blob: 8a124dc79bdd1298f10619196cd646d1fa1dbaf3 [file] [log] [blame]
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass. For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form. This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function. It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block). If a physical
24// register is not register allocatable, it is not tracked. This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Target/TargetRegisterInfo.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/ADT/DepthFirstIterator.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/STLExtras.h"
41#include <algorithm>
42using namespace llvm;
43
44char LiveVariables::ID = 0;
45static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
46
47
48void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
49 AU.addRequiredID(UnreachableMachineBlockElimID);
50 AU.setPreservesAll();
51 MachineFunctionPass::getAnalysisUsage(AU);
52}
53
54MachineInstr *
55LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const {
56 for (unsigned i = 0, e = Kills.size(); i != e; ++i)
57 if (Kills[i]->getParent() == MBB)
58 return Kills[i];
59 return NULL;
60}
61
62void LiveVariables::VarInfo::dump() const {
63 dbgs() << " Alive in blocks: ";
64 for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
65 E = AliveBlocks.end(); I != E; ++I)
66 dbgs() << *I << ", ";
67 dbgs() << "\n Killed by:";
68 if (Kills.empty())
69 dbgs() << " No instructions.\n";
70 else {
71 for (unsigned i = 0, e = Kills.size(); i != e; ++i)
72 dbgs() << "\n #" << i << ": " << *Kills[i];
73 dbgs() << "\n";
74 }
75}
76
77/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
78LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
79 assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
80 "getVarInfo: not a virtual register!");
81 RegIdx -= TargetRegisterInfo::FirstVirtualRegister;
82 if (RegIdx >= VirtRegInfo.size()) {
83 if (RegIdx >= 2*VirtRegInfo.size())
84 VirtRegInfo.resize(RegIdx*2);
85 else
86 VirtRegInfo.resize(2*VirtRegInfo.size());
87 }
88 return VirtRegInfo[RegIdx];
89}
90
91void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
92 MachineBasicBlock *DefBlock,
93 MachineBasicBlock *MBB,
94 std::vector<MachineBasicBlock*> &WorkList) {
95 unsigned BBNum = MBB->getNumber();
96
97 // Check to see if this basic block is one of the killing blocks. If so,
98 // remove it.
99 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
100 if (VRInfo.Kills[i]->getParent() == MBB) {
101 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry
102 break;
103 }
104
105 if (MBB == DefBlock) return; // Terminate recursion
106
107 if (VRInfo.AliveBlocks.test(BBNum))
108 return; // We already know the block is live
109
110 // Mark the variable known alive in this bb
111 VRInfo.AliveBlocks.set(BBNum);
112
113 for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
114 E = MBB->pred_rend(); PI != E; ++PI)
115 WorkList.push_back(*PI);
116}
117
118void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
119 MachineBasicBlock *DefBlock,
120 MachineBasicBlock *MBB) {
121 std::vector<MachineBasicBlock*> WorkList;
122 MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
123
124 while (!WorkList.empty()) {
125 MachineBasicBlock *Pred = WorkList.back();
126 WorkList.pop_back();
127 MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
128 }
129}
130
131void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
132 MachineInstr *MI) {
133 assert(MRI->getVRegDef(reg) && "Register use before def!");
134
135 unsigned BBNum = MBB->getNumber();
136
137 VarInfo& VRInfo = getVarInfo(reg);
138 VRInfo.NumUses++;
139
140 // Check to see if this basic block is already a kill block.
141 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
142 // Yes, this register is killed in this basic block already. Increase the
143 // live range by updating the kill instruction.
144 VRInfo.Kills.back() = MI;
145 return;
146 }
147
148#ifndef NDEBUG
149 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
150 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
151#endif
152
153 // This situation can occur:
154 //
155 // ,------.
156 // | |
157 // | v
158 // | t2 = phi ... t1 ...
159 // | |
160 // | v
161 // | t1 = ...
162 // | ... = ... t1 ...
163 // | |
164 // `------'
165 //
166 // where there is a use in a PHI node that's a predecessor to the defining
167 // block. We don't want to mark all predecessors as having the value "alive"
168 // in this case.
