blob: a5bb52641670a8b6cf8b97a2f71bcf9edb7c846b [file] [log] [blame]
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "llvm/Bitcode/BitstreamWriter.h"
16#include "llvm/Bitcode/LLVMBitCodes.h"
17#include "ValueEnumerator.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/InlineAsm.h"
21#include "llvm/Instructions.h"
22#include "llvm/Module.h"
23#include "llvm/Operator.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/ValueSymbolTable.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/System/Program.h"
30using namespace llvm;
31
32/// These are manifest constants used by the bitcode writer. They do not need to
33/// be kept in sync with the reader, but need to be consistent within this file.
34enum {
35 CurVersion = 0,
36
37 // VALUE_SYMTAB_BLOCK abbrev id's.
38 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
39 VST_ENTRY_7_ABBREV,
40 VST_ENTRY_6_ABBREV,
41 VST_BBENTRY_6_ABBREV,
42
43 // CONSTANTS_BLOCK abbrev id's.
44 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
45 CONSTANTS_INTEGER_ABBREV,
46 CONSTANTS_CE_CAST_Abbrev,
47 CONSTANTS_NULL_Abbrev,
48
49 // FUNCTION_BLOCK abbrev id's.
50 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
51 FUNCTION_INST_BINOP_ABBREV,
52 FUNCTION_INST_BINOP_FLAGS_ABBREV,
53 FUNCTION_INST_CAST_ABBREV,
54 FUNCTION_INST_RET_VOID_ABBREV,
55 FUNCTION_INST_RET_VAL_ABBREV,
56 FUNCTION_INST_UNREACHABLE_ABBREV
57};
58
59
60static unsigned GetEncodedCastOpcode(unsigned Opcode) {
61 switch (Opcode) {
62 default: llvm_unreachable("Unknown cast instruction!");
63 case Instruction::Trunc : return bitc::CAST_TRUNC;
64 case Instruction::ZExt : return bitc::CAST_ZEXT;
65 case Instruction::SExt : return bitc::CAST_SEXT;
66 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
67 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
68 case Instruction::UIToFP : return bitc::CAST_UITOFP;
69 case Instruction::SIToFP : return bitc::CAST_SITOFP;
70 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
71 case Instruction::FPExt : return bitc::CAST_FPEXT;
72 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
73 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
74 case Instruction::BitCast : return bitc::CAST_BITCAST;
75 }
76}
77
78static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
79 switch (Opcode) {
80 default: llvm_unreachable("Unknown binary instruction!");
81 case Instruction::Add:
82 case Instruction::FAdd: return bitc::BINOP_ADD;
83 case Instruction::Sub:
84 case Instruction::FSub: return bitc::BINOP_SUB;
85 case Instruction::Mul:
86 case Instruction::FMul: return bitc::BINOP_MUL;
87 case Instruction::UDiv: return bitc::BINOP_UDIV;
88 case Instruction::FDiv:
89 case Instruction::SDiv: return bitc::BINOP_SDIV;
90 case Instruction::URem: return bitc::BINOP_UREM;
91 case Instruction::FRem:
92 case Instruction::SRem: return bitc::BINOP_SREM;
93 case Instruction::Shl: return bitc::BINOP_SHL;
94 case Instruction::LShr: return bitc::BINOP_LSHR;
95 case Instruction::AShr: return bitc::BINOP_ASHR;
96 case Instruction::And: return bitc::BINOP_AND;
97 case Instruction::Or: return bitc::BINOP_OR;
98 case Instruction::Xor: return bitc::BINOP_XOR;
99 }
100}
101
102
103
104static void WriteStringRecord(unsigned Code, const std::string &Str,
105 unsigned AbbrevToUse, BitstreamWriter &Stream) {
106 SmallVector<unsigned, 64> Vals;
107
108 // Code: [strchar x N]
109 for (unsigned i = 0, e = Str.size(); i != e; ++i)
110 Vals.push_back(Str[i]);
111
112 // Emit the finished record.
113 Stream.EmitRecord(Code, Vals, AbbrevToUse);
114}
115
116// Emit information about parameter attributes.
117static void WriteAttributeTable(const ValueEnumerator &VE,
118 BitstreamWriter &Stream) {
119 const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
120 if (Attrs.empty()) return;
121
122 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
123
124 SmallVector<uint64_t, 64> Record;
125 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
126 const AttrListPtr &A = Attrs[i];
127 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
128 const AttributeWithIndex &PAWI = A.getSlot(i);
129 Record.push_back(PAWI.Index);
130
131 // FIXME: remove in LLVM 3.0
132 // Store the alignment in the bitcode as a 16-bit raw value instead of a
133 // 5-bit log2 encoded value. Shift the bits above the alignment up by
134 // 11 bits.
135 uint64_t FauxAttr = PAWI.Attrs & 0xffff;
136 if (PAWI.Attrs & Attribute::Alignment)
137 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
138 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
139
140 Record.push_back(FauxAttr);
141 }
142
143 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
144 Record.clear();
145 }
146
147 Stream.ExitBlock();
148}
149
150/// WriteTypeTable - Write out the type table for a module.
151static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
152 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
153
154 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
155 SmallVector<uint64_t, 64> TypeVals;
156
157 // Abbrev for TYPE_CODE_POINTER.
158 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
161 Log2_32_Ceil(VE.getTypes().size()+1)));
162 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
163 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
164
165 // Abbrev for TYPE_CODE_FUNCTION.
166 Abbv = new BitCodeAbbrev();
167 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
169 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0
170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
172 Log2_32_Ceil(VE.getTypes().size()+1)));
173 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
174
175 // Abbrev for TYPE_CODE_STRUCT.
176 Abbv = new BitCodeAbbrev();
177 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
181 Log2_32_Ceil(VE.getTypes().size()+1)));
182 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
183
184 // Abbrev for TYPE_CODE_ARRAY.
185 Abbv = new BitCodeAbbrev();
186 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
189 Log2_32_Ceil(VE.getTypes().size()+1)));
190 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
191
192 // Emit an entry count so the reader can reserve space.
193 TypeVals.push_back(TypeList.size());
194 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
195 TypeVals.clear();
196
197 // Loop over all of the types, emitting each in turn.
