blob: 06b232965893fdd3e5db3e7d899d4f16e083a3e9 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by James M. Laskey and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a simple two pass scheduler. The first pass attempts to push
11// backward any lengthy instructions and critical paths. The second pass packs
12// instructions into semi-optimal time slots.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "pre-RA-sched"
17#include "llvm/Type.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/CodeGen/MachineConstantPool.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/SSARegMap.h"
22#include "llvm/Target/TargetData.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/MathExtras.h"
28using namespace llvm;
29
30/// BuildSchedUnits - Build SUnits from the selection dag that we are input.
31/// This SUnit graph is similar to the SelectionDAG, but represents flagged
32/// together nodes with a single SUnit.
33void ScheduleDAG::BuildSchedUnits() {
34 // Reserve entries in the vector for each of the SUnits we are creating. This
35 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
36 // invalidated.
37 SUnits.reserve(std::distance(DAG.allnodes_begin(), DAG.allnodes_end()));
38
39 const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
40
41 for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(),
42 E = DAG.allnodes_end(); NI != E; ++NI) {
43 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
44 continue;
45
46 // If this node has already been processed, stop now.
47 if (SUnitMap[NI]) continue;
48
49 SUnit *NodeSUnit = NewSUnit(NI);
50
51 // See if anything is flagged to this node, if so, add them to flagged
52 // nodes. Nodes can have at most one flag input and one flag output. Flags
53 // are required the be the last operand and result of a node.
54
55 // Scan up, adding flagged preds to FlaggedNodes.
56 SDNode *N = NI;
57 if (N->getNumOperands() &&
58 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
59 do {
60 N = N->getOperand(N->getNumOperands()-1).Val;
61 NodeSUnit->FlaggedNodes.push_back(N);
62 SUnitMap[N] = NodeSUnit;
63 } while (N->getNumOperands() &&
64 N->getOperand(N->getNumOperands()-1).getValueType()== MVT::Flag);
65 std::reverse(NodeSUnit->FlaggedNodes.begin(),
66 NodeSUnit->FlaggedNodes.end());
67 }
68
69 // Scan down, adding this node and any flagged succs to FlaggedNodes if they
70 // have a user of the flag operand.
71 N = NI;
72 while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
73 SDOperand FlagVal(N, N->getNumValues()-1);
74
75 // There are either zero or one users of the Flag result.
76 bool HasFlagUse = false;
77 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
78 UI != E; ++UI)
79 if (FlagVal.isOperand(*UI)) {
80 HasFlagUse = true;
81 NodeSUnit->FlaggedNodes.push_back(N);
82 SUnitMap[N] = NodeSUnit;
83 N = *UI;
84 break;
85 }
86 if (!HasFlagUse) break;
87 }
88
89 // Now all flagged nodes are in FlaggedNodes and N is the bottom-most node.
90 // Update the SUnit
91 NodeSUnit->Node = N;
92 SUnitMap[N] = NodeSUnit;
93
94 // Compute the latency for the node. We use the sum of the latencies for
95 // all nodes flagged together into this SUnit.
96 if (InstrItins.isEmpty()) {
97 // No latency information.
98 NodeSUnit->Latency = 1;
99 } else {
100 NodeSUnit->Latency = 0;
101 if (N->isTargetOpcode()) {
102 unsigned SchedClass = TII->getSchedClass(N->getTargetOpcode());
103 InstrStage *S = InstrItins.begin(SchedClass);
104 InstrStage *E = InstrItins.end(SchedClass);
105 for (; S != E; ++S)
106 NodeSUnit->Latency += S->Cycles;
107 }
108 for (unsigned i = 0, e = NodeSUnit->FlaggedNodes.size(); i != e; ++i) {
109 SDNode *FNode = NodeSUnit->FlaggedNodes[i];
110 if (FNode->isTargetOpcode()) {
111 unsigned SchedClass = TII->getSchedClass(FNode->getTargetOpcode());
112 InstrStage *S = InstrItins.begin(SchedClass);
113 InstrStage *E = InstrItins.end(SchedClass);
114 for (; S != E; ++S)
115 NodeSUnit->Latency += S->Cycles;
116 }
117 }
118 }
119 }
120
121 // Pass 2: add the preds, succs, etc.
