blob: 434a1e87246ea3456a1c2fb0503a7cecda03dc19 [file] [log] [blame]
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001//===-- MachineVerifier.cpp - Machine Code Verifier -------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Pass to verify generated machine code. The following is checked:
11//
12// Operand counts: All explicit operands must be present.
13//
14// Register classes: All physical and virtual register operands must be
15// compatible with the register class required by the instruction descriptor.
16//
17// Register live intervals: Registers must be defined only once, and must be
18// defined before use.
19//
20// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21// command-line option -verify-machineinstrs, or by defining the environment
22// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23// the verifier errors.
24//===----------------------------------------------------------------------===//
25
26#include "llvm/Function.h"
27#include "llvm/CodeGen/LiveVariables.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineMemOperand.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Target/TargetRegisterInfo.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/ADT/DenseSet.h"
37#include "llvm/ADT/SetOperations.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42using namespace llvm;
43
44namespace {
45 struct MachineVerifier {
46
47 MachineVerifier(Pass *pass, bool allowDoubleDefs) :
48 PASS(pass),
49 allowVirtDoubleDefs(allowDoubleDefs),
50 allowPhysDoubleDefs(allowDoubleDefs),
51 OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
52 {}
53
54 bool runOnMachineFunction(MachineFunction &MF);
55
56 Pass *const PASS;
57 const bool allowVirtDoubleDefs;
58 const bool allowPhysDoubleDefs;
59
60 const char *const OutFileName;
61 raw_ostream *OS;
62 const MachineFunction *MF;
63 const TargetMachine *TM;
64 const TargetRegisterInfo *TRI;
65 const MachineRegisterInfo *MRI;
66
67 unsigned foundErrors;
68
69 typedef SmallVector<unsigned, 16> RegVector;
70 typedef DenseSet<unsigned> RegSet;
71 typedef DenseMap<unsigned, const MachineInstr*> RegMap;
72
73 BitVector regsReserved;
74 RegSet regsLive;
75 RegVector regsDefined, regsDead, regsKilled;
76 RegSet regsLiveInButUnused;
77
78 // Add Reg and any sub-registers to RV
79 void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
80 RV.push_back(Reg);
81 if (TargetRegisterInfo::isPhysicalRegister(Reg))
82 for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++)
83 RV.push_back(*R);
84 }
85
86 struct BBInfo {
87 // Is this MBB reachable from the MF entry point?
88 bool reachable;
89
90 // Vregs that must be live in because they are used without being
91 // defined. Map value is the user.
92 RegMap vregsLiveIn;
93
94 // Vregs that must be dead in because they are defined without being
95 // killed first. Map value is the defining instruction.
96 RegMap vregsDeadIn;
97
98 // Regs killed in MBB. They may be defined again, and will then be in both
99 // regsKilled and regsLiveOut.
100 RegSet regsKilled;
101
102 // Regs defined in MBB and live out. Note that vregs passing through may
103 // be live out without being mentioned here.
104 RegSet regsLiveOut;
105
106 // Vregs that pass through MBB untouched. This set is disjoint from
107 // regsKilled and regsLiveOut.
108 RegSet vregsPassed;
109
110 // Vregs that must pass through MBB because they are needed by a successor
111 // block. This set is disjoint from regsLiveOut.
112 RegSet vregsRequired;
113
114 BBInfo() : reachable(false) {}
115
116 // Add register to vregsPassed if it belongs there. Return true if
117 // anything changed.
118 bool addPassed(unsigned Reg) {
119 if (!TargetRegisterInfo::isVirtualRegister(Reg))
120 return false;
121 if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
122 return false;
123 return vregsPassed.insert(Reg).second;
124 }
125
126 // Same for a full set.
127 bool addPassed(const RegSet &RS) {
128 bool changed = false;
129 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
130 if (addPassed(*I))
131 changed = true;
132 return changed;
133 }
134
135 // Add register to vregsRequired if it belongs there. Return true if
136 // anything changed.
137 bool addRequired(unsigned Reg) {
138 if (!TargetRegisterInfo::isVirtualRegister(Reg))
139 return false;
140 if (regsLiveOut.count(Reg))
141 return false;
142 return vregsRequired.insert(Reg).second;
143 }
144
145 // Same for a full set.
