003-01-13 01:01:59 +0000975void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000976 MachineInstr *MI = I;
Chris Lattner749c6f62008-01-07 07:27:27 +0000977 unsigned NumOps = MI->getDesc().getNumOperands();
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000978 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
Chris Lattnerb97046a2004-02-03 07:27:34 +0000979 "Can only handle fst* & ftst instructions!");
Chris Lattnera960d952003-01-13 01:01:59 +0000980
Chris Lattner4a06f352004-02-02 19:23:15 +0000981 // Is this the last use of the source register?
Evan Cheng171d09e2006-11-10 01:28:43 +0000982 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000983 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattnera960d952003-01-13 01:01:59 +0000984
Evan Cheng2b152712006-02-18 02:36:28 +0000985 // FISTP64m is strange because there isn't a non-popping versions.
Chris Lattnera960d952003-01-13 01:01:59 +0000986 // If we have one _and_ we don't want to pop the operand, duplicate the value
987 // on the stack instead of moving it. This ensure that popping the value is
988 // always ok.
Dale Johannesenca8035e2007-09-17 20:15:38 +0000989 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Chris Lattnera960d952003-01-13 01:01:59 +0000990 //
Evan Cheng2b152712006-02-18 02:36:28 +0000991 if (!KillsSrc &&
Dale Johannesene377d4d2007-07-04 21:07:47 +0000992 (MI->getOpcode() == X86::IST_Fp64m32 ||
993 MI->getOpcode() == X86::ISTT_Fp16m32 ||
994 MI->getOpcode() == X86::ISTT_Fp32m32 ||
995 MI->getOpcode() == X86::ISTT_Fp64m32 ||
996 MI->getOpcode() == X86::IST_Fp64m64 ||
997 MI->getOpcode() == X86::ISTT_Fp16m64 ||
998 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen59a58732007-08-05 18:49:15 +0000999 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen41de4362007-09-20 01:27:54 +00001000 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesena996d522007-08-07 01:17:37 +00001001 MI->getOpcode() == X86::ISTT_Fp16m80 ||
1002 MI->getOpcode() == X86::ISTT_Fp32m80 ||
1003 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen59a58732007-08-05 18:49:15 +00001004 MI->getOpcode() == X86::ST_FpP80m)) {
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001005 duplicateToTop(Reg, getScratchReg(), I);
Chris Lattnera960d952003-01-13 01:01:59 +00001006 } else {
1007 moveToTop(Reg, I); // Move to the top of the stack...
1008 }
Chris Lattner58fe4592005-12-21 07:47:04 +00001009
1010 // Convert from the pseudo instruction to the concrete instruction.
Evan Cheng171d09e2006-11-10 01:28:43 +00001011 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +00001012 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001013
Dale Johannesene377d4d2007-07-04 21:07:47 +00001014 if (MI->getOpcode() == X86::IST_FP64m ||
1015 MI->getOpcode() == X86::ISTT_FP16m ||
1016 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesen88835732007-08-06 19:50:32 +00001017 MI->getOpcode() == X86::ISTT_FP64m ||
1018 MI->getOpcode() == X86::ST_FP80m) {
Chris Lattnera960d952003-01-13 01:01:59 +00001019 assert(StackTop > 0 && "Stack empty??");
1020 --StackTop;
1021 } else if (KillsSrc) { // Last use of operand?
1022 popStackAfter(I);
1023 }
1024}
1025
Chris Lattner4a06f352004-02-02 19:23:15 +00001026
Chris Lattner4cf15e72004-04-11 20:21:06 +00001027/// handleOneArgFPRW: Handle instructions that read from the top of stack and
1028/// replace the value with a newly computed value. These instructions may have
1029/// non-fp operands after their FP operands.
1030///
1031/// Examples:
1032/// R1 = fchs R2
1033/// R1 = fadd R2, [mem]
Chris Lattner4a06f352004-02-02 19:23:15 +00001034///
1035void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001036 MachineInstr *MI = I;
Evan Chenga022bdf2008-07-21 20:02:45 +00001037#ifndef NDEBUG
Chris Lattner749c6f62008-01-07 07:27:27 +00001038 unsigned NumOps = MI->getDesc().getNumOperands();
Evan Cheng171d09e2006-11-10 01:28:43 +00001039 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
Evan Chenga022bdf2008-07-21 20:02:45 +00001040#endif
Chris Lattner4a06f352004-02-02 19:23:15 +00001041
1042 // Is this the last use of the source register?
