blob: 79fa8cdae4107c2009cfd4c87daedc3d6742e183 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
3// This file defines a simple peephole instruction selector for the x86 platform
4//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
11#include "llvm/iTerminators.h"
Brian Gaeke1749d632002-11-07 17:59:21 +000012#include "llvm/iOperators.h"
Brian Gaekea1719c92002-10-31 23:03:59 +000013#include "llvm/iOther.h"
Chris Lattner51b49a92002-11-02 19:45:49 +000014#include "llvm/iPHINode.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "llvm/iMemory.h"
Chris Lattner72614082002-10-25 22:55:53 +000016#include "llvm/Type.h"
Brian Gaeke20244b72002-12-12 15:33:40 +000017#include "llvm/DerivedTypes.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000018#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000019#include "llvm/Pass.h"
Chris Lattner341a9372002-10-29 17:43:55 +000020#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000021#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/Target/TargetMachine.h"
Chris Lattner72614082002-10-25 22:55:53 +000023#include "llvm/Support/InstVisitor.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000024#include "llvm/Target/MRegisterInfo.h"
25#include <map>
Chris Lattner72614082002-10-25 22:55:53 +000026
Chris Lattner06925362002-11-17 21:56:38 +000027using namespace MOTy; // Get Use, Def, UseAndDef
28
Chris Lattner72614082002-10-25 22:55:53 +000029namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000030 struct ISel : public FunctionPass, InstVisitor<ISel> {
31 TargetMachine &TM;
Chris Lattner341a9372002-10-29 17:43:55 +000032 MachineFunction *F; // The function we are compiling into
33 MachineBasicBlock *BB; // The current MBB we are compiling
Chris Lattner72614082002-10-25 22:55:53 +000034
35 unsigned CurReg;
36 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
37
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000038 ISel(TargetMachine &tm)
39 : TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
Chris Lattner72614082002-10-25 22:55:53 +000040
41 /// runOnFunction - Top level implementation of instruction selection for
42 /// the entire function.
43 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000044 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000045 F = &MachineFunction::construct(&Fn, TM);
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000046 visit(Fn);
Chris Lattner72614082002-10-25 22:55:53 +000047 RegMap.clear();
Chris Lattner94e8ee22002-11-21 17:26:58 +000048 CurReg = MRegisterInfo::FirstVirtualRegister;
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000049 F = 0;
Chris Lattner72614082002-10-25 22:55:53 +000050 return false; // We never modify the LLVM itself.
51 }
52
53 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000054 /// block. This simply creates a new MachineBasicBlock to emit code into
55 /// and adds it to the current MachineFunction. Subsequent visit* for
56 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +000057 ///
58 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner42c77862002-10-30 00:47:40 +000059 BB = new MachineBasicBlock(&LLVM_BB);
Chris Lattner72614082002-10-25 22:55:53 +000060 // FIXME: Use the auto-insert form when it's available
61 F->getBasicBlockList().push_back(BB);
62 }
63
64 // Visitation methods for various instructions. These methods simply emit
65 // fixed X86 code for each instruction.
66 //
Brian Gaekefa8d5712002-11-22 11:07:01 +000067
68 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +000069 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +000070 void visitBranchInst(BranchInst &BI);
Brian Gaekefa8d5712002-11-22 11:07:01 +000071 void visitCallInst(CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +000072
73 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +000074 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +000075 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
76 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Brian Gaeke20244b72002-12-12 15:33:40 +000077 void doMultiply(unsigned destReg, const Type *resultType,
78 unsigned op0Reg, unsigned op1Reg);
Chris Lattnerca9671d2002-11-02 20:28:58 +000079 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +000080
Chris Lattnerf01729e2002-11-02 20:54:46 +000081 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
82 void visitRem(BinaryOperator &B) { visitDivRem(B); }
83 void visitDivRem(BinaryOperator &B);
84
Chris Lattnere2954c82002-11-02 20:04:26 +000085 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +000086 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
87 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
88 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +000089
90 // Binary comparison operators
Chris Lattner05093a52002-11-21 15:52:38 +000091 void visitSetCCInst(SetCondInst &I, unsigned OpNum);
92 void visitSetEQ(SetCondInst &I) { visitSetCCInst(I, 0); }
93 void visitSetNE(SetCondInst &I) { visitSetCCInst(I, 1); }
94 void visitSetLT(SetCondInst &I) { visitSetCCInst(I, 2); }
95 void visitSetGT(SetCondInst &I) { visitSetCCInst(I, 3); }
96 void visitSetLE(SetCondInst &I) { visitSetCCInst(I, 4); }
97 void visitSetGE(SetCondInst &I) { visitSetCCInst(I, 5); }
Chris Lattner6fc3c522002-11-17 21:11:55 +000098
99 // Memory Instructions
100 void visitLoadInst(LoadInst &I);
101 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000102 void visitGetElementPtrInst(GetElementPtrInst &I);
103 void visitMallocInst(MallocInst &I);
Brian Gaekee48ec012002-12-13 06:46:31 +0000104 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000105 void visitAllocaInst(AllocaInst &I);
106
Chris Lattnere2954c82002-11-02 20:04:26 +0000107 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000108 void visitShiftInst(ShiftInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000109 void visitPHINode(PHINode &I);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000110 void visitCastInst(CastInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000111
112 void visitInstruction(Instruction &I) {
113 std::cerr << "Cannot instruction select: " << I;
114 abort();
115 }
116
Brian Gaekec2505982002-11-30 11:57:28 +0000117 void promote32 (const unsigned targetReg, Value *v);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000118
119 /// copyConstantToRegister - Output the instructions required to put the
120 /// specified constant into the specified register.
