blob: d07fc4cd3e1a998f88051665360c93b46cb2d106 [file] [log] [blame]
Chris Lattner9355b472002-09-06 02:50:58 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html><head><title>LLVM Programmer's Manual</title></head>
3
4<body bgcolor=white>
5
Chris Lattner9355b472002-09-06 02:50:58 +00006<table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
7<tr><td>&nbsp; <font size=+3 color="#EEEEFF" face="Georgia,Palatino,Times,Roman"><b>LLVM Programmer's Manual</b></font></td>
8</tr></table>
9
10<ol>
11 <li><a href="#introduction">Introduction</a>
12 <li><a href="#general">General Information</a>
13 <ul>
14 <li><a href="#stl">The C++ Standard Template Library</a>
Chris Lattner986e0c92002-09-22 19:38:40 +000015<!--
16 <li>The <tt>-time-passes</tt> option
17 <li>How to use the LLVM Makefile system
18 <li>How to write a regression test
19-->
20 </ul>
21 <li><a href="#apis">Important and useful LLVM APIs</a>
22 <ul>
Chris Lattner1d43fd42002-09-09 05:53:21 +000023 <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
24 <tt>dyn_cast&lt;&gt;</tt> templates</a>
Chris Lattner986e0c92002-09-22 19:38:40 +000025 <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro &amp;
26 <tt>-debug</tt> option</a>
27 <li><a href="#Statistic">The <tt>Statistic</tt> template &amp;
28 <tt>-stats</tt> option</a>
29<!--
30 <li>The <tt>InstVisitor</tt> template
31 <li>The general graph API
32-->
Chris Lattner9355b472002-09-06 02:50:58 +000033 </ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +000034 <li><a href="#common">Helpful Hints for Common Operations</a>
35 <ul>
36 <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
37 <ul>
38 <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
39 in a <tt>Function</tt></a>
40 <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
41 in a <tt>BasicBlock</tt></a>
Chris Lattner1a3105b2002-09-09 05:49:39 +000042 <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
43 in a <tt>Function</tt></a>
Chris Lattnerae7f7592002-09-06 18:31:18 +000044 <li><a href="#iterate_convert">Turning an iterator into a class
45 pointer</a>
Chris Lattnerf1ebdc32002-09-06 22:09:21 +000046 <li><a href="#iterate_complex">Finding call sites: a more complex
47 example</a>
Chris Lattner1a3105b2002-09-09 05:49:39 +000048 <li><a href="#iterate_chains">Iterating over def-use &amp; use-def
49 chains</a>
Chris Lattnerae7f7592002-09-06 18:31:18 +000050 </ul>
51 <li><a href="#simplechanges">Making simple changes</a>
52 <ul>
Joel Stanley753eb712002-09-11 22:32:24 +000053 <li><a href="#schanges_creating">Creating and inserting new
54 <tt>Instruction</tt>s</a>
55 <li><a href="#schanges_deleting">Deleting
56 <tt>Instruction</tt>s</a>
57 <li><a href="#schanges_replacing">Replacing an
58 <tt>Instruction</tt> with another <tt>Value</tt></a>
Chris Lattnerae7f7592002-09-06 18:31:18 +000059 </ul>
60<!--
61 <li>Working with the Control Flow Graph
62 <ul>
63 <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
64 <li>
65 <li>
66 </ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +000067-->
68 </ul>
Joel Stanley9b96c442002-09-06 21:55:13 +000069 <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
Chris Lattner9355b472002-09-06 02:50:58 +000070 <ul>
71 <li><a href="#Value">The <tt>Value</tt> class</a>
72 <ul>
73 <li><a href="#User">The <tt>User</tt> class</a>
74 <ul>
75 <li><a href="#Instruction">The <tt>Instruction</tt> class</a>
76 <ul>
77 <li>
Chris Lattner9355b472002-09-06 02:50:58 +000078 </ul>
79 <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
80 <ul>
81 <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a>
82 <li><a href="#Function">The <tt>Function</tt> class</a>
83 <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a>
84 </ul>
85 <li><a href="#Module">The <tt>Module</tt> class</a>
86 <li><a href="#Constant">The <tt>Constant</tt> class</a>
87 <ul>
88 <li>
89 <li>
90 </ul>
91 </ul>
92 <li><a href="#Type">The <tt>Type</tt> class</a>
93 <li><a href="#Argument">The <tt>Argument</tt> class</a>
94 </ul>
95 <li>The <tt>SymbolTable</tt> class
96 <li>The <tt>ilist</tt> and <tt>iplist</tt> classes
97 <ul>
98 <li>Creating, inserting, moving and deleting from LLVM lists
99 </ul>
100 <li>Important iterator invalidation semantics to be aware of
101 </ul>
102
Chris Lattner6b121f12002-09-10 15:20:46 +0000103 <p><b>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