122 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
123 SUnit *SU = &SUnits[su];
124 SDNode *MainNode = SU->Node;
125
126 if (MainNode->isTargetOpcode()) {
127 unsigned Opc = MainNode->getTargetOpcode();
128 for (unsigned i = 0, ee = TII->getNumOperands(Opc); i != ee; ++i) {
129 if (TII->getOperandConstraint(Opc, i, TOI::TIED_TO) != -1) {
130 SU->isTwoAddress = true;
131 break;
132 }
133 }
134 if (TII->isCommutableInstr(Opc))
135 SU->isCommutable = true;
136 }
137
138 // Find all predecessors and successors of the group.
139 // Temporarily add N to make code simpler.
140 SU->FlaggedNodes.push_back(MainNode);
141
142 for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) {
143 SDNode *N = SU->FlaggedNodes[n];
144
145 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
146 SDNode *OpN = N->getOperand(i).Val;
147 if (isPassiveNode(OpN)) continue; // Not scheduled.
148 SUnit *OpSU = SUnitMap[OpN];
149 assert(OpSU && "Node has no SUnit!");
150 if (OpSU == SU) continue; // In the same group.
151
152 MVT::ValueType OpVT = N->getOperand(i).getValueType();
153 assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
154 bool isChain = OpVT == MVT::Other;
155
156 if (SU->addPred(OpSU, isChain)) {
157 if (!isChain) {
158 SU->NumPreds++;
159 SU->NumPredsLeft++;
160 } else {
161 SU->NumChainPredsLeft++;
162 }
163 }
164 if (OpSU->addSucc(SU, isChain)) {
165 if (!isChain) {
166 OpSU->NumSuccs++;
167 OpSU->NumSuccsLeft++;
168 } else {
169 OpSU->NumChainSuccsLeft++;
170 }
171 }
172 }
173 }
174
175 // Remove MainNode from FlaggedNodes again.
176 SU->FlaggedNodes.pop_back();
177 }
178
179 return;
180}
181
182void ScheduleDAG::CalculateDepths() {
183 std::vector<std::pair<SUnit*, unsigned> > WorkList;
184 for (unsigned i = 0, e = SUnits.size(); i != e; ++i)
185 if (SUnits[i].Preds.size() == 0/* && &SUnits[i] != Entry*/)
186 WorkList.push_back(std::make_pair(&SUnits[i], 0U));
187
188 while (!WorkList.empty()) {
189 SUnit *SU = WorkList.back().first;
190 unsigned Depth = WorkList.back().second;
191 WorkList.pop_back();
192 if (SU->Depth == 0 || Depth > SU->Depth) {
193 SU->Depth = Depth;
194 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
195 I != E; ++I)
196 WorkList.push_back(std::make_pair(I->first, Depth+1));
197 }
198 }
199}
200
201void ScheduleDAG::CalculateHeights() {
202 std::vector<std::pair<SUnit*, unsigned> > WorkList;
203 SUnit *Root = SUnitMap[DAG.getRoot().Val];
204 WorkList.push_back(std::make_pair(Root, 0U));
205
206 while (!WorkList.empty()) {
207 SUnit *SU = WorkList.back().first;
208 unsigned Height = WorkList.back().second;
209 WorkList.pop_back();
210 if (SU->Height == 0 || Height > SU->Height) {
211 SU->Height = Height;
212 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
213 I != E; ++I)
214 WorkList.push_back(std::make_pair(I->first, Height+1));
215 }
216 }
217}
218
219/// CountResults - The results of target nodes have register or immediate
220/// operands first, then an optional chain, and optional flag operands (which do
221/// not go into the machine instrs.)
