blob: 4d750b4464badeba7473f4d32b45f1411cb32b8c [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Owen Anderson2ab36d32010-10-12 19:48:12 +0000106INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
107 "Scalar Evolution Analysis", false, true)
108INITIALIZE_PASS_DEPENDENCY(LoopInfo)
109INITIALIZE_PASS_DEPENDENCY(DominatorTree)
110INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000111 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000112char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000113
114//===----------------------------------------------------------------------===//
115// SCEV class definitions
116//===----------------------------------------------------------------------===//
117
118//===----------------------------------------------------------------------===//
119// Implementation of the SCEV class.
120//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000121
Chris Lattner53e677a2004-04-02 20:23:17 +0000122SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000123
Chris Lattner53e677a2004-04-02 20:23:17 +0000124void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000125 print(dbgs());
126 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000127}
128
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000129bool SCEV::isZero() const {
130 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
131 return SC->getValue()->isZero();
132 return false;
133}
134
Dan Gohman70a1fe72009-05-18 15:22:39 +0000135bool SCEV::isOne() const {
136 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
137 return SC->getValue()->isOne();
138 return false;
139}
Chris Lattner53e677a2004-04-02 20:23:17 +0000140
Dan Gohman4d289bf2009-06-24 00:30:26 +0000141bool SCEV::isAllOnesValue() const {
142 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
143 return SC->getValue()->isAllOnesValue();
144 return false;
145}
146
Owen Anderson753ad612009-06-22 21:57:23 +0000147SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000148 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000149
Chris Lattner53e677a2004-04-02 20:23:17 +0000150bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000151 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000152 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000153}
154
155const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000156 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000157 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000158}
159
160bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000161 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000162 return false;
163}
164
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000165bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
166 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
167 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000168}
169
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000170void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000171 OS << "***COULDNOTCOMPUTE***";
172}
173
174bool SCEVCouldNotCompute::classof(const SCEV *S) {
175 return S->getSCEVType() == scCouldNotCompute;
176}
177
Dan Gohman0bba49c2009-07-07 17:06:11 +0000178const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000179 FoldingSetNodeID ID;
180 ID.AddInteger(scConstant);
181 ID.AddPointer(V);
182 void *IP = 0;
183 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000184 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000185 UniqueSCEVs.InsertNode(S, IP);
186 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000187}
Chris Lattner53e677a2004-04-02 20:23:17 +0000188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000190 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000191}
192
Dan Gohman0bba49c2009-07-07 17:06:11 +0000193const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000194ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000195 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
196 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000197}
198
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000199const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000201void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000202 WriteAsOperand(OS, V, false);
203}
Chris Lattner53e677a2004-04-02 20:23:17 +0000204
Dan Gohman3bf63762010-06-18 19:54:20 +0000205SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000206 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000207 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000208
Dan Gohman84923602009-04-21 01:25:57 +0000209bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->dominates(BB, DT);
211}
212
Dan Gohman6e70e312009-09-27 15:26:03 +0000213bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
214 return Op->properlyDominates(BB, DT);
215}
216
Dan Gohman3bf63762010-06-18 19:54:20 +0000217SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000218 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000219 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000220 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
221 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000222 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
Chris Lattner53e677a2004-04-02 20:23:17 +0000224
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000225void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000226 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000227}
228
Dan Gohman3bf63762010-06-18 19:54:20 +0000229SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000230 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000231 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000232 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
233 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000234 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000237void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000238 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000239}
240
Dan Gohman3bf63762010-06-18 19:54:20 +0000241SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000242 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000243 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000244 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
245 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000246 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000250 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000251}
252
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000253void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000254 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000255 OS << "(";
256 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
257 OS << **I;
Oscar Fuentesee56c422010-08-02 06:00:15 +0000258 if (llvm::next(I) != E)
Dan Gohmana5145c82010-04-16 15:03:25 +0000259 OS << OpStr;
260 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000261 OS << ")";
262}
263
Dan Gohmanecb403a2009-05-07 14:00:19 +0000264bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Dan Gohmanbb854092010-08-16 16:16:11 +0000265 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
266 if (!(*I)->dominates(BB, DT))
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000267 return false;
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000268 return true;
269}
270
Dan Gohman6e70e312009-09-27 15:26:03 +0000271bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
Dan Gohmanbb854092010-08-16 16:16:11 +0000272 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
273 if (!(*I)->properlyDominates(BB, DT))
Dan Gohman6e70e312009-09-27 15:26:03 +0000274 return false;
Dan Gohman6e70e312009-09-27 15:26:03 +0000275 return true;
276}
277
Dan Gohman2f199f92010-08-16 16:21:27 +0000278bool SCEVNAryExpr::isLoopInvariant(const Loop *L) const {
279 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
280 if (!(*I)->isLoopInvariant(L))
281 return false;
282 return true;
283}
284
285// hasComputableLoopEvolution - N-ary expressions have computable loop
286// evolutions iff they have at least one operand that varies with the loop,
287// but that all varying operands are computable.
288bool SCEVNAryExpr::hasComputableLoopEvolution(const Loop *L) const {
289 bool HasVarying = false;
290 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
291 const SCEV *S = *I;
292 if (!S->isLoopInvariant(L)) {
293 if (S->hasComputableLoopEvolution(L))
294 HasVarying = true;
295 else
296 return false;
297 }
298 }
299 return HasVarying;
300}
301
302bool SCEVNAryExpr::hasOperand(const SCEV *O) const {
303 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
304 const SCEV *S = *I;
305 if (O == S || S->hasOperand(O))
306 return true;
307 }
308 return false;
309}
310
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000311bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
312 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
313}
314
Dan Gohman6e70e312009-09-27 15:26:03 +0000315bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
316 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
317}
318
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000319void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000320 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000321}
322
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000323const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000324 // In most cases the types of LHS and RHS will be the same, but in some
325 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
326 // depend on the type for correctness, but handling types carefully can
327 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
328 // a pointer type than the RHS, so use the RHS' type here.
329 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000330}
331
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000332bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000333 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000334 if (!QueryLoop)
335 return false;
336
337 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000338 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000339 return false;
340
Dan Gohman71c41442010-08-13 20:11:39 +0000341 // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop.
342 if (L->contains(QueryLoop))
343 return true;
344
Dan Gohmane890eea2009-06-26 22:17:21 +0000345 // This recurrence is variant w.r.t. QueryLoop if any of its operands
346 // are variant.
Dan Gohman7e1fee72010-08-29 14:52:02 +0000347 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
348 if (!(*I)->isLoopInvariant(QueryLoop))
Dan Gohmane890eea2009-06-26 22:17:21 +0000349 return false;
350
351 // Otherwise it's loop-invariant.
352 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000353}
354
Dan Gohman39125d82010-02-13 00:19:39 +0000355bool
356SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
357 return DT->dominates(L->getHeader(), BB) &&
358 SCEVNAryExpr::dominates(BB, DT);
359}
360
361bool
362SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
363 // This uses a "dominates" query instead of "properly dominates" query because
364 // the instruction which produces the addrec's value is a PHI, and a PHI
365 // effectively properly dominates its entire containing block.
366 return DT->dominates(L->getHeader(), BB) &&
367 SCEVNAryExpr::properlyDominates(BB, DT);
368}
369
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000370void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000371 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000372 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000373 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000374 OS << "}<";
375 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
376 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000377}
Chris Lattner53e677a2004-04-02 20:23:17 +0000378
Dan Gohmanab37f502010-08-02 23:49:30 +0000379void SCEVUnknown::deleted() {
380 // Clear this SCEVUnknown from ValuesAtScopes.
381 SE->ValuesAtScopes.erase(this);
382
383 // Remove this SCEVUnknown from the uniquing map.
384 SE->UniqueSCEVs.RemoveNode(this);
385
386 // Release the value.
387 setValPtr(0);
388}
389
390void SCEVUnknown::allUsesReplacedWith(Value *New) {
391 // Clear this SCEVUnknown from ValuesAtScopes.
392 SE->ValuesAtScopes.erase(this);
393
394 // Remove this SCEVUnknown from the uniquing map.
395 SE->UniqueSCEVs.RemoveNode(this);
396
397 // Update this SCEVUnknown to point to the new value. This is needed
398 // because there may still be outstanding SCEVs which still point to
399 // this SCEVUnknown.
400 setValPtr(New);
401}
402
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000403bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
404 // All non-instruction values are loop invariant. All instructions are loop
405 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000406 // Instructions are never considered invariant in the function body
407 // (null loop) because they are defined within the "loop".
Dan Gohmanab37f502010-08-02 23:49:30 +0000408 if (Instruction *I = dyn_cast<Instruction>(getValue()))
Dan Gohman92329c72009-12-18 01:24:09 +0000409 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000410 return true;
411}
Chris Lattner53e677a2004-04-02 20:23:17 +0000412
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000413bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
414 if (Instruction *I = dyn_cast<Instruction>(getValue()))
415 return DT->dominates(I->getParent(), BB);
416 return true;
417}
418
Dan Gohman6e70e312009-09-27 15:26:03 +0000419bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
420 if (Instruction *I = dyn_cast<Instruction>(getValue()))
421 return DT->properlyDominates(I->getParent(), BB);
422 return true;
423}
424
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000425const Type *SCEVUnknown::getType() const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000426 return getValue()->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000427}
Chris Lattner53e677a2004-04-02 20:23:17 +0000428
Dan Gohman0f5efe52010-01-28 02:15:55 +0000429bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000430 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000431 if (VCE->getOpcode() == Instruction::PtrToInt)
432 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000433 if (CE->getOpcode() == Instruction::GetElementPtr &&
434 CE->getOperand(0)->isNullValue() &&
435 CE->getNumOperands() == 2)
436 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
437 if (CI->isOne()) {
438 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
439 ->getElementType();
440 return true;
441 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000442
443 return false;
444}
445
446bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000447 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000448 if (VCE->getOpcode() == Instruction::PtrToInt)
449 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000450 if (CE->getOpcode() == Instruction::GetElementPtr &&
451 CE->getOperand(0)->isNullValue()) {
452 const Type *Ty =
453 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
454 if (const StructType *STy = dyn_cast<StructType>(Ty))
455 if (!STy->isPacked() &&
456 CE->getNumOperands() == 3 &&
457 CE->getOperand(1)->isNullValue()) {
458 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
459 if (CI->isOne() &&
460 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000461 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000462 AllocTy = STy->getElementType(1);
463 return true;
464 }
465 }
466 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000467
468 return false;
469}
470
Dan Gohman4f8eea82010-02-01 18:27:38 +0000471bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000472 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000473 if (VCE->getOpcode() == Instruction::PtrToInt)
474 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
475 if (CE->getOpcode() == Instruction::GetElementPtr &&
476 CE->getNumOperands() == 3 &&
477 CE->getOperand(0)->isNullValue() &&
478 CE->getOperand(1)->isNullValue()) {
479 const Type *Ty =
480 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
481 // Ignore vector types here so that ScalarEvolutionExpander doesn't
482 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000483 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000484 CTy = Ty;
485 FieldNo = CE->getOperand(2);
486 return true;
487 }
488 }
489
490 return false;
491}
492
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000493void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000494 const Type *AllocTy;
495 if (isSizeOf(AllocTy)) {
496 OS << "sizeof(" << *AllocTy << ")";
497 return;
498 }
499 if (isAlignOf(AllocTy)) {
500 OS << "alignof(" << *AllocTy << ")";
501 return;
502 }
503
Dan Gohman4f8eea82010-02-01 18:27:38 +0000504 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000505 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000506 if (isOffsetOf(CTy, FieldNo)) {
507 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000508 WriteAsOperand(OS, FieldNo, false);
509 OS << ")";
510 return;
511 }
512
513 // Otherwise just print it normally.
Dan Gohmanab37f502010-08-02 23:49:30 +0000514 WriteAsOperand(OS, getValue(), false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000515}
516
Chris Lattner8d741b82004-06-20 06:23:15 +0000517//===----------------------------------------------------------------------===//
518// SCEV Utilities
519//===----------------------------------------------------------------------===//
520
521namespace {
522 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
523 /// than the complexity of the RHS. This comparator is used to canonicalize
524 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000525 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000526 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000527 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000528 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000529
Dan Gohman67ef74e2010-08-27 15:26:01 +0000530 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000531 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000532 return compare(LHS, RHS) < 0;
533 }
534
535 // Return negative, zero, or positive, if LHS is less than, equal to, or
536 // greater than RHS, respectively. A three-way result allows recursive
537 // comparisons to be more efficient.
538 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000539 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
540 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000541 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000542
Dan Gohman72861302009-05-07 14:39:04 +0000543 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000544 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
545 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000546 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000547
Dan Gohman3bf63762010-06-18 19:54:20 +0000548 // Aside from the getSCEVType() ordering, the particular ordering
549 // isn't very important except that it's beneficial to be consistent,
550 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000551 switch (LType) {
552 case scUnknown: {
553 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000554 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000555
556 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
557 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000558 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000559
560 // Order pointer values after integer values. This helps SCEVExpander
561 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000562 bool LIsPointer = LV->getType()->isPointerTy(),
563 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000564 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000565 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000566
567 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000568 unsigned LID = LV->getValueID(),
569 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000570 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000571 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000572
573 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000574 if (const Argument *LA = dyn_cast<Argument>(LV)) {
575 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000576 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
577 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000578 }
579
Dan Gohman67ef74e2010-08-27 15:26:01 +0000580 // For instructions, compare their loop depth, and their operand
581 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000582 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
583 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000584
585 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000586 const BasicBlock *LParent = LInst->getParent(),
587 *RParent = RInst->getParent();
588 if (LParent != RParent) {
589 unsigned LDepth = LI->getLoopDepth(LParent),
590 RDepth = LI->getLoopDepth(RParent);
591 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000592 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000593 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000594
595 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000596 unsigned LNumOps = LInst->getNumOperands(),
597 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000598 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000599 }
600
Dan Gohman67ef74e2010-08-27 15:26:01 +0000601 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000602 }
603
Dan Gohman67ef74e2010-08-27 15:26:01 +0000604 case scConstant: {
605 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000606 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000607
608 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000609 const APInt &LA = LC->getValue()->getValue();
610 const APInt &RA = RC->getValue()->getValue();
611 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000612 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000613 return (int)LBitWidth - (int)RBitWidth;
614 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000615 }
616
Dan Gohman67ef74e2010-08-27 15:26:01 +0000617 case scAddRecExpr: {
618 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000619 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000620
621 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000622 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
623 if (LLoop != RLoop) {
624 unsigned LDepth = LLoop->getLoopDepth(),
625 RDepth = RLoop->getLoopDepth();
626 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000627 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000628 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000629
630 // Addrec complexity grows with operand count.
631 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
632 if (LNumOps != RNumOps)
633 return (int)LNumOps - (int)RNumOps;
634
635 // Lexicographically compare.
636 for (unsigned i = 0; i != LNumOps; ++i) {
637 long X = compare(LA->getOperand(i), RA->getOperand(i));
638 if (X != 0)
639 return X;
640 }
641
642 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000643 }
644
Dan Gohman67ef74e2010-08-27 15:26:01 +0000645 case scAddExpr:
646 case scMulExpr:
647 case scSMaxExpr:
648 case scUMaxExpr: {
649 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000650 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000651
652 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000653 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
654 for (unsigned i = 0; i != LNumOps; ++i) {
655 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000656 return 1;
657 long X = compare(LC->getOperand(i), RC->getOperand(i));
658 if (X != 0)
659 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000660 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000661 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000662 }
663
Dan Gohman67ef74e2010-08-27 15:26:01 +0000664 case scUDivExpr: {
665 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000666 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000667
668 // Lexicographically compare udiv expressions.
669 long X = compare(LC->getLHS(), RC->getLHS());
670 if (X != 0)
671 return X;
672 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000673 }
674
Dan Gohman67ef74e2010-08-27 15:26:01 +0000675 case scTruncate:
676 case scZeroExtend:
677 case scSignExtend: {
678 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000679 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000680
681 // Compare cast expressions by operand.
682 return compare(LC->getOperand(), RC->getOperand());
683 }
684
685 default:
686 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000687 }
688
689 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000690 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000691 }
692 };
693}
694
695/// GroupByComplexity - Given a list of SCEV objects, order them by their
696/// complexity, and group objects of the same complexity together by value.
697/// When this routine is finished, we know that any duplicates in the vector are
698/// consecutive and that complexity is monotonically increasing.
699///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000700/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000701/// results from this routine. In other words, we don't want the results of
702/// this to depend on where the addresses of various SCEV objects happened to
703/// land in memory.
704///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000705static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000706 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000707 if (Ops.size() < 2) return; // Noop
708 if (Ops.size() == 2) {
709 // This is the common case, which also happens to be trivially simple.
710 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000711 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
712 if (SCEVComplexityCompare(LI)(RHS, LHS))
713 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000714 return;
715 }
716
Dan Gohman3bf63762010-06-18 19:54:20 +0000717 // Do the rough sort by complexity.
718 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
719
720 // Now that we are sorted by complexity, group elements of the same
721 // complexity. Note that this is, at worst, N^2, but the vector is likely to
722 // be extremely short in practice. Note that we take this approach because we
723 // do not want to depend on the addresses of the objects we are grouping.
724 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
725 const SCEV *S = Ops[i];
726 unsigned Complexity = S->getSCEVType();
727
728 // If there are any objects of the same complexity and same value as this
729 // one, group them.
730 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
731 if (Ops[j] == S) { // Found a duplicate.
732 // Move it to immediately after i'th element.
733 std::swap(Ops[i+1], Ops[j]);
734 ++i; // no need to rescan it.
735 if (i == e-2) return; // Done!
736 }
737 }
738 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000739}
740
Chris Lattner53e677a2004-04-02 20:23:17 +0000741
Chris Lattner53e677a2004-04-02 20:23:17 +0000742
743//===----------------------------------------------------------------------===//
744// Simple SCEV method implementations
745//===----------------------------------------------------------------------===//
746
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000748/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000749static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000750 ScalarEvolution &SE,
751 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000752 // Handle the simplest case efficiently.
753 if (K == 1)
754 return SE.getTruncateOrZeroExtend(It, ResultTy);
755
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000756 // We are using the following formula for BC(It, K):
757 //
758 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
759 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000760 // Suppose, W is the bitwidth of the return value. We must be prepared for
761 // overflow. Hence, we must assure that the result of our computation is
762 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
763 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000764 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000765 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000766 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000767 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
768 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000769 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000770 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000771 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000772 // This formula is trivially equivalent to the previous formula. However,
773 // this formula can be implemented much more efficiently. The trick is that
774 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
775 // arithmetic. To do exact division in modular arithmetic, all we have
776 // to do is multiply by the inverse. Therefore, this step can be done at
777 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000778 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000779 // The next issue is how to safely do the division by 2^T. The way this
780 // is done is by doing the multiplication step at a width of at least W + T
781 // bits. This way, the bottom W+T bits of the product are accurate. Then,
782 // when we perform the division by 2^T (which is equivalent to a right shift
783 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
784 // truncated out after the division by 2^T.
785 //
786 // In comparison to just directly using the first formula, this technique
787 // is much more efficient; using the first formula requires W * K bits,
788 // but this formula less than W + K bits. Also, the first formula requires
789 // a division step, whereas this formula only requires multiplies and shifts.
790 //
791 // It doesn't matter whether the subtraction step is done in the calculation
792 // width or the input iteration count's width; if the subtraction overflows,
793 // the result must be zero anyway. We prefer here to do it in the width of
794 // the induction variable because it helps a lot for certain cases; CodeGen
795 // isn't smart enough to ignore the overflow, which leads to much less
796 // efficient code if the width of the subtraction is wider than the native
797 // register width.
798 //
799 // (It's possible to not widen at all by pulling out factors of 2 before
800 // the multiplication; for example, K=2 can be calculated as
801 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
802 // extra arithmetic, so it's not an obvious win, and it gets
803 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000804
Eli Friedmanb42a6262008-08-04 23:49:06 +0000805 // Protection from insane SCEVs; this bound is conservative,
806 // but it probably doesn't matter.