169 if (MBB == MRI->getVRegDef(reg)->getParent()) return;
170
171 // Add a new kill entry for this basic block. If this virtual register is
172 // already marked as alive in this basic block, that means it is alive in at
173 // least one of the successor blocks, it's not a kill.
174 if (!VRInfo.AliveBlocks.test(BBNum))
175 VRInfo.Kills.push_back(MI);
176
177 // Update all dominating blocks to mark them as "known live".
178 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
179 E = MBB->pred_end(); PI != E; ++PI)
180 MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
181}
182
183void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
184 VarInfo &VRInfo = getVarInfo(Reg);
185
186 if (VRInfo.AliveBlocks.empty())
187 // If vr is not alive in any block, then defaults to dead.
188 VRInfo.Kills.push_back(MI);
189}
190
191/// FindLastPartialDef - Return the last partial def of the specified register.
192/// Also returns the sub-registers that're defined by the instruction.
193MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
194 SmallSet<unsigned,4> &PartDefRegs) {
195 unsigned LastDefReg = 0;
196 unsigned LastDefDist = 0;
197 MachineInstr *LastDef = NULL;
198 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
199 unsigned SubReg = *SubRegs; ++SubRegs) {
200 MachineInstr *Def = PhysRegDef[SubReg];
201 if (!Def)
202 continue;
203 unsigned Dist = DistanceMap[Def];
204 if (Dist > LastDefDist) {
205 LastDefReg = SubReg;
206 LastDef = Def;
207 LastDefDist = Dist;
208 }
209 }
210
211 if (!LastDef)
212 return 0;
213
214 PartDefRegs.insert(LastDefReg);
215 for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) {
216 MachineOperand &MO = LastDef->getOperand(i);
217 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
218 continue;
219 unsigned DefReg = MO.getReg();
220 if (TRI->isSubRegister(Reg, DefReg)) {
221 PartDefRegs.insert(DefReg);
222 for (const unsigned *SubRegs = TRI->getSubRegisters(DefReg);
223 unsigned SubReg = *SubRegs; ++SubRegs)
224 PartDefRegs.insert(SubReg);
225 }
226 }
227 return LastDef;
228}
229
230/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
231/// implicit defs to a machine instruction if there was an earlier def of its
232/// super-register.
233void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
234 MachineInstr *LastDef = PhysRegDef[Reg];
235 // If there was a previous use or a "full" def all is well.
236 if (!LastDef && !PhysRegUse[Reg]) {
237 // Otherwise, the last sub-register def implicitly defines this register.
238 // e.g.
239 // AH =
240 // AL = ... <imp-def EAX>, <imp-kill AH>
241 // = AH
242 // ...
243 // = EAX
244 // All of the sub-registers must have been defined before the use of Reg!
245 SmallSet<unsigned, 4> PartDefRegs;
246 MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs);
247 // If LastPartialDef is NULL, it must be using a livein register.
248 if (LastPartialDef) {
249 LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
250 true/*IsImp*/));
251 PhysRegDef[Reg] = LastPartialDef;
252 SmallSet<unsigned, 8> Processed;
253 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
254 unsigned SubReg = *SubRegs; ++SubRegs) {
255 if (Processed.count(SubReg))
256 continue;
257 if (PartDefRegs.count(SubReg))
258 continue;
259 // This part of Reg was defined before the last partial def. It's killed
260 // here.
261 LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
262 false/*IsDef*/,
263 true/*IsImp*/));
264 PhysRegDef[SubReg] = LastPartialDef;
265 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
266 Processed.insert(*SS);
267 }
268 }
269 }
270 else if (LastDef && !PhysRegUse[Reg] &&
271 !LastDef->findRegisterDefOperand(Reg))
272 // Last def defines the super register, add an implicit def of reg.
273 LastDef->addOperand(MachineOperand::CreateReg(Reg,
274 true/*IsDef*/, true/*IsImp*/));
275
276 // Remember this use.
277 PhysRegUse[Reg] = MI;
278 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
279 unsigned SubReg = *SubRegs; ++SubRegs)
280 PhysRegUse[SubReg] = MI;
281}
282
283/// FindLastRefOrPartRef - Return the last reference or partial reference of
284/// the specified register.
285MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) {
286 MachineInstr *LastDef = PhysRegDef[Reg];
287 MachineInstr *LastUse = PhysRegUse[Reg];
288 if (!LastDef && !LastUse)
289 return false;
290
291 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
292 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
293 unsigned LastPartDefDist = 0;
294 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
295 unsigned SubReg = *SubRegs; ++SubRegs) {
296 MachineInstr *Def = PhysRegDef[SubReg];
297 if (Def && Def != LastDef) {
298 // There was a def of this sub-register in between. This is a partial
299 // def, keep track of the last one.
300 unsigned Dist = DistanceMap[Def];
301 if (Dist > LastPartDefDist)
302 LastPartDefDist = Dist;
303 } else if (MachineInstr *Use = PhysRegUse[SubReg]) {
304 unsigned Dist = DistanceMap[Use];
305 if (Dist > LastRefOrPartRefDist) {
306 LastRefOrPartRefDist = Dist;
307 LastRefOrPartRef = Use;
308 }
309 }
310 }
311
312 return LastRefOrPartRef;
313}
314
315bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
316 MachineInstr *LastDef = PhysRegDef[Reg];
317 MachineInstr *LastUse = PhysRegUse[Reg];
318 if (!LastDef && !LastUse)
319 return false;
320
321 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
322 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
323 // The whole register is used.
324 // AL =
325 // AH =
326 //
327 // = AX
328 // = AL, AX<imp-use, kill>
329 // AX =
330 //
331 // Or whole register is defined, but not used at all.
332 // AX<dead> =
333 // ...
334 // AX =
335 //
336 // Or whole register is defined, but only partly used.
337 // AX<dead> = AL<imp-def>
338 // = AL<kill>
339 // AX =
340 MachineInstr *LastPartDef = 0;
341 unsigned LastPartDefDist = 0;
342 SmallSet<unsigned, 8> PartUses;
343 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
344 unsigned SubReg = *SubRegs; ++SubRegs) {
345 MachineInstr *Def = PhysRegDef[SubReg];
346 if (Def && Def != LastDef) {
347 // There was a def of this sub-register in between. This is a partial
348 // def, keep track of the last one.
349 unsigned Dist = DistanceMap[Def];
350 if (Dist > LastPartDefDist) {
351 LastPartDefDist = Dist;
352 LastPartDef = Def;
353 }
354 continue;
355 }
356 if (MachineInstr *Use = PhysRegUse[SubReg]) {
357 PartUses.insert(SubReg);
358 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
359 PartUses.insert(*SS);
360 unsigned Dist = DistanceMap[Use];
361 if (Dist > LastRefOrPartRefDist) {
362 LastRefOrPartRefDist = Dist;
363 LastRefOrPartRef = Use;
364 }
365 }
366 }
367
368 if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) {
369 if (LastPartDef)
370 // The last partial def kills the register.
371 LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
372 true/*IsImp*/, true/*IsKill*/));
373 else {
374 MachineOperand *MO =
375 LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI);
376 bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg;
377 // If the last reference is the last def, then it's not used at all.
378 // That is, unless we are currently processing the last reference itself.
379 LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
380 if (NeedEC) {
381 // If we are adding a subreg def and the superreg def is marked early
382 // clobber, add an early clobber marker to the subreg def.
383 MO = LastRefOrPartRef->findRegisterDefOperand(Reg);
384 if (MO)
385 MO->setIsEarlyClobber();
386 }
387 }
388 } else if (!PhysRegUse[Reg]) {
389 // Partial uses. Mark register def dead and add implicit def of
390 // sub-registers which are used.
391 // EAX<dead> = op AL<imp-def>
392 // That is, EAX def is dead but AL def extends pass it.
393 PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
394 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
395 unsigned SubReg = *SubRegs; ++SubRegs) {
396 if (!PartUses.count(SubReg))
397 continue;
398 bool NeedDef = true;
399 if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
400 MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
401 if (MO) {
402 NeedDef = false;
403 assert(!MO->isDead());
404 }
405 }
406 if (NeedDef)
407 PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
408 true/*IsDef*/, true/*IsImp*/));
409 MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg);
410 if (LastSubRef)
411 LastSubRef->addRegisterKilled(SubReg, TRI, true);
412 else {
413 LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
414 PhysRegUse[SubReg] = LastRefOrPartRef;
415 for (const unsigned *SSRegs = TRI->getSubRegisters(SubReg);
416 unsigned SSReg = *SSRegs; ++SSRegs)
417 PhysRegUse[SSReg] = LastRefOrPartRef;
418 }
419 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
420 PartUses.erase(*SS);
421 }
422 } else
423 LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
424 return true;
425}
426
427void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
428 SmallVector<unsigned, 4> &Defs) {
429 // What parts of the register are previously defined?