104 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>, and
Chris Lattnerf1ebdc32002-09-06 22:09:21 +0000105 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a></b><p>
Chris Lattner9355b472002-09-06 02:50:58 +0000106</ol>
107
108
109<!-- *********************************************************************** -->
110<table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
111<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
112<a name="introduction">Introduction
113</b></font></td></tr></table><ul>
114<!-- *********************************************************************** -->
115
Joel Stanley9b96c442002-09-06 21:55:13 +0000116This document is meant to highlight some of the important classes and interfaces
117available in the LLVM source-base. This manual is not intended to explain what
Chris Lattner9355b472002-09-06 02:50:58 +0000118LLVM is, how it works, and what LLVM code looks like. It assumes that you know
119the basics of LLVM and are interested in writing transformations or otherwise
120analyzing or manipulating the code.<p>
121
122This document should get you oriented so that you can find your way in the
123continuously growing source code that makes up the LLVM infrastructure. Note
124that this manual is not intended to serve as a replacement for reading the
125source code, so if you think there should be a method in one of these classes to
126do something, but it's not listed, check the source. Links to the <a
127href="/doxygen/">doxygen</a> sources are provided to make this as easy as
128possible.<p>
129
130The first section of this document describes general information that is useful
131to know when working in the LLVM infrastructure, and the second describes the
132Core LLVM classes. In the future this manual will be extended with information
133describing how to use extension libraries, such as dominator information, CFG
134traversal routines, and useful utilities like the <tt><a
135href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.<p>
136
137
138<!-- *********************************************************************** -->
139</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
140<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
141<a name="general">General Information
142</b></font></td></tr></table><ul>
143<!-- *********************************************************************** -->
144
145This section contains general information that is useful if you are working in
146the LLVM source-base, but that isn't specific to any particular API.<p>
147
148
149<!-- ======================================================================= -->
150</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
151<tr><td>&nbsp;</td><td width="100%">&nbsp;
152<font color="#EEEEFF" face="Georgia,Palatino"><b>
153<a name="stl">The C++ Standard Template Library</a>
154</b></font></td></tr></table><ul>
155
156LLVM makes heavy use of the C++ Standard Template Library (STL), perhaps much
157more than you are used to, or have seen before. Because of this, you might want
158to do a little background reading in the techniques used and capabilities of the
159library. There are many good pages that discuss the STL, and several books on
160the subject that you can get, so it will not be discussed in this document.<p>
161
162Here are some useful links:<p>
163<ol>
Chris Lattnerab0577b2002-09-22 21:25:12 +0000164<li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++
Chris Lattner9355b472002-09-06 02:50:58 +0000165Library reference</a> - an excellent reference for the STL and other parts of
Chris Lattnere9ddc7f2002-10-21 02:38:02 +0000166the standard C++ library.
167
168<li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
169O'Reilly book in the making. It has a decent <a
170href="http://www.tempest-sw.com/cpp/ch13-libref.html">Standard Library
171Reference</a> that rivals Dinkumware's, and is actually free until the book is
172published.
Chris Lattner9355b472002-09-06 02:50:58 +0000173
174<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
175Questions</a>
176
177<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
178Contains a useful <a
179href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
180STL</a>.