198 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
199 const Type *T = TypeList[i].first;
200 int AbbrevToUse = 0;
201 unsigned Code = 0;
202
203 switch (T->getTypeID()) {
204 default: llvm_unreachable("Unknown type!");
205 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
206 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
207 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
208 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
209 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
210 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
211 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
212 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
213 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
214 case Type::IntegerTyID:
215 // INTEGER: [width]
216 Code = bitc::TYPE_CODE_INTEGER;
217 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
218 break;
219 case Type::PointerTyID: {
220 const PointerType *PTy = cast<PointerType>(T);
221 // POINTER: [pointee type, address space]
222 Code = bitc::TYPE_CODE_POINTER;
223 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
224 unsigned AddressSpace = PTy->getAddressSpace();
225 TypeVals.push_back(AddressSpace);
226 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
227 break;
228 }
229 case Type::FunctionTyID: {
230 const FunctionType *FT = cast<FunctionType>(T);
231 // FUNCTION: [isvararg, attrid, retty, paramty x N]
232 Code = bitc::TYPE_CODE_FUNCTION;
233 TypeVals.push_back(FT->isVarArg());
234 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0
235 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
236 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
237 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
238 AbbrevToUse = FunctionAbbrev;
239 break;
240 }
241 case Type::StructTyID: {
242 const StructType *ST = cast<StructType>(T);
243 // STRUCT: [ispacked, eltty x N]
244 Code = bitc::TYPE_CODE_STRUCT;
245 TypeVals.push_back(ST->isPacked());
246 // Output all of the element types.
247 for (StructType::element_iterator I = ST->element_begin(),
248 E = ST->element_end(); I != E; ++I)
249 TypeVals.push_back(VE.getTypeID(*I));
250 AbbrevToUse = StructAbbrev;
251 break;
252 }
253 case Type::ArrayTyID: {
254 const ArrayType *AT = cast<ArrayType>(T);
255 // ARRAY: [numelts, eltty]
256 Code = bitc::TYPE_CODE_ARRAY;
257 TypeVals.push_back(AT->getNumElements());
258 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
259 AbbrevToUse = ArrayAbbrev;
260 break;
261 }
262 case Type::VectorTyID: {
263 const VectorType *VT = cast<VectorType>(T);
264 // VECTOR [numelts, eltty]
265 Code = bitc::TYPE_CODE_VECTOR;
266 TypeVals.push_back(VT->getNumElements());
267 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
268 break;
269 }
270 }
271
272 // Emit the finished record.
273 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
274 TypeVals.clear();
275 }
276
277 Stream.ExitBlock();
278}
279
280static unsigned getEncodedLinkage(const GlobalValue *GV) {
281 switch (GV->getLinkage()) {
282 default: llvm_unreachable("Invalid linkage!");
283 case GlobalValue::ExternalLinkage: return 0;
284 case GlobalValue::WeakAnyLinkage: return 1;
285 case GlobalValue::AppendingLinkage: return 2;
286 case GlobalValue::InternalLinkage: return 3;
287 case GlobalValue::LinkOnceAnyLinkage: return 4;
288 case GlobalValue::DLLImportLinkage: return 5;
289 case GlobalValue::DLLExportLinkage: return 6;
290 case GlobalValue::ExternalWeakLinkage: return 7;
291 case GlobalValue::CommonLinkage: return 8;
292 case GlobalValue::PrivateLinkage: return 9;
293 case GlobalValue::WeakODRLinkage: return 10;
294 case GlobalValue::LinkOnceODRLinkage: return 11;
295 case GlobalValue::AvailableExternallyLinkage: return 12;
296 case GlobalValue::LinkerPrivateLinkage: return 13;
297 }
298}
299
300static unsigned getEncodedVisibility(const GlobalValue *GV) {
301 switch (GV->getVisibility()) {
302 default: llvm_unreachable("Invalid visibility!");
303 case GlobalValue::DefaultVisibility: return 0;
304 case GlobalValue::HiddenVisibility: return 1;
305 case GlobalValue::ProtectedVisibility: return 2;
306 }
307}
308
309// Emit top-level description of module, including target triple, inline asm,
310// descriptors for global variables, and function prototype info.
311static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
312 BitstreamWriter &Stream) {
313 // Emit the list of dependent libraries for the Module.
314 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
315 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
316
317 // Emit various pieces of data attached to a module.
318 if (!M->getTargetTriple().empty())
319 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
320 0/*TODO*/, Stream);
321 if (!M->getDataLayout().empty())
322 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
323 0/*TODO*/, Stream);
324 if (!M->getModuleInlineAsm().empty())
325 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
326 0/*TODO*/, Stream);
327
328 // Emit information about sections and GC, computing how many there are. Also
329 // compute the maximum alignment value.
330 std::map<std::string, unsigned> SectionMap;
331 std::map<std::string, unsigned> GCMap;
332 unsigned MaxAlignment = 0;
333 unsigned MaxGlobalType = 0;
334 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
335 GV != E; ++GV) {
336 MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
337 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
338
339 if (!GV->hasSection()) continue;
340 // Give section names unique ID's.
341 unsigned &Entry = SectionMap[GV->getSection()];
342 if (Entry != 0) continue;
343 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
344 0/*TODO*/, Stream);
345 Entry = SectionMap.size();
346 }
347 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
348 MaxAlignment = std::max(MaxAlignment, F->getAlignment());
349 if (F->hasSection()) {
350 // Give section names unique ID's.
351 unsigned &Entry = SectionMap[F->getSection()];
352 if (!Entry) {
353 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
354 0/*TODO*/, Stream);
355 Entry = SectionMap.size();
356 }
357 }
358 if (F->hasGC()) {
359 // Same for GC names.
360 unsigned &Entry = GCMap[F->getGC()];
361 if (!Entry) {
362 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
363 0/*TODO*/, Stream);
364 Entry = GCMap.size();
365 }
366 }
367 }
368
369 // Emit abbrev for globals, now that we know # sections and max alignment.
370 unsigned SimpleGVarAbbrev = 0;
371 if (!M->global_empty()) {
372 // Add an abbrev for common globals with no visibility or thread localness.
373 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
374 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
376 Log2_32_Ceil(MaxGlobalType+1)));
377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage.
380 if (MaxAlignment == 0) // Alignment.
381 Abbv->Add(BitCodeAbbrevOp(0));
382 else {
383 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
385 Log2_32_Ceil(MaxEncAlignment+1)));
386 }
387 if (SectionMap.empty()) // Section.
388 Abbv->Add(BitCodeAbbrevOp(0));
389 else
390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
391 Log2_32_Ceil(SectionMap.size()+1)));
392 // Don't bother emitting vis + thread local.