222unsigned ScheduleDAG::CountResults(SDNode *Node) {
223 unsigned N = Node->getNumValues();
224 while (N && Node->getValueType(N - 1) == MVT::Flag)
225 --N;
226 if (N && Node->getValueType(N - 1) == MVT::Other)
227 --N; // Skip over chain result.
228 return N;
229}
230
231/// CountOperands The inputs to target nodes have any actual inputs first,
232/// followed by an optional chain operand, then flag operands. Compute the
233/// number of actual operands that will go into the machine instr.
234unsigned ScheduleDAG::CountOperands(SDNode *Node) {
235 unsigned N = Node->getNumOperands();
236 while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag)
237 --N;
238 if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
239 --N; // Ignore chain if it exists.
240 return N;
241}
242
243static const TargetRegisterClass *getInstrOperandRegClass(
244 const MRegisterInfo *MRI,
245 const TargetInstrInfo *TII,
246 const TargetInstrDescriptor *II,
247 unsigned Op) {
248 if (Op >= II->numOperands) {
249 assert((II->Flags & M_VARIABLE_OPS)&& "Invalid operand # of instruction");
250 return NULL;
251 }
252 const TargetOperandInfo &toi = II->OpInfo[Op];
253 return (toi.Flags & M_LOOK_UP_PTR_REG_CLASS)
254 ? TII->getPointerRegClass() : MRI->getRegClass(toi.RegClass);
255}
256
257static void CreateVirtualRegisters(SDNode *Node,
258 unsigned NumResults,
259 const MRegisterInfo *MRI,
260 MachineInstr *MI,
261 SSARegMap *RegMap,
262 const TargetInstrInfo *TII,
263 const TargetInstrDescriptor &II,
264 DenseMap<SDOperand, unsigned> &VRBaseMap) {
265 for (unsigned i = 0; i < NumResults; ++i) {
266 // If the specific node value is only used by a CopyToReg and the dest reg
267 // is a vreg, use the CopyToReg'd destination register instead of creating
268 // a new vreg.
269 unsigned VRBase = 0;
270 for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
271 UI != E; ++UI) {
272 SDNode *Use = *UI;
273 if (Use->getOpcode() == ISD::CopyToReg &&
274 Use->getOperand(2).Val == Node &&
275 Use->getOperand(2).ResNo == i) {
276 unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
277 if (MRegisterInfo::isVirtualRegister(Reg)) {
278 VRBase = Reg;
279 MI->addRegOperand(Reg, true);
280 break;
281 }
282 }
283 }
284
285 if (VRBase == 0) {
286 // Create the result registers for this node and add the result regs to
287 // the machine instruction.
288 const TargetRegisterClass *RC = getInstrOperandRegClass(MRI, TII, &II, i);
289 assert(RC && "Isn't a register operand!");
290 VRBase = RegMap->createVirtualRegister(RC);
291 MI->addRegOperand(VRBase, true);
292 }
293
294 bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,i), VRBase));
295 assert(isNew && "Node emitted out of order - early");
296 }
297}
298
299/// getVR - Return the virtual register corresponding to the specified result
300/// of the specified node.
301static unsigned getVR(SDOperand Op, DenseMap<SDOperand, unsigned> &VRBaseMap) {
302 DenseMap<SDOperand, unsigned>::iterator I = VRBaseMap.find(Op);
303 assert(I != VRBaseMap.end() && "Node emitted out of order - late");
304 return I->second;
305}
306
307
308/// AddOperand - Add the specified operand to the specified machine instr. II
309/// specifies the instruction information for the node, and IIOpNum is the
310/// operand number (in the II) that we are adding. IIOpNum and II are used for
311/// assertions only.
312void ScheduleDAG::AddOperand(MachineInstr *MI, SDOperand Op,
313 unsigned IIOpNum,
314 const TargetInstrDescriptor *II,
315 DenseMap<SDOperand, unsigned> &VRBaseMap) {
316 if (Op.isTargetOpcode()) {
317 // Note that this case is redundant with the final else block, but we
318 // include it because it is the most common and it makes the logic
319 // simpler here.