181
182<li><a href="http://www.research.att.com/~bs/C++.html">Bjarne Stroustrup's C++
183Page</a>
184
185</ol><p>
186
187You are also encouraged to take a look at the <a
188href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
189to write maintainable code more than where to put your curly braces.<p>
190
191
Chris Lattner986e0c92002-09-22 19:38:40 +0000192<!-- *********************************************************************** -->
193</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
194<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
195<a name="apis">Important and useful LLVM APIs
196</b></font></td></tr></table><ul>
197<!-- *********************************************************************** -->
198
199Here we highlight some LLVM APIs that are generally useful and good to know
200about when writing transformations.<p>
201
Chris Lattner1d43fd42002-09-09 05:53:21 +0000202<!-- ======================================================================= -->
203</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
204<tr><td>&nbsp;</td><td width="100%">&nbsp;
205<font color="#EEEEFF" face="Georgia,Palatino"><b>
206<a name="isa">The isa&lt;&gt;, cast&lt;&gt; and dyn_cast&lt;&gt; templates</a>
207</b></font></td></tr></table><ul>
208
Chris Lattner979d9b72002-09-10 00:39:05 +0000209The LLVM source-base makes extensive use of a custom form of RTTI. These
210templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
211operator, but they don't have some drawbacks (primarily stemming from the fact
212that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that have a v-table).
213Because they are used so often, you must know what they do and how they work.
214All of these templates are defined in the <a
215href="/doxygen/Casting_8h-source.html"><tt>Support/Casting.h</tt></a> file (note
216that you very rarely have to include this file directly).<p>
Chris Lattner1d43fd42002-09-09 05:53:21 +0000217
Chris Lattner979d9b72002-09-10 00:39:05 +0000218<dl>
219
220<dt><tt>isa&lt;&gt;</tt>:
221
222<dd>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
223"<tt>instanceof</tt>" operator. It returns true or false depending on whether a
224reference or pointer points to an instance of the specified class. This can be
225very useful for constraint checking of various sorts (example below).<p>
226
227
228<dt><tt>cast&lt;&gt;</tt>:
229
230<dd>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
231converts a pointer or reference from a base class to a derived cast, causing an
232assertion failure if it is not really an instance of the right type. This
233should be used in cases where you have some information that makes you believe
234that something is of the right type. An example of the <tt>isa&lt;&gt;</tt> and
235<tt>cast&lt;&gt;</tt> template is:<p>
236
237<pre>
238static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
239 if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
240 return true;
241
242 <i>// Otherwise, it must be an instruction...</i>
243 return !L->contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)->getParent());
244</pre><p>
245
246Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed by a
247<tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt> operator.<p>
248
249
250<dt><tt>dyn_cast&lt;&gt;</tt>:
251
252<dd>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation. It
253checks to see if the operand is of the specified type, and if so, returns a
254pointer to it (this operator does not work with references). If the operand is
255not of the correct type, a null pointer is returned. Thus, this works very much
256like the <tt>dynamic_cast</tt> operator in C++, and should be used in the same
Chris Lattner6b121f12002-09-10 15:20:46 +0000257circumstances. Typically, the <tt>dyn_cast&lt;&gt;</tt> operator is used in an
258<tt>if</tt> statement or some other flow control statement like this:<p>
259
260<pre>
261 if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
262 ...
263 }
264</pre><p>
265
266This form of the <tt>if</tt> statement effectively combines together a call to
267<tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one statement,
268which is very convenient.<p>
269
270Another common example is:<p>
Chris Lattner979d9b72002-09-10 00:39:05 +0000271
272<pre>
273 <i>// Loop over all of the phi nodes in a basic block</i>
274 BasicBlock::iterator BBI = BB->begin();
275 for (; <a href="#PhiNode">PHINode</a> *PN = dyn_cast&lt;<a href="#PHINode">PHINode</a>&gt;(&amp;*BBI); ++BBI)
276 cerr &lt;&lt; *PN;
277</pre><p>
278
Chris Lattner6b121f12002-09-10 15:20:46 +0000279Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
280<tt>dynamic_cast</tt> or Java's <tt>instanceof</tt> operator, can be abused. In
281particular you should not use big chained <tt>if/then/else</tt> blocks to check
282for lots of different variants of classes. If you find yourself wanting to do
283this, it is much cleaner and more efficient to use the InstVisitor class to
284dispatch over the instruction type directly.<p>
Chris Lattner979d9b72002-09-10 00:39:05 +0000285
286
Chris Lattner6b121f12002-09-10 15:20:46 +0000287<dt><tt>cast_or_null&lt;&gt;</tt>:
288
289<dd>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
290<tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
Joel Stanley753eb712002-09-11 22:32:24 +0000291argument (which it then propagates). This can sometimes be useful, allowing you
Chris Lattner6b121f12002-09-10 15:20:46 +0000292to combine several null checks into one.<p>
293
294
295<dt><tt>dyn_cast_or_null&lt;&gt;</tt>:
296
297<dd>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
298<tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer as
Joel Stanley753eb712002-09-11 22:32:24 +0000299an argument (which it then propagates). This can sometimes be useful, allowing
Chris Lattner6b121f12002-09-10 15:20:46 +0000300you to combine several null checks into one.<p>
301
Chris Lattner979d9b72002-09-10 00:39:05 +0000302</dl>
Chris Lattner1d43fd42002-09-09 05:53:21 +0000303
Chris Lattner6b121f12002-09-10 15:20:46 +0000304These five templates can be used with any classes, whether they have a v-table
305or not. To add support for these templates, you simply need to add
306<tt>classof</tt> static methods to the class you are interested casting to.