430 SmallSet<unsigned, 32> Live;
431 if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
432 Live.insert(Reg);
433 for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS)
434 Live.insert(*SS);
435 } else {
436 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
437 unsigned SubReg = *SubRegs; ++SubRegs) {
438 // If a register isn't itself defined, but all parts that make up of it
439 // are defined, then consider it also defined.
440 // e.g.
441 // AL =
442 // AH =
443 // = AX
444 if (Live.count(SubReg))
445 continue;
446 if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
447 Live.insert(SubReg);
448 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
449 Live.insert(*SS);
450 }
451 }
452 }
453
454 // Start from the largest piece, find the last time any part of the register
455 // is referenced.
456 HandlePhysRegKill(Reg, MI);
457 // Only some of the sub-registers are used.
458 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
459 unsigned SubReg = *SubRegs; ++SubRegs) {
460 if (!Live.count(SubReg))
461 // Skip if this sub-register isn't defined.
462 continue;
463 HandlePhysRegKill(SubReg, MI);
464 }
465
466 if (MI)
467 Defs.push_back(Reg); // Remember this def.
468}
469
470void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI,
471 SmallVector<unsigned, 4> &Defs) {
472 while (!Defs.empty()) {
473 unsigned Reg = Defs.back();
474 Defs.pop_back();
475 PhysRegDef[Reg] = MI;
476 PhysRegUse[Reg] = NULL;
477 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
478 unsigned SubReg = *SubRegs; ++SubRegs) {
479 PhysRegDef[SubReg] = MI;
480 PhysRegUse[SubReg] = NULL;
481 }
482 }
483}
484
485namespace {
486 struct RegSorter {
487 const TargetRegisterInfo *TRI;
488
489 RegSorter(const TargetRegisterInfo *tri) : TRI(tri) { }
490 bool operator()(unsigned A, unsigned B) {
491 if (TRI->isSubRegister(A, B))
492 return true;
493 else if (TRI->isSubRegister(B, A))
494 return false;
495 return A < B;
496 }
497 };
498}
499
500bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
501 MF = &mf;
502 MRI = &mf.getRegInfo();
503 TRI = MF->getTarget().getRegisterInfo();
504
505 ReservedRegisters = TRI->getReservedRegs(mf);
506
507 unsigned NumRegs = TRI->getNumRegs();
508 PhysRegDef = new MachineInstr*[NumRegs];
509 PhysRegUse = new MachineInstr*[NumRegs];
510 PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
511 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0);
512 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0);
513
514 /// Get some space for a respectable number of registers.
515 VirtRegInfo.resize(64);
516
517 analyzePHINodes(mf);
518
519 // Calculate live variable information in depth first order on the CFG of the
520 // function. This guarantees that we will see the definition of a virtual
521 // register before its uses due to dominance properties of SSA (except for PHI
522 // nodes, which are treated as a special case).
523 MachineBasicBlock *Entry = MF->begin();
524 SmallPtrSet<MachineBasicBlock*,16> Visited;
525
526 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
527 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
528 DFI != E; ++DFI) {
529 MachineBasicBlock *MBB = *DFI;
530
531 // Mark live-in registers as live-in.
532 SmallVector<unsigned, 4> Defs;
533 for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
534 EE = MBB->livein_end(); II != EE; ++II) {
535 assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
536 "Cannot have a live-in virtual register!");
537 HandlePhysRegDef(*II, 0, Defs);
538 }
539
540 // Loop over all of the instructions, processing them.
541 DistanceMap.clear();
542 unsigned Dist = 0;
543 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
544 I != E; ++I) {
545 MachineInstr *MI = I;
546 if (MI->isDebugValue())
547 continue;
548 DistanceMap.insert(std::make_pair(MI, Dist++));
549
550 // Process all of the operands of the instruction...