320 assert(Op.getValueType() != MVT::Other &&
321 Op.getValueType() != MVT::Flag &&
322 "Chain and flag operands should occur at end of operand list!");
323
324 // Get/emit the operand.
325 unsigned VReg = getVR(Op, VRBaseMap);
326 const TargetInstrDescriptor *TID = MI->getInstrDescriptor();
327 bool isOptDef = (IIOpNum < TID->numOperands)
328 ? (TID->OpInfo[IIOpNum].Flags & M_OPTIONAL_DEF_OPERAND) : false;
329 MI->addRegOperand(VReg, isOptDef);
330
331 // Verify that it is right.
332 assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
333 if (II) {
334 const TargetRegisterClass *RC =
335 getInstrOperandRegClass(MRI, TII, II, IIOpNum);
336 assert(RC && "Don't have operand info for this instruction!");
337 const TargetRegisterClass *VRC = RegMap->getRegClass(VReg);
338 if (VRC != RC) {
339 cerr << "Register class of operand and regclass of use don't agree!\n";
340#ifndef NDEBUG
341 cerr << "Operand = " << IIOpNum << "\n";
342 cerr << "Op->Val = "; Op.Val->dump(&DAG); cerr << "\n";
343 cerr << "MI = "; MI->print(cerr);
344 cerr << "VReg = " << VReg << "\n";
345 cerr << "VReg RegClass size = " << VRC->getSize()
346 << ", align = " << VRC->getAlignment() << "\n";
347 cerr << "Expected RegClass size = " << RC->getSize()
348 << ", align = " << RC->getAlignment() << "\n";
349#endif
350 cerr << "Fatal error, aborting.\n";
351 abort();
352 }
353 }
354 } else if (ConstantSDNode *C =
355 dyn_cast<ConstantSDNode>(Op)) {
356 MI->addImmOperand(C->getValue());
357 } else if (RegisterSDNode *R =
358 dyn_cast<RegisterSDNode>(Op)) {
359 MI->addRegOperand(R->getReg(), false);
360 } else if (GlobalAddressSDNode *TGA =
361 dyn_cast<GlobalAddressSDNode>(Op)) {
362 MI->addGlobalAddressOperand(TGA->getGlobal(), TGA->getOffset());
363 } else if (BasicBlockSDNode *BB =
364 dyn_cast<BasicBlockSDNode>(Op)) {
365 MI->addMachineBasicBlockOperand(BB->getBasicBlock());
366 } else if (FrameIndexSDNode *FI =
367 dyn_cast<FrameIndexSDNode>(Op)) {
368 MI->addFrameIndexOperand(FI->getIndex());
369 } else if (JumpTableSDNode *JT =
370 dyn_cast<JumpTableSDNode>(Op)) {
371 MI->addJumpTableIndexOperand(JT->getIndex());
372 } else if (ConstantPoolSDNode *CP =
373 dyn_cast<ConstantPoolSDNode>(Op)) {
374 int Offset = CP->getOffset();
375 unsigned Align = CP->getAlignment();
376 const Type *Type = CP->getType();
377 // MachineConstantPool wants an explicit alignment.
378 if (Align == 0) {
379 Align = TM.getTargetData()->getPreferredTypeAlignmentShift(Type);
380 if (Align == 0) {
381 // Alignment of vector types. FIXME!
382 Align = TM.getTargetData()->getTypeSize(Type);
383 Align = Log2_64(Align);
384 }
385 }
386
387 unsigned Idx;
388 if (CP->isMachineConstantPoolEntry())
389 Idx = ConstPool->getConstantPoolIndex(CP->getMachineCPVal(), Align);
390 else
391 Idx = ConstPool->getConstantPoolIndex(CP->getConstVal(), Align);
392 MI->addConstantPoolIndexOperand(Idx, Offset);
393 } else if (ExternalSymbolSDNode *ES =
394 dyn_cast<ExternalSymbolSDNode>(Op)) {
395 MI->addExternalSymbolOperand(ES->getSymbol());
396 } else {
397 assert(Op.getValueType() != MVT::Other &&
398 Op.getValueType() != MVT::Flag &&
399 "Chain and flag operands should occur at end of operand list!");
400 unsigned VReg = getVR(Op, VRBaseMap);
401 MI->addRegOperand(VReg, false);
402
403 // Verify that it is right.