121 ///
122 void copyConstantToRegister(Constant *C, unsigned Reg);
123
Brian Gaeke20244b72002-12-12 15:33:40 +0000124 /// makeAnotherReg - This method returns the next register number
125 /// we haven't yet used.
126 unsigned makeAnotherReg (void) {
127 unsigned Reg = CurReg++;
128 return Reg;
129 }
130
Chris Lattner72614082002-10-25 22:55:53 +0000131 /// getReg - This method turns an LLVM value into a register number. This
132 /// is guaranteed to produce the same register number for a particular value
133 /// every time it is queried.
134 ///
135 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
136 unsigned getReg(Value *V) {
137 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000138 if (Reg == 0) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000139 Reg = makeAnotherReg ();
Misha Brukmand2cc0172002-11-20 00:58:23 +0000140 RegMap[V] = Reg;
141
142 // Add the mapping of regnumber => reg class to MachineFunction
143 F->addRegMap(Reg,
144 TM.getRegisterInfo()->getRegClassForType(V->getType()));
145 }
Chris Lattner72614082002-10-25 22:55:53 +0000146
Chris Lattner6f8fd252002-10-27 21:23:43 +0000147 // If this operand is a constant, emit the code to copy the constant into
148 // the register here...
149 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000150 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattnerc5291f52002-10-27 21:16:59 +0000151 copyConstantToRegister(C, Reg);
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000152 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
153 // Move the address of the global into the register
154 BuildMI(BB, X86::MOVir32, 1, Reg).addReg(GV);
Chris Lattnerd6c4cfa2002-12-04 17:15:34 +0000155 } else if (Argument *A = dyn_cast<Argument>(V)) {
156 std::cerr << "ERROR: Arguments not implemented in SimpleInstSel\n";
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000157 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000158
Chris Lattner72614082002-10-25 22:55:53 +0000159 return Reg;
160 }
Chris Lattner72614082002-10-25 22:55:53 +0000161 };
162}
163
Chris Lattner43189d12002-11-17 20:07:45 +0000164/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
165/// Representation.
166///
167enum TypeClass {
168 cByte, cShort, cInt, cLong, cFloat, cDouble
169};
170
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000171/// getClass - Turn a primitive type into a "class" number which is based on the
172/// size of the type, and whether or not it is floating point.
173///
Chris Lattner43189d12002-11-17 20:07:45 +0000174static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000175 switch (Ty->getPrimitiveID()) {
176 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000177 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000178 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000179 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000180 case Type::IntTyID:
181 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000182 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000183
184 case Type::LongTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000185 case Type::ULongTyID: return cLong; // Longs are class #3
186 case Type::FloatTyID: return cFloat; // Float is class #4
187 case Type::DoubleTyID: return cDouble; // Doubles are class #5
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000188 default:
189 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000190 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000191 }
192}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000193
Chris Lattner06925362002-11-17 21:56:38 +0000194
Chris Lattnerc5291f52002-10-27 21:16:59 +0000195/// copyConstantToRegister - Output the instructions required to put the
196/// specified constant into the specified register.
197///
198void ISel::copyConstantToRegister(Constant *C, unsigned R) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000199 if (isa<ConstantExpr> (C)) {
200 // FIXME: We really need to handle getelementptr exprs, among
201 // other things.
202 std::cerr << "Offending expr: " << C << "\n";
203 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000204 assert (!isa<ConstantExpr>(C) && "Constant expressions not yet handled!\n");
205
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000206 if (C->getType()->isIntegral()) {
207 unsigned Class = getClass(C->getType());
208 assert(Class != 3 && "Type not handled yet!");
209
210 static const unsigned IntegralOpcodeTab[] = {
211 X86::MOVir8, X86::MOVir16, X86::MOVir32
212 };
213
214 if (C->getType()->isSigned()) {
215 ConstantSInt *CSI = cast<ConstantSInt>(C);
216 BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue());
217 } else {
218 ConstantUInt *CUI = cast<ConstantUInt>(C);
219 BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
220 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000221 } else if (isa <ConstantPointerNull> (C)) {
222 // Copy zero (null pointer) to the register.
223 BuildMI (BB, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000224 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000225 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000226 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000227 }
228}
229
Chris Lattner06925362002-11-17 21:56:38 +0000230
Brian Gaeke1749d632002-11-07 17:59:21 +0000231/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
232/// register, then move it to wherever the result should be.
233/// We handle FP setcc instructions by pushing them, doing a
234/// compare-and-pop-twice, and then copying the concodes to the main
235/// processor's concodes (I didn't make this up, it's in the Intel manual)
236///
Chris Lattner05093a52002-11-21 15:52:38 +0000237void ISel::visitSetCCInst(SetCondInst &I, unsigned OpNum) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000238 // The arguments are already supposed to be of the same type.
Chris Lattner05093a52002-11-21 15:52:38 +0000239 const Type *CompTy = I.getOperand(0)->getType();
240 unsigned reg1 = getReg(I.getOperand(0));
241 unsigned reg2 = getReg(I.getOperand(1));
242
243 unsigned Class = getClass(CompTy);
244 switch (Class) {
245 // Emit: cmp <var1>, <var2> (do the comparison). We can
246 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
247 // 32-bit.