1043 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Cheng6130f662008-03-05 00:59:57 +00001044 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattner4a06f352004-02-02 19:23:15 +00001045
1046 if (KillsSrc) {
1047 // If this is the last use of the source register, just make sure it's on
1048 // the top of the stack.
1049 moveToTop(Reg, I);
1050 assert(StackTop > 0 && "Stack cannot be empty!");
1051 --StackTop;
1052 pushReg(getFPReg(MI->getOperand(0)));
1053 } else {
1054 // If this is not the last use of the source register, _copy_ it to the top
1055 // of the stack.
1056 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1057 }
1058
Chris Lattner58fe4592005-12-21 07:47:04 +00001059 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner4a06f352004-02-02 19:23:15 +00001060 MI->RemoveOperand(1); // Drop the source operand.
1061 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner5080f4d2008-01-11 18:10:50 +00001062 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner4a06f352004-02-02 19:23:15 +00001063}
1064
1065
Chris Lattnera960d952003-01-13 01:01:59 +00001066//===----------------------------------------------------------------------===//
1067// Define tables of various ways to map pseudo instructions
1068//
1069
1070// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1071static const TableEntry ForwardST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001072 { X86::ADD_Fp32 , X86::ADD_FST0r },
1073 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001074 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001075 { X86::DIV_Fp32 , X86::DIV_FST0r },
1076 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001077 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001078 { X86::MUL_Fp32 , X86::MUL_FST0r },
1079 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001080 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001081 { X86::SUB_Fp32 , X86::SUB_FST0r },
1082 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001083 { X86::SUB_Fp80 , X86::SUB_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001084};
1085
1086// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1087static const TableEntry ReverseST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001088 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1089 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001090 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001091 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1092 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001093 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001094 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1095 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001096 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001097 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1098 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001099 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001100};
1101
1102// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1103static const TableEntry ForwardSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001104 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1105 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001106 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001107 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1108 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001109 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001110 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1111 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001112 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001113 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1114 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001115 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001116};
1117
1118// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1119static const TableEntry ReverseSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001120 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1121 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001122 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001123 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1124 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001125 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001126 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1127 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001128 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001129 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1130 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001131 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001132};
1133
1134
1135/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1136/// instructions which need to be simplified and possibly transformed.
1137///
1138/// Result: ST(0) = fsub ST(0), ST(i)
1139/// ST(i) = fsub ST(0), ST(i)
1140/// ST(0) = fsubr ST(0), ST(i)
1141/// ST(i) = fsubr ST(0), ST(i)
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001142///
Chris Lattnera960d952003-01-13 01:01:59 +00001143void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1144 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1145 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001146 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +00001147
Chris Lattner749c6f62008-01-07 07:27:27 +00001148 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001149 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
Chris Lattnera960d952003-01-13 01:01:59 +00001150 unsigned Dest = getFPReg(MI->getOperand(0));
1151 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1152 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001153 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1154 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001155 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +00001156
Chris Lattnera960d952003-01-13 01:01:59 +00001157 unsigned TOS = getStackEntry(0);
1158
1159 // One of our operands must be on the top of the stack. If neither is yet, we
1160 // need to move one.
1161 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1162 // We can choose to move either operand to the top of the stack. If one of
1163 // the operands is killed by this instruction, we want that one so that we
1164 // can update right on top of the old version.
1165 if (KillsOp0) {
1166 moveToTop(Op0, I); // Move dead operand to TOS.
1167 TOS = Op0;
1168 } else if (KillsOp1) {
1169 moveToTop(Op1, I);
1170 TOS = Op1;
1171 } else {
1172 // All of the operands are live after this instruction executes, so we
1173 // cannot update on top of any operand. Because of this, we must
1174 // duplicate one of the stack elements to the top. It doesn't matter
1175 // which one we pick.
1176 //
1177 duplicateToTop(Op0, Dest, I);
1178 Op0 = TOS = Dest;
1179 KillsOp0 = true;
1180 }
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001181 } else if (!KillsOp0 && !KillsOp1) {
Chris Lattnera960d952003-01-13 01:01:59 +00001182 // If we DO have one of our operands at the top of the stack, but we don't
1183 // have a dead operand, we must duplicate one of the operands to a new slot
1184 // on the stack.
1185 duplicateToTop(Op0, Dest, I);
1186 Op0 = TOS = Dest;
1187 KillsOp0 = true;
1188 }
1189
1190 // Now we know that one of our operands is on the top of the stack, and at
1191 // least one of our operands is killed by this instruction.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001192 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1193 "Stack conditions not set up right!");
Chris Lattnera960d952003-01-13 01:01:59 +00001194
1195 // We decide which form to use based on what is on the top of the stack, and
1196 // which operand is killed by this instruction.