146 bool addRequired(const RegSet &RS) {
147 bool changed = false;
148 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
149 if (addRequired(*I))
150 changed = true;
151 return changed;
152 }
153
154 // Same for a full map.
155 bool addRequired(const RegMap &RM) {
156 bool changed = false;
157 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
158 if (addRequired(I->first))
159 changed = true;
160 return changed;
161 }
162
163 // Live-out registers are either in regsLiveOut or vregsPassed.
164 bool isLiveOut(unsigned Reg) const {
165 return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
166 }
167 };
168
169 // Extra register info per MBB.
170 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
171
172 bool isReserved(unsigned Reg) {
173 return Reg < regsReserved.size() && regsReserved.test(Reg);
174 }
175
176 // Analysis information if available
177 LiveVariables *LiveVars;
178
179 void visitMachineFunctionBefore();
180 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
181 void visitMachineInstrBefore(const MachineInstr *MI);
182 void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
183 void visitMachineInstrAfter(const MachineInstr *MI);
184 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
185 void visitMachineFunctionAfter();
186
187 void report(const char *msg, const MachineFunction *MF);
188 void report(const char *msg, const MachineBasicBlock *MBB);
189 void report(const char *msg, const MachineInstr *MI);
190 void report(const char *msg, const MachineOperand *MO, unsigned MONum);
191
192 void markReachable(const MachineBasicBlock *MBB);
193 void calcRegsPassed();
194 void checkPHIOps(const MachineBasicBlock *MBB);
195
196 void calcRegsRequired();
197 void verifyLiveVariables();
198 };
199
200 struct MachineVerifierPass : public MachineFunctionPass {
201 static char ID; // Pass ID, replacement for typeid
202 bool AllowDoubleDefs;
203
204 explicit MachineVerifierPass(bool allowDoubleDefs = false)
205 : MachineFunctionPass(&ID),
206 AllowDoubleDefs(allowDoubleDefs) {}
207
208 void getAnalysisUsage(AnalysisUsage &AU) const {
209 AU.setPreservesAll();
210 MachineFunctionPass::getAnalysisUsage(AU);
211 }
212
213 bool runOnMachineFunction(MachineFunction &MF) {
214 MF.verify(this, AllowDoubleDefs);
215 return false;
216 }
217 };
218
219}
220
221char MachineVerifierPass::ID = 0;
222static RegisterPass<MachineVerifierPass>
223MachineVer("machineverifier", "Verify generated machine code");
224static const PassInfo *const MachineVerifyID = &MachineVer;
225
226FunctionPass *llvm::createMachineVerifierPass(bool allowPhysDoubleDefs) {
227 return new MachineVerifierPass(allowPhysDoubleDefs);
228}
229
230void MachineFunction::verify(Pass *p, bool allowDoubleDefs) const {
231 MachineVerifier(p, allowDoubleDefs)
232 .runOnMachineFunction(const_cast<MachineFunction&>(*this));
233}
234
235bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
236 raw_ostream *OutFile = 0;
237 if (OutFileName) {
238 std::string ErrorInfo;
239 OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
240 raw_fd_ostream::F_Append);
241 if (!ErrorInfo.empty()) {
242 errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
243 exit(1);
244 }
245
246 OS = OutFile;
247 } else {
248 OS = &errs();
249 }
250
251 foundErrors = 0;
252
253 this->MF = &MF;
254 TM = &MF.getTarget();
255 TRI = TM->getRegisterInfo();
256 MRI = &MF.getRegInfo();
257
258 if (PASS) {
259 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
260 } else {
261 LiveVars = NULL;
262 }
263
264 visitMachineFunctionBefore();
265 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
266 MFI!=MFE; ++MFI) {
267 visitMachineBasicBlockBefore(MFI);
268 for (MachineBasicBlock::const_iterator MBBI = MFI->begin(),
269 MBBE = MFI->end(); MBBI != MBBE; ++MBBI) {
270 visitMachineInstrBefore(MBBI);
271 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
272 visitMachineOperand(&MBBI->getOperand(I), I);
273 visitMachineInstrAfter(MBBI);
274 }
275 visitMachineBasicBlockAfter(MFI);
276 }
277 visitMachineFunctionAfter();
278
279 if (OutFile)
280 delete OutFile;
281 else if (foundErrors)
282 llvm_report_error("Found "+Twine(foundErrors)+" machine code errors.");
283
284 // Clean up.