248 case cByte:
249 BuildMI (BB, X86::CMPrr8, 2).addReg (reg1).addReg (reg2);
250 break;
251 case cShort:
252 BuildMI (BB, X86::CMPrr16, 2).addReg (reg1).addReg (reg2);
253 break;
254 case cInt:
255 BuildMI (BB, X86::CMPrr32, 2).addReg (reg1).addReg (reg2);
256 break;
257
258 // Push the variables on the stack with fldl opcodes.
259 // FIXME: assuming var1, var2 are in memory, if not, spill to
260 // stack first
261 case cFloat: // Floats
Brian Gaeke20244b72002-12-12 15:33:40 +0000262 BuildMI (BB, X86::FLDr32, 1).addReg (reg1);
263 BuildMI (BB, X86::FLDr32, 1).addReg (reg2);
Chris Lattner05093a52002-11-21 15:52:38 +0000264 break;
265 case cDouble: // Doubles
Brian Gaeke20244b72002-12-12 15:33:40 +0000266 BuildMI (BB, X86::FLDr64, 1).addReg (reg1);
267 BuildMI (BB, X86::FLDr64, 1).addReg (reg2);
Chris Lattner05093a52002-11-21 15:52:38 +0000268 break;
269 case cLong:
270 default:
271 visitInstruction(I);
272 }
273
274 if (CompTy->isFloatingPoint()) {
275 // (Non-trapping) compare and pop twice.
276 BuildMI (BB, X86::FUCOMPP, 0);
277 // Move fp status word (concodes) to ax.
278 BuildMI (BB, X86::FNSTSWr8, 1, X86::AX);
279 // Load real concodes from ax.
280 BuildMI (BB, X86::SAHF, 1).addReg(X86::AH);
281 }
282
Brian Gaeke1749d632002-11-07 17:59:21 +0000283 // Emit setOp instruction (extract concode; clobbers ax),
284 // using the following mapping:
285 // LLVM -> X86 signed X86 unsigned
286 // ----- ----- -----
287 // seteq -> sete sete
288 // setne -> setne setne
289 // setlt -> setl setb
290 // setgt -> setg seta
291 // setle -> setle setbe
292 // setge -> setge setae
Chris Lattner05093a52002-11-21 15:52:38 +0000293
294 static const unsigned OpcodeTab[2][6] = {
Chris Lattner4b4e9dd2002-11-21 16:19:42 +0000295 {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAr, X86::SETBEr, X86::SETAEr},
296 {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGr, X86::SETLEr, X86::SETGEr},
Chris Lattner05093a52002-11-21 15:52:38 +0000297 };
298
299 BuildMI(BB, OpcodeTab[CompTy->isSigned()][OpNum], 0, X86::AL);
300
Brian Gaeke1749d632002-11-07 17:59:21 +0000301 // Put it in the result using a move.
Chris Lattner05093a52002-11-21 15:52:38 +0000302 BuildMI (BB, X86::MOVrr8, 1, getReg(I)).addReg(X86::AL);
Brian Gaeke1749d632002-11-07 17:59:21 +0000303}
Chris Lattner51b49a92002-11-02 19:45:49 +0000304
Brian Gaekec2505982002-11-30 11:57:28 +0000305/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
306/// operand, in the specified target register.
307void
308ISel::promote32 (const unsigned targetReg, Value *v)
309{
310 unsigned vReg = getReg (v);
311 unsigned Class = getClass (v->getType ());
312 bool isUnsigned = v->getType ()->isUnsigned ();
313 assert (((Class == cByte) || (Class == cShort) || (Class == cInt))
314 && "Unpromotable operand class in promote32");
315 switch (Class)
316 {
317 case cByte:
318 // Extend value into target register (8->32)
319 if (isUnsigned)
320 BuildMI (BB, X86::MOVZXr32r8, 1, targetReg).addReg (vReg);
321 else
322 BuildMI (BB, X86::MOVSXr32r8, 1, targetReg).addReg (vReg);
323 break;
324 case cShort:
325 // Extend value into target register (16->32)
326 if (isUnsigned)
327 BuildMI (BB, X86::MOVZXr32r16, 1, targetReg).addReg (vReg);
328 else
329 BuildMI (BB, X86::MOVSXr32r16, 1, targetReg).addReg (vReg);
330 break;
331 case cInt:
332 // Move value into target register (32->32)
333 BuildMI (BB, X86::MOVrr32, 1, targetReg).addReg (vReg);
334 break;
335 }
336}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000337
Chris Lattner72614082002-10-25 22:55:53 +0000338/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
339/// we have the following possibilities:
340///
341/// ret void: No return value, simply emit a 'ret' instruction
342/// ret sbyte, ubyte : Extend value into EAX and return
343/// ret short, ushort: Extend value into EAX and return
344/// ret int, uint : Move value into EAX and return
345/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000346/// ret long, ulong : Move value into EAX/EDX and return
347/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000348///
Brian Gaekec2505982002-11-30 11:57:28 +0000349void
350ISel::visitReturnInst (ReturnInst &I)
351{
352 if (I.getNumOperands () == 0)
353 {
354 // Emit a 'ret' instruction
355 BuildMI (BB, X86::RET, 0);
356 return;
357 }
358 Value *rv = I.getOperand (0);
359 unsigned Class = getClass (rv->getType ());
360 switch (Class)
361 {
362 // integral return values: extend or move into EAX and return.
