Shih-wei Liao | e264f62 | 2010-02-10 11:10:31 -0800 | [diff] [blame^] | 1 | //===--- StringMap.cpp - String Hash table map implementation -------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the StringMap class. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/ADT/StringMap.h" |
| 15 | #include "llvm/ADT/StringExtras.h" |
| 16 | #include <cassert> |
| 17 | using namespace llvm; |
| 18 | |
| 19 | StringMapImpl::StringMapImpl(unsigned InitSize, unsigned itemSize) { |
| 20 | ItemSize = itemSize; |
| 21 | |
| 22 | // If a size is specified, initialize the table with that many buckets. |
| 23 | if (InitSize) { |
| 24 | init(InitSize); |
| 25 | return; |
| 26 | } |
| 27 | |
| 28 | // Otherwise, initialize it with zero buckets to avoid the allocation. |
| 29 | TheTable = 0; |
| 30 | NumBuckets = 0; |
| 31 | NumItems = 0; |
| 32 | NumTombstones = 0; |
| 33 | } |
| 34 | |
| 35 | void StringMapImpl::init(unsigned InitSize) { |
| 36 | assert((InitSize & (InitSize-1)) == 0 && |
| 37 | "Init Size must be a power of 2 or zero!"); |
| 38 | NumBuckets = InitSize ? InitSize : 16; |
| 39 | NumItems = 0; |
| 40 | NumTombstones = 0; |
| 41 | |
| 42 | TheTable = (ItemBucket*)calloc(NumBuckets+1, sizeof(ItemBucket)); |
| 43 | |
| 44 | // Allocate one extra bucket, set it to look filled so the iterators stop at |
| 45 | // end. |
| 46 | TheTable[NumBuckets].Item = (StringMapEntryBase*)2; |
| 47 | } |
| 48 | |
| 49 | |
| 50 | /// LookupBucketFor - Look up the bucket that the specified string should end |
| 51 | /// up in. If it already exists as a key in the map, the Item pointer for the |
| 52 | /// specified bucket will be non-null. Otherwise, it will be null. In either |
| 53 | /// case, the FullHashValue field of the bucket will be set to the hash value |
| 54 | /// of the string. |
| 55 | unsigned StringMapImpl::LookupBucketFor(StringRef Name) { |
| 56 | unsigned HTSize = NumBuckets; |
| 57 | if (HTSize == 0) { // Hash table unallocated so far? |
| 58 | init(16); |
| 59 | HTSize = NumBuckets; |
| 60 | } |
| 61 | unsigned FullHashValue = HashString(Name); |
| 62 | unsigned BucketNo = FullHashValue & (HTSize-1); |
| 63 | |
| 64 | unsigned ProbeAmt = 1; |
| 65 | int FirstTombstone = -1; |
| 66 | while (1) { |
| 67 | ItemBucket &Bucket = TheTable[BucketNo]; |
| 68 | StringMapEntryBase *BucketItem = Bucket.Item; |
| 69 | // If we found an empty bucket, this key isn't in the table yet, return it. |
| 70 | if (BucketItem == 0) { |
| 71 | // If we found a tombstone, we want to reuse the tombstone instead of an |
| 72 | // empty bucket. This reduces probing. |
| 73 | if (FirstTombstone != -1) { |
| 74 | TheTable[FirstTombstone].FullHashValue = FullHashValue; |
| 75 | return FirstTombstone; |
| 76 | } |
| 77 | |
| 78 | Bucket.FullHashValue = FullHashValue; |
| 79 | return BucketNo; |
| 80 | } |
| 81 | |
| 82 | if (BucketItem == getTombstoneVal()) { |
| 83 | // Skip over tombstones. However, remember the first one we see. |
| 84 | if (FirstTombstone == -1) FirstTombstone = BucketNo; |
| 85 | } else if (Bucket.FullHashValue == FullHashValue) { |
| 86 | // If the full hash value matches, check deeply for a match. The common |
| 87 | // case here is that we are only looking at the buckets (for item info |
| 88 | // being non-null and for the full hash value) not at the items. This |
| 89 | // is important for cache locality. |
| 90 | |
| 91 | // Do the comparison like this because Name isn't necessarily |
| 92 | // null-terminated! |
| 93 | char *ItemStr = (char*)BucketItem+ItemSize; |
| 94 | if (Name == StringRef(ItemStr, BucketItem->getKeyLength())) { |
| 95 | // We found a match! |
| 96 | return BucketNo; |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | // Okay, we didn't find the item. Probe to the next bucket. |
| 101 | BucketNo = (BucketNo+ProbeAmt) & (HTSize-1); |
| 102 | |
| 103 | // Use quadratic probing, it has fewer clumping artifacts than linear |
| 104 | // probing and has good cache behavior in the common case. |
| 105 | ++ProbeAmt; |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | |
| 110 | /// FindKey - Look up the bucket that contains the specified key. If it exists |
| 111 | /// in the map, return the bucket number of the key. Otherwise return -1. |
| 112 | /// This does not modify the map. |
| 113 | int StringMapImpl::FindKey(StringRef Key) const { |
| 114 | unsigned HTSize = NumBuckets; |