285 regsLive.clear();
286 regsDefined.clear();
287 regsDead.clear();
288 regsKilled.clear();
289 regsLiveInButUnused.clear();
290 MBBInfoMap.clear();
291
292 return false; // no changes
293}
294
295void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
296 assert(MF);
297 *OS << '\n';
298 if (!foundErrors++)
299 MF->print(*OS);
300 *OS << "*** Bad machine code: " << msg << " ***\n"
301 << "- function: " << MF->getFunction()->getNameStr() << "\n";
302}
303
304void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
305 assert(MBB);
306 report(msg, MBB->getParent());
307 *OS << "- basic block: " << MBB->getName()
308 << " " << (void*)MBB
309 << " (BB#" << MBB->getNumber() << ")\n";
310}
311
312void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
313 assert(MI);
314 report(msg, MI->getParent());
315 *OS << "- instruction: ";
316 MI->print(*OS, TM);
317}
318
319void MachineVerifier::report(const char *msg,
320 const MachineOperand *MO, unsigned MONum) {
321 assert(MO);
322 report(msg, MO->getParent());
323 *OS << "- operand " << MONum << ": ";
324 MO->print(*OS, TM);
325 *OS << "\n";
326}
327
328void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
329 BBInfo &MInfo = MBBInfoMap[MBB];
330 if (!MInfo.reachable) {
331 MInfo.reachable = true;
332 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
333 SuE = MBB->succ_end(); SuI != SuE; ++SuI)
334 markReachable(*SuI);
335 }
336}
337
338void MachineVerifier::visitMachineFunctionBefore() {
339 regsReserved = TRI->getReservedRegs(*MF);
340
341 // A sub-register of a reserved register is also reserved
342 for (int Reg = regsReserved.find_first(); Reg>=0;
343 Reg = regsReserved.find_next(Reg)) {
344 for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) {
345 // FIXME: This should probably be:
346 // assert(regsReserved.test(*Sub) && "Non-reserved sub-register");
347 regsReserved.set(*Sub);
348 }
349 }
350 markReachable(&MF->front());
351}
352
353// Does iterator point to a and b as the first two elements?
354bool matchPair(MachineBasicBlock::const_succ_iterator i,
355 const MachineBasicBlock *a, const MachineBasicBlock *b) {
356 if (*i == a)
357 return *++i == b;
358 if (*i == b)
359 return *++i == a;
360 return false;
361}
362
363void
364MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
365 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
366
367 // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
368 MachineBasicBlock *TBB = 0, *FBB = 0;
369 SmallVector<MachineOperand, 4> Cond;
370 if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
371 TBB, FBB, Cond)) {
372 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
373 // check whether its answers match up with reality.
374 if (!TBB && !FBB) {
375 // Block falls through to its successor.
376 MachineFunction::const_iterator MBBI = MBB;
377 ++MBBI;
378 if (MBBI == MF->end()) {
379 // It's possible that the block legitimately ends with a noreturn
380 // call or an unreachable, in which case it won't actually fall
381 // out the bottom of the function.
382 } else if (MBB->succ_empty()) {
383 // It's possible that the block legitimately ends with a noreturn
384 // call or an unreachable, in which case it won't actuall fall
385 // out of the block.
386 } else if (MBB->succ_size() != 1) {
387 report("MBB exits via unconditional fall-through but doesn't have "
388 "exactly one CFG successor!", MBB);
389 } else if (MBB->succ_begin()[0] != MBBI) {
390 report("MBB exits via unconditional fall-through but its successor "
391 "differs from its CFG successor!", MBB);
392 }
393 if (!MBB->empty() && MBB->back().getDesc().isBarrier()) {
394 report("MBB exits via unconditional fall-through but ends with a "
395 "barrier instruction!", MBB);
396 }
397 if (!Cond.empty()) {
398 report("MBB exits via unconditional fall-through but has a condition!",
399 MBB);
400 }
401 } else if (TBB && !FBB && Cond.empty()) {
402 // Block unconditionally branches somewhere.