363 case cByte:
364 case cShort:
365 case cInt:
366 promote32 (X86::EAX, rv);
367 break;
368 // ret float/double: top of FP stack
369 // FLD <val>
370 case cFloat: // Floats
Brian Gaeke20244b72002-12-12 15:33:40 +0000371 BuildMI (BB, X86::FLDr32, 1).addReg (getReg (rv));
Brian Gaekec2505982002-11-30 11:57:28 +0000372 break;
373 case cDouble: // Doubles
Brian Gaeke20244b72002-12-12 15:33:40 +0000374 BuildMI (BB, X86::FLDr64, 1).addReg (getReg (rv));
Brian Gaekec2505982002-11-30 11:57:28 +0000375 break;
376 case cLong:
377 // ret long: use EAX(least significant 32 bits)/EDX (most
378 // significant 32)...uh, I think so Brain, but how do i call
379 // up the two parts of the value from inside this mouse
380 // cage? *zort*
381 default:
382 visitInstruction (I);
383 }
Chris Lattner43189d12002-11-17 20:07:45 +0000384 // Emit a 'ret' instruction
Brian Gaekec2505982002-11-30 11:57:28 +0000385 BuildMI (BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000386}
387
Chris Lattner51b49a92002-11-02 19:45:49 +0000388/// visitBranchInst - Handle conditional and unconditional branches here. Note
389/// that since code layout is frozen at this point, that if we are trying to
390/// jump to a block that is the immediate successor of the current block, we can
391/// just make a fall-through. (but we don't currently).
392///
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000393void
394ISel::visitBranchInst (BranchInst & BI)
395{
396 if (BI.isConditional ())
397 {
398 BasicBlock *ifTrue = BI.getSuccessor (0);
399 BasicBlock *ifFalse = BI.getSuccessor (1); // this is really unobvious
Chris Lattner2df035b2002-11-02 19:27:56 +0000400
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000401 // simplest thing I can think of: compare condition with zero,
402 // followed by jump-if-equal to ifFalse, and jump-if-nonequal to
403 // ifTrue
404 unsigned int condReg = getReg (BI.getCondition ());
Chris Lattner97ad9e12002-11-21 01:59:50 +0000405 BuildMI (BB, X86::CMPri8, 2).addReg (condReg).addZImm (0);
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000406 BuildMI (BB, X86::JNE, 1).addPCDisp (BI.getSuccessor (0));
407 BuildMI (BB, X86::JE, 1).addPCDisp (BI.getSuccessor (1));
408 }
409 else // unconditional branch
410 {
411 BuildMI (BB, X86::JMP, 1).addPCDisp (BI.getSuccessor (0));
412 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000413}
414
Brian Gaeke18a20212002-11-29 12:01:58 +0000415/// visitCallInst - Push args on stack and do a procedure call instruction.
416void
417ISel::visitCallInst (CallInst & CI)
418{
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000419 // keep a counter of how many bytes we pushed on the stack
420 unsigned bytesPushed = 0;
421
Brian Gaeke18a20212002-11-29 12:01:58 +0000422 // Push the arguments on the stack in reverse order, as specified by
423 // the ABI.
Chris Lattnerd852c152002-12-03 20:30:12 +0000424 for (unsigned i = CI.getNumOperands()-1; i >= 1; --i)
Brian Gaeke18a20212002-11-29 12:01:58 +0000425 {
426 Value *v = CI.getOperand (i);
Brian Gaeke18a20212002-11-29 12:01:58 +0000427 switch (getClass (v->getType ()))
428 {
Brian Gaekec2505982002-11-30 11:57:28 +0000429 case cByte:
430 case cShort:
Brian Gaekebb25f2f2002-12-03 00:51:09 +0000431 // Promote V to 32 bits wide, and move the result into EAX,
432 // then push EAX.
Brian Gaekec2505982002-11-30 11:57:28 +0000433 promote32 (X86::EAX, v);
434 BuildMI (BB, X86::PUSHr32, 1).addReg (X86::EAX);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000435 bytesPushed += 4;
Brian Gaekec2505982002-11-30 11:57:28 +0000436 break;
Brian Gaeke18a20212002-11-29 12:01:58 +0000437 case cInt:
Chris Lattner33ced562002-12-04 06:56:56 +0000438 case cFloat: {
439 unsigned Reg = getReg(v);
440 BuildMI (BB, X86::PUSHr32, 1).addReg(Reg);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000441 bytesPushed += 4;
Brian Gaeke18a20212002-11-29 12:01:58 +0000442 break;
Chris Lattner33ced562002-12-04 06:56:56 +0000443 }
Brian Gaeke18a20212002-11-29 12:01:58 +0000444 default:
Brian Gaekebb25f2f2002-12-03 00:51:09 +0000445 // FIXME: long/ulong/double args not handled.
Brian Gaeke18a20212002-11-29 12:01:58 +0000446 visitInstruction (CI);
447 break;
448 }
449 }
450 // Emit a CALL instruction with PC-relative displacement.
451 BuildMI (BB, X86::CALLpcrel32, 1).addPCDisp (CI.getCalledValue ());
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000452
453 // Adjust the stack by `bytesPushed' amount if non-zero
454 if (bytesPushed > 0)
455 BuildMI (BB, X86::ADDri32, 2).addReg(X86::ESP).addZImm(bytesPushed);
Chris Lattnera3243642002-12-04 23:45:28 +0000456
457 // If there is a return value, scavenge the result from the location the call
458 // leaves it in...
459 //
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000460 if (CI.getType() != Type::VoidTy) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000461 unsigned resultTypeClass = getClass (CI.getType ());
462 switch (resultTypeClass) {
463 case cByte:
464 case cShort:
465 case cInt: {
466 // Integral results are in %eax, or the appropriate portion
467 // thereof.