393 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
394 }
395
396 // Emit the global variable information.
397 SmallVector<unsigned, 64> Vals;
398 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
399 GV != E; ++GV) {
400 unsigned AbbrevToUse = 0;
401
402 // GLOBALVAR: [type, isconst, initid,
403 // linkage, alignment, section, visibility, threadlocal]
404 Vals.push_back(VE.getTypeID(GV->getType()));
405 Vals.push_back(GV->isConstant());
406 Vals.push_back(GV->isDeclaration() ? 0 :
407 (VE.getValueID(GV->getInitializer()) + 1));
408 Vals.push_back(getEncodedLinkage(GV));
409 Vals.push_back(Log2_32(GV->getAlignment())+1);
410 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
411 if (GV->isThreadLocal() ||
412 GV->getVisibility() != GlobalValue::DefaultVisibility) {
413 Vals.push_back(getEncodedVisibility(GV));
414 Vals.push_back(GV->isThreadLocal());
415 } else {
416 AbbrevToUse = SimpleGVarAbbrev;
417 }
418
419 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
420 Vals.clear();
421 }
422
423 // Emit the function proto information.
424 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
425 // FUNCTION: [type, callingconv, isproto, paramattr,
426 // linkage, alignment, section, visibility, gc]
427 Vals.push_back(VE.getTypeID(F->getType()));
428 Vals.push_back(F->getCallingConv());
429 Vals.push_back(F->isDeclaration());
430 Vals.push_back(getEncodedLinkage(F));
431 Vals.push_back(VE.getAttributeID(F->getAttributes()));
432 Vals.push_back(Log2_32(F->getAlignment())+1);
433 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
434 Vals.push_back(getEncodedVisibility(F));
435 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
436
437 unsigned AbbrevToUse = 0;
438 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
439 Vals.clear();
440 }
441
442
443 // Emit the alias information.
444 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
445 AI != E; ++AI) {
446 Vals.push_back(VE.getTypeID(AI->getType()));
447 Vals.push_back(VE.getValueID(AI->getAliasee()));
448 Vals.push_back(getEncodedLinkage(AI));
449 Vals.push_back(getEncodedVisibility(AI));
450 unsigned AbbrevToUse = 0;
451 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
452 Vals.clear();
453 }
454}
455
456static uint64_t GetOptimizationFlags(const Value *V) {
457 uint64_t Flags = 0;
458
459 if (const OverflowingBinaryOperator *OBO =
460 dyn_cast<OverflowingBinaryOperator>(V)) {
461 if (OBO->hasNoSignedWrap())
462 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
463 if (OBO->hasNoUnsignedWrap())
464 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
465 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
466 if (Div->isExact())
467 Flags |= 1 << bitc::SDIV_EXACT;
468 }
469
470 return Flags;
471}
472
473static void WriteMDNode(const MDNode *N,
474 const ValueEnumerator &VE,
475 BitstreamWriter &Stream,
476 SmallVector<uint64_t, 64> &Record) {
477 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
478 if (N->getOperand(i)) {
479 Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
480 Record.push_back(VE.getValueID(N->getOperand(i)));
481 } else {
482 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
483 Record.push_back(0);
484 }
485 }
486 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
487 bitc::METADATA_NODE;
488 Stream.EmitRecord(MDCode, Record, 0);
489 Record.clear();
490}
491
492static void WriteModuleMetadata(const ValueEnumerator &VE,
493 BitstreamWriter &Stream) {
494 const ValueEnumerator::ValueList &Vals = VE.getMDValues();
495 bool StartedMetadataBlock = false;
496 unsigned MDSAbbrev = 0;
497 SmallVector<uint64_t, 64> Record;
498 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
499
500 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
501 if (!N->isFunctionLocal() || !N->getFunction()) {
502 if (!StartedMetadataBlock) {
503 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
504 StartedMetadataBlock = true;
505 }
506 WriteMDNode(N, VE, Stream, Record);
507 }
508 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
509 if (!StartedMetadataBlock) {
510 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
511
512 // Abbrev for METADATA_STRING.
513 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
514 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
517 MDSAbbrev = Stream.EmitAbbrev(Abbv);
518 StartedMetadataBlock = true;
519 }
520
521 // Code: [strchar x N]
522 Record.append(MDS->begin(), MDS->end());
523
524 // Emit the finished record.
525 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
526 Record.clear();
527 } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) {
528 if (!StartedMetadataBlock) {
529 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
530 StartedMetadataBlock = true;
531 }
532
533 // Write name.
534 StringRef Str = NMD->getName();
535 for (unsigned i = 0, e = Str.size(); i != e; ++i)
536 Record.push_back(Str[i]);
537 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
538 Record.clear();
539
540 // Write named metadata operands.
541 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
542 if (NMD->getOperand(i))
543 Record.push_back(VE.getValueID(NMD->getOperand(i)));
544 else
545 Record.push_back(~0U);
546 }
547 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
548 Record.clear();
549 }
550 }
551
552 if (StartedMetadataBlock)
553 Stream.ExitBlock();
554}
555
556static void WriteFunctionLocalMetadata(const Function &F,
557 const ValueEnumerator &VE,
558 BitstreamWriter &Stream) {
559 bool StartedMetadataBlock = false;
560 SmallVector<uint64_t, 64> Record;
561 const ValueEnumerator::ValueList &Vals = VE.getMDValues();
562
563 for (unsigned i = 0, e = Vals.size(); i != e; ++i)
564 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first))
565 if (N->isFunctionLocal() && N->getFunction() == &F) {
566 if (!StartedMetadataBlock) {
567 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
568 StartedMetadataBlock = true;
569 }
570 WriteMDNode(N, VE, Stream, Record);
571 }
572
573 if (StartedMetadataBlock)
574 Stream.ExitBlock();
575}
576
577static void WriteMetadataAttachment(const Function &F,
578 const ValueEnumerator &VE,
579 BitstreamWriter &Stream) {
580 bool StartedMetadataBlock = false;
581 SmallVector<uint64_t, 64> Record;
582
583 // Write metadata attachments
584 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
585 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
586
587 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
588 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
589 I != E; ++I) {
590 MDs.clear();
591 I->getAllMetadata(MDs);
592
593 // If no metadata, ignore instruction.