807 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000808 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000809
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000810 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000811
Eli Friedmanb42a6262008-08-04 23:49:06 +0000812 // Calculate K! / 2^T and T; we divide out the factors of two before
813 // multiplying for calculating K! / 2^T to avoid overflow.
814 // Other overflow doesn't matter because we only care about the bottom
815 // W bits of the result.
816 APInt OddFactorial(W, 1);
817 unsigned T = 1;
818 for (unsigned i = 3; i <= K; ++i) {
819 APInt Mult(W, i);
820 unsigned TwoFactors = Mult.countTrailingZeros();
821 T += TwoFactors;
822 Mult = Mult.lshr(TwoFactors);
823 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000824 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000825
Eli Friedmanb42a6262008-08-04 23:49:06 +0000826 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000827 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000828
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000829 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000830 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
831
832 // Calculate the multiplicative inverse of K! / 2^T;
833 // this multiplication factor will perform the exact division by
834 // K! / 2^T.
835 APInt Mod = APInt::getSignedMinValue(W+1);
836 APInt MultiplyFactor = OddFactorial.zext(W+1);
837 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
838 MultiplyFactor = MultiplyFactor.trunc(W);
839
840 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000841 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
842 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000843 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000844 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000845 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000846 Dividend = SE.getMulExpr(Dividend,
847 SE.getTruncateOrZeroExtend(S, CalculationTy));
848 }
849
850 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000851 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000852
853 // Truncate the result, and divide by K! / 2^T.
854
855 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
856 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000857}
858
Chris Lattner53e677a2004-04-02 20:23:17 +0000859/// evaluateAtIteration - Return the value of this chain of recurrences at
860/// the specified iteration number. We can evaluate this recurrence by
861/// multiplying each element in the chain by the binomial coefficient
862/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
863///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000864/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000865///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000866/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000867///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000868const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000869 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000870 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000871 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000872 // The computation is correct in the face of overflow provided that the
873 // multiplication is performed _after_ the evaluation of the binomial
874 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000875 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000876 if (isa<SCEVCouldNotCompute>(Coeff))
877 return Coeff;
878
879 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000880 }
881 return Result;
882}
883
Chris Lattner53e677a2004-04-02 20:23:17 +0000884//===----------------------------------------------------------------------===//
885// SCEV Expression folder implementations
886//===----------------------------------------------------------------------===//
887
Dan Gohman0bba49c2009-07-07 17:06:11 +0000888const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000889 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000890 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000891 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000892 assert(isSCEVable(Ty) &&
893 "This is not a conversion to a SCEVable type!");
894 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000895
Dan Gohmanc050fd92009-07-13 20:50:19 +0000896 FoldingSetNodeID ID;
897 ID.AddInteger(scTruncate);
898 ID.AddPointer(Op);
899 ID.AddPointer(Ty);
900 void *IP = 0;
901 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
902
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000903 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000904 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000905 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000906 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
907 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000908
Dan Gohman20900ca2009-04-22 16:20:48 +0000909 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000910 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000911 return getTruncateExpr(ST->getOperand(), Ty);
912
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000913 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000914 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000915 return getTruncateOrSignExtend(SS->getOperand(), Ty);
916
917 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000918 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000919 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
920
Dan Gohman6864db62009-06-18 16:24:47 +0000921 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000922 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000923 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000924 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000925 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
926 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000927 }
928
Dan Gohmanf53462d2010-07-15 20:02:11 +0000929 // As a special case, fold trunc(undef) to undef. We don't want to
930 // know too much about SCEVUnknowns, but this special case is handy
931 // and harmless.
932 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
933 if (isa<UndefValue>(U->getValue()))
934 return getSCEV(UndefValue::get(Ty));
935
Dan Gohman420ab912010-06-25 18:47:08 +0000936 // The cast wasn't folded; create an explicit cast node. We can reuse
937 // the existing insert position since if we get here, we won't have
938 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000939 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
940 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000941 UniqueSCEVs.InsertNode(S, IP);
942 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000943}
944
Dan Gohman0bba49c2009-07-07 17:06:11 +0000945const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000946 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000947 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000948 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000949 assert(isSCEVable(Ty) &&
950 "This is not a conversion to a SCEVable type!");
951 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000952
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000953 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000954 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
955 return getConstant(
956 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
957 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000958
Dan Gohman20900ca2009-04-22 16:20:48 +0000959 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000960 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000961 return getZeroExtendExpr(SZ->getOperand(), Ty);
962
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000963 // Before doing any expensive analysis, check to see if we've already
964 // computed a SCEV for this Op and Ty.
965 FoldingSetNodeID ID;
966 ID.AddInteger(scZeroExtend);
967 ID.AddPointer(Op);
968 ID.AddPointer(Ty);
969 void *IP = 0;
970 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
971
Dan Gohman01ecca22009-04-27 20:16:15 +0000972 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000973 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000974 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000975 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000976 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000977 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000978 const SCEV *Start = AR->getStart();
979 const SCEV *Step = AR->getStepRecurrence(*this);
980 unsigned BitWidth = getTypeSizeInBits(AR->getType());
981 const Loop *L = AR->getLoop();
982
Dan Gohmaneb490a72009-07-25 01:22:26 +0000983 // If we have special knowledge that this addrec won't overflow,
984 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000985 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000986 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
987 getZeroExtendExpr(Step, Ty),
988 L);
989
Dan Gohman01ecca22009-04-27 20:16:15 +0000990 // Check whether the backedge-taken count is SCEVCouldNotCompute.
991 // Note that this serves two purposes: It filters out loops that are
992 // simply not analyzable, and it covers the case where this code is
993 // being called from within backedge-taken count analysis, such that
994 // attempting to ask for the backedge-taken count would likely result
995 // in infinite recursion. In the later case, the analysis code will
996 // cope with a conservative value, and it will take care to purge
997 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000998 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000999 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001000 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001001 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001002
1003 // Check whether the backedge-taken count can be losslessly casted to
1004 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001005 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001006 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001007 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001008 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1009 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001010 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001011 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001012 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001013 const SCEV *Add = getAddExpr(Start, ZMul);
1014 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001015 getAddExpr(getZeroExtendExpr(Start, WideTy),
1016 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1017 getZeroExtendExpr(Step, WideTy)));
1018 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001019 // Return the expression with the addrec on the outside.
1020 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1021 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001022 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001023
1024 // Similar to above, only this time treat the step value as signed.
1025 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +00001026 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001027 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +00001028 OperandExtendedAdd =
1029 getAddExpr(getZeroExtendExpr(Start, WideTy),
1030 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1031 getSignExtendExpr(Step, WideTy)));
1032 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001033 // Return the expression with the addrec on the outside.
1034 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1035 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001036 L);
1037 }
1038
1039 // If the backedge is guarded by a comparison with the pre-inc value
1040 // the addrec is safe. Also, if the entry is guarded by a comparison
1041 // with the start value and the backedge is guarded by a comparison
1042 // with the post-inc value, the addrec is safe.
1043 if (isKnownPositive(Step)) {
1044 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1045 getUnsignedRange(Step).getUnsignedMax());
1046 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001047 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001048 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1049 AR->getPostIncExpr(*this), N)))
1050 // Return the expression with the addrec on the outside.
1051 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1052 getZeroExtendExpr(Step, Ty),
1053 L);
1054 } else if (isKnownNegative(Step)) {
1055 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1056 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001057 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1058 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001059 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1060 AR->getPostIncExpr(*this), N)))
1061 // Return the expression with the addrec on the outside.
1062 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1063 getSignExtendExpr(Step, Ty),
1064 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001065 }
1066 }
1067 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001068
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001069 // The cast wasn't folded; create an explicit cast node.
1070 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001071 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001072 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1073 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001074 UniqueSCEVs.InsertNode(S, IP);
1075 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001076}
1077
Dan Gohman0bba49c2009-07-07 17:06:11 +00001078const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00001079 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001080 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001081 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001082 assert(isSCEVable(Ty) &&
1083 "This is not a conversion to a SCEVable type!");
1084 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001085
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001086 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001087 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1088 return getConstant(
1089 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1090 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001091
Dan Gohman20900ca2009-04-22 16:20:48 +00001092 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001093 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001094 return getSignExtendExpr(SS->getOperand(), Ty);
1095
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001096 // Before doing any expensive analysis, check to see if we've already
1097 // computed a SCEV for this Op and Ty.
1098 FoldingSetNodeID ID;
1099 ID.AddInteger(scSignExtend);
1100 ID.AddPointer(Op);
1101 ID.AddPointer(Ty);
1102 void *IP = 0;
1103 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1104
Dan Gohman01ecca22009-04-27 20:16:15 +00001105 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001106 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001107 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001108 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001109 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001110 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001111 const SCEV *Start = AR->getStart();
1112 const SCEV *Step = AR->getStepRecurrence(*this);
1113 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1114 const Loop *L = AR->getLoop();
1115
Dan Gohmaneb490a72009-07-25 01:22:26 +00001116 // If we have special knowledge that this addrec won't overflow,
1117 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001118 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001119 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1120 getSignExtendExpr(Step, Ty),
1121 L);
1122
Dan Gohman01ecca22009-04-27 20:16:15 +00001123 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1124 // Note that this serves two purposes: It filters out loops that are
1125 // simply not analyzable, and it covers the case where this code is
1126 // being called from within backedge-taken count analysis, such that
1127 // attempting to ask for the backedge-taken count would likely result
1128 // in infinite recursion. In the later case, the analysis code will
1129 // cope with a conservative value, and it will take care to purge
1130 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001131 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001132 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001133 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001134 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001135
1136 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001137 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001138 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001139 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001140 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001141 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1142 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001143 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001144 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001145 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001146 const SCEV *Add = getAddExpr(Start, SMul);
1147 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001148 getAddExpr(getSignExtendExpr(Start, WideTy),
1149 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1150 getSignExtendExpr(Step, WideTy)));
1151 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001152 // Return the expression with the addrec on the outside.
1153 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1154 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001155 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001156
1157 // Similar to above, only this time treat the step value as unsigned.
1158 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001159 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001160 Add = getAddExpr(Start, UMul);
1161 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001162 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001163 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1164 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001165 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001166 // Return the expression with the addrec on the outside.
1167 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1168 getZeroExtendExpr(Step, Ty),
1169 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001170 }
1171
1172 // If the backedge is guarded by a comparison with the pre-inc value
1173 // the addrec is safe. Also, if the entry is guarded by a comparison
1174 // with the start value and the backedge is guarded by a comparison
1175 // with the post-inc value, the addrec is safe.
1176 if (isKnownPositive(Step)) {
1177 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1178 getSignedRange(Step).getSignedMax());
1179 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001180 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001181 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1182 AR->getPostIncExpr(*this), N)))
1183 // Return the expression with the addrec on the outside.
1184 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1185 getSignExtendExpr(Step, Ty),
1186 L);
1187 } else if (isKnownNegative(Step)) {
1188 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1189 getSignedRange(Step).getSignedMin());
1190 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001191 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001192 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1193 AR->getPostIncExpr(*this), N)))
1194 // Return the expression with the addrec on the outside.
1195 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1196 getSignExtendExpr(Step, Ty),
1197 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001198 }
1199 }
1200 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001201
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001202 // The cast wasn't folded; create an explicit cast node.
1203 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001204 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001205 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1206 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001207 UniqueSCEVs.InsertNode(S, IP);
1208 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001209}
1210
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001211/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1212/// unspecified bits out to the given type.
1213///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001214const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001215 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001216 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1217 "This is not an extending conversion!");
1218 assert(isSCEVable(Ty) &&
1219 "This is not a conversion to a SCEVable type!");
1220 Ty = getEffectiveSCEVType(Ty);
1221
1222 // Sign-extend negative constants.
1223 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1224 if (SC->getValue()->getValue().isNegative())
1225 return getSignExtendExpr(Op, Ty);
1226
1227 // Peel off a truncate cast.
1228 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001229 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001230 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1231 return getAnyExtendExpr(NewOp, Ty);
1232 return getTruncateOrNoop(NewOp, Ty);
1233 }
1234
1235 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001236 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001237 if (!isa<SCEVZeroExtendExpr>(ZExt))
1238 return ZExt;
1239
1240 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001241 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001242 if (!isa<SCEVSignExtendExpr>(SExt))
1243 return SExt;
1244
Dan Gohmana10756e2010-01-21 02:09:26 +00001245 // Force the cast to be folded into the operands of an addrec.
1246 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1247 SmallVector<const SCEV *, 4> Ops;
1248 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1249 I != E; ++I)
1250 Ops.push_back(getAnyExtendExpr(*I, Ty));
1251 return getAddRecExpr(Ops, AR->getLoop());
1252 }
1253
Dan Gohmanf53462d2010-07-15 20:02:11 +00001254 // As a special case, fold anyext(undef) to undef. We don't want to
1255 // know too much about SCEVUnknowns, but this special case is handy
1256 // and harmless.
1257 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1258 if (isa<UndefValue>(U->getValue()))
1259 return getSCEV(UndefValue::get(Ty));
1260
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001261 // If the expression is obviously signed, use the sext cast value.
1262 if (isa<SCEVSMaxExpr>(Op))
1263 return SExt;
1264
1265 // Absent any other information, use the zext cast value.
1266 return ZExt;
1267}
1268
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001269/// CollectAddOperandsWithScales - Process the given Ops list, which is
1270/// a list of operands to be added under the given scale, update the given
1271/// map. This is a helper function for getAddRecExpr. As an example of
1272/// what it does, given a sequence of operands that would form an add
1273/// expression like this:
1274///
1275/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1276///
1277/// where A and B are constants, update the map with these values:
1278///
1279/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1280///
1281/// and add 13 + A*B*29 to AccumulatedConstant.
1282/// This will allow getAddRecExpr to produce this:
1283///
1284/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1285///
1286/// This form often exposes folding opportunities that are hidden in
1287/// the original operand list.
1288///
1289/// Return true iff it appears that any interesting folding opportunities
1290/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1291/// the common case where no interesting opportunities are present, and
1292/// is also used as a check to avoid infinite recursion.
1293///
1294static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001295CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1296 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001297 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001298 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001299 const APInt &Scale,
1300 ScalarEvolution &SE) {
1301 bool Interesting = false;
1302
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001303 // Iterate over the add operands. They are sorted, with constants first.
1304 unsigned i = 0;
1305 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1306 ++i;
1307 // Pull a buried constant out to the outside.
1308 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1309 Interesting = true;
1310 AccumulatedConstant += Scale * C->getValue()->getValue();
1311 }
1312
1313 // Next comes everything else. We're especially interested in multiplies
1314 // here, but they're in the middle, so just visit the rest with one loop.
1315 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001316 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1317 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1318 APInt NewScale =
1319 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1320 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1321 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001322 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001323 Interesting |=
1324 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001325 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001326 NewScale, SE);
1327 } else {
1328 // A multiplication of a constant with some other value. Update
1329 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001330 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1331 const SCEV *Key = SE.getMulExpr(MulOps);
1332 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001333 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001334 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001335 NewOps.push_back(Pair.first->first);
1336 } else {
1337 Pair.first->second += NewScale;
1338 // The map already had an entry for this value, which may indicate
1339 // a folding opportunity.
1340 Interesting = true;
1341 }
1342 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001343 } else {
1344 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001345 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001346 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001347 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001348 NewOps.push_back(Pair.first->first);
1349 } else {
1350 Pair.first->second += Scale;
1351 // The map already had an entry for this value, which may indicate
1352 // a folding opportunity.
1353 Interesting = true;
1354 }
1355 }
1356 }
1357
1358 return Interesting;
1359}
1360
1361namespace {
1362 struct APIntCompare {
1363 bool operator()(const APInt &LHS, const APInt &RHS) const {
1364 return LHS.ult(RHS);
1365 }
1366 };
1367}
1368
Dan Gohman6c0866c2009-05-24 23:45:28 +00001369/// getAddExpr - Get a canonical add expression, or something simpler if
1370/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001371const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1372 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001373 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001374 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001375#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001376 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001377 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001378 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001379 "SCEVAddExpr operand types don't match!");
1380#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001381
Dan Gohmana10756e2010-01-21 02:09:26 +00001382 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1383 if (!HasNUW && HasNSW) {
1384 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001385 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1386 E = Ops.end(); I != E; ++I)
1387 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001388 All = false;
1389 break;
1390 }
1391 if (All) HasNUW = true;
1392 }
1393
Chris Lattner53e677a2004-04-02 20:23:17 +00001394 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001395 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001396
1397 // If there are any constants, fold them together.
1398 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001399 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001400 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001401 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001402 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001403 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001404 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1405 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001406 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001407 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001408 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001409 }
1410
1411 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001412 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001413 Ops.erase(Ops.begin());
1414 --Idx;
1415 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001416
Dan Gohmanbca091d2010-04-12 23:08:18 +00001417 if (Ops.size() == 1) return Ops[0];
1418 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001419
Dan Gohman68ff7762010-08-27 21:39:59 +00001420 // Okay, check to see if the same value occurs in the operand list more than
1421 // once. If so, merge them together into an multiply expression. Since we
1422 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001423 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001424 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001425 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001426 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001427 // Scan ahead to count how many equal operands there are.
1428 unsigned Count = 2;
1429 while (i+Count != e && Ops[i+Count] == Ops[i])
1430 ++Count;
1431 // Merge the values into a multiply.
1432 const SCEV *Scale = getConstant(Ty, Count);
1433 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1434 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001435 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001436 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001437 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001438 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001439 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001440 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001441 if (FoundMatch)
1442 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001443
Dan Gohman728c7f32009-05-08 21:03:19 +00001444 // Check for truncates. If all the operands are truncated from the same
1445 // type, see if factoring out the truncate would permit the result to be
1446 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1447 // if the contents of the resulting outer trunc fold to something simple.
1448 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1449 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1450 const Type *DstType = Trunc->getType();
1451 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001452 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001453 bool Ok = true;
1454 // Check all the operands to see if they can be represented in the
1455 // source type of the truncate.
1456 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1457 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1458 if (T->getOperand()->getType() != SrcType) {
1459 Ok = false;
1460 break;
1461 }
1462 LargeOps.push_back(T->getOperand());
1463 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001464 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001465 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001466 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001467 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1468 if (const SCEVTruncateExpr *T =
1469 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1470 if (T->getOperand()->getType() != SrcType) {
1471 Ok = false;
1472 break;
1473 }
1474 LargeMulOps.push_back(T->getOperand());
1475 } else if (const SCEVConstant *C =
1476 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001477 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001478 } else {
1479 Ok = false;
1480 break;
1481 }
1482 }
1483 if (Ok)
1484 LargeOps.push_back(getMulExpr(LargeMulOps));
1485 } else {
1486 Ok = false;
1487 break;
1488 }
1489 }
1490 if (Ok) {
1491 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001492 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001493 // If it folds to something simple, use it. Otherwise, don't.
1494 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1495 return getTruncateExpr(Fold, DstType);
1496 }
1497 }
1498
1499 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001500 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1501 ++Idx;
1502
1503 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001504 if (Idx < Ops.size()) {
1505 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001506 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001507 // If we have an add, expand the add operands onto the end of the operands
1508 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001509 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001510 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001511 DeletedAdd = true;
1512 }
1513
1514 // If we deleted at least one add, we added operands to the end of the list,
1515 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001516 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001517 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001518 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001519 }
1520
1521 // Skip over the add expression until we get to a multiply.
1522 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1523 ++Idx;
1524
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001525 // Check to see if there are any folding opportunities present with
1526 // operands multiplied by constant values.
1527 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1528 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001529 DenseMap<const SCEV *, APInt> M;
1530 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001531 APInt AccumulatedConstant(BitWidth, 0);
1532 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001533 Ops.data(), Ops.size(),
1534 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001535 // Some interesting folding opportunity is present, so its worthwhile to
1536 // re-generate the operands list. Group the operands by constant scale,
1537 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001538 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001539 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001540 E = NewOps.end(); I != E; ++I)
1541 MulOpLists[M.find(*I)->second].push_back(*I);
1542 // Re-generate the operands list.