404 assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
405 if (II) {
406 const TargetRegisterClass *RC =
407 getInstrOperandRegClass(MRI, TII, II, IIOpNum);
408 assert(RC && "Don't have operand info for this instruction!");
409 assert(RegMap->getRegClass(VReg) == RC &&
410 "Register class of operand and regclass of use don't agree!");
411 }
412 }
413
414}
415
416// Returns the Register Class of a physical register
417static const TargetRegisterClass *getPhysicalRegisterRegClass(
418 const MRegisterInfo *MRI,
419 MVT::ValueType VT,
420 unsigned reg) {
421 assert(MRegisterInfo::isPhysicalRegister(reg) &&
422 "reg must be a physical register");
423 // Pick the register class of the right type that contains this physreg.
424 for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(),
425 E = MRI->regclass_end(); I != E; ++I)
426 if ((*I)->hasType(VT) && (*I)->contains(reg))
427 return *I;
428 assert(false && "Couldn't find the register class");
429 return 0;
430}
431
432/// EmitNode - Generate machine code for an node and needed dependencies.
433///
434void ScheduleDAG::EmitNode(SDNode *Node,
435 DenseMap<SDOperand, unsigned> &VRBaseMap) {
436 // If machine instruction
437 if (Node->isTargetOpcode()) {
438 unsigned Opc = Node->getTargetOpcode();
439 const TargetInstrDescriptor &II = TII->get(Opc);
440
441 unsigned NumResults = CountResults(Node);
442 unsigned NodeOperands = CountOperands(Node);
443 unsigned NumMIOperands = NodeOperands + NumResults;
444#ifndef NDEBUG
445 assert((unsigned(II.numOperands) == NumMIOperands ||
446 (II.Flags & M_VARIABLE_OPS)) &&
447 "#operands for dag node doesn't match .td file!");
448#endif
449
450 // Create the new machine instruction.
451 MachineInstr *MI = new MachineInstr(II);
452
453 // Add result register values for things that are defined by this
454 // instruction.
455 if (NumResults)
456 CreateVirtualRegisters(Node, NumResults, MRI, MI, RegMap,
457 TII, II, VRBaseMap);
458
459 // Emit all of the actual operands of this instruction, adding them to the
460 // instruction as appropriate.
461 for (unsigned i = 0; i != NodeOperands; ++i)
462 AddOperand(MI, Node->getOperand(i), i+NumResults, &II, VRBaseMap);
463
464 // Commute node if it has been determined to be profitable.
465 if (CommuteSet.count(Node)) {
466 MachineInstr *NewMI = TII->commuteInstruction(MI);
467 if (NewMI == 0)
468 DOUT << "Sched: COMMUTING FAILED!\n";
469 else {
470 DOUT << "Sched: COMMUTED TO: " << *NewMI;
471 if (MI != NewMI) {
472 delete MI;
473 MI = NewMI;
474 }
475 }
476 }
477
478 // Now that we have emitted all operands, emit this instruction itself.
479 if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) {
480 BB->insert(BB->end(), MI);
481 } else {
482 // Insert this instruction into the end of the basic block, potentially
483 // taking some custom action.
484 BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB);
485 }
486 } else {
487 switch (Node->getOpcode()) {
488 default:
489#ifndef NDEBUG
490 Node->dump(&DAG);
491#endif
492 assert(0 && "This target-independent node should have been selected!");
493 case ISD::EntryToken: // fall thru
494 case ISD::TokenFactor:
495 case ISD::LABEL:
496 break;
497 case ISD::CopyToReg: {
498 unsigned InReg;
499 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(2)))
500 InReg = R->getReg();
501 else
502 InReg = getVR(Node->getOperand(2), VRBaseMap);
503 unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
504 if (InReg != DestReg) {// Coalesced away the copy?