594 if (MDs.empty()) continue;
595
596 Record.push_back(VE.getInstructionID(I));
597
598 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
599 Record.push_back(MDs[i].first);
600 Record.push_back(VE.getValueID(MDs[i].second));
601 }
602 if (!StartedMetadataBlock) {
603 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
604 StartedMetadataBlock = true;
605 }
606 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
607 Record.clear();
608 }
609
610 if (StartedMetadataBlock)
611 Stream.ExitBlock();
612}
613
614static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
615 SmallVector<uint64_t, 64> Record;
616
617 // Write metadata kinds
618 // METADATA_KIND - [n x [id, name]]
619 SmallVector<StringRef, 4> Names;
620 M->getMDKindNames(Names);
621
622 assert(Names[0] == "" && "MDKind #0 is invalid");
623 if (Names.size() == 1) return;
624
625 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
626
627 for (unsigned MDKindID = 1, e = Names.size(); MDKindID != e; ++MDKindID) {
628 Record.push_back(MDKindID);
629 StringRef KName = Names[MDKindID];
630 Record.append(KName.begin(), KName.end());
631
632 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
633 Record.clear();
634 }
635
636 Stream.ExitBlock();
637}
638
639static void WriteConstants(unsigned FirstVal, unsigned LastVal,
640 const ValueEnumerator &VE,
641 BitstreamWriter &Stream, bool isGlobal) {
642 if (FirstVal == LastVal) return;
643
644 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
645
646 unsigned AggregateAbbrev = 0;
647 unsigned String8Abbrev = 0;
648 unsigned CString7Abbrev = 0;
649 unsigned CString6Abbrev = 0;
650 // If this is a constant pool for the module, emit module-specific abbrevs.
651 if (isGlobal) {
652 // Abbrev for CST_CODE_AGGREGATE.
653 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
654 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
655 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
657 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
658
659 // Abbrev for CST_CODE_STRING.
660 Abbv = new BitCodeAbbrev();
661 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
662 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
664 String8Abbrev = Stream.EmitAbbrev(Abbv);
665 // Abbrev for CST_CODE_CSTRING.
666 Abbv = new BitCodeAbbrev();
667 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
670 CString7Abbrev = Stream.EmitAbbrev(Abbv);
671 // Abbrev for CST_CODE_CSTRING.
672 Abbv = new BitCodeAbbrev();
673 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
676 CString6Abbrev = Stream.EmitAbbrev(Abbv);
677 }
678
679 SmallVector<uint64_t, 64> Record;
680
681 const ValueEnumerator::ValueList &Vals = VE.getValues();
682 const Type *LastTy = 0;
683 for (unsigned i = FirstVal; i != LastVal; ++i) {
684 const Value *V = Vals[i].first;
685 // If we need to switch types, do so now.
686 if (V->getType() != LastTy) {
687 LastTy = V->getType();
688 Record.push_back(VE.getTypeID(LastTy));
689 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
690 CONSTANTS_SETTYPE_ABBREV);
691 Record.clear();
692 }
693
694 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
695 Record.push_back(unsigned(IA->hasSideEffects()) |
696 unsigned(IA->isAlignStack()) << 1);
697
698 // Add the asm string.
699 const std::string &AsmStr = IA->getAsmString();
700 Record.push_back(AsmStr.size());
701 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
702 Record.push_back(AsmStr[i]);
703
704 // Add the constraint string.
705 const std::string &ConstraintStr = IA->getConstraintString();
706 Record.push_back(ConstraintStr.size());
707 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
708 Record.push_back(ConstraintStr[i]);
709 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
710 Record.clear();
711 continue;
712 }
713 const Constant *C = cast<Constant>(V);
714 unsigned Code = -1U;
715 unsigned AbbrevToUse = 0;
716 if (C->isNullValue()) {
717 Code = bitc::CST_CODE_NULL;
718 } else if (isa<UndefValue>(C)) {
719 Code = bitc::CST_CODE_UNDEF;
720 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
721 if (IV->getBitWidth() <= 64) {
722 int64_t V = IV->getSExtValue();
723 if (V >= 0)
724 Record.push_back(V << 1);
725 else
726 Record.push_back((-V << 1) | 1);
727 Code = bitc::CST_CODE_INTEGER;
728 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
729 } else { // Wide integers, > 64 bits in size.
730 // We have an arbitrary precision integer value to write whose
731 // bit width is > 64. However, in canonical unsigned integer
732 // format it is likely that the high bits are going to be zero.
733 // So, we only write the number of active words.
734 unsigned NWords = IV->getValue().getActiveWords();
735 const uint64_t *RawWords = IV->getValue().getRawData();
736 for (unsigned i = 0; i != NWords; ++i) {
737 int64_t V = RawWords[i];
738 if (V >= 0)
739 Record.push_back(V << 1);
740 else
741 Record.push_back((-V << 1) | 1);
742 }
743 Code = bitc::CST_CODE_WIDE_INTEGER;
744 }
745 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
746 Code = bitc::CST_CODE_FLOAT;
747 const Type *Ty = CFP->getType();
748 if (Ty->isFloatTy() || Ty->isDoubleTy()) {
749 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
750 } else if (Ty->isX86_FP80Ty()) {
751 // api needed to prevent premature destruction
752 // bits are not in the same order as a normal i80 APInt, compensate.
753 APInt api = CFP->getValueAPF().bitcastToAPInt();
754 const uint64_t *p = api.getRawData();
755 Record.push_back((p[1] << 48) | (p[0] >> 16));
756 Record.push_back(p[0] & 0xffffLL);
757 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
758 APInt api = CFP->getValueAPF().bitcastToAPInt();
759 const uint64_t *p = api.getRawData();
760 Record.push_back(p[0]);
761 Record.push_back(p[1]);
762 } else {
763 assert (0 && "Unknown FP type!");
764 }
765 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
766 const ConstantArray *CA = cast<ConstantArray>(C);
767 // Emit constant strings specially.
768 unsigned NumOps = CA->getNumOperands();
769 // If this is a null-terminated string, use the denser CSTRING encoding.
770 if (CA->getOperand(NumOps-1)->isNullValue()) {
771 Code = bitc::CST_CODE_CSTRING;
772 --NumOps; // Don't encode the null, which isn't allowed by char6.