1543 Ops.clear();
1544 if (AccumulatedConstant != 0)
1545 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001546 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1547 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001548 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001549 Ops.push_back(getMulExpr(getConstant(I->first),
1550 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001551 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001552 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001553 if (Ops.size() == 1)
1554 return Ops[0];
1555 return getAddExpr(Ops);
1556 }
1557 }
1558
Chris Lattner53e677a2004-04-02 20:23:17 +00001559 // If we are adding something to a multiply expression, make sure the
1560 // something is not already an operand of the multiply. If so, merge it into
1561 // the multiply.
1562 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001563 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001564 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001565 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001566 if (isa<SCEVConstant>(MulOpSCEV))
1567 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001568 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001569 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001570 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001571 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001572 if (Mul->getNumOperands() != 2) {
1573 // If the multiply has more than two operands, we must get the
1574 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001575 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1576 Mul->op_begin()+MulOp);
1577 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001578 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001579 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001580 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001581 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001582 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001583 if (Ops.size() == 2) return OuterMul;
1584 if (AddOp < Idx) {
1585 Ops.erase(Ops.begin()+AddOp);
1586 Ops.erase(Ops.begin()+Idx-1);
1587 } else {
1588 Ops.erase(Ops.begin()+Idx);
1589 Ops.erase(Ops.begin()+AddOp-1);
1590 }
1591 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001592 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001593 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001594
Chris Lattner53e677a2004-04-02 20:23:17 +00001595 // Check this multiply against other multiplies being added together.
1596 for (unsigned OtherMulIdx = Idx+1;
1597 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1598 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001599 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001600 // If MulOp occurs in OtherMul, we can fold the two multiplies
1601 // together.
1602 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1603 OMulOp != e; ++OMulOp)
1604 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1605 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001606 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001607 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001608 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001609 Mul->op_begin()+MulOp);
1610 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001611 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001612 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001613 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001614 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001615 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001616 OtherMul->op_begin()+OMulOp);
1617 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001618 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001619 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001620 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1621 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001622 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001623 Ops.erase(Ops.begin()+Idx);
1624 Ops.erase(Ops.begin()+OtherMulIdx-1);
1625 Ops.push_back(OuterMul);
1626 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001627 }
1628 }
1629 }
1630 }
1631
1632 // If there are any add recurrences in the operands list, see if any other
1633 // added values are loop invariant. If so, we can fold them into the
1634 // recurrence.
1635 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1636 ++Idx;
1637
1638 // Scan over all recurrences, trying to fold loop invariants into them.
1639 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1640 // Scan all of the other operands to this add and add them to the vector if
1641 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001642 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001643 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001644 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001645 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001646 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001647 LIOps.push_back(Ops[i]);
1648 Ops.erase(Ops.begin()+i);
1649 --i; --e;
1650 }
1651
1652 // If we found some loop invariants, fold them into the recurrence.
1653 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001654 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001655 LIOps.push_back(AddRec->getStart());
1656
Dan Gohman0bba49c2009-07-07 17:06:11 +00001657 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001658 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001659 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001660
Dan Gohmanb9f96512010-06-30 07:16:37 +00001661 // Build the new addrec. Propagate the NUW and NSW flags if both the
1662 // outer add and the inner addrec are guaranteed to have no overflow.
1663 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1664 HasNUW && AddRec->hasNoUnsignedWrap(),
1665 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001666
Chris Lattner53e677a2004-04-02 20:23:17 +00001667 // If all of the other operands were loop invariant, we are done.
1668 if (Ops.size() == 1) return NewRec;
1669
1670 // Otherwise, add the folded AddRec by the non-liv parts.
1671 for (unsigned i = 0;; ++i)
1672 if (Ops[i] == AddRec) {
1673 Ops[i] = NewRec;
1674 break;
1675 }
Dan Gohman246b2562007-10-22 18:31:58 +00001676 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001677 }
1678
1679 // Okay, if there weren't any loop invariants to be folded, check to see if
1680 // there are multiple AddRec's with the same loop induction variable being
1681 // added together. If so, we can fold them.
1682 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001683 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1684 ++OtherIdx)
1685 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1686 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1687 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1688 AddRec->op_end());
1689 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1690 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001691 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001692 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001693 if (OtherAddRec->getLoop() == AddRecLoop) {
1694 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1695 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001696 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001697 AddRecOps.append(OtherAddRec->op_begin()+i,
1698 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001699 break;
1700 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001701 AddRecOps[i] = getAddExpr(AddRecOps[i],
1702 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001703 }
1704 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001705 }
Dan Gohman32527152010-08-27 20:45:56 +00001706 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1707 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001708 }
1709
1710 // Otherwise couldn't fold anything into this recurrence. Move onto the
1711 // next one.
1712 }
1713
1714 // Okay, it looks like we really DO need an add expr. Check to see if we
1715 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001716 FoldingSetNodeID ID;
1717 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001718 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1719 ID.AddPointer(Ops[i]);
1720 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001721 SCEVAddExpr *S =
1722 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1723 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001724 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1725 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001726 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1727 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001728 UniqueSCEVs.InsertNode(S, IP);
1729 }
Dan Gohman3645b012009-10-09 00:10:36 +00001730 if (HasNUW) S->setHasNoUnsignedWrap(true);
1731 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001732 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001733}
1734
Dan Gohman6c0866c2009-05-24 23:45:28 +00001735/// getMulExpr - Get a canonical multiply expression, or something simpler if
1736/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001737const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1738 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001739 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001740 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001741#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001742 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001743 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001744 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001745 "SCEVMulExpr operand types don't match!");
1746#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001747
Dan Gohmana10756e2010-01-21 02:09:26 +00001748 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1749 if (!HasNUW && HasNSW) {
1750 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001751 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1752 E = Ops.end(); I != E; ++I)
1753 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001754 All = false;
1755 break;
1756 }
1757 if (All) HasNUW = true;
1758 }
1759
Chris Lattner53e677a2004-04-02 20:23:17 +00001760 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001761 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001762
1763 // If there are any constants, fold them together.
1764 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001765 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001766
1767 // C1*(C2+V) -> C1*C2 + C1*V
1768 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001769 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001770 if (Add->getNumOperands() == 2 &&
1771 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001772 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1773 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001774
Chris Lattner53e677a2004-04-02 20:23:17 +00001775 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001776 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001777 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001778 ConstantInt *Fold = ConstantInt::get(getContext(),
1779 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001780 RHSC->getValue()->getValue());
1781 Ops[0] = getConstant(Fold);
1782 Ops.erase(Ops.begin()+1); // Erase the folded element
1783 if (Ops.size() == 1) return Ops[0];
1784 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001785 }
1786
1787 // If we are left with a constant one being multiplied, strip it off.
1788 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1789 Ops.erase(Ops.begin());
1790 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001791 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001792 // If we have a multiply of zero, it will always be zero.
1793 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001794 } else if (Ops[0]->isAllOnesValue()) {
1795 // If we have a mul by -1 of an add, try distributing the -1 among the
1796 // add operands.
1797 if (Ops.size() == 2)
1798 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1799 SmallVector<const SCEV *, 4> NewOps;
1800 bool AnyFolded = false;
1801 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1802 I != E; ++I) {
1803 const SCEV *Mul = getMulExpr(Ops[0], *I);
1804 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1805 NewOps.push_back(Mul);
1806 }
1807 if (AnyFolded)
1808 return getAddExpr(NewOps);
1809 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001810 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001811
1812 if (Ops.size() == 1)
1813 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001814 }
1815
1816 // Skip over the add expression until we get to a multiply.
1817 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1818 ++Idx;
1819
Chris Lattner53e677a2004-04-02 20:23:17 +00001820 // If there are mul operands inline them all into this expression.
1821 if (Idx < Ops.size()) {
1822 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001823 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001824 // If we have an mul, expand the mul operands onto the end of the operands
1825 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001826 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001827 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001828 DeletedMul = true;
1829 }
1830
1831 // If we deleted at least one mul, we added operands to the end of the list,
1832 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001833 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001834 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001835 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001836 }
1837
1838 // If there are any add recurrences in the operands list, see if any other
1839 // added values are loop invariant. If so, we can fold them into the
1840 // recurrence.
1841 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1842 ++Idx;
1843
1844 // Scan over all recurrences, trying to fold loop invariants into them.
1845 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1846 // Scan all of the other operands to this mul and add them to the vector if
1847 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001848 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001849 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001850 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001851 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman0f32ae32010-08-29 14:55:19 +00001852 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001853 LIOps.push_back(Ops[i]);
1854 Ops.erase(Ops.begin()+i);
1855 --i; --e;
1856 }
1857
1858 // If we found some loop invariants, fold them into the recurrence.
1859 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001860 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001861 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001862 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001863 const SCEV *Scale = getMulExpr(LIOps);
1864 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1865 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001866
Dan Gohmanb9f96512010-06-30 07:16:37 +00001867 // Build the new addrec. Propagate the NUW and NSW flags if both the
1868 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohman0f32ae32010-08-29 14:55:19 +00001869 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
Dan Gohmana10756e2010-01-21 02:09:26 +00001870 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001871 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001872
1873 // If all of the other operands were loop invariant, we are done.
1874 if (Ops.size() == 1) return NewRec;
1875
1876 // Otherwise, multiply the folded AddRec by the non-liv parts.
1877 for (unsigned i = 0;; ++i)
1878 if (Ops[i] == AddRec) {
1879 Ops[i] = NewRec;
1880 break;
1881 }
Dan Gohman246b2562007-10-22 18:31:58 +00001882 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001883 }
1884
1885 // Okay, if there weren't any loop invariants to be folded, check to see if
1886 // there are multiple AddRec's with the same loop induction variable being
1887 // multiplied together. If so, we can fold them.
1888 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001889 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1890 ++OtherIdx)
1891 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1892 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1893 // {A*C,+,F*D + G*B + B*D}<L>
1894 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1895 ++OtherIdx)
1896 if (const SCEVAddRecExpr *OtherAddRec =
1897 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1898 if (OtherAddRec->getLoop() == AddRecLoop) {
1899 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1900 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1901 const SCEV *B = F->getStepRecurrence(*this);
1902 const SCEV *D = G->getStepRecurrence(*this);
1903 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1904 getMulExpr(G, B),
1905 getMulExpr(B, D));
1906 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1907 F->getLoop());
1908 if (Ops.size() == 2) return NewAddRec;
1909 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1910 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1911 }
1912 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001913 }
1914
1915 // Otherwise couldn't fold anything into this recurrence. Move onto the
1916 // next one.
1917 }
1918
1919 // Okay, it looks like we really DO need an mul expr. Check to see if we
1920 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001921 FoldingSetNodeID ID;
1922 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001923 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1924 ID.AddPointer(Ops[i]);
1925 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001926 SCEVMulExpr *S =
1927 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1928 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001929 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1930 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001931 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1932 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001933 UniqueSCEVs.InsertNode(S, IP);
1934 }
Dan Gohman3645b012009-10-09 00:10:36 +00001935 if (HasNUW) S->setHasNoUnsignedWrap(true);
1936 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001937 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001938}
1939
Andreas Bolka8a11c982009-08-07 22:55:26 +00001940/// getUDivExpr - Get a canonical unsigned division expression, or something
1941/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001942const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1943 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001944 assert(getEffectiveSCEVType(LHS->getType()) ==
1945 getEffectiveSCEVType(RHS->getType()) &&
1946 "SCEVUDivExpr operand types don't match!");
1947
Dan Gohman622ed672009-05-04 22:02:23 +00001948 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001949 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001950 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001951 // If the denominator is zero, the result of the udiv is undefined. Don't
1952 // try to analyze it, because the resolution chosen here may differ from
1953 // the resolution chosen in other parts of the compiler.
1954 if (!RHSC->getValue()->isZero()) {
1955 // Determine if the division can be folded into the operands of
1956 // its operands.
1957 // TODO: Generalize this to non-constants by using known-bits information.
1958 const Type *Ty = LHS->getType();
1959 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001960 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001961 // For non-power-of-two values, effectively round the value up to the
1962 // nearest power of two.
1963 if (!RHSC->getValue()->getValue().isPowerOf2())
1964 ++MaxShiftAmt;
1965 const IntegerType *ExtTy =
1966 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1967 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1968 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1969 if (const SCEVConstant *Step =
1970 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1971 if (!Step->getValue()->getValue()
1972 .urem(RHSC->getValue()->getValue()) &&
1973 getZeroExtendExpr(AR, ExtTy) ==
1974 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1975 getZeroExtendExpr(Step, ExtTy),
1976 AR->getLoop())) {
1977 SmallVector<const SCEV *, 4> Operands;
1978 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1979 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1980 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001981 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001982 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1983 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1984 SmallVector<const SCEV *, 4> Operands;
1985 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1986 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1987 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1988 // Find an operand that's safely divisible.
1989 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1990 const SCEV *Op = M->getOperand(i);
1991 const SCEV *Div = getUDivExpr(Op, RHSC);
1992 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1993 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1994 M->op_end());
1995 Operands[i] = Div;
1996 return getMulExpr(Operands);
1997 }
1998 }
Dan Gohman185cf032009-05-08 20:18:49 +00001999 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002000 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2001 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
2002 SmallVector<const SCEV *, 4> Operands;
2003 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2004 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2005 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2006 Operands.clear();
2007 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2008 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2009 if (isa<SCEVUDivExpr>(Op) ||
2010 getMulExpr(Op, RHS) != A->getOperand(i))
2011 break;
2012 Operands.push_back(Op);
2013 }
2014 if (Operands.size() == A->getNumOperands())
2015 return getAddExpr(Operands);
2016 }
2017 }
Dan Gohman185cf032009-05-08 20:18:49 +00002018
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002019 // Fold if both operands are constant.
2020 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2021 Constant *LHSCV = LHSC->getValue();
2022 Constant *RHSCV = RHSC->getValue();
2023 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2024 RHSCV)));
2025 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002026 }
2027 }
2028
Dan Gohman1c343752009-06-27 21:21:31 +00002029 FoldingSetNodeID ID;
2030 ID.AddInteger(scUDivExpr);
2031 ID.AddPointer(LHS);
2032 ID.AddPointer(RHS);
2033 void *IP = 0;
2034 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002035 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2036 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002037 UniqueSCEVs.InsertNode(S, IP);
2038 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002039}
2040
2041
Dan Gohman6c0866c2009-05-24 23:45:28 +00002042/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2043/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002044const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00002045 const SCEV *Step, const Loop *L,
2046 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002047 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002048 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002049 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002050 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002051 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00002052 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002053 }
2054
2055 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00002056 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002057}
2058
Dan Gohman6c0866c2009-05-24 23:45:28 +00002059/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2060/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002061const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002062ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00002063 const Loop *L,
2064 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002065 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002066#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002067 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002068 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002069 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002070 "SCEVAddRecExpr operand types don't match!");
2071#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002072
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002073 if (Operands.back()->isZero()) {
2074 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00002075 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002076 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002077
Dan Gohmanbc028532010-02-19 18:49:22 +00002078 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2079 // use that information to infer NUW and NSW flags. However, computing a
2080 // BE count requires calling getAddRecExpr, so we may not yet have a
2081 // meaningful BE count at this point (and if we don't, we'd be stuck
2082 // with a SCEVCouldNotCompute as the cached BE count).
2083
Dan Gohmana10756e2010-01-21 02:09:26 +00002084 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2085 if (!HasNUW && HasNSW) {
2086 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002087 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2088 E = Operands.end(); I != E; ++I)
2089 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002090 All = false;
2091 break;
2092 }
2093 if (All) HasNUW = true;
2094 }
2095
Dan Gohmand9cc7492008-08-08 18:33:12 +00002096 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002097 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002098 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002099 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002100 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002101 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002102 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002103 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002104 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002105 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002106 // AddRecs require their operands be loop-invariant with respect to their
2107 // loops. Don't perform this transformation if it would break this
2108 // requirement.
2109 bool AllInvariant = true;
2110 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2111 if (!Operands[i]->isLoopInvariant(L)) {
2112 AllInvariant = false;
2113 break;
2114 }
2115 if (AllInvariant) {
2116 NestedOperands[0] = getAddRecExpr(Operands, L);
2117 AllInvariant = true;
2118 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2119 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2120 AllInvariant = false;
2121 break;
2122 }
2123 if (AllInvariant)
2124 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002125 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002126 }
2127 // Reset Operands to its original state.
2128 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002129 }
2130 }
2131
Dan Gohman67847532010-01-19 22:27:22 +00002132 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2133 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002134 FoldingSetNodeID ID;
2135 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002136 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2137 ID.AddPointer(Operands[i]);
2138 ID.AddPointer(L);
2139 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002140 SCEVAddRecExpr *S =
2141 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2142 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002143 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2144 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002145 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2146 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002147 UniqueSCEVs.InsertNode(S, IP);
2148 }
Dan Gohman3645b012009-10-09 00:10:36 +00002149 if (HasNUW) S->setHasNoUnsignedWrap(true);
2150 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002151 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002152}
2153
Dan Gohman9311ef62009-06-24 14:49:00 +00002154const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2155 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002156 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002157 Ops.push_back(LHS);
2158 Ops.push_back(RHS);
2159 return getSMaxExpr(Ops);
2160}
2161
Dan Gohman0bba49c2009-07-07 17:06:11 +00002162const SCEV *
2163ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002164 assert(!Ops.empty() && "Cannot get empty smax!");
2165 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002166#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002167 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002168 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002169 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002170 "SCEVSMaxExpr operand types don't match!");
2171#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002172
2173 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002174 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002175
2176 // If there are any constants, fold them together.
2177 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002178 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002179 ++Idx;
2180 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002181 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002182 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002183 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002184 APIntOps::smax(LHSC->getValue()->getValue(),
2185 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002186 Ops[0] = getConstant(Fold);
2187 Ops.erase(Ops.begin()+1); // Erase the folded element
2188 if (Ops.size() == 1) return Ops[0];
2189 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002190 }
2191
Dan Gohmane5aceed2009-06-24 14:46:22 +00002192 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002193 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2194 Ops.erase(Ops.begin());
2195 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002196 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2197 // If we have an smax with a constant maximum-int, it will always be
2198 // maximum-int.
2199 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002200 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002201
Dan Gohman3ab13122010-04-13 16:49:23 +00002202 if (Ops.size() == 1) return Ops[0];
2203 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002204
2205 // Find the first SMax
2206 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2207 ++Idx;
2208
2209 // Check to see if one of the operands is an SMax. If so, expand its operands
2210 // onto our operand list, and recurse to simplify.
2211 if (Idx < Ops.size()) {
2212 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002213 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002214 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002215 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002216 DeletedSMax = true;
2217 }
2218
2219 if (DeletedSMax)
2220 return getSMaxExpr(Ops);
2221 }
2222
2223 // Okay, check to see if the same value occurs in the operand list twice. If
2224 // so, delete one. Since we sorted the list, these values are required to
2225 // be adjacent.
2226 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002227 // X smax Y smax Y --> X smax Y
2228 // X smax Y --> X, if X is always greater than Y
2229 if (Ops[i] == Ops[i+1] ||
2230 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2231 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2232 --i; --e;
2233 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002234 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2235 --i; --e;
2236 }
2237
2238 if (Ops.size() == 1) return Ops[0];
2239
2240 assert(!Ops.empty() && "Reduced smax down to nothing!");
2241
Nick Lewycky3e630762008-02-20 06:48:22 +00002242 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002243 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002244 FoldingSetNodeID ID;
2245 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002246 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2247 ID.AddPointer(Ops[i]);
2248 void *IP = 0;
2249 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002250 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2251 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002252 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2253 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002254 UniqueSCEVs.InsertNode(S, IP);
2255 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002256}
2257
Dan Gohman9311ef62009-06-24 14:49:00 +00002258const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2259 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002260 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002261 Ops.push_back(LHS);
2262 Ops.push_back(RHS);
2263 return getUMaxExpr(Ops);
2264}
2265
Dan Gohman0bba49c2009-07-07 17:06:11 +00002266const SCEV *
2267ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002268 assert(!Ops.empty() && "Cannot get empty umax!");
2269 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002270#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002271 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002272 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002273 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002274 "SCEVUMaxExpr operand types don't match!");
2275#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002276
2277 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002278 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002279
2280 // If there are any constants, fold them together.