403 if (MBB->succ_size() != 1) {
404 report("MBB exits via unconditional branch but doesn't have "
405 "exactly one CFG successor!", MBB);
406 } else if (MBB->succ_begin()[0] != TBB) {
407 report("MBB exits via unconditional branch but the CFG "
408 "successor doesn't match the actual successor!", MBB);
409 }
410 if (MBB->empty()) {
411 report("MBB exits via unconditional branch but doesn't contain "
412 "any instructions!", MBB);
413 } else if (!MBB->back().getDesc().isBarrier()) {
414 report("MBB exits via unconditional branch but doesn't end with a "
415 "barrier instruction!", MBB);
416 } else if (!MBB->back().getDesc().isTerminator()) {
417 report("MBB exits via unconditional branch but the branch isn't a "
418 "terminator instruction!", MBB);
419 }
420 } else if (TBB && !FBB && !Cond.empty()) {
421 // Block conditionally branches somewhere, otherwise falls through.
422 MachineFunction::const_iterator MBBI = MBB;
423 ++MBBI;
424 if (MBBI == MF->end()) {
425 report("MBB conditionally falls through out of function!", MBB);
426 } if (MBB->succ_size() != 2) {
427 report("MBB exits via conditional branch/fall-through but doesn't have "
428 "exactly two CFG successors!", MBB);
429 } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
430 report("MBB exits via conditional branch/fall-through but the CFG "
431 "successors don't match the actual successors!", MBB);
432 }
433 if (MBB->empty()) {
434 report("MBB exits via conditional branch/fall-through but doesn't "
435 "contain any instructions!", MBB);
436 } else if (MBB->back().getDesc().isBarrier()) {
437 report("MBB exits via conditional branch/fall-through but ends with a "
438 "barrier instruction!", MBB);
439 } else if (!MBB->back().getDesc().isTerminator()) {
440 report("MBB exits via conditional branch/fall-through but the branch "
441 "isn't a terminator instruction!", MBB);
442 }
443 } else if (TBB && FBB) {
444 // Block conditionally branches somewhere, otherwise branches
445 // somewhere else.
446 if (MBB->succ_size() != 2) {
447 report("MBB exits via conditional branch/branch but doesn't have "
448 "exactly two CFG successors!", MBB);
449 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
450 report("MBB exits via conditional branch/branch but the CFG "
451 "successors don't match the actual successors!", MBB);
452 }
453 if (MBB->empty()) {
454 report("MBB exits via conditional branch/branch but doesn't "
455 "contain any instructions!", MBB);
456 } else if (!MBB->back().getDesc().isBarrier()) {
457 report("MBB exits via conditional branch/branch but doesn't end with a "
458 "barrier instruction!", MBB);
459 } else if (!MBB->back().getDesc().isTerminator()) {
460 report("MBB exits via conditional branch/branch but the branch "
461 "isn't a terminator instruction!", MBB);
462 }
463 if (Cond.empty()) {
464 report("MBB exits via conditinal branch/branch but there's no "
465 "condition!", MBB);
466 }
467 } else {
468 report("AnalyzeBranch returned invalid data!", MBB);
469 }
470 }
471
472 regsLive.clear();
473 for (MachineBasicBlock::const_livein_iterator I = MBB->livein_begin(),
474 E = MBB->livein_end(); I != E; ++I) {
475 if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
476 report("MBB live-in list contains non-physical register", MBB);
477 continue;
478 }
479 regsLive.insert(*I);
480 for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++)
481 regsLive.insert(*R);
482 }
483 regsLiveInButUnused = regsLive;
484
485 const MachineFrameInfo *MFI = MF->getFrameInfo();
486 assert(MFI && "Function has no frame info");
487 BitVector PR = MFI->getPristineRegs(MBB);
488 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
489 regsLive.insert(I);
490 for (const unsigned *R = TRI->getSubRegisters(I); *R; R++)
491 regsLive.insert(*R);
492 }
493
494 regsKilled.clear();
495 regsDefined.clear();
496}
497
498void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
499 const TargetInstrDesc &TI = MI->getDesc();
500 if (MI->getNumOperands() < TI.getNumOperands()) {
501 report("Too few operands", MI);
502 *OS << TI.getNumOperands() << " operands expected, but "
503 << MI->getNumExplicitOperands() << " given.\n";
504 }
505
506 // Check the MachineMemOperands for basic consistency.