| 115 | if (HTSize == 0) return -1; // Really empty table? |
| 116 | unsigned FullHashValue = HashString(Key); |
| 117 | unsigned BucketNo = FullHashValue & (HTSize-1); |
| 118 | |
| 119 | unsigned ProbeAmt = 1; |
| 120 | while (1) { |
| 121 | ItemBucket &Bucket = TheTable[BucketNo]; |
| 122 | StringMapEntryBase *BucketItem = Bucket.Item; |
| 123 | // If we found an empty bucket, this key isn't in the table yet, return. |
| 124 | if (BucketItem == 0) |
| 125 | return -1; |
| 126 | |
| 127 | if (BucketItem == getTombstoneVal()) { |
| 128 | // Ignore tombstones. |
| 129 | } else if (Bucket.FullHashValue == FullHashValue) { |
| 130 | // If the full hash value matches, check deeply for a match. The common |
| 131 | // case here is that we are only looking at the buckets (for item info |
| 132 | // being non-null and for the full hash value) not at the items. This |
| 133 | // is important for cache locality. |
| 134 | |
| 135 | // Do the comparison like this because NameStart isn't necessarily |
| 136 | // null-terminated! |
| 137 | char *ItemStr = (char*)BucketItem+ItemSize; |
| 138 | if (Key == StringRef(ItemStr, BucketItem->getKeyLength())) { |
| 139 | // We found a match! |
| 140 | return BucketNo; |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | // Okay, we didn't find the item. Probe to the next bucket. |
| 145 | BucketNo = (BucketNo+ProbeAmt) & (HTSize-1); |
| 146 | |
| 147 | // Use quadratic probing, it has fewer clumping artifacts than linear |
| 148 | // probing and has good cache behavior in the common case. |
| 149 | ++ProbeAmt; |
| 150 | } |
| 151 | } |
| 152 | |
| 153 | /// RemoveKey - Remove the specified StringMapEntry from the table, but do not |
| 154 | /// delete it. This aborts if the value isn't in the table. |
| 155 | void StringMapImpl::RemoveKey(StringMapEntryBase *V) { |
| 156 | const char *VStr = (char*)V + ItemSize; |
| 157 | StringMapEntryBase *V2 = RemoveKey(StringRef(VStr, V->getKeyLength())); |
| 158 | V2 = V2; |
| 159 | assert(V == V2 && "Didn't find key?"); |
| 160 | } |
| 161 | |
| 162 | /// RemoveKey - Remove the StringMapEntry for the specified key from the |
| 163 | /// table, returning it. If the key is not in the table, this returns null. |
| 164 | StringMapEntryBase *StringMapImpl::RemoveKey(StringRef Key) { |
| 165 | int Bucket = FindKey(Key); |
| 166 | if (Bucket == -1) return 0; |
| 167 | |
| 168 | StringMapEntryBase *Result = TheTable[Bucket].Item; |
| 169 | TheTable[Bucket].Item = getTombstoneVal(); |
| 170 | --NumItems; |
| 171 | ++NumTombstones; |
| 172 | return Result; |
| 173 | } |
| 174 | |
| 175 | |
| 176 | |
| 177 | /// RehashTable - Grow the table, redistributing values into the buckets with |
| 178 | /// the appropriate mod-of-hashtable-size. |
| 179 | void StringMapImpl::RehashTable() { |
| 180 | unsigned NewSize = NumBuckets*2; |
| 181 | // Allocate one extra bucket which will always be non-empty. This allows the |
| 182 | // iterators to stop at end. |
| 183 | ItemBucket *NewTableArray =(ItemBucket*)calloc(NewSize+1, sizeof(ItemBucket)); |
| 184 | NewTableArray[NewSize].Item = (StringMapEntryBase*)2; |
| 185 | |
| 186 | // Rehash all the items into their new buckets. Luckily :) we already have |
| 187 | // the hash values available, so we don't have to rehash any strings. |
| 188 | for (ItemBucket *IB = TheTable, *E = TheTable+NumBuckets; IB != E; ++IB) { |
| 189 | if (IB->Item && IB->Item != getTombstoneVal()) { |
| 190 | // Fast case, bucket available. |
| 191 | unsigned FullHash = IB->FullHashValue; |
| 192 | unsigned NewBucket = FullHash & (NewSize-1); |
| 193 | if (NewTableArray[NewBucket].Item == 0) { |
| 194 | NewTableArray[FullHash & (NewSize-1)].Item = IB->Item; |
| 195 | NewTableArray[FullHash & (NewSize-1)].FullHashValue = FullHash; |
| 196 | continue; |
| 197 | } |
| 198 | |
| 199 | // Otherwise probe for a spot. |
| 200 | unsigned ProbeSize = 1; |
| 201 | do { |
| 202 | NewBucket = (NewBucket + ProbeSize++) & (NewSize-1); |
| 203 | } while (NewTableArray[NewBucket].Item); |
| 204 | |
| 205 | // Finally found a slot. Fill it in. |
| 206 | NewTableArray[NewBucket].Item = IB->Item; |
| 207 | NewTableArray[NewBucket].FullHashValue = FullHash; |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | free(TheTable); |
| 212 | |
| 213 | TheTable = NewTableArray; |
| 214 | NumBuckets = NewSize; |
| 215 | } |