2281 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002282 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002283 ++Idx;
2284 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002285 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002286 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002287 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002288 APIntOps::umax(LHSC->getValue()->getValue(),
2289 RHSC->getValue()->getValue()));
2290 Ops[0] = getConstant(Fold);
2291 Ops.erase(Ops.begin()+1); // Erase the folded element
2292 if (Ops.size() == 1) return Ops[0];
2293 LHSC = cast<SCEVConstant>(Ops[0]);
2294 }
2295
Dan Gohmane5aceed2009-06-24 14:46:22 +00002296 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002297 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2298 Ops.erase(Ops.begin());
2299 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002300 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2301 // If we have an umax with a constant maximum-int, it will always be
2302 // maximum-int.
2303 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002304 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002305
Dan Gohman3ab13122010-04-13 16:49:23 +00002306 if (Ops.size() == 1) return Ops[0];
2307 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002308
2309 // Find the first UMax
2310 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2311 ++Idx;
2312
2313 // Check to see if one of the operands is a UMax. If so, expand its operands
2314 // onto our operand list, and recurse to simplify.
2315 if (Idx < Ops.size()) {
2316 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002317 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002318 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002319 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002320 DeletedUMax = true;
2321 }
2322
2323 if (DeletedUMax)
2324 return getUMaxExpr(Ops);
2325 }
2326
2327 // Okay, check to see if the same value occurs in the operand list twice. If
2328 // so, delete one. Since we sorted the list, these values are required to
2329 // be adjacent.
2330 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002331 // X umax Y umax Y --> X umax Y
2332 // X umax Y --> X, if X is always greater than Y
2333 if (Ops[i] == Ops[i+1] ||
2334 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2335 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2336 --i; --e;
2337 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002338 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2339 --i; --e;
2340 }
2341
2342 if (Ops.size() == 1) return Ops[0];
2343
2344 assert(!Ops.empty() && "Reduced umax down to nothing!");
2345
2346 // Okay, it looks like we really DO need a umax expr. Check to see if we
2347 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002348 FoldingSetNodeID ID;
2349 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002350 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2351 ID.AddPointer(Ops[i]);
2352 void *IP = 0;
2353 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002354 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2355 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002356 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2357 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002358 UniqueSCEVs.InsertNode(S, IP);
2359 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002360}
2361
Dan Gohman9311ef62009-06-24 14:49:00 +00002362const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2363 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002364 // ~smax(~x, ~y) == smin(x, y).
2365 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2366}
2367
Dan Gohman9311ef62009-06-24 14:49:00 +00002368const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2369 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002370 // ~umax(~x, ~y) == umin(x, y)
2371 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2372}
2373
Dan Gohman4f8eea82010-02-01 18:27:38 +00002374const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002375 // If we have TargetData, we can bypass creating a target-independent
2376 // constant expression and then folding it back into a ConstantInt.
2377 // This is just a compile-time optimization.
2378 if (TD)
2379 return getConstant(TD->getIntPtrType(getContext()),
2380 TD->getTypeAllocSize(AllocTy));
2381
Dan Gohman4f8eea82010-02-01 18:27:38 +00002382 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002384 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2385 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002386 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2387 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2388}
2389
2390const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2391 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002393 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2394 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002395 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2396 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2397}
2398
2399const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2400 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002401 // If we have TargetData, we can bypass creating a target-independent
2402 // constant expression and then folding it back into a ConstantInt.
2403 // This is just a compile-time optimization.
2404 if (TD)
2405 return getConstant(TD->getIntPtrType(getContext()),
2406 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2407
Dan Gohman0f5efe52010-01-28 02:15:55 +00002408 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002410 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2411 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002412 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002413 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002414}
2415
Dan Gohman4f8eea82010-02-01 18:27:38 +00002416const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2417 Constant *FieldNo) {
2418 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002419 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002420 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2421 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002422 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002423 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002424}
2425
Dan Gohman0bba49c2009-07-07 17:06:11 +00002426const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002427 // Don't attempt to do anything other than create a SCEVUnknown object
2428 // here. createSCEV only calls getUnknown after checking for all other
2429 // interesting possibilities, and any other code that calls getUnknown
2430 // is doing so in order to hide a value from SCEV canonicalization.
2431
Dan Gohman1c343752009-06-27 21:21:31 +00002432 FoldingSetNodeID ID;
2433 ID.AddInteger(scUnknown);
2434 ID.AddPointer(V);
2435 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002436 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2437 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2438 "Stale SCEVUnknown in uniquing map!");
2439 return S;
2440 }
2441 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2442 FirstUnknown);
2443 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002444 UniqueSCEVs.InsertNode(S, IP);
2445 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002446}
2447
Chris Lattner53e677a2004-04-02 20:23:17 +00002448//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002449// Basic SCEV Analysis and PHI Idiom Recognition Code
2450//
2451
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002452/// isSCEVable - Test if values of the given type are analyzable within
2453/// the SCEV framework. This primarily includes integer types, and it
2454/// can optionally include pointer types if the ScalarEvolution class
2455/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002456bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002457 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002458 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002459}
2460
2461/// getTypeSizeInBits - Return the size in bits of the specified type,
2462/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002463uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002464 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2465
2466 // If we have a TargetData, use it!
2467 if (TD)
2468 return TD->getTypeSizeInBits(Ty);
2469
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002470 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002471 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002472 return Ty->getPrimitiveSizeInBits();
2473
2474 // The only other support type is pointer. Without TargetData, conservatively
2475 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002476 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002477 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002478}
2479
2480/// getEffectiveSCEVType - Return a type with the same bitwidth as
2481/// the given type and which represents how SCEV will treat the given
2482/// type, for which isSCEVable must return true. For pointer types,
2483/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002484const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002485 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2486
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002487 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002488 return Ty;
2489
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002490 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002491 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002492 if (TD) return TD->getIntPtrType(getContext());
2493
2494 // Without TargetData, conservatively assume pointers are 64-bit.
2495 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002496}
Chris Lattner53e677a2004-04-02 20:23:17 +00002497
Dan Gohman0bba49c2009-07-07 17:06:11 +00002498const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002499 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002500}
2501
Chris Lattner53e677a2004-04-02 20:23:17 +00002502/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2503/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002504const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002505 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002506
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002507 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2508 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002509 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002510
2511 // The process of creating a SCEV for V may have caused other SCEVs
2512 // to have been created, so it's necessary to insert the new entry
2513 // from scratch, rather than trying to remember the insert position
2514 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002515 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002516 return S;
2517}
2518
Dan Gohman2d1be872009-04-16 03:18:22 +00002519/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2520///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002521const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002522 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002523 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002524 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002525
2526 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002527 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002528 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002529 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002530}
2531
2532/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002533const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002534 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002535 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002536 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002537
2538 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002539 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002540 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002541 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002542 return getMinusSCEV(AllOnes, V);
2543}
2544
2545/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2546///
Dan Gohman9311ef62009-06-24 14:49:00 +00002547const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2548 const SCEV *RHS) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002549 // Fast path: X - X --> 0.
2550 if (LHS == RHS)
2551 return getConstant(LHS->getType(), 0);
2552
Dan Gohman2d1be872009-04-16 03:18:22 +00002553 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002554 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002555}
2556
2557/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2558/// input value to the specified type. If the type must be extended, it is zero
2559/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002560const SCEV *
2561ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002562 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002563 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002564 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2565 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002566 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002567 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002568 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002569 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002570 return getTruncateExpr(V, Ty);
2571 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002572}
2573
2574/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2575/// input value to the specified type. If the type must be extended, it is sign
2576/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002577const SCEV *
2578ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002579 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002580 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002581 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2582 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002583 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002584 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002585 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002586 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002587 return getTruncateExpr(V, Ty);
2588 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002589}
2590
Dan Gohman467c4302009-05-13 03:46:30 +00002591/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2592/// input value to the specified type. If the type must be extended, it is zero
2593/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002594const SCEV *
2595ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002596 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002597 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2598 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002599 "Cannot noop or zero extend with non-integer arguments!");
2600 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2601 "getNoopOrZeroExtend cannot truncate!");
2602 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2603 return V; // No conversion
2604 return getZeroExtendExpr(V, Ty);
2605}
2606
2607/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2608/// input value to the specified type. If the type must be extended, it is sign
2609/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002610const SCEV *
2611ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002612 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002613 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2614 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002615 "Cannot noop or sign extend with non-integer arguments!");
2616 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2617 "getNoopOrSignExtend cannot truncate!");
2618 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2619 return V; // No conversion
2620 return getSignExtendExpr(V, Ty);
2621}
2622
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002623/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2624/// the input value to the specified type. If the type must be extended,
2625/// it is extended with unspecified bits. The conversion must not be
2626/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002627const SCEV *
2628ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002629 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002630 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2631 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002632 "Cannot noop or any extend with non-integer arguments!");
2633 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2634 "getNoopOrAnyExtend cannot truncate!");
2635 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2636 return V; // No conversion
2637 return getAnyExtendExpr(V, Ty);
2638}
2639
Dan Gohman467c4302009-05-13 03:46:30 +00002640/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2641/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002642const SCEV *
2643ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002644 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002645 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2646 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002647 "Cannot truncate or noop with non-integer arguments!");
2648 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2649 "getTruncateOrNoop cannot extend!");
2650 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2651 return V; // No conversion
2652 return getTruncateExpr(V, Ty);
2653}
2654
Dan Gohmana334aa72009-06-22 00:31:57 +00002655/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2656/// the types using zero-extension, and then perform a umax operation
2657/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002658const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2659 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002660 const SCEV *PromotedLHS = LHS;
2661 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002662
2663 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2664 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2665 else
2666 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2667
2668 return getUMaxExpr(PromotedLHS, PromotedRHS);
2669}
2670
Dan Gohmanc9759e82009-06-22 15:03:27 +00002671/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2672/// the types using zero-extension, and then perform a umin operation
2673/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002674const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2675 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002676 const SCEV *PromotedLHS = LHS;
2677 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002678
2679 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2680 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2681 else
2682 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2683
2684 return getUMinExpr(PromotedLHS, PromotedRHS);
2685}
2686
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002687/// PushDefUseChildren - Push users of the given Instruction
2688/// onto the given Worklist.
2689static void
2690PushDefUseChildren(Instruction *I,
2691 SmallVectorImpl<Instruction *> &Worklist) {
2692 // Push the def-use children onto the Worklist stack.
2693 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2694 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002695 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002696}
2697
2698/// ForgetSymbolicValue - This looks up computed SCEV values for all
2699/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002700/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002701/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002702void
Dan Gohman85669632010-02-25 06:57:05 +00002703ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002704 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002705 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002706
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002707 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002708 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002709 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002710 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002711 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002712
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002713 ValueExprMapType::iterator It =
2714 ValueExprMap.find(static_cast<Value *>(I));
2715 if (It != ValueExprMap.end()) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002716 // Short-circuit the def-use traversal if the symbolic name
2717 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002718 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002719 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002720
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002721 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002722 // structure, it's a PHI that's in the progress of being computed
2723 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2724 // additional loop trip count information isn't going to change anything.
2725 // In the second case, createNodeForPHI will perform the necessary
2726 // updates on its own when it gets to that point. In the third, we do
2727 // want to forget the SCEVUnknown.
2728 if (!isa<PHINode>(I) ||
2729 !isa<SCEVUnknown>(It->second) ||
2730 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002731 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002732 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002733 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002734 }
2735
2736 PushDefUseChildren(I, Worklist);
2737 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002738}
Chris Lattner53e677a2004-04-02 20:23:17 +00002739
2740/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2741/// a loop header, making it a potential recurrence, or it doesn't.
2742///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002743const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002744 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2745 if (L->getHeader() == PN->getParent()) {
2746 // The loop may have multiple entrances or multiple exits; we can analyze
2747 // this phi as an addrec if it has a unique entry value and a unique
2748 // backedge value.
2749 Value *BEValueV = 0, *StartValueV = 0;
2750 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2751 Value *V = PN->getIncomingValue(i);
2752 if (L->contains(PN->getIncomingBlock(i))) {
2753 if (!BEValueV) {
2754 BEValueV = V;
2755 } else if (BEValueV != V) {
2756 BEValueV = 0;
2757 break;
2758 }
2759 } else if (!StartValueV) {
2760 StartValueV = V;
2761 } else if (StartValueV != V) {
2762 StartValueV = 0;
2763 break;
2764 }
2765 }
2766 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002767 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002768 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002769 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002770 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002771 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002772
2773 // Using this symbolic name for the PHI, analyze the value coming around
2774 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002775 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002776
2777 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2778 // has a special value for the first iteration of the loop.
2779
2780 // If the value coming around the backedge is an add with the symbolic
2781 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002782 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002783 // If there is a single occurrence of the symbolic value, replace it
2784 // with a recurrence.
2785 unsigned FoundIndex = Add->getNumOperands();
2786 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2787 if (Add->getOperand(i) == SymbolicName)
2788 if (FoundIndex == e) {
2789 FoundIndex = i;
2790 break;
2791 }
2792
2793 if (FoundIndex != Add->getNumOperands()) {
2794 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002795 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002796 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2797 if (i != FoundIndex)
2798 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002799 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002800
2801 // This is not a valid addrec if the step amount is varying each
2802 // loop iteration, but is not itself an addrec in this loop.
2803 if (Accum->isLoopInvariant(L) ||
2804 (isa<SCEVAddRecExpr>(Accum) &&
2805 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002806 bool HasNUW = false;
2807 bool HasNSW = false;
2808
2809 // If the increment doesn't overflow, then neither the addrec nor
2810 // the post-increment will overflow.
2811 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2812 if (OBO->hasNoUnsignedWrap())
2813 HasNUW = true;
2814 if (OBO->hasNoSignedWrap())
2815 HasNSW = true;
2816 }
2817
Dan Gohman27dead42010-04-12 07:49:36 +00002818 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002819 const SCEV *PHISCEV =
2820 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002821
Dan Gohmana10756e2010-01-21 02:09:26 +00002822 // Since the no-wrap flags are on the increment, they apply to the
2823 // post-incremented value as well.
2824 if (Accum->isLoopInvariant(L))
2825 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2826 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002827
2828 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002829 // to be symbolic. We now need to go back and purge all of the
2830 // entries for the scalars that use the symbolic expression.
2831 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002832 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002833 return PHISCEV;
2834 }
2835 }
Dan Gohman622ed672009-05-04 22:02:23 +00002836 } else if (const SCEVAddRecExpr *AddRec =
2837 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002838 // Otherwise, this could be a loop like this:
2839 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2840 // In this case, j = {1,+,1} and BEValue is j.
2841 // Because the other in-value of i (0) fits the evolution of BEValue
2842 // i really is an addrec evolution.
2843 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002844 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002845
2846 // If StartVal = j.start - j.stride, we can use StartVal as the
2847 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002848 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002849 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002850 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002851 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002852
2853 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002854 // to be symbolic. We now need to go back and purge all of the
2855 // entries for the scalars that use the symbolic expression.
2856 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002857 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002858 return PHISCEV;
2859 }
2860 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002861 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002862 }
Dan Gohman27dead42010-04-12 07:49:36 +00002863 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002864
Dan Gohman85669632010-02-25 06:57:05 +00002865 // If the PHI has a single incoming value, follow that value, unless the
2866 // PHI's incoming blocks are in a different loop, in which case doing so
2867 // risks breaking LCSSA form. Instcombine would normally zap these, but
2868 // it doesn't have DominatorTree information, so it may miss cases.
2869 if (Value *V = PN->hasConstantValue(DT)) {
2870 bool AllSameLoop = true;
2871 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2872 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2873 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2874 AllSameLoop = false;
2875 break;
2876 }
2877 if (AllSameLoop)
2878 return getSCEV(V);
2879 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002880
Chris Lattner53e677a2004-04-02 20:23:17 +00002881 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002882 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002883}
2884
Dan Gohman26466c02009-05-08 20:26:55 +00002885/// createNodeForGEP - Expand GEP instructions into add and multiply
2886/// operations. This allows them to be analyzed by regular SCEV code.
2887///
Dan Gohmand281ed22009-12-18 02:09:29 +00002888const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002889
Dan Gohmanb9f96512010-06-30 07:16:37 +00002890 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2891 // Add expression, because the Instruction may be guarded by control flow
2892 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002893 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002894
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002895 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002896 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002897 // Don't attempt to analyze GEPs over unsized objects.
2898 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2899 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002900 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002901 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002902 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002903 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002904 I != E; ++I) {
2905 Value *Index = *I;
2906 // Compute the (potentially symbolic) offset in bytes for this index.
2907 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2908 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002909 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002910 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2911
Dan Gohmanb9f96512010-06-30 07:16:37 +00002912 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002913 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002914 } else {
2915 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002916 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2917 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002918 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002919 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2920
Dan Gohmanb9f96512010-06-30 07:16:37 +00002921 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002922 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002923
2924 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002925 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002926 }
2927 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002928
2929 // Get the SCEV for the GEP base.
2930 const SCEV *BaseS = getSCEV(Base);
2931
Dan Gohmanb9f96512010-06-30 07:16:37 +00002932 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002933 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002934}
2935
Nick Lewycky83bb0052007-11-22 07:59:40 +00002936/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2937/// guaranteed to end in (at every loop iteration). It is, at the same time,
2938/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2939/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002940uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002941ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002942 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002943 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002944
Dan Gohman622ed672009-05-04 22:02:23 +00002945 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002946 return std::min(GetMinTrailingZeros(T->getOperand()),
2947 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002948
Dan Gohman622ed672009-05-04 22:02:23 +00002949 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002950 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2951 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2952 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002953 }
2954
Dan Gohman622ed672009-05-04 22:02:23 +00002955 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002956 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2957 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2958 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002959 }
2960
Dan Gohman622ed672009-05-04 22:02:23 +00002961 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002962 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002963 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002964 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002965 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002966 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002967 }
2968
Dan Gohman622ed672009-05-04 22:02:23 +00002969 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002970 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002971 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2972 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002973 for (unsigned i = 1, e = M->getNumOperands();
2974 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002975 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002976 BitWidth);
2977 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002978 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002979
Dan Gohman622ed672009-05-04 22:02:23 +00002980 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002981 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002982 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002983 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002984 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002985 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002986 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002987
Dan Gohman622ed672009-05-04 22:02:23 +00002988 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002989 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002990 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002991 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002992 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002993 return MinOpRes;
2994 }
2995
Dan Gohman622ed672009-05-04 22:02:23 +00002996 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002997 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002998 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002999 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003000 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003001 return MinOpRes;
3002 }
3003
Dan Gohman2c364ad2009-06-19 23:29:04 +00003004 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3005 // For a SCEVUnknown, ask ValueTracking.
3006 unsigned BitWidth = getTypeSizeInBits(U->getType());
3007 APInt Mask = APInt::getAllOnesValue(BitWidth);
3008 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3009 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3010 return Zeros.countTrailingOnes();
3011 }
3012
3013 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003014 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003015}
Chris Lattner53e677a2004-04-02 20:23:17 +00003016
Dan Gohman85b05a22009-07-13 21:35:55 +00003017/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3018///
3019ConstantRange
3020ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003021
3022 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00003023 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00003024
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003025 unsigned BitWidth = getTypeSizeInBits(S->getType());
3026 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3027
3028 // If the value has known zeros, the maximum unsigned value will have those
3029 // known zeros as well.