1197 const TableEntry *InstTable;
1198 bool isForward = TOS == Op0;
1199 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1200 if (updateST0) {
1201 if (isForward)
1202 InstTable = ForwardST0Table;
1203 else
1204 InstTable = ReverseST0Table;
1205 } else {
1206 if (isForward)
1207 InstTable = ForwardSTiTable;
1208 else
1209 InstTable = ReverseSTiTable;
1210 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001211
Owen Anderson718cb662007-09-07 04:06:50 +00001212 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1213 MI->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +00001214 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1215
1216 // NotTOS - The register which is not on the top of stack...
1217 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1218
1219 // Replace the old instruction with a new instruction
Chris Lattnerc1bab322004-03-31 22:02:36 +00001220 MBB->remove(I++);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001221 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
Chris Lattnera960d952003-01-13 01:01:59 +00001222
1223 // If both operands are killed, pop one off of the stack in addition to
1224 // overwriting the other one.
1225 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1226 assert(!updateST0 && "Should have updated other operand!");
1227 popStackAfter(I); // Pop the top of stack
1228 }
1229
Chris Lattnera960d952003-01-13 01:01:59 +00001230 // Update stack information so that we know the destination register is now on
1231 // the stack.
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001232 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1233 assert(UpdatedSlot < StackTop && Dest < 7);
1234 Stack[UpdatedSlot] = Dest;
1235 RegMap[Dest] = UpdatedSlot;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001236 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001237}
1238
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001239/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001240/// register arguments and no explicit destinations.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001241///
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001242void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1243 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1244 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1245 MachineInstr *MI = I;
1246
Chris Lattner749c6f62008-01-07 07:27:27 +00001247 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001248 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001249 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1250 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001251 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1252 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001253
1254 // Make sure the first operand is on the top of stack, the other one can be
1255 // anywhere.
1256 moveToTop(Op0, I);
1257
Chris Lattner58fe4592005-12-21 07:47:04 +00001258 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner57790422004-06-11 05:22:44 +00001259 MI->getOperand(0).setReg(getSTReg(Op1));
1260 MI->RemoveOperand(1);
Chris Lattner5080f4d2008-01-11 18:10:50 +00001261 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner57790422004-06-11 05:22:44 +00001262
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001263 // If any of the operands are killed by this instruction, free them.
1264 if (KillsOp0) freeStackSlotAfter(I, Op0);
1265 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
Chris Lattnera960d952003-01-13 01:01:59 +00001266}
1267
Chris Lattnerc1bab322004-03-31 22:02:36 +00001268/// handleCondMovFP - Handle two address conditional move instructions. These
1269/// instructions move a st(i) register to st(0) iff a condition is true. These
1270/// instructions require that the first operand is at the top of the stack, but
1271/// otherwise don't modify the stack at all.
1272void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1273 MachineInstr *MI = I;
1274
1275 unsigned Op0 = getFPReg(MI->getOperand(0));
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001276 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Cheng6130f662008-03-05 00:59:57 +00001277 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001278
1279 // The first operand *must* be on the top of the stack.
1280 moveToTop(Op0, I);
1281
1282 // Change the second operand to the stack register that the operand is in.
Chris Lattner58fe4592005-12-21 07:47:04 +00001283 // Change from the pseudo instruction to the concrete instruction.
Chris Lattnerc1bab322004-03-31 22:02:36 +00001284 MI->RemoveOperand(0);
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001285 MI->RemoveOperand(1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001286 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner5080f4d2008-01-11 18:10:50 +00001287 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +00001288
Chris Lattnerc1bab322004-03-31 22:02:36 +00001289 // If we kill the second operand, make sure to pop it from the stack.
Evan Chengddd2a452006-11-15 20:56:39 +00001290 if (Op0 != Op1 && KillsOp1) {
Chris Lattner76eb08b2005-08-23 22:49:55 +00001291 // Get this value off of the register stack.
1292 freeStackSlotAfter(I, Op1);
1293 }
Chris Lattnerc1bab322004-03-31 22:02:36 +00001294}
1295
Chris Lattnera960d952003-01-13 01:01:59 +00001296
1297/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001298/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +00001299/// instructions.