773 } else {
774 Code = bitc::CST_CODE_STRING;
775 AbbrevToUse = String8Abbrev;
776 }
777 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
778 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
779 for (unsigned i = 0; i != NumOps; ++i) {
780 unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue();
781 Record.push_back(V);
782 isCStr7 &= (V & 128) == 0;
783 if (isCStrChar6)
784 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
785 }
786
787 if (isCStrChar6)
788 AbbrevToUse = CString6Abbrev;
789 else if (isCStr7)
790 AbbrevToUse = CString7Abbrev;
791 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
792 isa<ConstantVector>(V)) {
793 Code = bitc::CST_CODE_AGGREGATE;
794 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
795 Record.push_back(VE.getValueID(C->getOperand(i)));
796 AbbrevToUse = AggregateAbbrev;
797 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
798 switch (CE->getOpcode()) {
799 default:
800 if (Instruction::isCast(CE->getOpcode())) {
801 Code = bitc::CST_CODE_CE_CAST;
802 Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
803 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
804 Record.push_back(VE.getValueID(C->getOperand(0)));
805 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
806 } else {
807 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
808 Code = bitc::CST_CODE_CE_BINOP;
809 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
810 Record.push_back(VE.getValueID(C->getOperand(0)));
811 Record.push_back(VE.getValueID(C->getOperand(1)));
812 uint64_t Flags = GetOptimizationFlags(CE);
813 if (Flags != 0)
814 Record.push_back(Flags);
815 }
816 break;
817 case Instruction::GetElementPtr:
818 Code = bitc::CST_CODE_CE_GEP;
819 if (cast<GEPOperator>(C)->isInBounds())
820 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
821 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
822 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
823 Record.push_back(VE.getValueID(C->getOperand(i)));
824 }
825 break;
826 case Instruction::Select:
827 Code = bitc::CST_CODE_CE_SELECT;
828 Record.push_back(VE.getValueID(C->getOperand(0)));
829 Record.push_back(VE.getValueID(C->getOperand(1)));
830 Record.push_back(VE.getValueID(C->getOperand(2)));
831 break;
832 case Instruction::ExtractElement:
833 Code = bitc::CST_CODE_CE_EXTRACTELT;
834 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
835 Record.push_back(VE.getValueID(C->getOperand(0)));
836 Record.push_back(VE.getValueID(C->getOperand(1)));
837 break;
838 case Instruction::InsertElement:
839 Code = bitc::CST_CODE_CE_INSERTELT;
840 Record.push_back(VE.getValueID(C->getOperand(0)));
841 Record.push_back(VE.getValueID(C->getOperand(1)));
842 Record.push_back(VE.getValueID(C->getOperand(2)));
843 break;
844 case Instruction::ShuffleVector:
845 // If the return type and argument types are the same, this is a
846 // standard shufflevector instruction. If the types are different,
847 // then the shuffle is widening or truncating the input vectors, and
848 // the argument type must also be encoded.
849 if (C->getType() == C->getOperand(0)->getType()) {
850 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
851 } else {
852 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
853 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
854 }
855 Record.push_back(VE.getValueID(C->getOperand(0)));
856 Record.push_back(VE.getValueID(C->getOperand(1)));
857 Record.push_back(VE.getValueID(C->getOperand(2)));
858 break;
859 case Instruction::ICmp:
860 case Instruction::FCmp:
861 Code = bitc::CST_CODE_CE_CMP;
862 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
863 Record.push_back(VE.getValueID(C->getOperand(0)));
864 Record.push_back(VE.getValueID(C->getOperand(1)));
865 Record.push_back(CE->getPredicate());
866 break;
867 }
868 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
869 assert(BA->getFunction() == BA->getBasicBlock()->getParent() &&
870 "Malformed blockaddress");
871 Code = bitc::CST_CODE_BLOCKADDRESS;
872 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
873 Record.push_back(VE.getValueID(BA->getFunction()));
874 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
875 } else {
876 llvm_unreachable("Unknown constant!");
877 }
878 Stream.EmitRecord(Code, Record, AbbrevToUse);
879 Record.clear();
880 }
881
882 Stream.ExitBlock();
883}
884
885static void WriteModuleConstants(const ValueEnumerator &VE,
886 BitstreamWriter &Stream) {
887 const ValueEnumerator::ValueList &Vals = VE.getValues();
888
889 // Find the first constant to emit, which is the first non-globalvalue value.
890 // We know globalvalues have been emitted by WriteModuleInfo.
891 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
892 if (!isa<GlobalValue>(Vals[i].first)) {
893 WriteConstants(i, Vals.size(), VE, Stream, true);
894 return;
895 }
896 }
897}
898
899/// PushValueAndType - The file has to encode both the value and type id for
900/// many values, because we need to know what type to create for forward
901/// references. However, most operands are not forward references, so this type
902/// field is not needed.
903///
904/// This function adds V's value ID to Vals. If the value ID is higher than the
905/// instruction ID, then it is a forward reference, and it also includes the
906/// type ID.
907static bool PushValueAndType(const Value *V, unsigned InstID,
908 SmallVector<unsigned, 64> &Vals,
909 ValueEnumerator &VE) {
910 unsigned ValID = VE.getValueID(V);
911 Vals.push_back(ValID);
912 if (ValID >= InstID) {
913 Vals.push_back(VE.getTypeID(V->getType()));
914 return true;
915 }
916 return false;
917}
918
919/// WriteInstruction - Emit an instruction to the specified stream.