507 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
508 E = MI->memoperands_end(); I != E; ++I) {
509 if ((*I)->isLoad() && !TI.mayLoad())
510 report("Missing mayLoad flag", MI);
511 if ((*I)->isStore() && !TI.mayStore())
512 report("Missing mayStore flag", MI);
513 }
514}
515
516void
517MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
518 const MachineInstr *MI = MO->getParent();
519 const TargetInstrDesc &TI = MI->getDesc();
520
521 // The first TI.NumDefs operands must be explicit register defines
522 if (MONum < TI.getNumDefs()) {
523 if (!MO->isReg())
524 report("Explicit definition must be a register", MO, MONum);
525 else if (!MO->isDef())
526 report("Explicit definition marked as use", MO, MONum);
527 else if (MO->isImplicit())
528 report("Explicit definition marked as implicit", MO, MONum);
529 } else if (MONum < TI.getNumOperands()) {
530 if (MO->isReg()) {
531 if (MO->isDef())
532 report("Explicit operand marked as def", MO, MONum);
533 if (MO->isImplicit())
534 report("Explicit operand marked as implicit", MO, MONum);
535 }
536 } else {
537 // ARM adds %reg0 operands to indicate predicates. We'll allow that.
538 if (MO->isReg() && !MO->isImplicit() && !TI.isVariadic() && MO->getReg())
539 report("Extra explicit operand on non-variadic instruction", MO, MONum);
540 }
541
542 switch (MO->getType()) {
543 case MachineOperand::MO_Register: {
544 const unsigned Reg = MO->getReg();
545 if (!Reg)
546 return;
547
548 // Check Live Variables.
549 if (MO->isUndef()) {
550 // An <undef> doesn't refer to any register, so just skip it.
551 } else if (MO->isUse()) {
552 regsLiveInButUnused.erase(Reg);
553
554 bool isKill = false;
555 if (MO->isKill()) {
556 isKill = true;
557 // Tied operands on two-address instuctions MUST NOT have a <kill> flag.
558 if (MI->isRegTiedToDefOperand(MONum))
559 report("Illegal kill flag on two-address instruction operand",
560 MO, MONum);
561 } else {
562 // TwoAddress instr modifying a reg is treated as kill+def.
563 unsigned defIdx;
564 if (MI->isRegTiedToDefOperand(MONum, &defIdx) &&
565 MI->getOperand(defIdx).getReg() == Reg)
566 isKill = true;
567 }
568 if (isKill) {
569 addRegWithSubRegs(regsKilled, Reg);
570
571 // Check that LiveVars knows this kill
572 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg)) {
573 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
574 if (std::find(VI.Kills.begin(),
575 VI.Kills.end(), MI) == VI.Kills.end())
576 report("Kill missing from LiveVariables", MO, MONum);
577 }
578 }
579
580 // Use of a dead register.
581 if (!regsLive.count(Reg)) {
582 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
583 // Reserved registers may be used even when 'dead'.
584 if (!isReserved(Reg))
585 report("Using an undefined physical register", MO, MONum);
586 } else {
587 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
588 // We don't know which virtual registers are live in, so only complain
589 // if vreg was killed in this MBB. Otherwise keep track of vregs that
590 // must be live in. PHI instructions are handled separately.
591 if (MInfo.regsKilled.count(Reg))
592 report("Using a killed virtual register", MO, MONum);
593 else if (!MI->isPHI())
594 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
595 }
596 }
597 } else {
598 assert(MO->isDef());
599 // Register defined.
600 // TODO: verify that earlyclobber ops are not used.
601 if (MO->isDead())
602 addRegWithSubRegs(regsDead, Reg);
603 else
604 addRegWithSubRegs(regsDefined, Reg);
605 }
606
607 // Check register classes.
608 if (MONum < TI.getNumOperands() && !MO->isImplicit()) {
609 const TargetOperandInfo &TOI = TI.OpInfo[MONum];
610 unsigned SubIdx = MO->getSubReg();
611
612 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
613 unsigned sr = Reg;
614 if (SubIdx) {
615 unsigned s = TRI->getSubReg(Reg, SubIdx);
616 if (!s) {
617 report("Invalid subregister index for physical register",
618 MO, MONum);
619 return;
620 }
621 sr = s;
622 }
623 if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
624 if (!DRC->contains(sr)) {
625 report("Illegal physical register for instruction", MO, MONum);
626 *OS << TRI->getName(sr) << " is not a "
627 << DRC->getName() << " register.\n";
628 }
629 }
630 } else {
631 // Virtual register.