468 static const unsigned regRegMove[] = {
469 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
470 };
471 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
472 BuildMI (BB, regRegMove[resultTypeClass], 1,
473 getReg (CI)).addReg (AReg[resultTypeClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000474 break;
Brian Gaeke20244b72002-12-12 15:33:40 +0000475 }
476 case cFloat:
477 // Floating-point return values live in %st(0) (i.e., the top of
478 // the FP stack.) The general way to approach this is to do a
479 // FSTP to save the top of the FP stack on the real stack, then
480 // do a MOV to load the top of the real stack into the target
481 // register.
482 visitInstruction (CI); // FIXME: add the right args for the calls below
483 // BuildMI (BB, X86::FSTPm32, 0);
484 // BuildMI (BB, X86::MOVmr32, 0);
485 break;
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000486 default:
487 std::cerr << "Cannot get return value for call of type '"
488 << *CI.getType() << "'\n";
489 visitInstruction(CI);
490 }
Chris Lattnera3243642002-12-04 23:45:28 +0000491 }
Brian Gaekefa8d5712002-11-22 11:07:01 +0000492}
Chris Lattner2df035b2002-11-02 19:27:56 +0000493
Chris Lattner68aad932002-11-02 20:13:22 +0000494/// visitSimpleBinary - Implement simple binary operators for integral types...
495/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
496/// 4 for Xor.
497///
498void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
499 if (B.getType() == Type::BoolTy) // FIXME: Handle bools for logicals
Chris Lattnere2954c82002-11-02 20:04:26 +0000500 visitInstruction(B);
501
502 unsigned Class = getClass(B.getType());
503 if (Class > 2) // FIXME: Handle longs
504 visitInstruction(B);
505
506 static const unsigned OpcodeTab[][4] = {
Chris Lattner68aad932002-11-02 20:13:22 +0000507 // Arithmetic operators
508 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 }, // ADD
509 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 }, // SUB
510
511 // Bitwise operators
Chris Lattnere2954c82002-11-02 20:04:26 +0000512 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
513 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
514 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
515 };
516
517 unsigned Opcode = OpcodeTab[OperatorClass][Class];
518 unsigned Op0r = getReg(B.getOperand(0));
519 unsigned Op1r = getReg(B.getOperand(1));
520 BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r);
521}
522
Brian Gaeke20244b72002-12-12 15:33:40 +0000523/// doMultiply - Emit appropriate instructions to multiply together
524/// the registers op0Reg and op1Reg, and put the result in destReg.
525/// The type of the result should be given as resultType.
526void
527ISel::doMultiply(unsigned destReg, const Type *resultType,
528 unsigned op0Reg, unsigned op1Reg)
529{
530 unsigned Class = getClass (resultType);
531
532 // FIXME:
533 assert (Class <= 2 && "Someday, we will learn how to multiply"
534 "longs and floating-point numbers. This is not that day.");
535
536 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
537 static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 };
538 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
539 unsigned Reg = Regs[Class];
540
541 // Emit a MOV to put the first operand into the appropriately-sized
542 // subreg of EAX.
543 BuildMI (BB, MovOpcode[Class], 1, Reg).addReg (op0Reg);
544
545 // Emit the appropriate multiply instruction.
546 BuildMI (BB, MulOpcode[Class], 1).addReg (op1Reg);
547
548 // Emit another MOV to put the result into the destination register.
549 BuildMI (BB, MovOpcode[Class], 1, destReg).addReg (Reg);
550}
551
Chris Lattnerca9671d2002-11-02 20:28:58 +0000552/// visitMul - Multiplies are not simple binary operators because they must deal
553/// with the EAX register explicitly.
554///
555void ISel::visitMul(BinaryOperator &I) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000556 doMultiply (getReg (I), I.getType (),
557 getReg (I.getOperand (0)), getReg (I.getOperand (1)));
Chris Lattnerf01729e2002-11-02 20:54:46 +0000558}
Chris Lattnerca9671d2002-11-02 20:28:58 +0000559
Chris Lattner06925362002-11-17 21:56:38 +0000560
Chris Lattnerf01729e2002-11-02 20:54:46 +0000561/// visitDivRem - Handle division and remainder instructions... these
562/// instruction both require the same instructions to be generated, they just
563/// select the result from a different register. Note that both of these
564/// instructions work differently for signed and unsigned operands.
565///
566void ISel::visitDivRem(BinaryOperator &I) {
567 unsigned Class = getClass(I.getType());
568 if (Class > 2) // FIXME: Handle longs
569 visitInstruction(I);
570
571 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
572 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Brian Gaeke6559bb92002-11-14 22:32:30 +0000573 static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ };
Chris Lattnerf01729e2002-11-02 20:54:46 +0000574 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
575 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
576
577 static const unsigned DivOpcode[][4] = {
578 { X86::DIVrr8 , X86::DIVrr16 , X86::DIVrr32 , 0 }, // Unsigned division
579 { X86::IDIVrr8, X86::IDIVrr16, X86::IDIVrr32, 0 }, // Signed division
580 };
581
582 bool isSigned = I.getType()->isSigned();
583 unsigned Reg = Regs[Class];
584 unsigned ExtReg = ExtRegs[Class];
Chris Lattner6fc3c522002-11-17 21:11:55 +0000585 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +0000586 unsigned Op1Reg = getReg(I.getOperand(1));
587
588 // Put the first operand into one of the A registers...
589 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
590
591 if (isSigned) {
592 // Emit a sign extension instruction...