920static void WriteInstruction(const Instruction &I, unsigned InstID,
921 ValueEnumerator &VE, BitstreamWriter &Stream,
922 SmallVector<unsigned, 64> &Vals) {
923 unsigned Code = 0;
924 unsigned AbbrevToUse = 0;
925 VE.setInstructionID(&I);
926 switch (I.getOpcode()) {
927 default:
928 if (Instruction::isCast(I.getOpcode())) {
929 Code = bitc::FUNC_CODE_INST_CAST;
930 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
931 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
932 Vals.push_back(VE.getTypeID(I.getType()));
933 Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
934 } else {
935 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
936 Code = bitc::FUNC_CODE_INST_BINOP;
937 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
938 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
939 Vals.push_back(VE.getValueID(I.getOperand(1)));
940 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
941 uint64_t Flags = GetOptimizationFlags(&I);
942 if (Flags != 0) {
943 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
944 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
945 Vals.push_back(Flags);
946 }
947 }
948 break;
949
950 case Instruction::GetElementPtr:
951 Code = bitc::FUNC_CODE_INST_GEP;
952 if (cast<GEPOperator>(&I)->isInBounds())
953 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
954 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
955 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
956 break;
957 case Instruction::ExtractValue: {
958 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
959 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
960 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
961 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
962 Vals.push_back(*i);
963 break;
964 }
965 case Instruction::InsertValue: {
966 Code = bitc::FUNC_CODE_INST_INSERTVAL;
967 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
968 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
969 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
970 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
971 Vals.push_back(*i);
972 break;
973 }
974 case Instruction::Select:
975 Code = bitc::FUNC_CODE_INST_VSELECT;
976 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
977 Vals.push_back(VE.getValueID(I.getOperand(2)));
978 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
979 break;
980 case Instruction::ExtractElement:
981 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
982 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
983 Vals.push_back(VE.getValueID(I.getOperand(1)));
984 break;
985 case Instruction::InsertElement:
986 Code = bitc::FUNC_CODE_INST_INSERTELT;
987 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
988 Vals.push_back(VE.getValueID(I.getOperand(1)));
989 Vals.push_back(VE.getValueID(I.getOperand(2)));
990 break;
991 case Instruction::ShuffleVector:
992 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
993 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
994 Vals.push_back(VE.getValueID(I.getOperand(1)));
995 Vals.push_back(VE.getValueID(I.getOperand(2)));
996 break;
997 case Instruction::ICmp:
998 case Instruction::FCmp:
999 // compare returning Int1Ty or vector of Int1Ty
1000 Code = bitc::FUNC_CODE_INST_CMP2;
1001 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1002 Vals.push_back(VE.getValueID(I.getOperand(1)));
1003 Vals.push_back(cast<CmpInst>(I).getPredicate());
1004 break;
1005
1006 case Instruction::Ret:
1007 {
1008 Code = bitc::FUNC_CODE_INST_RET;
1009 unsigned NumOperands = I.getNumOperands();
1010 if (NumOperands == 0)
1011 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1012 else if (NumOperands == 1) {
1013 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1014 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1015 } else {
1016 for (unsigned i = 0, e = NumOperands; i != e; ++i)
1017 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1018 }
1019 }
1020 break;
1021 case Instruction::Br:
1022 {
1023 Code = bitc::FUNC_CODE_INST_BR;
1024 BranchInst &II = cast<BranchInst>(I);
1025 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1026 if (II.isConditional()) {
1027 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1028 Vals.push_back(VE.getValueID(II.getCondition()));
1029 }
1030 }
1031 break;
1032 case Instruction::Switch:
1033 Code = bitc::FUNC_CODE_INST_SWITCH;
1034 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1035 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1036 Vals.push_back(VE.getValueID(I.getOperand(i)));
1037 break;
1038 case Instruction::IndirectBr:
1039 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1040 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1041 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1042 Vals.push_back(VE.getValueID(I.getOperand(i)));
1043 break;
1044
1045 case Instruction::Invoke: {
1046 const InvokeInst *II = cast<InvokeInst>(&I);
1047 const Value *Callee(II->getCalledValue());
1048 const PointerType *PTy = cast<PointerType>(Callee->getType());
1049 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1050 Code = bitc::FUNC_CODE_INST_INVOKE;
1051
1052 Vals.push_back(VE.getAttributeID(II->getAttributes()));
1053 Vals.push_back(II->getCallingConv());
1054 Vals.push_back(VE.getValueID(II->getNormalDest()));
1055 Vals.push_back(VE.getValueID(II->getUnwindDest()));
1056 PushValueAndType(Callee, InstID, Vals, VE);
1057
1058 // Emit value #'s for the fixed parameters.
1059 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1060 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param.
1061
1062 // Emit type/value pairs for varargs params.
1063 if (FTy->isVarArg()) {
1064 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
1065 i != e; ++i)
1066 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1067 }
1068 break;
1069 }
1070 case Instruction::Unwind:
1071 Code = bitc::FUNC_CODE_INST_UNWIND;
1072 break;
1073 case Instruction::Unreachable:
1074 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1075 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1076 break;
1077
1078 case Instruction::PHI:
1079 Code = bitc::FUNC_CODE_INST_PHI;
1080 Vals.push_back(VE.getTypeID(I.getType()));
1081 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1082 Vals.push_back(VE.getValueID(I.getOperand(i)));
1083 break;
1084
1085 case Instruction::Alloca:
1086 Code = bitc::FUNC_CODE_INST_ALLOCA;
1087 Vals.push_back(VE.getTypeID(I.getType()));
1088 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1089 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1090 break;
1091
1092 case Instruction::Load:
1093 Code = bitc::FUNC_CODE_INST_LOAD;
1094 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
1095 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1096
1097 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1098 Vals.push_back(cast<LoadInst>(I).isVolatile());
1099 break;
1100 case Instruction::Store:
1101 Code = bitc::FUNC_CODE_INST_STORE2;
1102 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
1103 Vals.push_back(VE.getValueID(I.getOperand(0))); // val.
1104 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1105 Vals.push_back(cast<StoreInst>(I).isVolatile());
1106 break;
1107 case Instruction::Call: {
1108 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
1109 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1110
1111 Code = bitc::FUNC_CODE_INST_CALL;
1112
1113 const CallInst *CI = cast<CallInst>(&I);
1114 Vals.push_back(VE.getAttributeID(CI->getAttributes()));
1115 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
1116 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee
1117
1118 // Emit value #'s for the fixed parameters.
1119 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1120 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param.
1121
1122 // Emit type/value pairs for varargs params.
1123 if (FTy->isVarArg()) {
1124 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
1125 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
1126 i != e; ++i)
1127 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs
1128 }
1129 break;
1130 }
1131 case Instruction::VAArg:
1132 Code = bitc::FUNC_CODE_INST_VAARG;
1133 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
1134 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1135 Vals.push_back(VE.getTypeID(I.getType())); // restype.
1136 break;
1137 }
1138
1139 Stream.EmitRecord(Code, Vals, AbbrevToUse);
1140 Vals.clear();
1141}
1142
1143// Emit names for globals/functions etc.
1144static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1145 const ValueEnumerator &VE,
1146 BitstreamWriter &Stream) {
1147 if (VST.empty()) return;
1148 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1149
1150 // FIXME: Set up the abbrev, we know how many values there are!
1151 // FIXME: We know if the type names can use 7-bit ascii.
1152 SmallVector<unsigned, 64> NameVals;
1153
1154 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1155 SI != SE; ++SI) {
1156
1157 const ValueName &Name = *SI;
1158
1159 // Figure out the encoding to use for the name.
1160 bool is7Bit = true;
1161 bool isChar6 = true;
1162 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1163 C != E; ++C) {
1164 if (isChar6)
1165 isChar6 = BitCodeAbbrevOp::isChar6(*C);
1166 if ((unsigned char)*C & 128) {
1167 is7Bit = false;
1168 break; // don't bother scanning the rest.