3030 uint32_t TZ = GetMinTrailingZeros(S);
3031 if (TZ != 0)
3032 ConservativeResult =
3033 ConstantRange(APInt::getMinValue(BitWidth),
3034 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3035
Dan Gohman85b05a22009-07-13 21:35:55 +00003036 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3037 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3038 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3039 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003040 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003041 }
3042
3043 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3044 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3045 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3046 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003047 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003048 }
3049
3050 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3051 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3052 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3053 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003054 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003055 }
3056
3057 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3058 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3059 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3060 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003061 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003062 }
3063
3064 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3065 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3066 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003067 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003068 }
3069
3070 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3071 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003072 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003073 }
3074
3075 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3076 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003077 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003078 }
3079
3080 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3081 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003082 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003083 }
3084
Dan Gohman85b05a22009-07-13 21:35:55 +00003085 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003086 // If there's no unsigned wrap, the value will never be less than its
3087 // initial value.
3088 if (AddRec->hasNoUnsignedWrap())
3089 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003090 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003091 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003092 ConservativeResult.intersectWith(
3093 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003094
3095 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003096 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003097 const Type *Ty = AddRec->getType();
3098 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003099 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3100 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003101 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3102
3103 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003104 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003105
3106 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003107 ConstantRange StepRange = getSignedRange(Step);
3108 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3109 ConstantRange EndRange =
3110 StartRange.add(MaxBECountRange.multiply(StepRange));
3111
3112 // Check for overflow. This must be done with ConstantRange arithmetic
3113 // because we could be called from within the ScalarEvolution overflow
3114 // checking code.
3115 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3116 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3117 ConstantRange ExtMaxBECountRange =
3118 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3119 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3120 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3121 ExtEndRange)
3122 return ConservativeResult;
3123
Dan Gohman85b05a22009-07-13 21:35:55 +00003124 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3125 EndRange.getUnsignedMin());
3126 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3127 EndRange.getUnsignedMax());
3128 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003129 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003130 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00003131 }
3132 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003133
3134 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003135 }
3136
3137 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3138 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003139 APInt Mask = APInt::getAllOnesValue(BitWidth);
3140 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3141 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003142 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003143 return ConservativeResult;
3144 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003145 }
3146
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003147 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003148}
3149
Dan Gohman85b05a22009-07-13 21:35:55 +00003150/// getSignedRange - Determine the signed range for a particular SCEV.
3151///
3152ConstantRange
3153ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003154
Dan Gohman85b05a22009-07-13 21:35:55 +00003155 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3156 return ConstantRange(C->getValue()->getValue());
3157
Dan Gohman52fddd32010-01-26 04:40:18 +00003158 unsigned BitWidth = getTypeSizeInBits(S->getType());
3159 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3160
3161 // If the value has known zeros, the maximum signed value will have those
3162 // known zeros as well.
3163 uint32_t TZ = GetMinTrailingZeros(S);
3164 if (TZ != 0)
3165 ConservativeResult =
3166 ConstantRange(APInt::getSignedMinValue(BitWidth),
3167 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3168
Dan Gohman85b05a22009-07-13 21:35:55 +00003169 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3170 ConstantRange X = getSignedRange(Add->getOperand(0));
3171 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3172 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003173 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003174 }
3175
Dan Gohman85b05a22009-07-13 21:35:55 +00003176 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3177 ConstantRange X = getSignedRange(Mul->getOperand(0));
3178 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3179 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003180 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003181 }
3182
Dan Gohman85b05a22009-07-13 21:35:55 +00003183 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3184 ConstantRange X = getSignedRange(SMax->getOperand(0));
3185 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3186 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003187 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003188 }
Dan Gohman62849c02009-06-24 01:05:09 +00003189
Dan Gohman85b05a22009-07-13 21:35:55 +00003190 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3191 ConstantRange X = getSignedRange(UMax->getOperand(0));
3192 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3193 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003194 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003195 }
Dan Gohman62849c02009-06-24 01:05:09 +00003196
Dan Gohman85b05a22009-07-13 21:35:55 +00003197 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3198 ConstantRange X = getSignedRange(UDiv->getLHS());
3199 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00003200 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003201 }
Dan Gohman62849c02009-06-24 01:05:09 +00003202
Dan Gohman85b05a22009-07-13 21:35:55 +00003203 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3204 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003205 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003206 }
3207
3208 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3209 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003210 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003211 }
3212
3213 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3214 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003215 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003216 }
3217
Dan Gohman85b05a22009-07-13 21:35:55 +00003218 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003219 // If there's no signed wrap, and all the operands have the same sign or
3220 // zero, the value won't ever change sign.
3221 if (AddRec->hasNoSignedWrap()) {
3222 bool AllNonNeg = true;
3223 bool AllNonPos = true;
3224 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3225 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3226 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3227 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003228 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003229 ConservativeResult = ConservativeResult.intersectWith(
3230 ConstantRange(APInt(BitWidth, 0),
3231 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003232 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003233 ConservativeResult = ConservativeResult.intersectWith(
3234 ConstantRange(APInt::getSignedMinValue(BitWidth),
3235 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003236 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003237
3238 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003239 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003240 const Type *Ty = AddRec->getType();
3241 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003242 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3243 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003244 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3245
3246 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003247 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003248
3249 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003250 ConstantRange StepRange = getSignedRange(Step);
3251 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3252 ConstantRange EndRange =
3253 StartRange.add(MaxBECountRange.multiply(StepRange));
3254
3255 // Check for overflow. This must be done with ConstantRange arithmetic
3256 // because we could be called from within the ScalarEvolution overflow
3257 // checking code.
3258 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3259 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3260 ConstantRange ExtMaxBECountRange =
3261 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3262 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3263 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3264 ExtEndRange)
3265 return ConservativeResult;
3266
Dan Gohman85b05a22009-07-13 21:35:55 +00003267 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3268 EndRange.getSignedMin());
3269 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3270 EndRange.getSignedMax());
3271 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003272 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003273 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003274 }
Dan Gohman62849c02009-06-24 01:05:09 +00003275 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003276
3277 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003278 }
3279
Dan Gohman2c364ad2009-06-19 23:29:04 +00003280 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3281 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003282 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003283 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003284 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3285 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003286 return ConservativeResult;
3287 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003288 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003289 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003290 }
3291
Dan Gohman52fddd32010-01-26 04:40:18 +00003292 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003293}
3294
Chris Lattner53e677a2004-04-02 20:23:17 +00003295/// createSCEV - We know that there is no SCEV for the specified value.
3296/// Analyze the expression.
3297///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003298const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003299 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003300 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003301
Dan Gohman6c459a22008-06-22 19:56:46 +00003302 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003303 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003304 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003305
3306 // Don't attempt to analyze instructions in blocks that aren't
3307 // reachable. Such instructions don't matter, and they aren't required
3308 // to obey basic rules for definitions dominating uses which this
3309 // analysis depends on.
3310 if (!DT->isReachableFromEntry(I->getParent()))
3311 return getUnknown(V);
3312 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003313 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003314 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3315 return getConstant(CI);
3316 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003317 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003318 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3319 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003320 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003321 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003322
Dan Gohmanca178902009-07-17 20:47:02 +00003323 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003324 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003325 case Instruction::Add: {
3326 // The simple thing to do would be to just call getSCEV on both operands
3327 // and call getAddExpr with the result. However if we're looking at a
3328 // bunch of things all added together, this can be quite inefficient,
3329 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3330 // Instead, gather up all the operands and make a single getAddExpr call.
3331 // LLVM IR canonical form means we need only traverse the left operands.
3332 SmallVector<const SCEV *, 4> AddOps;
3333 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003334 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3335 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3336 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3337 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003338 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003339 const SCEV *Op1 = getSCEV(U->getOperand(1));
3340 if (Opcode == Instruction::Sub)
3341 AddOps.push_back(getNegativeSCEV(Op1));
3342 else
3343 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003344 }
3345 AddOps.push_back(getSCEV(U->getOperand(0)));
3346 return getAddExpr(AddOps);
3347 }
3348 case Instruction::Mul: {
3349 // See the Add code above.
3350 SmallVector<const SCEV *, 4> MulOps;
3351 MulOps.push_back(getSCEV(U->getOperand(1)));
3352 for (Value *Op = U->getOperand(0);
3353 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3354 Op = U->getOperand(0)) {
3355 U = cast<Operator>(Op);
3356 MulOps.push_back(getSCEV(U->getOperand(1)));
3357 }
3358 MulOps.push_back(getSCEV(U->getOperand(0)));
3359 return getMulExpr(MulOps);
3360 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003361 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003362 return getUDivExpr(getSCEV(U->getOperand(0)),
3363 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003364 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003365 return getMinusSCEV(getSCEV(U->getOperand(0)),
3366 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003367 case Instruction::And:
3368 // For an expression like x&255 that merely masks off the high bits,
3369 // use zext(trunc(x)) as the SCEV expression.
3370 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003371 if (CI->isNullValue())
3372 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003373 if (CI->isAllOnesValue())
3374 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003375 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003376
3377 // Instcombine's ShrinkDemandedConstant may strip bits out of
3378 // constants, obscuring what would otherwise be a low-bits mask.
3379 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3380 // knew about to reconstruct a low-bits mask value.
3381 unsigned LZ = A.countLeadingZeros();
3382 unsigned BitWidth = A.getBitWidth();
3383 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3384 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3385 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3386
3387 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3388
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003389 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003390 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003391 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003392 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003393 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003394 }
3395 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003396
Dan Gohman6c459a22008-06-22 19:56:46 +00003397 case Instruction::Or:
3398 // If the RHS of the Or is a constant, we may have something like:
3399 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3400 // optimizations will transparently handle this case.
3401 //
3402 // In order for this transformation to be safe, the LHS must be of the
3403 // form X*(2^n) and the Or constant must be less than 2^n.
3404 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003405 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003406 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003407 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003408 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3409 // Build a plain add SCEV.
3410 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3411 // If the LHS of the add was an addrec and it has no-wrap flags,
3412 // transfer the no-wrap flags, since an or won't introduce a wrap.
3413 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3414 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3415 if (OldAR->hasNoUnsignedWrap())
3416 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3417 if (OldAR->hasNoSignedWrap())
3418 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3419 }
3420 return S;
3421 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003422 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003423 break;
3424 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003425 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003426 // If the RHS of the xor is a signbit, then this is just an add.
3427 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003428 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003429 return getAddExpr(getSCEV(U->getOperand(0)),
3430 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003431
3432 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003433 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003434 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003435
3436 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3437 // This is a variant of the check for xor with -1, and it handles
3438 // the case where instcombine has trimmed non-demanded bits out
3439 // of an xor with -1.
3440 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3441 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3442 if (BO->getOpcode() == Instruction::And &&
3443 LCI->getValue() == CI->getValue())
3444 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003445 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003446 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003447 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003448 const Type *Z0Ty = Z0->getType();
3449 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3450
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003451 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003452 // mask off the high bits. Complement the operand and
3453 // re-apply the zext.
3454 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3455 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3456
3457 // If C is a single bit, it may be in the sign-bit position
3458 // before the zero-extend. In this case, represent the xor
3459 // using an add, which is equivalent, and re-apply the zext.
3460 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3461 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3462 Trunc.isSignBit())
3463 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3464 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003465 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003466 }
3467 break;
3468
3469 case Instruction::Shl:
3470 // Turn shift left of a constant amount into a multiply.
3471 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003472 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003473
3474 // If the shift count is not less than the bitwidth, the result of
3475 // the shift is undefined. Don't try to analyze it, because the
3476 // resolution chosen here may differ from the resolution chosen in
3477 // other parts of the compiler.
3478 if (SA->getValue().uge(BitWidth))
3479 break;
3480
Owen Andersoneed707b2009-07-24 23:12:02 +00003481 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003482 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003483 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003484 }
3485 break;
3486
Nick Lewycky01eaf802008-07-07 06:15:49 +00003487 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003488 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003489 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003490 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003491
3492 // If the shift count is not less than the bitwidth, the result of
3493 // the shift is undefined. Don't try to analyze it, because the
3494 // resolution chosen here may differ from the resolution chosen in
3495 // other parts of the compiler.
3496 if (SA->getValue().uge(BitWidth))
3497 break;
3498
Owen Andersoneed707b2009-07-24 23:12:02 +00003499 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003500 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003501 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003502 }
3503 break;
3504
Dan Gohman4ee29af2009-04-21 02:26:00 +00003505 case Instruction::AShr:
3506 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3507 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003508 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003509 if (L->getOpcode() == Instruction::Shl &&
3510 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003511 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3512
3513 // If the shift count is not less than the bitwidth, the result of
3514 // the shift is undefined. Don't try to analyze it, because the
3515 // resolution chosen here may differ from the resolution chosen in
3516 // other parts of the compiler.
3517 if (CI->getValue().uge(BitWidth))
3518 break;
3519
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003520 uint64_t Amt = BitWidth - CI->getZExtValue();
3521 if (Amt == BitWidth)
3522 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003523 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003524 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003525 IntegerType::get(getContext(),
3526 Amt)),
3527 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003528 }
3529 break;
3530
Dan Gohman6c459a22008-06-22 19:56:46 +00003531 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003532 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003533
3534 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003535 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003536
3537 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003538 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003539
3540 case Instruction::BitCast:
3541 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003542 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003543 return getSCEV(U->getOperand(0));
3544 break;
3545
Dan Gohman4f8eea82010-02-01 18:27:38 +00003546 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3547 // lead to pointer expressions which cannot safely be expanded to GEPs,
3548 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3549 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003550
Dan Gohman26466c02009-05-08 20:26:55 +00003551 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003552 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003553
Dan Gohman6c459a22008-06-22 19:56:46 +00003554 case Instruction::PHI:
3555 return createNodeForPHI(cast<PHINode>(U));
3556
3557 case Instruction::Select:
3558 // This could be a smax or umax that was lowered earlier.
3559 // Try to recover it.
3560 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3561 Value *LHS = ICI->getOperand(0);
3562 Value *RHS = ICI->getOperand(1);
3563 switch (ICI->getPredicate()) {
3564 case ICmpInst::ICMP_SLT:
3565 case ICmpInst::ICMP_SLE:
3566 std::swap(LHS, RHS);
3567 // fall through
3568 case ICmpInst::ICMP_SGT:
3569 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003570 // a >s b ? a+x : b+x -> smax(a, b)+x
3571 // a >s b ? b+x : a+x -> smin(a, b)+x
3572 if (LHS->getType() == U->getType()) {
3573 const SCEV *LS = getSCEV(LHS);
3574 const SCEV *RS = getSCEV(RHS);
3575 const SCEV *LA = getSCEV(U->getOperand(1));
3576 const SCEV *RA = getSCEV(U->getOperand(2));
3577 const SCEV *LDiff = getMinusSCEV(LA, LS);
3578 const SCEV *RDiff = getMinusSCEV(RA, RS);
3579 if (LDiff == RDiff)
3580 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3581 LDiff = getMinusSCEV(LA, RS);
3582 RDiff = getMinusSCEV(RA, LS);
3583 if (LDiff == RDiff)
3584 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3585 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003586 break;
3587 case ICmpInst::ICMP_ULT:
3588 case ICmpInst::ICMP_ULE:
3589 std::swap(LHS, RHS);
3590 // fall through
3591 case ICmpInst::ICMP_UGT:
3592 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003593 // a >u b ? a+x : b+x -> umax(a, b)+x
3594 // a >u b ? b+x : a+x -> umin(a, b)+x
3595 if (LHS->getType() == U->getType()) {
3596 const SCEV *LS = getSCEV(LHS);
3597 const SCEV *RS = getSCEV(RHS);
3598 const SCEV *LA = getSCEV(U->getOperand(1));
3599 const SCEV *RA = getSCEV(U->getOperand(2));
3600 const SCEV *LDiff = getMinusSCEV(LA, LS);
3601 const SCEV *RDiff = getMinusSCEV(RA, RS);
3602 if (LDiff == RDiff)
3603 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3604 LDiff = getMinusSCEV(LA, RS);
3605 RDiff = getMinusSCEV(RA, LS);
3606 if (LDiff == RDiff)
3607 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3608 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003609 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003610 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003611 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3612 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003613 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003614 cast<ConstantInt>(RHS)->isZero()) {
3615 const SCEV *One = getConstant(LHS->getType(), 1);
3616 const SCEV *LS = getSCEV(LHS);
3617 const SCEV *LA = getSCEV(U->getOperand(1));
3618 const SCEV *RA = getSCEV(U->getOperand(2));
3619 const SCEV *LDiff = getMinusSCEV(LA, LS);
3620 const SCEV *RDiff = getMinusSCEV(RA, One);
3621 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003622 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003623 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003624 break;
3625 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003626 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3627 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003628 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003629 cast<ConstantInt>(RHS)->isZero()) {
3630 const SCEV *One = getConstant(LHS->getType(), 1);
3631 const SCEV *LS = getSCEV(LHS);
3632 const SCEV *LA = getSCEV(U->getOperand(1));
3633 const SCEV *RA = getSCEV(U->getOperand(2));
3634 const SCEV *LDiff = getMinusSCEV(LA, One);
3635 const SCEV *RDiff = getMinusSCEV(RA, LS);
3636 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003637 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003638 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003639 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003640 default:
3641 break;
3642 }
3643 }
3644
3645 default: // We cannot analyze this expression.
3646 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003647 }
3648
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003649 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003650}
3651
3652
3653
3654//===----------------------------------------------------------------------===//
3655// Iteration Count Computation Code
3656//
3657
Dan Gohman46bdfb02009-02-24 18:55:53 +00003658/// getBackedgeTakenCount - If the specified loop has a predictable
3659/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3660/// object. The backedge-taken count is the number of times the loop header
3661/// will be branched to from within the loop. This is one less than the
3662/// trip count of the loop, since it doesn't count the first iteration,
3663/// when the header is branched to from outside the loop.
3664///
3665/// Note that it is not valid to call this method on a loop without a
3666/// loop-invariant backedge-taken count (see
3667/// hasLoopInvariantBackedgeTakenCount).
3668///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003669const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003670 return getBackedgeTakenInfo(L).Exact;
3671}
3672
3673/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3674/// return the least SCEV value that is known never to be less than the
3675/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003676const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003677 return getBackedgeTakenInfo(L).Max;
3678}
3679
Dan Gohman59ae6b92009-07-08 19:23:34 +00003680/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3681/// onto the given Worklist.
3682static void
3683PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3684 BasicBlock *Header = L->getHeader();
3685
3686 // Push all Loop-header PHIs onto the Worklist stack.
3687 for (BasicBlock::iterator I = Header->begin();
3688 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3689 Worklist.push_back(PN);
3690}
3691
Dan Gohmana1af7572009-04-30 20:47:05 +00003692const ScalarEvolution::BackedgeTakenInfo &
3693ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003694 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003695 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003696 // update the value. The temporary CouldNotCompute value tells SCEV
3697 // code elsewhere that it shouldn't attempt to request a new
3698 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003699 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003700 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3701 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003702 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3703 if (BECount.Exact != getCouldNotCompute()) {
3704 assert(BECount.Exact->isLoopInvariant(L) &&
3705 BECount.Max->isLoopInvariant(L) &&
3706 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003707 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003708
Dan Gohman01ecca22009-04-27 20:16:15 +00003709 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003710 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003711 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003712 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003713 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003714 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003715 if (isa<PHINode>(L->getHeader()->begin()))
3716 // Only count loops that have phi nodes as not being computable.
3717 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003718 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003719
3720 // Now that we know more about the trip count for this loop, forget any
3721 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003722 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003723 // information. This is similar to the code in forgetLoop, except that
3724 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003725 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003726 SmallVector<Instruction *, 16> Worklist;
3727 PushLoopPHIs(L, Worklist);
3728
3729 SmallPtrSet<Instruction *, 8> Visited;
3730 while (!Worklist.empty()) {
3731 Instruction *I = Worklist.pop_back_val();
3732 if (!Visited.insert(I)) continue;
3733
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003734 ValueExprMapType::iterator It =
3735 ValueExprMap.find(static_cast<Value *>(I));
3736 if (It != ValueExprMap.end()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003737 // SCEVUnknown for a PHI either means that it has an unrecognized
3738 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003739 // by createNodeForPHI. In the former case, additional loop trip
3740 // count information isn't going to change anything. In the later
3741 // case, createNodeForPHI will perform the necessary updates on its
3742 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003743 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3744 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003745 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003746 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003747 if (PHINode *PN = dyn_cast<PHINode>(I))
3748 ConstantEvolutionLoopExitValue.erase(PN);
3749 }
3750
3751 PushDefUseChildren(I, Worklist);
3752 }
3753 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003754 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003755 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003756}
3757
Dan Gohman4c7279a2009-10-31 15:04:55 +00003758/// forgetLoop - This method should be called by the client when it has
3759/// changed a loop in a way that may effect ScalarEvolution's ability to
3760/// compute a trip count, or if the loop is deleted.