632 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
633 if (SubIdx) {
634 if (RC->subregclasses_begin()+SubIdx >= RC->subregclasses_end()) {
635 report("Invalid subregister index for virtual register", MO, MONum);
636 return;
637 }
638 RC = *(RC->subregclasses_begin()+SubIdx);
639 }
640 if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
641 if (RC != DRC && !RC->hasSuperClass(DRC)) {
642 report("Illegal virtual register for instruction", MO, MONum);
643 *OS << "Expected a " << DRC->getName() << " register, but got a "
644 << RC->getName() << " register\n";
645 }
646 }
647 }
648 }
649 break;
650 }
651
652 case MachineOperand::MO_MachineBasicBlock:
653 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
654 report("PHI operand is not in the CFG", MO, MONum);
655 break;
656
657 default:
658 break;
659 }
660}
661
662void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
663 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
664 set_union(MInfo.regsKilled, regsKilled);
665 set_subtract(regsLive, regsKilled);
666 regsKilled.clear();
667
668 // Verify that both <def> and <def,dead> operands refer to dead registers.
669 RegVector defs(regsDefined);
670 defs.append(regsDead.begin(), regsDead.end());
671
672 for (RegVector::const_iterator I = defs.begin(), E = defs.end();
673 I != E; ++I) {
674 if (regsLive.count(*I)) {
675 if (TargetRegisterInfo::isPhysicalRegister(*I)) {
676 if (!allowPhysDoubleDefs && !isReserved(*I) &&
677 !regsLiveInButUnused.count(*I)) {
678 report("Redefining a live physical register", MI);
679 *OS << "Register " << TRI->getName(*I)
680 << " was defined but already live.\n";
681 }
682 } else {
683 if (!allowVirtDoubleDefs) {
684 report("Redefining a live virtual register", MI);
685 *OS << "Virtual register %reg" << *I
686 << " was defined but already live.\n";
687 }
688 }
689 } else if (TargetRegisterInfo::isVirtualRegister(*I) &&
690 !MInfo.regsKilled.count(*I)) {
691 // Virtual register defined without being killed first must be dead on
692 // entry.
693 MInfo.vregsDeadIn.insert(std::make_pair(*I, MI));
694 }
695 }
696
697 set_subtract(regsLive, regsDead); regsDead.clear();
698 set_union(regsLive, regsDefined); regsDefined.clear();
699}
700
701void
702MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
703 MBBInfoMap[MBB].regsLiveOut = regsLive;
704 regsLive.clear();
705}
706
707// Calculate the largest possible vregsPassed sets. These are the registers that
708// can pass through an MBB live, but may not be live every time. It is assumed
709// that all vregsPassed sets are empty before the call.
710void MachineVerifier::calcRegsPassed() {
711 // First push live-out regs to successors' vregsPassed. Remember the MBBs that
712 // have any vregsPassed.
713 DenseSet<const MachineBasicBlock*> todo;
714 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
715 MFI != MFE; ++MFI) {
716 const MachineBasicBlock &MBB(*MFI);
717 BBInfo &MInfo = MBBInfoMap[&MBB];
718 if (!MInfo.reachable)
719 continue;
720 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
721 SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
722 BBInfo &SInfo = MBBInfoMap[*SuI];
723 if (SInfo.addPassed(MInfo.regsLiveOut))
724 todo.insert(*SuI);
725 }
726 }
727
728 // Iteratively push vregsPassed to successors. This will converge to the same
729 // final state regardless of DenseSet iteration order.
730 while (!todo.empty()) {
731 const MachineBasicBlock *MBB = *todo.begin();
732 todo.erase(MBB);
733 BBInfo &MInfo = MBBInfoMap[MBB];
734 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
735 SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
736 if (*SuI == MBB)
737 continue;
738 BBInfo &SInfo = MBBInfoMap[*SuI];
739 if (SInfo.addPassed(MInfo.vregsPassed))
740 todo.insert(*SuI);
741 }
742 }
743}
744
745// Calculate the set of virtual registers that must be passed through each basic
746// block in order to satisfy the requirements of successor blocks. This is very
747// similar to calcRegsPassed, only backwards.
748void MachineVerifier::calcRegsRequired() {
749 // First push live-in regs to predecessors' vregsRequired.