1169 }
1170 }
1171
1172 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1173
1174 // VST_ENTRY: [valueid, namechar x N]
1175 // VST_BBENTRY: [bbid, namechar x N]
1176 unsigned Code;
1177 if (isa<BasicBlock>(SI->getValue())) {
1178 Code = bitc::VST_CODE_BBENTRY;
1179 if (isChar6)
1180 AbbrevToUse = VST_BBENTRY_6_ABBREV;
1181 } else {
1182 Code = bitc::VST_CODE_ENTRY;
1183 if (isChar6)
1184 AbbrevToUse = VST_ENTRY_6_ABBREV;
1185 else if (is7Bit)
1186 AbbrevToUse = VST_ENTRY_7_ABBREV;
1187 }
1188
1189 NameVals.push_back(VE.getValueID(SI->getValue()));
1190 for (const char *P = Name.getKeyData(),
1191 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1192 NameVals.push_back((unsigned char)*P);
1193
1194 // Emit the finished record.
1195 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1196 NameVals.clear();
1197 }
1198 Stream.ExitBlock();
1199}
1200
1201/// WriteFunction - Emit a function body to the module stream.
1202static void WriteFunction(const Function &F, ValueEnumerator &VE,
1203 BitstreamWriter &Stream) {
1204 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1205 VE.incorporateFunction(F);
1206
1207 SmallVector<unsigned, 64> Vals;
1208
1209 // Emit the number of basic blocks, so the reader can create them ahead of
1210 // time.
1211 Vals.push_back(VE.getBasicBlocks().size());
1212 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1213 Vals.clear();
1214
1215 // If there are function-local constants, emit them now.
1216 unsigned CstStart, CstEnd;
1217 VE.getFunctionConstantRange(CstStart, CstEnd);
1218 WriteConstants(CstStart, CstEnd, VE, Stream, false);
1219
1220 // If there is function-local metadata, emit it now.
1221 WriteFunctionLocalMetadata(F, VE, Stream);
1222
1223 // Keep a running idea of what the instruction ID is.
1224 unsigned InstID = CstEnd;
1225
1226 // Finally, emit all the instructions, in order.
1227 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1228 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1229 I != E; ++I) {
1230 WriteInstruction(*I, InstID, VE, Stream, Vals);
1231 if (!I->getType()->isVoidTy())
1232 ++InstID;
1233 }
1234
1235 // Emit names for all the instructions etc.
1236 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1237
1238 WriteMetadataAttachment(F, VE, Stream);
1239 VE.purgeFunction();
1240 Stream.ExitBlock();
1241}
1242
1243/// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1244static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1245 const ValueEnumerator &VE,
1246 BitstreamWriter &Stream) {
1247 if (TST.empty()) return;
1248
1249 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1250
1251 // 7-bit fixed width VST_CODE_ENTRY strings.
1252 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1253 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1255 Log2_32_Ceil(VE.getTypes().size()+1)));
1256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1258 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1259
1260 SmallVector<unsigned, 64> NameVals;
1261
1262 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1263 TI != TE; ++TI) {
1264 // TST_ENTRY: [typeid, namechar x N]
1265 NameVals.push_back(VE.getTypeID(TI->second));
1266
1267 const std::string &Str = TI->first;
1268 bool is7Bit = true;
1269 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1270 NameVals.push_back((unsigned char)Str[i]);
1271 if (Str[i] & 128)
1272 is7Bit = false;
1273 }
1274
1275 // Emit the finished record.
1276 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1277 NameVals.clear();
1278 }
1279
1280 Stream.ExitBlock();
1281}
1282
1283// Emit blockinfo, which defines the standard abbreviations etc.
1284static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1285 // We only want to emit block info records for blocks that have multiple
1286 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
1287 // blocks can defined their abbrevs inline.
1288 Stream.EnterBlockInfoBlock(2);
1289
1290 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1291 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1296 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1297 Abbv) != VST_ENTRY_8_ABBREV)
1298 llvm_unreachable("Unexpected abbrev ordering!");
1299 }
1300
1301 { // 7-bit fixed width VST_ENTRY strings.
1302 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1303 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1307 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1308 Abbv) != VST_ENTRY_7_ABBREV)
1309 llvm_unreachable("Unexpected abbrev ordering!");
1310 }
1311 { // 6-bit char6 VST_ENTRY strings.
1312 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1313 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1317 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1318 Abbv) != VST_ENTRY_6_ABBREV)
1319 llvm_unreachable("Unexpected abbrev ordering!");
1320 }
1321 { // 6-bit char6 VST_BBENTRY strings.
1322 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1323 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1327 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1328 Abbv) != VST_BBENTRY_6_ABBREV)
1329 llvm_unreachable("Unexpected abbrev ordering!");
1330 }
1331
1332
1333
1334 { // SETTYPE abbrev for CONSTANTS_BLOCK.
1335 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1336 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1338 Log2_32_Ceil(VE.getTypes().size()+1)));
1339 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1340 Abbv) != CONSTANTS_SETTYPE_ABBREV)
1341 llvm_unreachable("Unexpected abbrev ordering!");
1342 }
1343
1344 { // INTEGER abbrev for CONSTANTS_BLOCK.
1345 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1346 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1348 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1349 Abbv) != CONSTANTS_INTEGER_ABBREV)
1350 llvm_unreachable("Unexpected abbrev ordering!");
1351 }
1352
1353 { // CE_CAST abbrev for CONSTANTS_BLOCK.
1354 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1355 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
1357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
1358 Log2_32_Ceil(VE.getTypes().size()+1)));
1359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
1360
1361 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1362 Abbv) != CONSTANTS_CE_CAST_Abbrev)
1363 llvm_unreachable("Unexpected abbrev ordering!");
1364 }
1365 { // NULL abbrev for CONSTANTS_BLOCK.
1366 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1367 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1368 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1369 Abbv) != CONSTANTS_NULL_Abbrev)
1370 llvm_unreachable("Unexpected abbrev ordering!");
1371 }
1372
1373 // FIXME: This should only use space for first class types!
1374
1375 { // INST_LOAD abbrev for FUNCTION_BLOCK.
1376 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1377 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1381 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1382 Abbv) != FUNCTION_INST_LOAD_ABBREV)
1383 llvm_unreachable("Unexpected abbrev ordering!");
1384 }
1385 { // INST_BINOP abbrev for FUNCTION_BLOCK.