505 const TargetRegisterClass *TRC = 0;
506 // Get the target register class
507 if (MRegisterInfo::isVirtualRegister(InReg))
508 TRC = RegMap->getRegClass(InReg);
509 else
510 TRC = getPhysicalRegisterRegClass(MRI,
511 Node->getOperand(2).getValueType(),
512 InReg);
513 MRI->copyRegToReg(*BB, BB->end(), DestReg, InReg, TRC);
514 }
515 break;
516 }
517 case ISD::CopyFromReg: {
518 unsigned VRBase = 0;
519 unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
520 if (MRegisterInfo::isVirtualRegister(SrcReg)) {
521 // Just use the input register directly!
522 bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,0),SrcReg));
523 assert(isNew && "Node emitted out of order - early");
524 break;
525 }
526
527 // If the node is only used by a CopyToReg and the dest reg is a vreg, use
528 // the CopyToReg'd destination register instead of creating a new vreg.
529 for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
530 UI != E; ++UI) {
531 SDNode *Use = *UI;
532 if (Use->getOpcode() == ISD::CopyToReg &&
533 Use->getOperand(2).Val == Node) {
534 unsigned DestReg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
535 if (MRegisterInfo::isVirtualRegister(DestReg)) {
536 VRBase = DestReg;
537 break;
538 }
539 }
540 }
541
542 // Figure out the register class to create for the destreg.
543 const TargetRegisterClass *TRC = 0;
544 if (VRBase) {
545 TRC = RegMap->getRegClass(VRBase);
546 } else {
547 TRC = getPhysicalRegisterRegClass(MRI, Node->getValueType(0), SrcReg);
548
549 // Create the reg, emit the copy.
550 VRBase = RegMap->createVirtualRegister(TRC);
551 }
552 MRI->copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC);
553
554 bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,0), VRBase));
555 assert(isNew && "Node emitted out of order - early");
556 break;
557 }
558 case ISD::INLINEASM: {
559 unsigned NumOps = Node->getNumOperands();
560 if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag)
561 --NumOps; // Ignore the flag operand.
562
563 // Create the inline asm machine instruction.
564 MachineInstr *MI =
565 new MachineInstr(BB, TII->get(TargetInstrInfo::INLINEASM));
566
567 // Add the asm string as an external symbol operand.
568 const char *AsmStr =
569 cast<ExternalSymbolSDNode>(Node->getOperand(1))->getSymbol();
570 MI->addExternalSymbolOperand(AsmStr);
571
572 // Add all of the operand registers to the instruction.
573 for (unsigned i = 2; i != NumOps;) {
574 unsigned Flags = cast<ConstantSDNode>(Node->getOperand(i))->getValue();
575 unsigned NumVals = Flags >> 3;
576
577 MI->addImmOperand(Flags);
578 ++i; // Skip the ID value.
579
580 switch (Flags & 7) {
581 default: assert(0 && "Bad flags!");
582 case 1: // Use of register.
583 for (; NumVals; --NumVals, ++i) {
584 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
585 MI->addRegOperand(Reg, false);
586 }
587 break;
588 case 2: // Def of register.
589 for (; NumVals; --NumVals, ++i) {
590 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
591 MI->addRegOperand(Reg, true);
592 }
593 break;
594 case 3: { // Immediate.
595 assert(NumVals == 1 && "Unknown immediate value!");
596 if (ConstantSDNode *CS=dyn_cast<ConstantSDNode>(Node->getOperand(i))){
597 MI->addImmOperand(CS->getValue());
598 } else {
599 GlobalAddressSDNode *GA =
600 cast<GlobalAddressSDNode>(Node->getOperand(i));
601 MI->addGlobalAddressOperand(GA->getGlobal(), GA->getOffset());
602 }
603 ++i;
604 break;
605 }
606 case 4: // Addressing mode.