3761void ScalarEvolution::forgetLoop(const Loop *L) {
3762 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003763 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003764
Dan Gohman4c7279a2009-10-31 15:04:55 +00003765 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003766 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003767 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003768
Dan Gohman59ae6b92009-07-08 19:23:34 +00003769 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003770 while (!Worklist.empty()) {
3771 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003772 if (!Visited.insert(I)) continue;
3773
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003774 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3775 if (It != ValueExprMap.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003776 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003777 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003778 if (PHINode *PN = dyn_cast<PHINode>(I))
3779 ConstantEvolutionLoopExitValue.erase(PN);
3780 }
3781
3782 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003783 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00003784
3785 // Forget all contained loops too, to avoid dangling entries in the
3786 // ValuesAtScopes map.
3787 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3788 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00003789}
3790
Eric Christophere6cbfa62010-07-29 01:25:38 +00003791/// forgetValue - This method should be called by the client when it has
3792/// changed a value in a way that may effect its value, or which may
3793/// disconnect it from a def-use chain linking it to a loop.
3794void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003795 Instruction *I = dyn_cast<Instruction>(V);
3796 if (!I) return;
3797
3798 // Drop information about expressions based on loop-header PHIs.
3799 SmallVector<Instruction *, 16> Worklist;
3800 Worklist.push_back(I);
3801
3802 SmallPtrSet<Instruction *, 8> Visited;
3803 while (!Worklist.empty()) {
3804 I = Worklist.pop_back_val();
3805 if (!Visited.insert(I)) continue;
3806
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003807 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3808 if (It != ValueExprMap.end()) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003809 ValuesAtScopes.erase(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003810 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003811 if (PHINode *PN = dyn_cast<PHINode>(I))
3812 ConstantEvolutionLoopExitValue.erase(PN);
3813 }
3814
3815 PushDefUseChildren(I, Worklist);
3816 }
3817}
3818
Dan Gohman46bdfb02009-02-24 18:55:53 +00003819/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3820/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003821ScalarEvolution::BackedgeTakenInfo
3822ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003823 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003824 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003825
Dan Gohmana334aa72009-06-22 00:31:57 +00003826 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003827 const SCEV *BECount = getCouldNotCompute();
3828 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003829 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003830 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3831 BackedgeTakenInfo NewBTI =
3832 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003833
Dan Gohman1c343752009-06-27 21:21:31 +00003834 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003835 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003836 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003837 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003838 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003839 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003840 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003841 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003842 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003843 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003844 }
Dan Gohman1c343752009-06-27 21:21:31 +00003845 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003846 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003847 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003848 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003849 }
3850
3851 return BackedgeTakenInfo(BECount, MaxBECount);
3852}
3853
3854/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3855/// of the specified loop will execute if it exits via the specified block.
3856ScalarEvolution::BackedgeTakenInfo
3857ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3858 BasicBlock *ExitingBlock) {
3859
3860 // Okay, we've chosen an exiting block. See what condition causes us to
3861 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003862 //
3863 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003864 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003865 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003866 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003867
Chris Lattner8b0e3602007-01-07 02:24:26 +00003868 // At this point, we know we have a conditional branch that determines whether
3869 // the loop is exited. However, we don't know if the branch is executed each
3870 // time through the loop. If not, then the execution count of the branch will
3871 // not be equal to the trip count of the loop.
3872 //
3873 // Currently we check for this by checking to see if the Exit branch goes to
3874 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003875 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003876 // loop header. This is common for un-rotated loops.
3877 //
3878 // If both of those tests fail, walk up the unique predecessor chain to the
3879 // header, stopping if there is an edge that doesn't exit the loop. If the
3880 // header is reached, the execution count of the branch will be equal to the
3881 // trip count of the loop.
3882 //
3883 // More extensive analysis could be done to handle more cases here.
3884 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003885 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003886 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003887 ExitBr->getParent() != L->getHeader()) {
3888 // The simple checks failed, try climbing the unique predecessor chain
3889 // up to the header.
3890 bool Ok = false;
3891 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3892 BasicBlock *Pred = BB->getUniquePredecessor();
3893 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003894 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003895 TerminatorInst *PredTerm = Pred->getTerminator();
3896 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3897 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3898 if (PredSucc == BB)
3899 continue;
3900 // If the predecessor has a successor that isn't BB and isn't
3901 // outside the loop, assume the worst.
3902 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003903 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003904 }
3905 if (Pred == L->getHeader()) {
3906 Ok = true;
3907 break;
3908 }
3909 BB = Pred;
3910 }
3911 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003912 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003913 }
3914
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003915 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003916 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3917 ExitBr->getSuccessor(0),
3918 ExitBr->getSuccessor(1));
3919}
3920
3921/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3922/// backedge of the specified loop will execute if its exit condition
3923/// were a conditional branch of ExitCond, TBB, and FBB.
3924ScalarEvolution::BackedgeTakenInfo
3925ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3926 Value *ExitCond,
3927 BasicBlock *TBB,
3928 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003929 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003930 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3931 if (BO->getOpcode() == Instruction::And) {
3932 // Recurse on the operands of the and.
3933 BackedgeTakenInfo BTI0 =
3934 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3935 BackedgeTakenInfo BTI1 =
3936 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003937 const SCEV *BECount = getCouldNotCompute();
3938 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003939 if (L->contains(TBB)) {
3940 // Both conditions must be true for the loop to continue executing.
3941 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003942 if (BTI0.Exact == getCouldNotCompute() ||
3943 BTI1.Exact == getCouldNotCompute())
3944 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003945 else
3946 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003947 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003948 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003949 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003950 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003951 else
3952 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003953 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003954 // Both conditions must be true at the same time for the loop to exit.
3955 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003956 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003957 if (BTI0.Max == BTI1.Max)
3958 MaxBECount = BTI0.Max;
3959 if (BTI0.Exact == BTI1.Exact)
3960 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003961 }
3962
3963 return BackedgeTakenInfo(BECount, MaxBECount);
3964 }
3965 if (BO->getOpcode() == Instruction::Or) {
3966 // Recurse on the operands of the or.
3967 BackedgeTakenInfo BTI0 =
3968 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3969 BackedgeTakenInfo BTI1 =
3970 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003971 const SCEV *BECount = getCouldNotCompute();
3972 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003973 if (L->contains(FBB)) {
3974 // Both conditions must be false for the loop to continue executing.
3975 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003976 if (BTI0.Exact == getCouldNotCompute() ||
3977 BTI1.Exact == getCouldNotCompute())
3978 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003979 else
3980 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003981 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003982 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003983 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003984 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003985 else
3986 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003987 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003988 // Both conditions must be false at the same time for the loop to exit.
3989 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003990 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003991 if (BTI0.Max == BTI1.Max)
3992 MaxBECount = BTI0.Max;
3993 if (BTI0.Exact == BTI1.Exact)
3994 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003995 }
3996
3997 return BackedgeTakenInfo(BECount, MaxBECount);
3998 }
3999 }
4000
4001 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004002 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004003 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4004 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004005
Dan Gohman00cb5b72010-02-19 18:12:07 +00004006 // Check for a constant condition. These are normally stripped out by
4007 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4008 // preserve the CFG and is temporarily leaving constant conditions
4009 // in place.
4010 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4011 if (L->contains(FBB) == !CI->getZExtValue())
4012 // The backedge is always taken.
4013 return getCouldNotCompute();
4014 else
4015 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004016 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004017 }
4018
Eli Friedman361e54d2009-05-09 12:32:42 +00004019 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00004020 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4021}
4022
4023/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4024/// backedge of the specified loop will execute if its exit condition
4025/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4026ScalarEvolution::BackedgeTakenInfo
4027ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4028 ICmpInst *ExitCond,
4029 BasicBlock *TBB,
4030 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004031
Reid Spencere4d87aa2006-12-23 06:05:41 +00004032 // If the condition was exit on true, convert the condition to exit on false
4033 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004034 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004035 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004036 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004037 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004038
4039 // Handle common loops like: for (X = "string"; *X; ++X)
4040 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4041 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004042 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004043 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004044 if (ItCnt.hasAnyInfo())
4045 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004046 }
4047
Dan Gohman0bba49c2009-07-07 17:06:11 +00004048 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4049 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004050
4051 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004052 LHS = getSCEVAtScope(LHS, L);
4053 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004054
Dan Gohman64a845e2009-06-24 04:48:43 +00004055 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004056 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004057 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
4058 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004059 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004060 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004061 }
4062
Dan Gohman03557dc2010-05-03 16:35:17 +00004063 // Simplify the operands before analyzing them.
4064 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4065
Chris Lattner53e677a2004-04-02 20:23:17 +00004066 // If we have a comparison of a chrec against a constant, try to use value
4067 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004068 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4069 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004070 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004071 // Form the constant range.
4072 ConstantRange CompRange(
4073 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004074
Dan Gohman0bba49c2009-07-07 17:06:11 +00004075 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004076 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004077 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004078
Chris Lattner53e677a2004-04-02 20:23:17 +00004079 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004080 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004081 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004082 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4083 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004084 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004085 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004086 case ICmpInst::ICMP_EQ: { // while (X == Y)
4087 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004088 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4089 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004090 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004091 }
4092 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004093 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4094 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004095 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004096 }
4097 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004098 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4099 getNotSCEV(RHS), L, true);
4100 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004101 break;
4102 }
4103 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004104 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4105 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004106 break;
4107 }
4108 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004109 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4110 getNotSCEV(RHS), L, false);
4111 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004112 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004113 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004114 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004115#if 0
David Greene25e0e872009-12-23 22:18:14 +00004116 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004117 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004118 dbgs() << "[unsigned] ";
4119 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004120 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004121 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004122#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004123 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004124 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004125 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004126 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004127}
4128
Chris Lattner673e02b2004-10-12 01:49:27 +00004129static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004130EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4131 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004132 const SCEV *InVal = SE.getConstant(C);
4133 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004134 assert(isa<SCEVConstant>(Val) &&
4135 "Evaluation of SCEV at constant didn't fold correctly?");
4136 return cast<SCEVConstant>(Val)->getValue();
4137}
4138
4139/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4140/// and a GEP expression (missing the pointer index) indexing into it, return
4141/// the addressed element of the initializer or null if the index expression is
4142/// invalid.
4143static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004144GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004145 const std::vector<ConstantInt*> &Indices) {
4146 Constant *Init = GV->getInitializer();
4147 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004148 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004149 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4150 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4151 Init = cast<Constant>(CS->getOperand(Idx));
4152 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4153 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4154 Init = cast<Constant>(CA->getOperand(Idx));
4155 } else if (isa<ConstantAggregateZero>(Init)) {
4156 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4157 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004158 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004159 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4160 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004161 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004162 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004163 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004164 }
4165 return 0;
4166 } else {
4167 return 0; // Unknown initializer type
4168 }
4169 }
4170 return Init;
4171}
4172
Dan Gohman46bdfb02009-02-24 18:55:53 +00004173/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4174/// 'icmp op load X, cst', try to see if we can compute the backedge
4175/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004176ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004177ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4178 LoadInst *LI,
4179 Constant *RHS,
4180 const Loop *L,
4181 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004182 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004183
4184 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004185 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004186 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004187 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004188
4189 // Make sure that it is really a constant global we are gepping, with an
4190 // initializer, and make sure the first IDX is really 0.
4191 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004192 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004193 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4194 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004195 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004196
4197 // Okay, we allow one non-constant index into the GEP instruction.
4198 Value *VarIdx = 0;
4199 std::vector<ConstantInt*> Indexes;
4200 unsigned VarIdxNum = 0;
4201 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4202 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4203 Indexes.push_back(CI);
4204 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004205 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004206 VarIdx = GEP->getOperand(i);
4207 VarIdxNum = i-2;
4208 Indexes.push_back(0);
4209 }
4210
4211 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4212 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004213 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004214 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004215
4216 // We can only recognize very limited forms of loop index expressions, in
4217 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004218 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00004219 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4220 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4221 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004222 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004223
4224 unsigned MaxSteps = MaxBruteForceIterations;
4225 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004226 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004227 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004228 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004229
4230 // Form the GEP offset.
4231 Indexes[VarIdxNum] = Val;
4232
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004233 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004234 if (Result == 0) break; // Cannot compute!
4235
4236 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004237 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004238 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004239 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004240#if 0
David Greene25e0e872009-12-23 22:18:14 +00004241 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004242 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4243 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004244#endif
4245 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004246 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004247 }
4248 }
Dan Gohman1c343752009-06-27 21:21:31 +00004249 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004250}
4251
4252
Chris Lattner3221ad02004-04-17 22:58:41 +00004253/// CanConstantFold - Return true if we can constant fold an instruction of the
4254/// specified type, assuming that all operands were constants.
4255static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004256 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004257 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4258 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004259
Chris Lattner3221ad02004-04-17 22:58:41 +00004260 if (const CallInst *CI = dyn_cast<CallInst>(I))
4261 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004262 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004263 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004264}
4265
Chris Lattner3221ad02004-04-17 22:58:41 +00004266/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4267/// in the loop that V is derived from. We allow arbitrary operations along the
4268/// way, but the operands of an operation must either be constants or a value
4269/// derived from a constant PHI. If this expression does not fit with these
4270/// constraints, return null.
4271static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4272 // If this is not an instruction, or if this is an instruction outside of the
4273 // loop, it can't be derived from a loop PHI.
4274 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004275 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004276
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004277 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004278 if (L->getHeader() == I->getParent())
4279 return PN;
4280 else
4281 // We don't currently keep track of the control flow needed to evaluate
4282 // PHIs, so we cannot handle PHIs inside of loops.
4283 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004284 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004285
4286 // If we won't be able to constant fold this expression even if the operands
4287 // are constants, return early.
4288 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004289
Chris Lattner3221ad02004-04-17 22:58:41 +00004290 // Otherwise, we can evaluate this instruction if all of its operands are
4291 // constant or derived from a PHI node themselves.
4292 PHINode *PHI = 0;
4293 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004294 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004295 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4296 if (P == 0) return 0; // Not evolving from PHI
4297 if (PHI == 0)
4298 PHI = P;
4299 else if (PHI != P)
4300 return 0; // Evolving from multiple different PHIs.
4301 }
4302
4303 // This is a expression evolving from a constant PHI!
4304 return PHI;
4305}
4306
4307/// EvaluateExpression - Given an expression that passes the
4308/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4309/// in the loop has the value PHIVal. If we can't fold this expression for some
4310/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004311static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4312 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004313 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004314 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004315 Instruction *I = cast<Instruction>(V);
4316
Dan Gohman9d4588f2010-06-22 13:15:46 +00004317 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004318
4319 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004320 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004321 if (Operands[i] == 0) return 0;
4322 }
4323
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004324 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004325 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004326 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004327 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004328 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004329}
4330
4331/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4332/// in the header of its containing loop, we know the loop executes a
4333/// constant number of times, and the PHI node is just a recurrence
4334/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004335Constant *
4336ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004337 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004338 const Loop *L) {
Dan Gohman8d9c7a62010-08-16 16:30:01 +00004339 std::map<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004340 ConstantEvolutionLoopExitValue.find(PN);
4341 if (I != ConstantEvolutionLoopExitValue.end())
4342 return I->second;
4343
Dan Gohmane0567812010-04-08 23:03:40 +00004344 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004345 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4346
4347 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4348
4349 // Since the loop is canonicalized, the PHI node must have two entries. One
4350 // entry must be a constant (coming in from outside of the loop), and the
4351 // second must be derived from the same PHI.
4352 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4353 Constant *StartCST =
4354 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4355 if (StartCST == 0)
4356 return RetVal = 0; // Must be a constant.
4357
4358 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004359 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4360 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004361 return RetVal = 0; // Not derived from same PHI.
4362
4363 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004364 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004365 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004366
Dan Gohman46bdfb02009-02-24 18:55:53 +00004367 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004368 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004369 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4370 if (IterationNum == NumIterations)
4371 return RetVal = PHIVal; // Got exit value!
4372
4373 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004374 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004375 if (NextPHI == PHIVal)
4376 return RetVal = NextPHI; // Stopped evolving!
4377 if (NextPHI == 0)
4378 return 0; // Couldn't evaluate!
4379 PHIVal = NextPHI;
4380 }
4381}
4382
Dan Gohman07ad19b2009-07-27 16:09:48 +00004383/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004384/// constant number of times (the condition evolves only from constants),
4385/// try to evaluate a few iterations of the loop until we get the exit
4386/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004387/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004388const SCEV *
4389ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4390 Value *Cond,
4391 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004392 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004393 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004394
Dan Gohmanb92654d2010-06-19 14:17:24 +00004395 // If the loop is canonicalized, the PHI will have exactly two entries.
4396 // That's the only form we support here.
4397 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4398
4399 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004400 // second must be derived from the same PHI.
4401 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4402 Constant *StartCST =
4403 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004404 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004405
4406 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004407 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4408 !isa<Constant>(BEValue))
4409 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004410
4411 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4412 // the loop symbolically to determine when the condition gets a value of
4413 // "ExitWhen".
4414 unsigned IterationNum = 0;
4415 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4416 for (Constant *PHIVal = StartCST;
4417 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004418 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004419 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004420
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004421 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004422 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004423
Reid Spencere8019bb2007-03-01 07:25:48 +00004424 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004425 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004426 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004427 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004428
Chris Lattner3221ad02004-04-17 22:58:41 +00004429 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004430 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004431 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004432 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004433 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004434 }
4435
4436 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004437 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004438}
4439
Dan Gohmane7125f42009-09-03 15:00:26 +00004440/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004441/// at the specified scope in the program. The L value specifies a loop
4442/// nest to evaluate the expression at, where null is the top-level or a
4443/// specified loop is immediately inside of the loop.
4444///
4445/// This method can be used to compute the exit value for a variable defined
4446/// in a loop by querying what the value will hold in the parent loop.
4447///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004448/// In the case that a relevant loop exit value cannot be computed, the
4449/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004450const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004451 // Check to see if we've folded this expression at this loop before.
4452 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4453 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4454 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4455 if (!Pair.second)
4456 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004457
Dan Gohman42214892009-08-31 21:15:23 +00004458 // Otherwise compute it.
4459 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004460 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004461 return C;
4462}
4463
4464const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004465 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004466
Nick Lewycky3e630762008-02-20 06:48:22 +00004467 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004468 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004469 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004470 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004471 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004472 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4473 if (PHINode *PN = dyn_cast<PHINode>(I))
4474 if (PN->getParent() == LI->getHeader()) {
4475 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004476 // to see if the loop that contains it has a known backedge-taken
4477 // count. If so, we may be able to force computation of the exit
4478 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004479 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004480 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004481 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004482 // Okay, we know how many times the containing loop executes. If
4483 // this is a constant evolving PHI node, get the final value at
4484 // the specified iteration number.
4485 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004486 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004487 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004488 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004489 }
4490 }
4491
Reid Spencer09906f32006-12-04 21:33:23 +00004492 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004493 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004494 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004495 // result. This is particularly useful for computing loop exit values.
4496 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004497 SmallVector<Constant *, 4> Operands;
4498 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004499 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4500 Value *Op = I->getOperand(i);
4501 if (Constant *C = dyn_cast<Constant>(Op)) {
4502 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004503 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004504 }
Dan Gohman11046452010-06-29 23:43:06 +00004505
4506 // If any of the operands is non-constant and if they are
4507 // non-integer and non-pointer, don't even try to analyze them
4508 // with scev techniques.