307Describing this is currently outside the scope of this document, but there are
Joel Stanley753eb712002-09-11 22:32:24 +0000308lots of examples in the LLVM source base.<p>
Chris Lattner1d43fd42002-09-09 05:53:21 +0000309
310
Chris Lattner986e0c92002-09-22 19:38:40 +0000311<!-- ======================================================================= -->
312</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
313<tr><td>&nbsp;</td><td width="100%">&nbsp;
314<font color="#EEEEFF" face="Georgia,Palatino"><b>
315<a name="DEBUG">The <tt>DEBUG()</tt> macro &amp; <tt>-debug</tt> option</a>
316</b></font></td></tr></table><ul>
317
318Often when working on your pass you will put a bunch of debugging printouts and
319other code into your pass. After you get it working, you want to remove
320it... but you may need it again in the future (to work out new bugs that you run
321across).<p>
322
323Naturally, because of this, you don't want to delete the debug printouts, but
324you don't want them to always be noisy. A standard compromise is to comment
325them out, allowing you to enable them if you need them in the future.<p>
326
327The "<tt><a
Chris Lattner8328f1d2002-10-01 22:39:41 +0000328href="/doxygen/Statistic_8h-source.html">Support/Statistic.h</a></tt>"
Chris Lattner986e0c92002-09-22 19:38:40 +0000329file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
330this problem. Basically, you can put arbitrary code into the argument of the
331<tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' is run with the
332'<tt>-debug</tt>' command line argument:
333
334<pre>
335 ...
336 DEBUG(std::cerr &lt;&lt; "I am here!\n");
337 ...
338</pre><p>
339
340Then you can run your pass like this:<p>
341
342<pre>
343 $ opt &lt; a.bc &gt; /dev/null -mypass
344 &lt;no output&gt;