551 unsigned NumOperandsToProcess = MI->getNumOperands();
552
553 // Unless it is a PHI node. In this case, ONLY process the DEF, not any
554 // of the uses. They will be handled in other basic blocks.
555 if (MI->isPHI())
556 NumOperandsToProcess = 1;
557
558 SmallVector<unsigned, 4> UseRegs;
559 SmallVector<unsigned, 4> DefRegs;
560 for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
561 const MachineOperand &MO = MI->getOperand(i);
562 if (!MO.isReg() || MO.getReg() == 0)
563 continue;
564 unsigned MOReg = MO.getReg();
565 if (MO.isUse())
566 UseRegs.push_back(MOReg);
567 if (MO.isDef())
568 DefRegs.push_back(MOReg);
569 }
570
571 // Process all uses.
572 for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
573 unsigned MOReg = UseRegs[i];
574 if (TargetRegisterInfo::isVirtualRegister(MOReg))
575 HandleVirtRegUse(MOReg, MBB, MI);
576 else if (!ReservedRegisters[MOReg])
577 HandlePhysRegUse(MOReg, MI);
578 }
579
580 // Process all defs.
581 for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
582 unsigned MOReg = DefRegs[i];
583 if (TargetRegisterInfo::isVirtualRegister(MOReg))
584 HandleVirtRegDef(MOReg, MI);
585 else if (!ReservedRegisters[MOReg])
586 HandlePhysRegDef(MOReg, MI, Defs);
587 }
588 UpdatePhysRegDefs(MI, Defs);
589 }
590
591 // Handle any virtual assignments from PHI nodes which might be at the
592 // bottom of this basic block. We check all of our successor blocks to see
593 // if they have PHI nodes, and if so, we simulate an assignment at the end
594 // of the current block.
595 if (!PHIVarInfo[MBB->getNumber()].empty()) {
596 SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
597
598 for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
599 E = VarInfoVec.end(); I != E; ++I)
600 // Mark it alive only in the block we are representing.
601 MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
602 MBB);
603 }
604
605 // Finally, if the last instruction in the block is a return, make sure to
606 // mark it as using all of the live-out values in the function.
607 if (!MBB->empty() && MBB->back().getDesc().isReturn()) {
608 MachineInstr *Ret = &MBB->back();
609
610 for (MachineRegisterInfo::liveout_iterator
611 I = MF->getRegInfo().liveout_begin(),
612 E = MF->getRegInfo().liveout_end(); I != E; ++I) {
613 assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
614 "Cannot have a live-out virtual register!");
615 HandlePhysRegUse(*I, Ret);
616
617 // Add live-out registers as implicit uses.
618 if (!Ret->readsRegister(*I))
619 Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
620 }
621 }
622
623 // Loop over PhysRegDef / PhysRegUse, killing any registers that are
624 // available at the end of the basic block.
625 for (unsigned i = 0; i != NumRegs; ++i)
626 if (PhysRegDef[i] || PhysRegUse[i])
627 HandlePhysRegDef(i, 0, Defs);
628
629 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0);
630 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0);
631 }
632
633 // Convert and transfer the dead / killed information we have gathered into
634 // VirtRegInfo onto MI's.
635 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
636 for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j)
637 if (VirtRegInfo[i].Kills[j] ==
638 MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister))
639 VirtRegInfo[i]
640 .Kills[j]->addRegisterDead(i +
641 TargetRegisterInfo::FirstVirtualRegister,
642 TRI);
643 else
644 VirtRegInfo[i]
645 .Kills[j]->addRegisterKilled(i +
646 TargetRegisterInfo::FirstVirtualRegister,
647 TRI);
648
649 // Check to make sure there are no unreachable blocks in the MC CFG for the
650 // function. If so, it is due to a bug in the instruction selector or some
651 // other part of the code generator if this happens.
652#ifndef NDEBUG
653 for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
654 assert(Visited.count(&*i) != 0 && "unreachable basic block found");
655#endif
656
657 delete[] PhysRegDef;
658 delete[] PhysRegUse;
659 delete[] PHIVarInfo;
660
661 return false;
662}
663
664/// replaceKillInstruction - Update register kill info by replacing a kill
665/// instruction with a new one.