Chris Lattnera4978cc2002-12-01 23:24:58 +0000593 BuildMI(BB, ExtOpcode[Class], 0);
Chris Lattnerf01729e2002-11-02 20:54:46 +0000594 } else {
595 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
596 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
597 }
598
Chris Lattner06925362002-11-17 21:56:38 +0000599 // Emit the appropriate divide or remainder instruction...
Chris Lattner92845e32002-11-21 18:54:29 +0000600 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +0000601
Chris Lattnerf01729e2002-11-02 20:54:46 +0000602 // Figure out which register we want to pick the result out of...
603 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
604
Chris Lattnerf01729e2002-11-02 20:54:46 +0000605 // Put the result into the destination register...
606 BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000607}
Chris Lattnere2954c82002-11-02 20:04:26 +0000608
Chris Lattner06925362002-11-17 21:56:38 +0000609
Brian Gaekea1719c92002-10-31 23:03:59 +0000610/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
611/// for constant immediate shift values, and for constant immediate
612/// shift values equal to 1. Even the general case is sort of special,
613/// because the shift amount has to be in CL, not just any old register.
614///
Chris Lattnerf01729e2002-11-02 20:54:46 +0000615void ISel::visitShiftInst (ShiftInst &I) {
616 unsigned Op0r = getReg (I.getOperand(0));
617 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +0000618 bool isLeftShift = I.getOpcode() == Instruction::Shl;
619 bool isOperandSigned = I.getType()->isUnsigned();
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000620 unsigned OperandClass = getClass(I.getType());
621
622 if (OperandClass > 2)
623 visitInstruction(I); // Can't handle longs yet!
Chris Lattner796df732002-11-02 00:44:25 +0000624
Brian Gaekea1719c92002-10-31 23:03:59 +0000625 if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1)))
626 {
Chris Lattner796df732002-11-02 00:44:25 +0000627 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
628 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
629 unsigned char shAmt = CUI->getValue();
630
Chris Lattnere9913f22002-11-02 01:41:55 +0000631 static const unsigned ConstantOperand[][4] = {
632 { X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 }, // SHR
633 { X86::SARir8, X86::SARir16, X86::SARir32, 0 }, // SAR
634 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SHL
635 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000636 };
637
Chris Lattnere9913f22002-11-02 01:41:55 +0000638 const unsigned *OpTab = // Figure out the operand table to use
639 ConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000640
Brian Gaekea1719c92002-10-31 23:03:59 +0000641 // Emit: <insn> reg, shamt (shift-by-immediate opcode "ir" form.)
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000642 BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt);
Brian Gaekea1719c92002-10-31 23:03:59 +0000643 }
644 else
645 {
646 // The shift amount is non-constant.
647 //
648 // In fact, you can only shift with a variable shift amount if
649 // that amount is already in the CL register, so we have to put it
650 // there first.
651 //
Chris Lattnere9913f22002-11-02 01:41:55 +0000652
Brian Gaekea1719c92002-10-31 23:03:59 +0000653 // Emit: move cl, shiftAmount (put the shift amount in CL.)
Chris Lattnerca9671d2002-11-02 20:28:58 +0000654 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000655
656 // This is a shift right (SHR).
Chris Lattnere9913f22002-11-02 01:41:55 +0000657 static const unsigned NonConstantOperand[][4] = {
658 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 }, // SHR
659 { X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 }, // SAR
660 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SHL
661 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000662 };
663
Chris Lattnere9913f22002-11-02 01:41:55 +0000664 const unsigned *OpTab = // Figure out the operand table to use
665 NonConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000666
Chris Lattner3a9a6932002-11-21 22:49:20 +0000667 BuildMI(BB, OpTab[OperandClass], 1, DestReg).addReg(Op0r);
Brian Gaekea1719c92002-10-31 23:03:59 +0000668 }
669}
670
Chris Lattner06925362002-11-17 21:56:38 +0000671
Chris Lattner6fc3c522002-11-17 21:11:55 +0000672/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
673/// instruction.
674///
675void ISel::visitLoadInst(LoadInst &I) {
676 unsigned Class = getClass(I.getType());
677 if (Class > 2) // FIXME: Handle longs and others...
678 visitInstruction(I);
679
680 static const unsigned Opcode[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
681
682 unsigned AddressReg = getReg(I.getOperand(0));
683 addDirectMem(BuildMI(BB, Opcode[Class], 4, getReg(I)), AddressReg);
684}
685
Chris Lattner06925362002-11-17 21:56:38 +0000686
Chris Lattner6fc3c522002-11-17 21:11:55 +0000687/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
688/// instruction.
689///
690void ISel::visitStoreInst(StoreInst &I) {
691 unsigned Class = getClass(I.getOperand(0)->getType());
692 if (Class > 2) // FIXME: Handle longs and others...
693 visitInstruction(I);
694
695 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
696
697 unsigned ValReg = getReg(I.getOperand(0));
698 unsigned AddressReg = getReg(I.getOperand(1));
699 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
700}
701
702
Chris Lattnere2954c82002-11-02 20:04:26 +0000703/// visitPHINode - Turn an LLVM PHI node into an X86 PHI node...
704///
705void ISel::visitPHINode(PHINode &PN) {
706 MachineInstr *MI = BuildMI(BB, X86::PHI, PN.getNumOperands(), getReg(PN));
Chris Lattner72614082002-10-25 22:55:53 +0000707
Chris Lattnere2954c82002-11-02 20:04:26 +0000708 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
709 // FIXME: This will put constants after the PHI nodes in the block, which
710 // is invalid. They should be put inline into the PHI node eventually.