1300///
1301void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001302 MachineInstr *MI = I;
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001303 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +00001304 switch (MI->getOpcode()) {
Torok Edwinc23197a2009-07-14 16:55:14 +00001305 default: llvm_unreachable("Unknown SpecialFP instruction!");
Chris Lattner6fa2f9c2008-03-09 07:05:32 +00001306 case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
1307 case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
1308 case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
Chris Lattnera960d952003-01-13 01:01:59 +00001309 assert(StackTop == 0 && "Stack should be empty after a call!");
1310 pushReg(getFPReg(MI->getOperand(0)));
1311 break;
Chris Lattner24e0a542008-03-21 06:38:26 +00001312 case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
1313 case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
1314 case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
1315 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
1316 // The pattern we expect is:
1317 // CALL
1318 // FP1 = FpGET_ST0
1319 // FP4 = FpGET_ST1
1320 //
1321 // At this point, we've pushed FP1 on the top of stack, so it should be
1322 // present if it isn't dead. If it was dead, we already emitted a pop to
1323 // remove it from the stack and StackTop = 0.
1324
1325 // Push FP4 as top of stack next.
1326 pushReg(getFPReg(MI->getOperand(0)));
1327
1328 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
1329 // dead. In this case, the ST(1) value is the only thing that is live, so
1330 // it should be on the TOS (after the pop that was emitted) and is. Just
1331 // continue in this case.
1332 if (StackTop == 1)
1333 break;
1334
1335 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
1336 // elements so that our accounting is correct.
1337 unsigned RegOnTop = getStackEntry(0);
1338 unsigned RegNo = getStackEntry(1);
1339
1340 // Swap the slots the regs are in.
1341 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
1342
1343 // Swap stack slot contents.
1344 assert(RegMap[RegOnTop] < StackTop);
1345 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
1346 break;
1347 }
Chris Lattnerafb23f42008-03-09 07:08:44 +00001348 case X86::FpSET_ST0_32:
1349 case X86::FpSET_ST0_64:
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001350 case X86::FpSET_ST0_80: {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001351 // FpSET_ST0_80 is generated by copyRegToReg for setting up inline asm
1352 // arguments that use an st constraint. We expect a sequence of
1353 // instructions: Fp_SET_ST0 Fp_SET_ST1? INLINEASM
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001354 unsigned Op0 = getFPReg(MI->getOperand(0));
1355
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001356 if (!MI->killsRegister(X86::FP0 + Op0)) {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001357 // Duplicate Op0 into a temporary on the stack top.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001358 duplicateToTop(Op0, getScratchReg(), I);
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001359 } else {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001360 // Op0 is killed, so just swap it into position.
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001361 moveToTop(Op0, I);
Rafael Espindola1c3329f2009-06-21 12:02:51 +00001362 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001363 --StackTop; // "Forget" we have something on the top of stack!
1364 break;
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001365 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001366 case X86::FpSET_ST1_32:
1367 case X86::FpSET_ST1_64:
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001368 case X86::FpSET_ST1_80: {
1369 // Set up st(1) for inline asm. We are assuming that st(0) has already been
1370 // set up by FpSET_ST0, and our StackTop is off by one because of it.
1371 unsigned Op0 = getFPReg(MI->getOperand(0));
1372 // Restore the actual StackTop from before Fp_SET_ST0.
1373 // Note we can't handle Fp_SET_ST1 without a preceeding Fp_SET_ST0, and we
1374 // are not enforcing the constraint.
1375 ++StackTop;
1376 unsigned RegOnTop = getStackEntry(0); // This reg must remain in st(0).
1377 if (!MI->killsRegister(X86::FP0 + Op0)) {
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001378 duplicateToTop(Op0, getScratchReg(), I);
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001379 moveToTop(RegOnTop, I);
1380 } else if (getSTReg(Op0) != X86::ST1) {
1381 // We have the wrong value at st(1). Shuffle! Untested!