345 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
346 I am here!
347 $
348</pre><p>
349
350Using the <tt>DEBUG()</tt> macro instead of a home brewed solution allows you to
351now have to create "yet another" command line option for the debug output for
352your pass. Note that <tt>DEBUG()</tt> macros are disabled for optimized
353builds, so they do not cause a performance impact at all.<p>
354
355
356<!-- ======================================================================= -->
357</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
358<tr><td>&nbsp;</td><td width="100%">&nbsp;
359<font color="#EEEEFF" face="Georgia,Palatino"><b>
360<a name="Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
361option</a>
362</b></font></td></tr></table><ul>
363
364The "<tt><a
Chris Lattner8328f1d2002-10-01 22:39:41 +0000365href="/doxygen/Statistic_8h-source.html">Support/Statistic.h</a></tt>"
Chris Lattner986e0c92002-09-22 19:38:40 +0000366file provides a template named <tt>Statistic</tt> that is used as a unified way
367to keeping track of what the LLVM compiler is doing and how effective various
368optimizations are. It is useful to see what optimizations are contributing to
369making a particular program run faster.<p>
370
371Often you may run your pass on some big program, and you're interested to see
372how many times it makes a certain transformation. Although you can do this with
373hand inspection, or some ad-hoc method, this is a real pain and not very useful
374for big programs. Using the <tt>Statistic</tt> template makes it very easy to
375keep track of this information, and the calculated information is presented in a
376uniform manner with the rest of the passes being executed.<p>
377
378There are many examples of <tt>Statistic</tt> users, but this basics of using it
379are as follows:<p>
380
381<ol>
382<li>Define your statistic like this:<p>
383
384<pre>
Chris Lattner8328f1d2002-10-01 22:39:41 +0000385static Statistic&lt;&gt; NumXForms("mypassname", "The # of times I did stuff");
Chris Lattner986e0c92002-09-22 19:38:40 +0000386</pre><p>
387
388The <tt>Statistic</tt> template can emulate just about any data-type, but if you
389do not specify a template argument, it defaults to acting like an unsigned int
390counter (this is usually what you want).<p>
391
392<li>Whenever you make a transformation, bump the counter:<p>
393
394<pre>
395 ++NumXForms; // I did stuff
396</pre><p>
397
398</ol><p>
399
400That's all you have to do. To get '<tt>opt</tt>' to print out the statistics
401gathered, use the '<tt>-stats</tt>' option:<p>
402
403<pre>
404 $ opt -stats -mypassname &lt; program.bc &gt; /dev/null
405 ... statistic output ...
406</pre><p>
407
408When running <tt>gccas</tt> on a C file from the SPEC benchmark suite, it gives
409a report that looks like this:<p>
410
411<pre>
412 7646 bytecodewriter - Number of normal instructions
413 725 bytecodewriter - Number of oversized instructions
414 129996 bytecodewriter - Number of bytecode bytes written
415 2817 raise - Number of insts DCEd or constprop'd
416 3213 raise - Number of cast-of-self removed
417 5046 raise - Number of expression trees converted
418 75 raise - Number of other getelementptr's formed
419 138 raise - Number of load/store peepholes
420 42 deadtypeelim - Number of unused typenames removed from symtab
421 392 funcresolve - Number of varargs functions resolved
422 27 globaldce - Number of global variables removed
423 2 adce - Number of basic blocks removed
424 134 cee - Number of branches revectored
425 49 cee - Number of setcc instruction eliminated
426 532 gcse - Number of loads removed
427 2919 gcse - Number of instructions removed
428 86 indvars - Number of cannonical indvars added
429 87 indvars - Number of aux indvars removed
430 25 instcombine - Number of dead inst eliminate
431 434 instcombine - Number of insts combined
432 248 licm - Number of load insts hoisted
433 1298 licm - Number of insts hoisted to a loop pre-header
434 3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
435 75 mem2reg - Number of alloca's promoted
436 1444 cfgsimplify - Number of blocks simplified
437</pre><p>
438
439Obviously, with so many optimizations, having a unified framework for this stuff
440is very nice. Making your pass fit well into the framework makes it more
441maintainable and useful.<p>
442
Chris Lattnerae7f7592002-09-06 18:31:18 +0000443
Chris Lattnerb99344f2002-09-06 16:40:10 +0000444<!-- *********************************************************************** -->
445</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
446<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
447<a name="common">Helpful Hints for Common Operations
Chris Lattner986e0c92002-09-22 19:38:40 +0000448</b></font></td></tr></table><ul> <!--
449*********************************************************************** -->
Chris Lattnerb99344f2002-09-06 16:40:10 +0000450
Chris Lattnerae7f7592002-09-06 18:31:18 +0000451This section describes how to perform some very simple transformations of LLVM