711 //
712 MI->addRegOperand(getReg(PN.getIncomingValue(i)));
713 MI->addPCDispOperand(PN.getIncomingBlock(i));
714 }
Chris Lattner72614082002-10-25 22:55:53 +0000715}
716
Brian Gaekec11232a2002-11-26 10:43:30 +0000717/// visitCastInst - Here we have various kinds of copying with or without
718/// sign extension going on.
Brian Gaekefa8d5712002-11-22 11:07:01 +0000719void
720ISel::visitCastInst (CastInst &CI)
721{
Chris Lattnerf18a36e2002-12-03 18:15:59 +0000722 const Type *targetType = CI.getType ();
Brian Gaeke07f02612002-12-03 07:36:03 +0000723 Value *operand = CI.getOperand (0);
724 unsigned int operandReg = getReg (operand);
Chris Lattnerf18a36e2002-12-03 18:15:59 +0000725 const Type *sourceType = operand->getType ();
Brian Gaeke07f02612002-12-03 07:36:03 +0000726 unsigned int destReg = getReg (CI);
Brian Gaeked474e9c2002-12-06 10:49:33 +0000727 //
728 // Currently we handle:
729 //
730 // 1) cast * to bool
731 //
732 // 2) cast {sbyte, ubyte} to {sbyte, ubyte}
733 // cast {short, ushort} to {ushort, short}
734 // cast {int, uint, ptr} to {int, uint, ptr}
735 //
736 // 3) cast {sbyte, ubyte} to {ushort, short}
737 // cast {sbyte, ubyte} to {int, uint, ptr}
738 // cast {short, ushort} to {int, uint, ptr}
739 //
740 // 4) cast {int, uint, ptr} to {short, ushort}
741 // cast {int, uint, ptr} to {sbyte, ubyte}
742 // cast {short, ushort} to {sbyte, ubyte}
743 //
744 // 1) Implement casts to bool by using compare on the operand followed
745 // by set if not zero on the result.
746 if (targetType == Type::BoolTy)
747 {
748 BuildMI (BB, X86::CMPri8, 2).addReg (operandReg).addZImm (0);
749 BuildMI (BB, X86::SETNEr, 1, destReg);
750 return;
751 }
752 // 2) Implement casts between values of the same type class (as determined
753 // by getClass) by using a register-to-register move.
754 unsigned int srcClass = getClass (sourceType);
755 unsigned int targClass = getClass (targetType);
756 static const unsigned regRegMove[] = {
757 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
758 };
759 if ((srcClass < 3) && (targClass < 3) && (srcClass == targClass))
760 {
761 BuildMI (BB, regRegMove[srcClass], 1, destReg).addReg (operandReg);
762 return;
763 }
764 // 3) Handle cast of SMALLER int to LARGER int using a move with sign
765 // extension or zero extension, depending on whether the source type
766 // was signed.
767 if ((srcClass < 3) && (targClass < 3) && (srcClass < targClass))
768 {
769 static const unsigned ops[] = {
770 X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16,
771 X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16
772 };
773 unsigned srcSigned = sourceType->isSigned ();
774 BuildMI (BB, ops[3 * srcSigned + srcClass + targClass - 1], 1,
775 destReg).addReg (operandReg);
776 return;
777 }
778 // 4) Handle cast of LARGER int to SMALLER int using a move to EAX
779 // followed by a move out of AX or AL.
780 if ((srcClass < 3) && (targClass < 3) && (srcClass > targClass))
781 {
782 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
783 BuildMI (BB, regRegMove[srcClass], 1,
784 AReg[srcClass]).addReg (operandReg);
785 BuildMI (BB, regRegMove[targClass], 1, destReg).addReg (AReg[srcClass]);
786 return;
787 }
788 // Anything we haven't handled already, we can't (yet) handle at all.
Brian Gaeke20244b72002-12-12 15:33:40 +0000789 //
790 // FP to integral casts can be handled with FISTP to store onto the
791 // stack while converting to integer, followed by a MOV to load from
792 // the stack into the result register. Integral to FP casts can be
793 // handled with MOV to store onto the stack, followed by a FILD to
794 // load from the stack while converting to FP. For the moment, I
795 // can't quite get straight in my head how to borrow myself some
796 // stack space and write on it. Otherwise, this would be trivial.
Brian Gaekefa8d5712002-11-22 11:07:01 +0000797 visitInstruction (CI);
798}
Brian Gaekea1719c92002-10-31 23:03:59 +0000799
Brian Gaeke20244b72002-12-12 15:33:40 +0000800/// visitGetElementPtrInst - I don't know, most programs don't have
801/// getelementptr instructions, right? That means we can put off
802/// implementing this, right? Right. This method emits machine
803/// instructions to perform type-safe pointer arithmetic. I am
804/// guessing this could be cleaned up somewhat to use fewer temporary
805/// registers.
806void
807ISel::visitGetElementPtrInst (GetElementPtrInst &I)
808{
809 Value *basePtr = I.getPointerOperand ();
810 const TargetData &TD = TM.DataLayout;
811 unsigned basePtrReg = getReg (basePtr);
812 unsigned resultReg = getReg (I);
813 const Type *Ty = basePtr->getType();
814 // GEPs have zero or more indices; we must perform a struct access
815 // or array access for each one.
816 for (GetElementPtrInst::op_iterator oi = I.idx_begin (),
817 oe = I.idx_end (); oi != oe; ++oi) {
818 Value *idx = *oi;
819 unsigned nextBasePtrReg = makeAnotherReg ();
820 if (const StructType *StTy = dyn_cast <StructType> (Ty)) {
821 // It's a struct access. idx is the index into the structure,
822 // which names the field. This index must have ubyte type.