1386 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1387 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1391 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1392 Abbv) != FUNCTION_INST_BINOP_ABBREV)
1393 llvm_unreachable("Unexpected abbrev ordering!");
1394 }
1395 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1396 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1397 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1402 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1403 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1404 llvm_unreachable("Unexpected abbrev ordering!");
1405 }
1406 { // INST_CAST abbrev for FUNCTION_BLOCK.
1407 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1408 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
1410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
1411 Log2_32_Ceil(VE.getTypes().size()+1)));
1412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1413 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1414 Abbv) != FUNCTION_INST_CAST_ABBREV)
1415 llvm_unreachable("Unexpected abbrev ordering!");
1416 }
1417
1418 { // INST_RET abbrev for FUNCTION_BLOCK.
1419 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1420 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1421 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1422 Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1423 llvm_unreachable("Unexpected abbrev ordering!");
1424 }
1425 { // INST_RET abbrev for FUNCTION_BLOCK.
1426 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1427 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1429 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1430 Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1431 llvm_unreachable("Unexpected abbrev ordering!");
1432 }
1433 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1434 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1435 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1436 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1437 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1438 llvm_unreachable("Unexpected abbrev ordering!");
1439 }
1440
1441 Stream.ExitBlock();
1442}
1443
1444
1445/// WriteModule - Emit the specified module to the bitstream.
1446static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1447 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1448
1449 // Emit the version number if it is non-zero.
1450 if (CurVersion) {
1451 SmallVector<unsigned, 1> Vals;
1452 Vals.push_back(CurVersion);
1453 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1454 }
1455
1456 // Analyze the module, enumerating globals, functions, etc.
1457 ValueEnumerator VE(M);
1458
1459 // Emit blockinfo, which defines the standard abbreviations etc.
1460 WriteBlockInfo(VE, Stream);
1461
1462 // Emit information about parameter attributes.
1463 WriteAttributeTable(VE, Stream);
1464
1465 // Emit information describing all of the types in the module.
1466 WriteTypeTable(VE, Stream);
1467
1468 // Emit top-level description of module, including target triple, inline asm,
1469 // descriptors for global variables, and function prototype info.
1470 WriteModuleInfo(M, VE, Stream);
1471
1472 // Emit constants.
1473 WriteModuleConstants(VE, Stream);
1474
1475 // Emit metadata.
1476 WriteModuleMetadata(VE, Stream);
1477
1478 // Emit function bodies.
1479 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1480 if (!I->isDeclaration())
1481 WriteFunction(*I, VE, Stream);
1482
1483 // Emit metadata.
1484 WriteModuleMetadataStore(M, Stream);
1485
1486 // Emit the type symbol table information.
1487 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1488
1489 // Emit names for globals/functions etc.
1490 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1491
1492 Stream.ExitBlock();
1493}
1494
1495/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1496/// header and trailer to make it compatible with the system archiver. To do
1497/// this we emit the following header, and then emit a trailer that pads the
1498/// file out to be a multiple of 16 bytes.
1499///
1500/// struct bc_header {
1501/// uint32_t Magic; // 0x0B17C0DE
1502/// uint32_t Version; // Version, currently always 0.
1503/// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1504/// uint32_t BitcodeSize; // Size of traditional bitcode file.
1505/// uint32_t CPUType; // CPU specifier.
1506/// ... potentially more later ...
1507/// };
1508enum {
1509 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1510 DarwinBCHeaderSize = 5*4
1511};
1512
1513static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1514 const std::string &TT) {
1515 unsigned CPUType = ~0U;
1516
1517 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a
1518 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the
1519 // specific constants here because they are implicitly part of the Darwin ABI.
1520 enum {
1521 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
1522 DARWIN_CPU_TYPE_X86 = 7,
1523 DARWIN_CPU_TYPE_POWERPC = 18
1524 };
1525
1526 if (TT.find("x86_64-") == 0)
1527 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1528 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1529 TT[4] == '-' && TT[1] - '3' < 6)
1530 CPUType = DARWIN_CPU_TYPE_X86;
1531 else if (TT.find("powerpc-") == 0)
1532 CPUType = DARWIN_CPU_TYPE_POWERPC;
1533 else if (TT.find("powerpc64-") == 0)
1534 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1535
1536 // Traditional Bitcode starts after header.
1537 unsigned BCOffset = DarwinBCHeaderSize;
1538
1539 Stream.Emit(0x0B17C0DE, 32);
1540 Stream.Emit(0 , 32); // Version.
1541 Stream.Emit(BCOffset , 32);
1542 Stream.Emit(0 , 32); // Filled in later.
1543 Stream.Emit(CPUType , 32);
1544}
1545
1546/// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1547/// finalize the header.
1548static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1549 // Update the size field in the header.
1550 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1551
1552 // If the file is not a multiple of 16 bytes, insert dummy padding.
1553 while (BufferSize & 15) {
1554 Stream.Emit(0, 8);
1555 ++BufferSize;
1556 }
1557}
1558
1559
1560/// WriteBitcodeToFile - Write the specified module to the specified output
1561/// stream.
1562void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1563 std::vector<unsigned char> Buffer;
1564 BitstreamWriter Stream(Buffer);
1565
1566 Buffer.reserve(256*1024);
1567
1568 WriteBitcodeToStream( M, Stream );
1569
1570 // If writing to stdout, set binary mode.
1571 if (&llvm::outs() == &Out)
1572 sys::Program::ChangeStdoutToBinary();
1573
1574 // Write the generated bitstream to "Out".
1575 Out.write((char*)&Buffer.front(), Buffer.size());
1576
1577 // Make sure it hits disk now.
1578 Out.flush();
1579}
1580
1581/// WriteBitcodeToStream - Write the specified module to the specified output
1582/// stream.
1583void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1584 // If this is darwin, emit a file header and trailer if needed.
1585 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1586 if (isDarwin)
1587 EmitDarwinBCHeader(Stream, M->getTargetTriple());
1588
1589 // Emit the file header.
1590 Stream.Emit((unsigned)'B', 8);
1591 Stream.Emit((unsigned)'C', 8);
1592 Stream.Emit(0x0, 4);
1593 Stream.Emit(0xC, 4);
1594 Stream.Emit(0xE, 4);
1595 Stream.Emit(0xD, 4);
1596
1597 // Emit the module.
1598 WriteModule(M, Stream);
1599
1600 if (isDarwin)
1601 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1602}