607 // The addressing mode has been selected, just add all of the
608 // operands to the machine instruction.
609 for (; NumVals; --NumVals, ++i)
610 AddOperand(MI, Node->getOperand(i), 0, 0, VRBaseMap);
611 break;
612 }
613 }
614 break;
615 }
616 }
617 }
618}
619
620void ScheduleDAG::EmitNoop() {
621 TII->insertNoop(*BB, BB->end());
622}
623
624/// EmitSchedule - Emit the machine code in scheduled order.
625void ScheduleDAG::EmitSchedule() {
626 // If this is the first basic block in the function, and if it has live ins
627 // that need to be copied into vregs, emit the copies into the top of the
628 // block before emitting the code for the block.
629 MachineFunction &MF = DAG.getMachineFunction();
630 if (&MF.front() == BB && MF.livein_begin() != MF.livein_end()) {
631 for (MachineFunction::livein_iterator LI = MF.livein_begin(),
632 E = MF.livein_end(); LI != E; ++LI)
633 if (LI->second)
634 MRI->copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
635 LI->first, RegMap->getRegClass(LI->second));
636 }
637
638
639 // Finally, emit the code for all of the scheduled instructions.
640 DenseMap<SDOperand, unsigned> VRBaseMap;
641 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
642 if (SUnit *SU = Sequence[i]) {
643 for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; j++)
644 EmitNode(SU->FlaggedNodes[j], VRBaseMap);
645 EmitNode(SU->Node, VRBaseMap);
646 } else {
647 // Null SUnit* is a noop.
648 EmitNoop();
649 }
650 }
651}
652
653/// dump - dump the schedule.
654void ScheduleDAG::dumpSchedule() const {
655 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
656 if (SUnit *SU = Sequence[i])
657 SU->dump(&DAG);
658 else
659 cerr << "**** NOOP ****\n";
660 }
661}
662
663
664/// Run - perform scheduling.
665///
666MachineBasicBlock *ScheduleDAG::Run() {
667 TII = TM.getInstrInfo();
668 MRI = TM.getRegisterInfo();
669 RegMap = BB->getParent()->getSSARegMap();
670 ConstPool = BB->getParent()->getConstantPool();
671
672 Schedule();
673 return BB;
674}
675
676/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
677/// a group of nodes flagged together.
678void SUnit::dump(const SelectionDAG *G) const {
679 cerr << "SU(" << NodeNum << "): ";
680 Node->dump(G);
681 cerr << "\n";
682 if (FlaggedNodes.size() != 0) {
683 for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) {
684 cerr << " ";
685 FlaggedNodes[i]->dump(G);
686 cerr << "\n";
687 }
688 }
689}
690
691void SUnit::dumpAll(const SelectionDAG *G) const {
692 dump(G);
693
694 cerr << " # preds left : " << NumPredsLeft << "\n";
695 cerr << " # succs left : " << NumSuccsLeft << "\n";
696 cerr << " # chain preds left : " << NumChainPredsLeft << "\n";
697 cerr << " # chain succs left : " << NumChainSuccsLeft << "\n";
698 cerr << " Latency : " << Latency << "\n";
699 cerr << " Depth : " << Depth << "\n";
700 cerr << " Height : " << Height << "\n";
701
702 if (Preds.size() != 0) {
703 cerr << " Predecessors:\n";
704 for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
705 I != E; ++I) {
706 if (I->second)
707 cerr << " ch #";
708 else
709 cerr << " val #";
710 cerr << I->first << " - SU(" << I->first->NodeNum << ")\n";
711 }
712 }
713 if (Succs.size() != 0) {
714 cerr << " Successors:\n";
715 for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
716 I != E; ++I) {
717 if (I->second)
718 cerr << " ch #";
719 else
720 cerr << " val #";
721 cerr << I->first << " - SU(" << I->first->NodeNum << ")\n";
722 }
723 }
724 cerr << "\n";
725}