750 DenseSet<const MachineBasicBlock*> todo;
751 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
752 MFI != MFE; ++MFI) {
753 const MachineBasicBlock &MBB(*MFI);
754 BBInfo &MInfo = MBBInfoMap[&MBB];
755 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
756 PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
757 BBInfo &PInfo = MBBInfoMap[*PrI];
758 if (PInfo.addRequired(MInfo.vregsLiveIn))
759 todo.insert(*PrI);
760 }
761 }
762
763 // Iteratively push vregsRequired to predecessors. This will converge to the
764 // same final state regardless of DenseSet iteration order.
765 while (!todo.empty()) {
766 const MachineBasicBlock *MBB = *todo.begin();
767 todo.erase(MBB);
768 BBInfo &MInfo = MBBInfoMap[MBB];
769 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
770 PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
771 if (*PrI == MBB)
772 continue;
773 BBInfo &SInfo = MBBInfoMap[*PrI];
774 if (SInfo.addRequired(MInfo.vregsRequired))
775 todo.insert(*PrI);
776 }
777 }
778}
779
780// Check PHI instructions at the beginning of MBB. It is assumed that
781// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
782void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
783 for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
784 BBI != BBE && BBI->isPHI(); ++BBI) {
785 DenseSet<const MachineBasicBlock*> seen;
786
787 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
788 unsigned Reg = BBI->getOperand(i).getReg();
789 const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
790 if (!Pre->isSuccessor(MBB))
791 continue;
792 seen.insert(Pre);
793 BBInfo &PrInfo = MBBInfoMap[Pre];
794 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
795 report("PHI operand is not live-out from predecessor",
796 &BBI->getOperand(i), i);
797 }
798
799 // Did we see all predecessors?
800 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
801 PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
802 if (!seen.count(*PrI)) {
803 report("Missing PHI operand", BBI);
804 *OS << "BB#" << (*PrI)->getNumber()
805 << " is a predecessor according to the CFG.\n";
806 }
807 }
808 }
809}
810
811void MachineVerifier::visitMachineFunctionAfter() {
812 calcRegsPassed();
813
814 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
815 MFI != MFE; ++MFI) {
816 BBInfo &MInfo = MBBInfoMap[MFI];
817
818 // Skip unreachable MBBs.
819 if (!MInfo.reachable)
820 continue;
821
822 checkPHIOps(MFI);
823
824 // Verify dead-in virtual registers.
825 if (!allowVirtDoubleDefs) {
826 for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(),
827 PrE = MFI->pred_end(); PrI != PrE; ++PrI) {
828 BBInfo &PrInfo = MBBInfoMap[*PrI];
829 if (!PrInfo.reachable)
830 continue;
831
832 for (RegMap::iterator I = MInfo.vregsDeadIn.begin(),
833 E = MInfo.vregsDeadIn.end(); I != E; ++I) {
834 // DeadIn register must be in neither regsLiveOut or vregsPassed of
835 // any predecessor.
836 if (PrInfo.isLiveOut(I->first)) {
837 report("Live-in virtual register redefined", I->second);
838 *OS << "Register %reg" << I->first
839 << " was live-out from predecessor MBB #"
840 << (*PrI)->getNumber() << ".\n";
841 }
842 }
843 }
844 }
845 }
846
847 // Now check LiveVariables info if available
848 if (LiveVars) {
849 calcRegsRequired();
850 verifyLiveVariables();
851 }
852}
853
854void MachineVerifier::verifyLiveVariables() {
855 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
856 for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister,
857 RegE = MRI->getLastVirtReg()-1; Reg != RegE; ++Reg) {
858 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
859 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
860 MFI != MFE; ++MFI) {
861 BBInfo &MInfo = MBBInfoMap[MFI];
862
863 // Our vregsRequired should be identical to LiveVariables' AliveBlocks
864 if (MInfo.vregsRequired.count(Reg)) {
865 if (!VI.AliveBlocks.test(MFI->getNumber())) {
866 report("LiveVariables: Block missing from AliveBlocks", MFI);
867 *OS << "Virtual register %reg" << Reg
868 << " must be live through the block.\n";
869 }
870 } else {
871 if (VI.AliveBlocks.test(MFI->getNumber())) {
872 report("LiveVariables: Block should not be in AliveBlocks", MFI);
873 *OS << "Virtual register %reg" << Reg
874 << " is not needed live through the block.\n";
875 }
876 }
877 }
878 }
879}
880
881