452code. This is meant to give examples of common idioms used, showing the
453practical side of LLVM transformations.<p>
454
Joel Stanley9b96c442002-09-06 21:55:13 +0000455Because this is a "how-to" section, you should also read about the main classes
Chris Lattnerae7f7592002-09-06 18:31:18 +0000456that you will be working with. The <a href="#coreclasses">Core LLVM Class
Joel Stanley9b96c442002-09-06 21:55:13 +0000457Hierarchy Reference</a> contains details and descriptions of the main classes
Chris Lattnerae7f7592002-09-06 18:31:18 +0000458that you should know about.<p>
459
460<!-- NOTE: this section should be heavy on example code -->
461
462
463<!-- ======================================================================= -->
464</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
465<tr><td>&nbsp;</td><td width="100%">&nbsp;
466<font color="#EEEEFF" face="Georgia,Palatino"><b>
467<a name="inspection">Basic Inspection and Traversal Routines</a>
468</b></font></td></tr></table><ul>
469
Chris Lattnercaa5d132002-09-09 19:58:18 +0000470The LLVM compiler infrastructure have many different data structures that may be
471traversed. Following the example of the C++ standard template library, the
472techniques used to traverse these various data structures are all basically the
473same. For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
474method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
475function returns an iterator pointing to one past the last valid element of the
476sequence, and there is some <tt>XXXiterator</tt> data type that is common
477between the two operations.<p>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000478
Chris Lattnercaa5d132002-09-09 19:58:18 +0000479Because the pattern for iteration is common across many different aspects of the
480program representation, the standard template library algorithms may be used on
481them, and it is easier to remember how to iterate. First we show a few common
482examples of the data structures that need to be traversed. Other data
483structures are traversed in very similar ways.<p>
484
Chris Lattnerae7f7592002-09-06 18:31:18 +0000485
486<!-- _______________________________________________________________________ -->
Chris Lattnercaa5d132002-09-09 19:58:18 +0000487</ul><h4><a name="iterate_function"><hr size=0>Iterating over the <a
488href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
489href="#Function"><tt>Function</tt></a> </h4><ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000490
Joel Stanley9b96c442002-09-06 21:55:13 +0000491It's quite common to have a <tt>Function</tt> instance that you'd like
492to transform in some way; in particular, you'd like to manipulate its
493<tt>BasicBlock</tt>s. To facilitate this, you'll need to iterate over
494all of the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>.
495The following is an example that prints the name of a
496<tt>BasicBlock</tt> and the number of <tt>Instruction</tt>s it
497contains:
Chris Lattnerae7f7592002-09-06 18:31:18 +0000498
Joel Stanley9b96c442002-09-06 21:55:13 +0000499<pre>
500 // func is a pointer to a Function instance
501 for(Function::iterator i = func->begin(), e = func->end(); i != e; ++i) {
502
503 // print out the name of the basic block if it has one, and then the
504 // number of instructions that it contains
505
Joel Stanley72ef35e2002-09-06 23:05:12 +0000506 cerr &lt;&lt "Basic block (name=" &lt;&lt i-&gt;getName() &lt;&lt; ") has "
507 &lt;&lt i-&gt;size() &lt;&lt " instructions.\n";
Joel Stanley9b96c442002-09-06 21:55:13 +0000508 }
509</pre>
510
511Note that i can be used as if it were a pointer for the purposes of
512invoking member functions of the <tt>Instruction</tt> class. This is
513because the indirection operator is overloaded for the iterator
514classes. In the above code, the expression <tt>i->size()</tt> is
515exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.
Chris Lattnerae7f7592002-09-06 18:31:18 +0000516
517<!-- _______________________________________________________________________ -->
Chris Lattnercaa5d132002-09-09 19:58:18 +0000518</ul><h4><a name="iterate_basicblock"><hr size=0>Iterating over the <a
519href="#Instruction"><tt>Instruction</tt></a>s in a <a
520href="#BasicBlock"><tt>BasicBlock</tt></a> </h4><ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000521
Joel Stanleyaaeb1c12002-09-06 23:42:40 +0000522Just like when dealing with <tt>BasicBlock</tt>s in
523<tt>Function</tt>s, it's easy to iterate over the individual
524instructions that make up <tt>BasicBlock</tt>s. Here's a code snippet
525that prints out each instruction in a <tt>BasicBlock</tt>:
Chris Lattnerae7f7592002-09-06 18:31:18 +0000526
Joel Stanley9b96c442002-09-06 21:55:13 +0000527<pre>
528 // blk is a pointer to a BasicBlock instance
Chris Lattnercaa5d132002-09-09 19:58:18 +0000529 for(BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
Chris Lattner2b763062002-09-06 22:51:10 +0000530 // the next statement works since operator&lt;&lt;(ostream&amp;,...)