4509 if (!isSCEVable(Op->getType()))
4510 return V;
4511
4512 const SCEV *OrigV = getSCEV(Op);
4513 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4514 MadeImprovement |= OrigV != OpV;
4515
4516 Constant *C = 0;
4517 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4518 C = SC->getValue();
4519 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4520 C = dyn_cast<Constant>(SU->getValue());
4521 if (!C) return V;
4522 if (C->getType() != Op->getType())
4523 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4524 Op->getType(),
4525 false),
4526 C, Op->getType());
4527 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004528 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004529
Dan Gohman11046452010-06-29 23:43:06 +00004530 // Check to see if getSCEVAtScope actually made an improvement.
4531 if (MadeImprovement) {
4532 Constant *C = 0;
4533 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4534 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4535 Operands[0], Operands[1], TD);
4536 else
4537 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4538 &Operands[0], Operands.size(), TD);
4539 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004540 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004541 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004542 }
4543 }
4544
4545 // This is some other type of SCEVUnknown, just return it.
4546 return V;
4547 }
4548
Dan Gohman622ed672009-05-04 22:02:23 +00004549 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004550 // Avoid performing the look-up in the common case where the specified
4551 // expression has no loop-variant portions.
4552 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004553 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004554 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004555 // Okay, at least one of these operands is loop variant but might be
4556 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004557 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4558 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004559 NewOps.push_back(OpAtScope);
4560
4561 for (++i; i != e; ++i) {
4562 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004563 NewOps.push_back(OpAtScope);
4564 }
4565 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004566 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004567 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004568 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004569 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004570 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004571 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004572 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004573 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004574 }
4575 }
4576 // If we got here, all operands are loop invariant.
4577 return Comm;
4578 }
4579
Dan Gohman622ed672009-05-04 22:02:23 +00004580 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004581 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4582 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004583 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4584 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004585 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004586 }
4587
4588 // If this is a loop recurrence for a loop that does not contain L, then we
4589 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004590 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004591 // First, attempt to evaluate each operand.
4592 // Avoid performing the look-up in the common case where the specified
4593 // expression has no loop-variant portions.
4594 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4595 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4596 if (OpAtScope == AddRec->getOperand(i))
4597 continue;
4598
4599 // Okay, at least one of these operands is loop variant but might be
4600 // foldable. Build a new instance of the folded commutative expression.
4601 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4602 AddRec->op_begin()+i);
4603 NewOps.push_back(OpAtScope);
4604 for (++i; i != e; ++i)
4605 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4606
4607 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4608 break;
4609 }
4610
4611 // If the scope is outside the addrec's loop, evaluate it by using the
4612 // loop exit value of the addrec.
4613 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004614 // To evaluate this recurrence, we need to know how many times the AddRec
4615 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004616 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004617 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004618
Eli Friedmanb42a6262008-08-04 23:49:06 +00004619 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004620 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004621 }
Dan Gohman11046452010-06-29 23:43:06 +00004622
Dan Gohmand594e6f2009-05-24 23:25:42 +00004623 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004624 }
4625
Dan Gohman622ed672009-05-04 22:02:23 +00004626 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004627 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004628 if (Op == Cast->getOperand())
4629 return Cast; // must be loop invariant
4630 return getZeroExtendExpr(Op, Cast->getType());
4631 }
4632
Dan Gohman622ed672009-05-04 22:02:23 +00004633 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004634 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004635 if (Op == Cast->getOperand())
4636 return Cast; // must be loop invariant
4637 return getSignExtendExpr(Op, Cast->getType());
4638 }
4639
Dan Gohman622ed672009-05-04 22:02:23 +00004640 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004641 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004642 if (Op == Cast->getOperand())
4643 return Cast; // must be loop invariant
4644 return getTruncateExpr(Op, Cast->getType());
4645 }
4646
Torok Edwinc23197a2009-07-14 16:55:14 +00004647 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004648 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004649}
4650
Dan Gohman66a7e852009-05-08 20:38:54 +00004651/// getSCEVAtScope - This is a convenience function which does
4652/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004653const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004654 return getSCEVAtScope(getSCEV(V), L);
4655}
4656
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004657/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4658/// following equation:
4659///
4660/// A * X = B (mod N)
4661///
4662/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4663/// A and B isn't important.
4664///
4665/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004666static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004667 ScalarEvolution &SE) {
4668 uint32_t BW = A.getBitWidth();
4669 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4670 assert(A != 0 && "A must be non-zero.");
4671
4672 // 1. D = gcd(A, N)
4673 //
4674 // The gcd of A and N may have only one prime factor: 2. The number of
4675 // trailing zeros in A is its multiplicity
4676 uint32_t Mult2 = A.countTrailingZeros();
4677 // D = 2^Mult2
4678
4679 // 2. Check if B is divisible by D.
4680 //
4681 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4682 // is not less than multiplicity of this prime factor for D.
4683 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004684 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004685
4686 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4687 // modulo (N / D).
4688 //
4689 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4690 // bit width during computations.
4691 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4692 APInt Mod(BW + 1, 0);
4693 Mod.set(BW - Mult2); // Mod = N / D
4694 APInt I = AD.multiplicativeInverse(Mod);
4695
4696 // 4. Compute the minimum unsigned root of the equation:
4697 // I * (B / D) mod (N / D)
4698 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4699
4700 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4701 // bits.
4702 return SE.getConstant(Result.trunc(BW));
4703}
Chris Lattner53e677a2004-04-02 20:23:17 +00004704
4705/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4706/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4707/// might be the same) or two SCEVCouldNotCompute objects.
4708///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004709static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004710SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004711 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004712 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4713 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4714 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004715
Chris Lattner53e677a2004-04-02 20:23:17 +00004716 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004717 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004718 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004719 return std::make_pair(CNC, CNC);
4720 }
4721
Reid Spencere8019bb2007-03-01 07:25:48 +00004722 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004723 const APInt &L = LC->getValue()->getValue();
4724 const APInt &M = MC->getValue()->getValue();
4725 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004726 APInt Two(BitWidth, 2);
4727 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004728
Dan Gohman64a845e2009-06-24 04:48:43 +00004729 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004730 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004731 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004732 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4733 // The B coefficient is M-N/2
4734 APInt B(M);
4735 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004736
Reid Spencere8019bb2007-03-01 07:25:48 +00004737 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004738 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004739
Reid Spencere8019bb2007-03-01 07:25:48 +00004740 // Compute the B^2-4ac term.
4741 APInt SqrtTerm(B);
4742 SqrtTerm *= B;
4743 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004744
Reid Spencere8019bb2007-03-01 07:25:48 +00004745 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4746 // integer value or else APInt::sqrt() will assert.
4747 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004748
Dan Gohman64a845e2009-06-24 04:48:43 +00004749 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004750 // The divisions must be performed as signed divisions.
4751 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004752 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004753 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004754 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004755 return std::make_pair(CNC, CNC);
4756 }
4757
Owen Andersone922c022009-07-22 00:24:57 +00004758 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004759
4760 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004761 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004762 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004763 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004764
Dan Gohman64a845e2009-06-24 04:48:43 +00004765 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004766 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004767 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004768}
4769
4770/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004771/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004772ScalarEvolution::BackedgeTakenInfo
4773ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004774 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004775 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004776 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004777 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004778 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004779 }
4780
Dan Gohman35738ac2009-05-04 22:30:44 +00004781 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004782 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004783 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004784
4785 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004786 // If this is an affine expression, the execution count of this branch is
4787 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004788 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004789 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004790 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004791 // equivalent to:
4792 //
4793 // Step*N = -Start (mod 2^BW)
4794 //
4795 // where BW is the common bit width of Start and Step.
4796
Chris Lattner53e677a2004-04-02 20:23:17 +00004797 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004798 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4799 L->getParentLoop());
4800 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4801 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004802
Dan Gohman622ed672009-05-04 22:02:23 +00004803 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004804 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004805
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004806 // First, handle unitary steps.
4807 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004808 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004809 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4810 return Start; // N = Start (as unsigned)
4811
4812 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004813 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004814 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004815 -StartC->getValue()->getValue(),
4816 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004817 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004818 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004819 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4820 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004821 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004822 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004823 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4824 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004825 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004826#if 0
David Greene25e0e872009-12-23 22:18:14 +00004827 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004828 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004829#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004830 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004831 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004832 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004833 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004834 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004835 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004836
Chris Lattner53e677a2004-04-02 20:23:17 +00004837 // We can only use this value if the chrec ends up with an exact zero
4838 // value at this index. When solving for "X*X != 5", for example, we
4839 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004840 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004841 if (Val->isZero())
4842 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004843 }
4844 }
4845 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004846
Dan Gohman1c343752009-06-27 21:21:31 +00004847 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004848}
4849
4850/// HowFarToNonZero - Return the number of times a backedge checking the
4851/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004852/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004853ScalarEvolution::BackedgeTakenInfo
4854ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004855 // Loops that look like: while (X == 0) are very strange indeed. We don't
4856 // handle them yet except for the trivial case. This could be expanded in the
4857 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004858
Chris Lattner53e677a2004-04-02 20:23:17 +00004859 // If the value is a constant, check to see if it is known to be non-zero
4860 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004861 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004862 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004863 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004864 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004865 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004866
Chris Lattner53e677a2004-04-02 20:23:17 +00004867 // We could implement others, but I really doubt anyone writes loops like
4868 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004869 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004870}
4871
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004872/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4873/// (which may not be an immediate predecessor) which has exactly one
4874/// successor from which BB is reachable, or null if no such block is
4875/// found.
4876///
Dan Gohman005752b2010-04-15 16:19:08 +00004877std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004878ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004879 // If the block has a unique predecessor, then there is no path from the
4880 // predecessor to the block that does not go through the direct edge
4881 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004882 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004883 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004884
4885 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004886 // If the header has a unique predecessor outside the loop, it must be
4887 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004888 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004889 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004890
Dan Gohman005752b2010-04-15 16:19:08 +00004891 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004892}
4893
Dan Gohman763bad12009-06-20 00:35:32 +00004894/// HasSameValue - SCEV structural equivalence is usually sufficient for
4895/// testing whether two expressions are equal, however for the purposes of
4896/// looking for a condition guarding a loop, it can be useful to be a little
4897/// more general, since a front-end may have replicated the controlling
4898/// expression.
4899///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004900static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004901 // Quick check to see if they are the same SCEV.
4902 if (A == B) return true;
4903
4904 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4905 // two different instructions with the same value. Check for this case.
4906 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4907 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4908 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4909 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004910 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004911 return true;
4912
4913 // Otherwise assume they may have a different value.
4914 return false;
4915}
4916
Dan Gohmane9796502010-04-24 01:28:42 +00004917/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4918/// predicate Pred. Return true iff any changes were made.
4919///
4920bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4921 const SCEV *&LHS, const SCEV *&RHS) {
4922 bool Changed = false;
4923
4924 // Canonicalize a constant to the right side.
4925 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4926 // Check for both operands constant.
4927 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4928 if (ConstantExpr::getICmp(Pred,
4929 LHSC->getValue(),
4930 RHSC->getValue())->isNullValue())
4931 goto trivially_false;
4932 else
4933 goto trivially_true;
4934 }
4935 // Otherwise swap the operands to put the constant on the right.
4936 std::swap(LHS, RHS);
4937 Pred = ICmpInst::getSwappedPredicate(Pred);
4938 Changed = true;
4939 }
4940
4941 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004942 // addrec's loop, put the addrec on the left. Also make a dominance check,
4943 // as both operands could be addrecs loop-invariant in each other's loop.
4944 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4945 const Loop *L = AR->getLoop();
4946 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004947 std::swap(LHS, RHS);
4948 Pred = ICmpInst::getSwappedPredicate(Pred);
4949 Changed = true;
4950 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004951 }
Dan Gohmane9796502010-04-24 01:28:42 +00004952
4953 // If there's a constant operand, canonicalize comparisons with boundary
4954 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4955 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4956 const APInt &RA = RC->getValue()->getValue();
4957 switch (Pred) {
4958 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4959 case ICmpInst::ICMP_EQ:
4960 case ICmpInst::ICMP_NE:
4961 break;
4962 case ICmpInst::ICMP_UGE:
4963 if ((RA - 1).isMinValue()) {
4964 Pred = ICmpInst::ICMP_NE;
4965 RHS = getConstant(RA - 1);
4966 Changed = true;
4967 break;
4968 }
4969 if (RA.isMaxValue()) {
4970 Pred = ICmpInst::ICMP_EQ;
4971 Changed = true;
4972 break;
4973 }
4974 if (RA.isMinValue()) goto trivially_true;
4975
4976 Pred = ICmpInst::ICMP_UGT;
4977 RHS = getConstant(RA - 1);
4978 Changed = true;
4979 break;
4980 case ICmpInst::ICMP_ULE:
4981 if ((RA + 1).isMaxValue()) {
4982 Pred = ICmpInst::ICMP_NE;
4983 RHS = getConstant(RA + 1);
4984 Changed = true;
4985 break;
4986 }
4987 if (RA.isMinValue()) {
4988 Pred = ICmpInst::ICMP_EQ;
4989 Changed = true;
4990 break;
4991 }
4992 if (RA.isMaxValue()) goto trivially_true;
4993
4994 Pred = ICmpInst::ICMP_ULT;
4995 RHS = getConstant(RA + 1);
4996 Changed = true;
4997 break;
4998 case ICmpInst::ICMP_SGE:
4999 if ((RA - 1).isMinSignedValue()) {
5000 Pred = ICmpInst::ICMP_NE;
5001 RHS = getConstant(RA - 1);
5002 Changed = true;
5003 break;
5004 }
5005 if (RA.isMaxSignedValue()) {
5006 Pred = ICmpInst::ICMP_EQ;
5007 Changed = true;
5008 break;
5009 }
5010 if (RA.isMinSignedValue()) goto trivially_true;
5011
5012 Pred = ICmpInst::ICMP_SGT;
5013 RHS = getConstant(RA - 1);
5014 Changed = true;
5015 break;
5016 case ICmpInst::ICMP_SLE:
5017 if ((RA + 1).isMaxSignedValue()) {
5018 Pred = ICmpInst::ICMP_NE;
5019 RHS = getConstant(RA + 1);
5020 Changed = true;
5021 break;
5022 }
5023 if (RA.isMinSignedValue()) {
5024 Pred = ICmpInst::ICMP_EQ;
5025 Changed = true;
5026 break;
5027 }
5028 if (RA.isMaxSignedValue()) goto trivially_true;
5029
5030 Pred = ICmpInst::ICMP_SLT;
5031 RHS = getConstant(RA + 1);
5032 Changed = true;
5033 break;
5034 case ICmpInst::ICMP_UGT:
5035 if (RA.isMinValue()) {
5036 Pred = ICmpInst::ICMP_NE;
5037 Changed = true;
5038 break;
5039 }
5040 if ((RA + 1).isMaxValue()) {
5041 Pred = ICmpInst::ICMP_EQ;
5042 RHS = getConstant(RA + 1);
5043 Changed = true;
5044 break;
5045 }
5046 if (RA.isMaxValue()) goto trivially_false;
5047 break;
5048 case ICmpInst::ICMP_ULT:
5049 if (RA.isMaxValue()) {
5050 Pred = ICmpInst::ICMP_NE;
5051 Changed = true;
5052 break;
5053 }
5054 if ((RA - 1).isMinValue()) {
5055 Pred = ICmpInst::ICMP_EQ;
5056 RHS = getConstant(RA - 1);
5057 Changed = true;
5058 break;
5059 }
5060 if (RA.isMinValue()) goto trivially_false;
5061 break;
5062 case ICmpInst::ICMP_SGT:
5063 if (RA.isMinSignedValue()) {
5064 Pred = ICmpInst::ICMP_NE;
5065 Changed = true;
5066 break;
5067 }
5068 if ((RA + 1).isMaxSignedValue()) {
5069 Pred = ICmpInst::ICMP_EQ;
5070 RHS = getConstant(RA + 1);
5071 Changed = true;
5072 break;
5073 }
5074 if (RA.isMaxSignedValue()) goto trivially_false;
5075 break;
5076 case ICmpInst::ICMP_SLT:
5077 if (RA.isMaxSignedValue()) {
5078 Pred = ICmpInst::ICMP_NE;
5079 Changed = true;
5080 break;
5081 }
5082 if ((RA - 1).isMinSignedValue()) {
5083 Pred = ICmpInst::ICMP_EQ;
5084 RHS = getConstant(RA - 1);
5085 Changed = true;
5086 break;
5087 }
5088 if (RA.isMinSignedValue()) goto trivially_false;
5089 break;
5090 }
5091 }
5092
5093 // Check for obvious equality.
5094 if (HasSameValue(LHS, RHS)) {
5095 if (ICmpInst::isTrueWhenEqual(Pred))
5096 goto trivially_true;
5097 if (ICmpInst::isFalseWhenEqual(Pred))
5098 goto trivially_false;
5099 }
5100
Dan Gohman03557dc2010-05-03 16:35:17 +00005101 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5102 // adding or subtracting 1 from one of the operands.
5103 switch (Pred) {
5104 case ICmpInst::ICMP_SLE:
5105 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5106 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5107 /*HasNUW=*/false, /*HasNSW=*/true);
5108 Pred = ICmpInst::ICMP_SLT;
5109 Changed = true;
5110 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005111 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005112 /*HasNUW=*/false, /*HasNSW=*/true);
5113 Pred = ICmpInst::ICMP_SLT;
5114 Changed = true;
5115 }
5116 break;
5117 case ICmpInst::ICMP_SGE:
5118 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005119 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005120 /*HasNUW=*/false, /*HasNSW=*/true);
5121 Pred = ICmpInst::ICMP_SGT;
5122 Changed = true;
5123 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5124 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5125 /*HasNUW=*/false, /*HasNSW=*/true);
5126 Pred = ICmpInst::ICMP_SGT;
5127 Changed = true;
5128 }
5129 break;
5130 case ICmpInst::ICMP_ULE:
5131 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005132 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005133 /*HasNUW=*/true, /*HasNSW=*/false);
5134 Pred = ICmpInst::ICMP_ULT;
5135 Changed = true;
5136 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005137 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005138 /*HasNUW=*/true, /*HasNSW=*/false);
5139 Pred = ICmpInst::ICMP_ULT;
5140 Changed = true;
5141 }
5142 break;
5143 case ICmpInst::ICMP_UGE:
5144 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005145 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005146 /*HasNUW=*/true, /*HasNSW=*/false);
5147 Pred = ICmpInst::ICMP_UGT;
5148 Changed = true;
5149 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005150 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005151 /*HasNUW=*/true, /*HasNSW=*/false);
5152 Pred = ICmpInst::ICMP_UGT;
5153 Changed = true;
5154 }
5155 break;
5156 default:
5157 break;
5158 }
5159
Dan Gohmane9796502010-04-24 01:28:42 +00005160 // TODO: More simplifications are possible here.
5161
5162 return Changed;
5163
5164trivially_true:
5165 // Return 0 == 0.
5166 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5167 Pred = ICmpInst::ICMP_EQ;
5168 return true;
5169
5170trivially_false:
5171 // Return 0 != 0.
5172 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5173 Pred = ICmpInst::ICMP_NE;
5174 return true;
5175}
5176
Dan Gohman85b05a22009-07-13 21:35:55 +00005177bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5178 return getSignedRange(S).getSignedMax().isNegative();
5179}
5180
5181bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5182 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5183}
5184
5185bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5186 return !getSignedRange(S).getSignedMin().isNegative();
5187}
5188
5189bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5190 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5191}
5192
5193bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5194 return isKnownNegative(S) || isKnownPositive(S);
5195}
5196
5197bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5198 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005199 // Canonicalize the inputs first.
5200 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5201
Dan Gohman53c66ea2010-04-11 22:16:48 +00005202 // If LHS or RHS is an addrec, check to see if the condition is true in
5203 // every iteration of the loop.