1382 moveToTop(getStackEntry(1), I);
1383 moveToTop(Op0, I);
1384 moveToTop(RegOnTop, I);
Evan Chenga0eedac2009-02-09 23:32:07 +00001385 }
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001386 assert(StackTop >= 2 && "Too few live registers");
1387 StackTop -= 2; // "Forget" both st(0) and st(1).
Chris Lattnera960d952003-01-13 01:01:59 +00001388 break;
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001389 }
Dale Johannesene377d4d2007-07-04 21:07:47 +00001390 case X86::MOV_Fp3232:
1391 case X86::MOV_Fp3264:
1392 case X86::MOV_Fp6432:
Dale Johannesen59a58732007-08-05 18:49:15 +00001393 case X86::MOV_Fp6464:
1394 case X86::MOV_Fp3280:
1395 case X86::MOV_Fp6480:
1396 case X86::MOV_Fp8032:
1397 case X86::MOV_Fp8064:
1398 case X86::MOV_Fp8080: {
Evan Chengfb112882009-03-23 08:01:15 +00001399 const MachineOperand &MO1 = MI->getOperand(1);
1400 unsigned SrcReg = getFPReg(MO1);
Chris Lattnera960d952003-01-13 01:01:59 +00001401
Evan Chengfb112882009-03-23 08:01:15 +00001402 const MachineOperand &MO0 = MI->getOperand(0);
Evan Chengfb112882009-03-23 08:01:15 +00001403 unsigned DestReg = getFPReg(MO0);
Evan Cheng6130f662008-03-05 00:59:57 +00001404 if (MI->killsRegister(X86::FP0+SrcReg)) {
Chris Lattnera960d952003-01-13 01:01:59 +00001405 // If the input operand is killed, we can just change the owner of the
1406 // incoming stack slot into the result.
1407 unsigned Slot = getSlot(SrcReg);
1408 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1409 Stack[Slot] = DestReg;
1410 RegMap[DestReg] = Slot;
1411
1412 } else {
1413 // For FMOV we just duplicate the specified value to a new stack slot.
1414 // This could be made better, but would require substantial changes.
1415 duplicateToTop(SrcReg, DestReg, I);
1416 }
Nick Lewycky3c786972008-03-11 05:56:09 +00001417 }
Chris Lattnera960d952003-01-13 01:01:59 +00001418 break;
Chris Lattner518bb532010-02-09 19:54:29 +00001419 case TargetOpcode::INLINEASM: {
Chris Lattnere12ecf22008-03-11 19:50:13 +00001420 // The inline asm MachineInstr currently only *uses* FP registers for the
1421 // 'f' constraint. These should be turned into the current ST(x) register
1422 // in the machine instr. Also, any kills should be explicitly popped after
1423 // the inline asm.
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001424 unsigned Kills = 0;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001425 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1426 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001427 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattnere12ecf22008-03-11 19:50:13 +00001428 continue;
1429 assert(Op.isUse() && "Only handle inline asm uses right now");
1430
1431 unsigned FPReg = getFPReg(Op);
1432 Op.setReg(getSTReg(FPReg));
1433
1434 // If we kill this operand, make sure to pop it from the stack after the
1435 // asm. We just remember it for now, and pop them all off at the end in
1436 // a batch.
1437 if (Op.isKill())
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001438 Kills |= 1U << FPReg;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001439 }
1440
1441 // If this asm kills any FP registers (is the last use of them) we must
1442 // explicitly emit pop instructions for them. Do this now after the asm has
1443 // executed so that the ST(x) numbers are not off (which would happen if we
1444 // did this inline with operand rewriting).
1445 //
1446 // Note: this might be a non-optimal pop sequence. We might be able to do
1447 // better by trying to pop in stack order or something.
1448 MachineBasicBlock::iterator InsertPt = MI;
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001449 while (Kills) {
1450 unsigned FPReg = CountTrailingZeros_32(Kills);
1451 freeStackSlotAfter(InsertPt, FPReg);
1452 Kills &= ~(1U << FPReg);
1453 }
Chris Lattnere12ecf22008-03-11 19:50:13 +00001454 // Don't delete the inline asm!
1455 return;
1456 }
1457
Chris Lattner447ff682008-03-11 03:23:40 +00001458 case X86::RET:
1459 case X86::RETI:
1460 // If RET has an FP register use operand, pass the first one in ST(0) and
1461 // the second one in ST(1).
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001462
Chris Lattner447ff682008-03-11 03:23:40 +00001463 // Find the register operands.
1464 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001465 unsigned LiveMask = 0;
1466
Chris Lattner447ff682008-03-11 03:23:40 +00001467 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1468 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001469 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattner447ff682008-03-11 03:23:40 +00001470 continue;
Chris Lattner35831d02008-03-21 20:41:27 +00001471 // FP Register uses must be kills unless there are two uses of the same
1472 // register, in which case only one will be a kill.
1473 assert(Op.isUse() &&
1474 (Op.isKill() || // Marked kill.
1475 getFPReg(Op) == FirstFPRegOp || // Second instance.