823 const ConstantUInt *CUI = cast <ConstantUInt> (idx);
824 assert (CUI->getType () == Type::UByteTy
825 && "Funny-looking structure index in GEP");
826 // Use the TargetData structure to pick out what the layout of
827 // the structure is in memory. Since the structure index must
828 // be constant, we can get its value and use it to find the
829 // right byte offset from the StructLayout class's list of
830 // structure member offsets.
831 unsigned idxValue = CUI->getValue ();
832 unsigned memberOffset =
833 TD.getStructLayout (StTy)->MemberOffsets[idxValue];
834 // Emit an ADD to add memberOffset to the basePtr.
835 BuildMI (BB, X86::ADDri32, 2,
836 nextBasePtrReg).addReg (basePtrReg).addZImm (memberOffset);
837 // The next type is the member of the structure selected by the
838 // index.
839 Ty = StTy->getElementTypes ()[idxValue];
840 } else if (const SequentialType *SqTy = cast <SequentialType> (Ty)) {
841 // It's an array or pointer access: [ArraySize x ElementType].
842 // The documentation does not seem to match the code on the type
843 // of array indices. The code seems to use long, and the docs
844 // (and the comments) say uint. If it is long, I don't know what
845 // we are going to do, because the X86 loves 64-bit types.
846 const Type *typeOfSequentialTypeIndex = SqTy->getIndexType ();
847 // idx is the index into the array. Unlike with structure
848 // indices, we may not know its actual value at code-generation
849 // time.
850 assert (idx->getType () == typeOfSequentialTypeIndex
851 && "Funny-looking array index in GEP");
852 // We want to add basePtrReg to (idxReg * sizeof
853 // ElementType). First, we must find the size of the pointed-to
854 // type. (Not coincidentally, the next type is the type of the
855 // elements in the array.)
856 Ty = SqTy->getElementType ();
857 unsigned elementSize = TD.getTypeSize (Ty);
858 unsigned elementSizeReg = makeAnotherReg ();
859 copyConstantToRegister (ConstantInt::get (typeOfSequentialTypeIndex,
860 elementSize),
861 elementSizeReg);
862 unsigned idxReg = getReg (idx);
863 // Emit a MUL to multiply the register holding the index by
864 // elementSize, putting the result in memberOffsetReg.
865 unsigned memberOffsetReg = makeAnotherReg ();
866 doMultiply (memberOffsetReg, typeOfSequentialTypeIndex,
867 elementSizeReg, idxReg);
868 // Emit an ADD to add memberOffsetReg to the basePtr.
869 BuildMI (BB, X86::ADDrr32, 2,
870 nextBasePtrReg).addReg (basePtrReg).addReg (memberOffsetReg);
871 }
872 // Now that we are here, further indices refer to subtypes of this
873 // one, so we don't need to worry about basePtrReg itself, anymore.
874 basePtrReg = nextBasePtrReg;
875 }
876 // After we have processed all the indices, the result is left in
877 // basePtrReg. Move it to the register where we were expected to
878 // put the answer. A 32-bit move should do it, because we are in
879 // ILP32 land.
880 BuildMI (BB, X86::MOVrr32, 1, getReg (I)).addReg (basePtrReg);
881}
882
883
884/// visitMallocInst - I know that personally, whenever I want to remember
885/// something, I have to clear off some space in my brain.
886void
887ISel::visitMallocInst (MallocInst &I)
888{
Brian Gaekee48ec012002-12-13 06:46:31 +0000889 // We assume that by this point, malloc instructions have been
890 // lowered to calls, and dlsym will magically find malloc for us.
891 // So we do not want to see malloc instructions here.
892 visitInstruction (I);
893}
894
895
896/// visitFreeInst - same story as MallocInst
897void
898ISel::visitFreeInst (FreeInst &I)
899{
900 // We assume that by this point, free instructions have been
901 // lowered to calls, and dlsym will magically find free for us.
902 // So we do not want to see free instructions here.
Brian Gaeke20244b72002-12-12 15:33:40 +0000903 visitInstruction (I);
904}
905
906
907/// visitAllocaInst - I want some stack space. Come on, man, I said I
908/// want some freakin' stack space.
909void
910ISel::visitAllocaInst (AllocaInst &I)
911{
Brian Gaekee48ec012002-12-13 06:46:31 +0000912 // Find the data size of the alloca inst's getAllocatedType.
913 const Type *allocatedType = I.getAllocatedType ();
914 const TargetData &TD = TM.DataLayout;
915 unsigned allocatedTypeSize = TD.getTypeSize (allocatedType);
916 // Keep stack 32-bit aligned.
917 unsigned int allocatedTypeWords = allocatedTypeSize / 4;
918 if (allocatedTypeSize % 4 != 0) { allocatedTypeWords++; }
919 // Subtract size from stack pointer, thereby allocating some space.
920 BuildMI (BB, X86::SUBri32, 1, X86::ESP).addZImm (allocatedTypeWords * 4);
921 // Put a pointer to the space into the result register, by copying
922 // the stack pointer.
923 BuildMI (BB, X86::MOVrr32, 1, getReg (I)).addReg (X86::ESP);
Brian Gaeke20244b72002-12-12 15:33:40 +0000924}
925
926
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000927/// createSimpleX86InstructionSelector - This pass converts an LLVM function
928/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +0000929/// generated code sucks but the implementation is nice and simple.
930///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000931Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
932 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +0000933}