666void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
667 MachineInstr *NewMI) {
668 VarInfo &VI = getVarInfo(Reg);
669 std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
670}
671
672/// removeVirtualRegistersKilled - Remove all killed info for the specified
673/// instruction.
674void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
675 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
676 MachineOperand &MO = MI->getOperand(i);
677 if (MO.isReg() && MO.isKill()) {
678 MO.setIsKill(false);
679 unsigned Reg = MO.getReg();
680 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
681 bool removed = getVarInfo(Reg).removeKill(MI);
682 assert(removed && "kill not in register's VarInfo?");
683 removed = true;
684 }
685 }
686 }
687}
688
689/// analyzePHINodes - Gather information about the PHI nodes in here. In
690/// particular, we want to map the variable information of a virtual register
691/// which is used in a PHI node. We map that to the BB the vreg is coming from.
692///
693void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
694 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
695 I != E; ++I)
696 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
697 BBI != BBE && BBI->isPHI(); ++BBI)
698 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
699 PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
700 .push_back(BBI->getOperand(i).getReg());
701}
702
703bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB,
704 unsigned Reg,
705 MachineRegisterInfo &MRI) {
706 unsigned Num = MBB.getNumber();
707
708 // Reg is live-through.
709 if (AliveBlocks.test(Num))
710 return true;
711
712 // Registers defined in MBB cannot be live in.
713 const MachineInstr *Def = MRI.getVRegDef(Reg);
714 if (Def && Def->getParent() == &MBB)
715 return false;
716
717 // Reg was not defined in MBB, was it killed here?
718 return findKill(&MBB);
719}
720
721bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) {
722 LiveVariables::VarInfo &VI = getVarInfo(Reg);
723
724 // Loop over all of the successors of the basic block, checking to see if
725 // the value is either live in the block, or if it is killed in the block.
726 std::vector<MachineBasicBlock*> OpSuccBlocks;
727 for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
728 E = MBB.succ_end(); SI != E; ++SI) {
729 MachineBasicBlock *SuccMBB = *SI;
730
731 // Is it alive in this successor?
732 unsigned SuccIdx = SuccMBB->getNumber();
733 if (VI.AliveBlocks.test(SuccIdx))
734 return true;
735 OpSuccBlocks.push_back(SuccMBB);
736 }
737
738 // Check to see if this value is live because there is a use in a successor
739 // that kills it.
740 switch (OpSuccBlocks.size()) {
741 case 1: {
742 MachineBasicBlock *SuccMBB = OpSuccBlocks[0];
743 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
744 if (VI.Kills[i]->getParent() == SuccMBB)
745 return true;
746 break;
747 }
748 case 2: {
749 MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1];
750 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
751 if (VI.Kills[i]->getParent() == SuccMBB1 ||
752 VI.Kills[i]->getParent() == SuccMBB2)
753 return true;
754 break;
755 }
756 default:
757 std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
758 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
759 if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
760 VI.Kills[i]->getParent()))
761 return true;
762 }
763 return false;
764}
765
766/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
767/// variables that are live out of DomBB will be marked as passing live through
768/// BB.
769void LiveVariables::addNewBlock(MachineBasicBlock *BB,
770 MachineBasicBlock *DomBB,
771 MachineBasicBlock *SuccBB) {
772 const unsigned NumNew = BB->getNumber();
773
774 // All registers used by PHI nodes in SuccBB must be live through BB.
775 for (MachineBasicBlock::const_iterator BBI = SuccBB->begin(),
776 BBE = SuccBB->end(); BBI != BBE && BBI->isPHI(); ++BBI)
777 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
778 if (BBI->getOperand(i+1).getMBB() == BB)
779 getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew);
780
781 // Update info for all live variables
782 for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister,
783 E = MRI->getLastVirtReg()+1; Reg != E; ++Reg) {
784 VarInfo &VI = getVarInfo(Reg);
785 if (!VI.AliveBlocks.test(NumNew) && VI.isLiveIn(*SuccBB, Reg, *MRI))
786 VI.AliveBlocks.set(NumNew);
787 }
788}