5204 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5205 if (isLoopEntryGuardedByCond(
5206 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5207 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005208 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005209 return true;
5210 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5211 if (isLoopEntryGuardedByCond(
5212 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5213 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005214 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005215 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005216
Dan Gohman53c66ea2010-04-11 22:16:48 +00005217 // Otherwise see what can be done with known constant ranges.
5218 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5219}
5220
5221bool
5222ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5223 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005224 if (HasSameValue(LHS, RHS))
5225 return ICmpInst::isTrueWhenEqual(Pred);
5226
Dan Gohman53c66ea2010-04-11 22:16:48 +00005227 // This code is split out from isKnownPredicate because it is called from
5228 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005229 switch (Pred) {
5230 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005231 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005232 break;
5233 case ICmpInst::ICMP_SGT:
5234 Pred = ICmpInst::ICMP_SLT;
5235 std::swap(LHS, RHS);
5236 case ICmpInst::ICMP_SLT: {
5237 ConstantRange LHSRange = getSignedRange(LHS);
5238 ConstantRange RHSRange = getSignedRange(RHS);
5239 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5240 return true;
5241 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5242 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005243 break;
5244 }
5245 case ICmpInst::ICMP_SGE:
5246 Pred = ICmpInst::ICMP_SLE;
5247 std::swap(LHS, RHS);
5248 case ICmpInst::ICMP_SLE: {
5249 ConstantRange LHSRange = getSignedRange(LHS);
5250 ConstantRange RHSRange = getSignedRange(RHS);
5251 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5252 return true;
5253 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5254 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005255 break;
5256 }
5257 case ICmpInst::ICMP_UGT:
5258 Pred = ICmpInst::ICMP_ULT;
5259 std::swap(LHS, RHS);
5260 case ICmpInst::ICMP_ULT: {
5261 ConstantRange LHSRange = getUnsignedRange(LHS);
5262 ConstantRange RHSRange = getUnsignedRange(RHS);
5263 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5264 return true;
5265 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5266 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005267 break;
5268 }
5269 case ICmpInst::ICMP_UGE:
5270 Pred = ICmpInst::ICMP_ULE;
5271 std::swap(LHS, RHS);
5272 case ICmpInst::ICMP_ULE: {
5273 ConstantRange LHSRange = getUnsignedRange(LHS);
5274 ConstantRange RHSRange = getUnsignedRange(RHS);
5275 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5276 return true;
5277 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5278 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005279 break;
5280 }
5281 case ICmpInst::ICMP_NE: {
5282 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5283 return true;
5284 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5285 return true;
5286
5287 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5288 if (isKnownNonZero(Diff))
5289 return true;
5290 break;
5291 }
5292 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005293 // The check at the top of the function catches the case where
5294 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005295 break;
5296 }
5297 return false;
5298}
5299
5300/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5301/// protected by a conditional between LHS and RHS. This is used to
5302/// to eliminate casts.
5303bool
5304ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5305 ICmpInst::Predicate Pred,
5306 const SCEV *LHS, const SCEV *RHS) {
5307 // Interpret a null as meaning no loop, where there is obviously no guard
5308 // (interprocedural conditions notwithstanding).
5309 if (!L) return true;
5310
5311 BasicBlock *Latch = L->getLoopLatch();
5312 if (!Latch)
5313 return false;
5314
5315 BranchInst *LoopContinuePredicate =
5316 dyn_cast<BranchInst>(Latch->getTerminator());
5317 if (!LoopContinuePredicate ||
5318 LoopContinuePredicate->isUnconditional())
5319 return false;
5320
Dan Gohmanaf08a362010-08-10 23:46:30 +00005321 return isImpliedCond(Pred, LHS, RHS,
5322 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005323 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005324}
5325
Dan Gohman3948d0b2010-04-11 19:27:13 +00005326/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005327/// by a conditional between LHS and RHS. This is used to help avoid max
5328/// expressions in loop trip counts, and to eliminate casts.
5329bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005330ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5331 ICmpInst::Predicate Pred,
5332 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005333 // Interpret a null as meaning no loop, where there is obviously no guard
5334 // (interprocedural conditions notwithstanding).
5335 if (!L) return false;
5336
Dan Gohman859b4822009-05-18 15:36:09 +00005337 // Starting at the loop predecessor, climb up the predecessor chain, as long
5338 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005339 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005340 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005341 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005342 Pair.first;
5343 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005344
5345 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005346 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005347 if (!LoopEntryPredicate ||
5348 LoopEntryPredicate->isUnconditional())
5349 continue;
5350
Dan Gohmanaf08a362010-08-10 23:46:30 +00005351 if (isImpliedCond(Pred, LHS, RHS,
5352 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005353 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005354 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005355 }
5356
Dan Gohman38372182008-08-12 20:17:31 +00005357 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005358}
5359
Dan Gohman0f4b2852009-07-21 23:03:19 +00005360/// isImpliedCond - Test whether the condition described by Pred, LHS,
5361/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005362bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005363 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005364 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005365 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005366 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005367 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005368 if (BO->getOpcode() == Instruction::And) {
5369 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005370 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5371 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005372 } else if (BO->getOpcode() == Instruction::Or) {
5373 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005374 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5375 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005376 }
5377 }
5378
Dan Gohmanaf08a362010-08-10 23:46:30 +00005379 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005380 if (!ICI) return false;
5381
Dan Gohman85b05a22009-07-13 21:35:55 +00005382 // Bail if the ICmp's operands' types are wider than the needed type
5383 // before attempting to call getSCEV on them. This avoids infinite
5384 // recursion, since the analysis of widening casts can require loop
5385 // exit condition information for overflow checking, which would
5386 // lead back here.
5387 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005388 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005389 return false;
5390
Dan Gohman0f4b2852009-07-21 23:03:19 +00005391 // Now that we found a conditional branch that dominates the loop, check to
5392 // see if it is the comparison we are looking for.
5393 ICmpInst::Predicate FoundPred;
5394 if (Inverse)
5395 FoundPred = ICI->getInversePredicate();
5396 else
5397 FoundPred = ICI->getPredicate();
5398
5399 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5400 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005401
5402 // Balance the types. The case where FoundLHS' type is wider than
5403 // LHS' type is checked for above.
5404 if (getTypeSizeInBits(LHS->getType()) >
5405 getTypeSizeInBits(FoundLHS->getType())) {
5406 if (CmpInst::isSigned(Pred)) {
5407 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5408 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5409 } else {
5410 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5411 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5412 }
5413 }
5414
Dan Gohman0f4b2852009-07-21 23:03:19 +00005415 // Canonicalize the query to match the way instcombine will have
5416 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005417 if (SimplifyICmpOperands(Pred, LHS, RHS))
5418 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005419 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005420 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5421 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005422 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005423
5424 // Check to see if we can make the LHS or RHS match.
5425 if (LHS == FoundRHS || RHS == FoundLHS) {
5426 if (isa<SCEVConstant>(RHS)) {
5427 std::swap(FoundLHS, FoundRHS);
5428 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5429 } else {
5430 std::swap(LHS, RHS);
5431 Pred = ICmpInst::getSwappedPredicate(Pred);
5432 }
5433 }
5434
5435 // Check whether the found predicate is the same as the desired predicate.
5436 if (FoundPred == Pred)
5437 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5438
5439 // Check whether swapping the found predicate makes it the same as the
5440 // desired predicate.
5441 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5442 if (isa<SCEVConstant>(RHS))
5443 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5444 else
5445 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5446 RHS, LHS, FoundLHS, FoundRHS);
5447 }
5448
5449 // Check whether the actual condition is beyond sufficient.
5450 if (FoundPred == ICmpInst::ICMP_EQ)
5451 if (ICmpInst::isTrueWhenEqual(Pred))
5452 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5453 return true;
5454 if (Pred == ICmpInst::ICMP_NE)
5455 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5456 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5457 return true;
5458
5459 // Otherwise assume the worst.
5460 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005461}
5462
Dan Gohman0f4b2852009-07-21 23:03:19 +00005463/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005464/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005465/// and FoundRHS is true.
5466bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5467 const SCEV *LHS, const SCEV *RHS,
5468 const SCEV *FoundLHS,
5469 const SCEV *FoundRHS) {
5470 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5471 FoundLHS, FoundRHS) ||
5472 // ~x < ~y --> x > y
5473 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5474 getNotSCEV(FoundRHS),
5475 getNotSCEV(FoundLHS));
5476}
5477
5478/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005479/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005480/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005481bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005482ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5483 const SCEV *LHS, const SCEV *RHS,
5484 const SCEV *FoundLHS,
5485 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005486 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005487 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5488 case ICmpInst::ICMP_EQ:
5489 case ICmpInst::ICMP_NE:
5490 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5491 return true;
5492 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005493 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005494 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005495 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5496 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005497 return true;
5498 break;
5499 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005500 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005501 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5502 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005503 return true;
5504 break;
5505 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005506 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005507 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5508 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005509 return true;
5510 break;
5511 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005512 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005513 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5514 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005515 return true;
5516 break;
5517 }
5518
5519 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005520}
5521
Dan Gohman51f53b72009-06-21 23:46:38 +00005522/// getBECount - Subtract the end and start values and divide by the step,
5523/// rounding up, to get the number of times the backedge is executed. Return
5524/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005525const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005526 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005527 const SCEV *Step,
5528 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005529 assert(!isKnownNegative(Step) &&
5530 "This code doesn't handle negative strides yet!");
5531
Dan Gohman51f53b72009-06-21 23:46:38 +00005532 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005533 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005534 const SCEV *Diff = getMinusSCEV(End, Start);
5535 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005536
5537 // Add an adjustment to the difference between End and Start so that
5538 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005539 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005540
Dan Gohman1f96e672009-09-17 18:05:20 +00005541 if (!NoWrap) {
5542 // Check Add for unsigned overflow.
5543 // TODO: More sophisticated things could be done here.
5544 const Type *WideTy = IntegerType::get(getContext(),
5545 getTypeSizeInBits(Ty) + 1);
5546 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5547 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5548 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5549 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5550 return getCouldNotCompute();
5551 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005552
5553 return getUDivExpr(Add, Step);
5554}
5555
Chris Lattnerdb25de42005-08-15 23:33:51 +00005556/// HowManyLessThans - Return the number of times a backedge containing the
5557/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005558/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005559ScalarEvolution::BackedgeTakenInfo
5560ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5561 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005562 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005563 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005564
Dan Gohman35738ac2009-05-04 22:30:44 +00005565 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005566 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005567 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005568
Dan Gohman1f96e672009-09-17 18:05:20 +00005569 // Check to see if we have a flag which makes analysis easy.
5570 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5571 AddRec->hasNoUnsignedWrap();
5572
Chris Lattnerdb25de42005-08-15 23:33:51 +00005573 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005574 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005575 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005576
Dan Gohman52fddd32010-01-26 04:40:18 +00005577 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005578 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005579 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005580 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005581 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005582 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005583 // value and past the maximum value for its type in a single step.
5584 // Note that it's not sufficient to check NoWrap here, because even
5585 // though the value after a wrap is undefined, it's not undefined
5586 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005587 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005588 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005589 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005590 if (isSigned) {
5591 APInt Max = APInt::getSignedMaxValue(BitWidth);
5592 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5593 .slt(getSignedRange(RHS).getSignedMax()))
5594 return getCouldNotCompute();
5595 } else {
5596 APInt Max = APInt::getMaxValue(BitWidth);
5597 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5598 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5599 return getCouldNotCompute();
5600 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005601 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005602 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005603 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005604
Dan Gohmana1af7572009-04-30 20:47:05 +00005605 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5606 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5607 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005608 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005609
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005610 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005611 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005612
Dan Gohmana1af7572009-04-30 20:47:05 +00005613 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005614 const SCEV *MinStart = getConstant(isSigned ?
5615 getSignedRange(Start).getSignedMin() :
5616 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005617
Dan Gohmana1af7572009-04-30 20:47:05 +00005618 // If we know that the condition is true in order to enter the loop,
5619 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005620 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5621 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005622 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005623 if (!isLoopEntryGuardedByCond(L,
5624 isSigned ? ICmpInst::ICMP_SLT :
5625 ICmpInst::ICMP_ULT,
5626 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005627 End = isSigned ? getSMaxExpr(RHS, Start)
5628 : getUMaxExpr(RHS, Start);
5629
5630 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005631 const SCEV *MaxEnd = getConstant(isSigned ?
5632 getSignedRange(End).getSignedMax() :
5633 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005634
Dan Gohman52fddd32010-01-26 04:40:18 +00005635 // If MaxEnd is within a step of the maximum integer value in its type,
5636 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005637 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005638 // compute the correct value.
5639 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005640 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005641 MaxEnd = isSigned ?
5642 getSMinExpr(MaxEnd,
5643 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5644 StepMinusOne)) :
5645 getUMinExpr(MaxEnd,
5646 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5647 StepMinusOne));
5648
Dan Gohmana1af7572009-04-30 20:47:05 +00005649 // Finally, we subtract these two values and divide, rounding up, to get
5650 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005651 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005652
5653 // The maximum backedge count is similar, except using the minimum start
5654 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005655 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005656
5657 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005658 }
5659
Dan Gohman1c343752009-06-27 21:21:31 +00005660 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005661}
5662
Chris Lattner53e677a2004-04-02 20:23:17 +00005663/// getNumIterationsInRange - Return the number of iterations of this loop that
5664/// produce values in the specified constant range. Another way of looking at
5665/// this is that it returns the first iteration number where the value is not in
5666/// the condition, thus computing the exit count. If the iteration count can't
5667/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005668const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005669 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005670 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005671 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005672
5673 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005674 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005675 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005676 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005677 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005678 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005679 if (const SCEVAddRecExpr *ShiftedAddRec =
5680 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005681 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005682 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005683 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005684 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005685 }
5686
5687 // The only time we can solve this is when we have all constant indices.
5688 // Otherwise, we cannot determine the overflow conditions.
5689 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5690 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005691 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005692
5693
5694 // Okay at this point we know that all elements of the chrec are constants and
5695 // that the start element is zero.
5696
5697 // First check to see if the range contains zero. If not, the first
5698 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005699 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005700 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005701 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005702
Chris Lattner53e677a2004-04-02 20:23:17 +00005703 if (isAffine()) {
5704 // If this is an affine expression then we have this situation:
5705 // Solve {0,+,A} in Range === Ax in Range
5706
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005707 // We know that zero is in the range. If A is positive then we know that
5708 // the upper value of the range must be the first possible exit value.
5709 // If A is negative then the lower of the range is the last possible loop
5710 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005711 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005712 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5713 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005714
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005715 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005716 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005717 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005718
5719 // Evaluate at the exit value. If we really did fall out of the valid
5720 // range, then we computed our trip count, otherwise wrap around or other
5721 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005722 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005723 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005724 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005725
5726 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005727 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005728 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005729 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005730 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005731 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005732 } else if (isQuadratic()) {
5733 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5734 // quadratic equation to solve it. To do this, we must frame our problem in
5735 // terms of figuring out when zero is crossed, instead of when
5736 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005737 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005738 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005739 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005740
5741 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005742 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005743 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005744 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5745 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005746 if (R1) {
5747 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005748 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005749 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005750 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005751 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005752 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005753
Chris Lattner53e677a2004-04-02 20:23:17 +00005754 // Make sure the root is not off by one. The returned iteration should
5755 // not be in the range, but the previous one should be. When solving
5756 // for "X*X < 5", for example, we should not return a root of 2.
5757 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005758 R1->getValue(),
5759 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005760 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005761 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005762 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005763 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005764
Dan Gohman246b2562007-10-22 18:31:58 +00005765 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005766 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005767 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005768 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005769 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005770
Chris Lattner53e677a2004-04-02 20:23:17 +00005771 // If R1 was not in the range, then it is a good return value. Make
5772 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005773 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005774 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005775 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005776 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005777 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005778 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005779 }
5780 }
5781 }
5782
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005783 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005784}
5785
5786
5787
5788//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005789// SCEVCallbackVH Class Implementation
5790//===----------------------------------------------------------------------===//
5791
Dan Gohman1959b752009-05-19 19:22:47 +00005792void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005793 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005794 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5795 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005796 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00005797 // this now dangles!
5798}
5799
Dan Gohman81f91212010-07-28 01:09:07 +00005800void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005801 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005802
Dan Gohman35738ac2009-05-04 22:30:44 +00005803 // Forget all the expressions associated with users of the old value,
5804 // so that future queries will recompute the expressions using the new
5805 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005806 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005807 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005808 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005809 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5810 UI != UE; ++UI)
5811 Worklist.push_back(*UI);
5812 while (!Worklist.empty()) {
5813 User *U = Worklist.pop_back_val();
5814 // Deleting the Old value will cause this to dangle. Postpone
5815 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005816 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005817 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005818 if (!Visited.insert(U))
5819 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005820 if (PHINode *PN = dyn_cast<PHINode>(U))
5821 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005822 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00005823 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5824 UI != UE; ++UI)
5825 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005826 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005827 // Delete the Old value.
5828 if (PHINode *PN = dyn_cast<PHINode>(Old))
5829 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005830 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00005831 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005832}
5833
Dan Gohman1959b752009-05-19 19:22:47 +00005834ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005835 : CallbackVH(V), SE(se) {}
5836
5837//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005838// ScalarEvolution Class Implementation
5839//===----------------------------------------------------------------------===//
5840
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005841ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005842 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00005843 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005844}
5845
Chris Lattner53e677a2004-04-02 20:23:17 +00005846bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005847 this->F = &F;
5848 LI = &getAnalysis<LoopInfo>();
5849 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005850 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005851 return false;
5852}
5853
5854void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005855 // Iterate through all the SCEVUnknown instances and call their
5856 // destructors, so that they release their references to their values.
5857 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5858 U->~SCEVUnknown();
5859 FirstUnknown = 0;
5860
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005861 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005862 BackedgeTakenCounts.clear();
5863 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005864 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005865 UniqueSCEVs.clear();
5866 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005867}
5868
5869void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5870 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005871 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005872 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005873}
5874
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005875bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005876 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005877}
5878
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005879static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005880 const Loop *L) {
5881 // Print all inner loops first
5882 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5883 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005884
Dan Gohman30733292010-01-09 18:17:45 +00005885 OS << "Loop ";
5886 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5887 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005888
Dan Gohman5d984912009-12-18 01:14:11 +00005889 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005890 L->getExitBlocks(ExitBlocks);
5891 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005892 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005893
Dan Gohman46bdfb02009-02-24 18:55:53 +00005894 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5895 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005896 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005897 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005898 }
5899
Dan Gohman30733292010-01-09 18:17:45 +00005900 OS << "\n"
5901 "Loop ";
5902 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5903 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005904
5905 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5906 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5907 } else {
5908 OS << "Unpredictable max backedge-taken count. ";
5909 }
5910
5911 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005912}
5913
Dan Gohman5d984912009-12-18 01:14:11 +00005914void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005915 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005916 // out SCEV values of all instructions that are interesting. Doing
5917 // this potentially causes it to create new SCEV objects though,
5918 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005919 // observable from outside the class though, so casting away the
5920 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005921 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005922
Dan Gohman30733292010-01-09 18:17:45 +00005923 OS << "Classifying expressions for: ";
5924 WriteAsOperand(OS, F, /*PrintType=*/false);
5925 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005926 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005927 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005928 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005929 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005930 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005931 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005932
Dan Gohman0c689c52009-06-19 17:49:54 +00005933 const Loop *L = LI->getLoopFor((*I).getParent());
5934
Dan Gohman0bba49c2009-07-07 17:06:11 +00005935 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005936 if (AtUse != SV) {
5937 OS << " --> ";
5938 AtUse->print(OS);
5939 }
5940
5941 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005942 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005943 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005944 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005945 OS << "<<Unknown>>";
5946 } else {
5947 OS << *ExitValue;
5948 }
5949 }
5950
Chris Lattner53e677a2004-04-02 20:23:17 +00005951 OS << "\n";
5952 }
5953
Dan Gohman30733292010-01-09 18:17:45 +00005954 OS << "Determining loop execution counts for: ";
5955 WriteAsOperand(OS, F, /*PrintType=*/false);
5956 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005957 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5958 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005959}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005960