1476 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1477 "Ret only defs operands, and values aren't live beyond it");
Chris Lattner447ff682008-03-11 03:23:40 +00001478
1479 if (FirstFPRegOp == ~0U)
1480 FirstFPRegOp = getFPReg(Op);
1481 else {
1482 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1483 SecondFPRegOp = getFPReg(Op);
1484 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001485 LiveMask |= (1 << getFPReg(Op));
Chris Lattner447ff682008-03-11 03:23:40 +00001486
1487 // Remove the operand so that later passes don't see it.
1488 MI->RemoveOperand(i);
1489 --i, --e;
1490 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001491
1492 // We may have been carrying spurious live-ins, so make sure only the returned
1493 // registers are left live.
1494 adjustLiveRegs(LiveMask, MI);
1495 if (!LiveMask) return; // Quick check to see if any are possible.
1496
Chris Lattner447ff682008-03-11 03:23:40 +00001497 // There are only four possibilities here:
1498 // 1) we are returning a single FP value. In this case, it has to be in
1499 // ST(0) already, so just declare success by removing the value from the
1500 // FP Stack.
1501 if (SecondFPRegOp == ~0U) {
1502 // Assert that the top of stack contains the right FP register.
1503 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1504 "Top of stack not the right register for RET!");
1505
1506 // Ok, everything is good, mark the value as not being on the stack
1507 // anymore so that our assertion about the stack being empty at end of
1508 // block doesn't fire.
1509 StackTop = 0;
1510 return;
1511 }
1512
Chris Lattner447ff682008-03-11 03:23:40 +00001513 // Otherwise, we are returning two values:
1514 // 2) If returning the same value for both, we only have one thing in the FP
1515 // stack. Consider: RET FP1, FP1
1516 if (StackTop == 1) {
1517 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1518 "Stack misconfiguration for RET!");
1519
1520 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1521 // register to hold it.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001522 unsigned NewReg = getScratchReg();
Chris Lattner447ff682008-03-11 03:23:40 +00001523 duplicateToTop(FirstFPRegOp, NewReg, MI);
1524 FirstFPRegOp = NewReg;
1525 }
1526
1527 /// Okay we know we have two different FPx operands now:
1528 assert(StackTop == 2 && "Must have two values live!");
1529
1530 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1531 /// in ST(1). In this case, emit an fxch.
1532 if (getStackEntry(0) == SecondFPRegOp) {
1533 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1534 moveToTop(FirstFPRegOp, MI);
1535 }
1536
1537 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1538 /// ST(1). Just remove both from our understanding of the stack and return.
1539 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
Chris Lattner03535262008-03-21 05:57:20 +00001540 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
Chris Lattner447ff682008-03-11 03:23:40 +00001541 StackTop = 0;
1542 return;
Chris Lattnera960d952003-01-13 01:01:59 +00001543 }
Chris Lattnera960d952003-01-13 01:01:59 +00001544
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001545 I = MBB->erase(I); // Remove the pseudo instruction
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001546
1547 // We want to leave I pointing to the previous instruction, but what if we
1548 // just erased the first instruction?
1549 if (I == MBB->begin()) {
1550 DEBUG(dbgs() << "Inserting dummy KILL\n");
1551 I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1552 } else
1553 --I;
Chris Lattnera960d952003-01-13 01:01:59 +00001554}
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +00001555
1556// Translate a COPY instruction to a pseudo-op that handleSpecialFP understands.
1557bool FPS::translateCopy(MachineInstr *MI) {
1558 unsigned DstReg = MI->getOperand(0).getReg();
1559 unsigned SrcReg = MI->getOperand(1).getReg();
1560
1561 if (DstReg == X86::ST0) {
1562 MI->setDesc(TII->get(X86::FpSET_ST0_80));
1563 MI->RemoveOperand(0);
1564 return true;
1565 }
1566 if (DstReg == X86::ST1) {
1567 MI->setDesc(TII->get(X86::FpSET_ST1_80));
1568 MI->RemoveOperand(0);
1569 return true;
1570 }
1571 if (SrcReg == X86::ST0) {
1572 MI->setDesc(TII->get(X86::FpGET_ST0_80));
1573 return true;
1574 }
1575 if (SrcReg == X86::ST1) {
1576 MI->setDesc(TII->get(X86::FpGET_ST1_80));
1577 return true;
1578 }
1579 if (X86::RFP80RegClass.contains(DstReg, SrcReg)) {
1580 MI->setDesc(TII->get(X86::MOV_Fp8080));
1581 return true;
1582 }
1583 return false;
1584}