531 // is overloaded for Instruction&amp;
Chris Lattnercaa5d132002-09-09 19:58:18 +0000532 cerr &lt;&lt; *i &lt;&lt; "\n";
Joel Stanley9b96c442002-09-06 21:55:13 +0000533</pre>
534
535However, this isn't really the best way to print out the contents of a
536<tt>BasicBlock</tt>! Since the ostream operators are overloaded for
537virtually anything you'll care about, you could have just invoked the
Chris Lattner2b763062002-09-06 22:51:10 +0000538print routine on the basic block itself: <tt>cerr &lt;&lt; *blk &lt;&lt;
539"\n";</tt>.<p>
540
541Note that currently operator&lt;&lt; is implemented for <tt>Value*</tt>, so it
542will print out the contents of the pointer, instead of
543the pointer value you might expect. This is a deprecated interface that will
544be removed in the future, so it's best not to depend on it. To print out the
545pointer value for now, you must cast to <tt>void*</tt>.<p>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000546
Chris Lattnercaa5d132002-09-09 19:58:18 +0000547
Chris Lattnerae7f7592002-09-06 18:31:18 +0000548<!-- _______________________________________________________________________ -->
Chris Lattnercaa5d132002-09-09 19:58:18 +0000549</ul><h4><a name="iterate_institer"><hr size=0>Iterating over the <a
550href="#Instruction"><tt>Instruction</tt></a>s in a <a
551href="#Function"><tt>Function</tt></a></h4><ul>
Chris Lattner1a3105b2002-09-09 05:49:39 +0000552
Joel Stanleye7be6502002-09-09 15:50:33 +0000553If you're finding that you commonly iterate over a <tt>Function</tt>'s
554<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s
555<tt>Instruction</tt>s, <tt>InstIterator</tt> should be used instead.
Chris Lattnercaa5d132002-09-09 19:58:18 +0000556You'll need to include <a href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>, and then
Joel Stanleye7be6502002-09-09 15:50:33 +0000557instantiate <tt>InstIterator</tt>s explicitly in your code. Here's a
558small example that shows how to dump all instructions in a function to
559stderr (<b>Note:</b> Dereferencing an <tt>InstIterator</tt> yields an
560<tt>Instruction*</tt>, <i>not</i> an <tt>Instruction&amp</tt>!):
Chris Lattner1a3105b2002-09-09 05:49:39 +0000561
Joel Stanleye7be6502002-09-09 15:50:33 +0000562<pre>
Chris Lattnercaa5d132002-09-09 19:58:18 +0000563#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
Joel Stanleye7be6502002-09-09 15:50:33 +0000564...
565// Suppose F is a ptr to a function
566for(inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)
567 cerr &lt;&lt **i &lt;&lt "\n";
568</pre>
Chris Lattner1a3105b2002-09-09 05:49:39 +0000569
Joel Stanleye7be6502002-09-09 15:50:33 +0000570Easy, isn't it? You can also use <tt>InstIterator</tt>s to fill a
571worklist with its initial contents. For example, if you wanted to
572initialize a worklist to contain all instructions in a
573<tt>Function</tt> F, all you would need to do is something like:
Chris Lattner1a3105b2002-09-09 05:49:39 +0000574
Joel Stanleye7be6502002-09-09 15:50:33 +0000575<pre>
576std::set&lt;Instruction*&gt worklist;
577worklist.insert(inst_begin(F), inst_end(F));
578</pre>
Chris Lattner1a3105b2002-09-09 05:49:39 +0000579
Joel Stanleye7be6502002-09-09 15:50:33 +0000580The STL set <tt>worklist</tt> would now contain all instructions in
581the <tt>Function</tt> pointed to by F.
Chris Lattner1a3105b2002-09-09 05:49:39 +0000582
583<!-- _______________________________________________________________________ -->
Chris Lattnerae7f7592002-09-06 18:31:18 +0000584</ul><h4><a name="iterate_convert"><hr size=0>Turning an iterator into a class
Joel Stanleye7be6502002-09-09 15:50:33 +0000585pointer (and vice-versa) </h4><ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000586
Joel Stanley9b96c442002-09-06 21:55:13 +0000587Sometimes, it'll be useful to grab a reference (or pointer) to a class
588instance when all you've got at hand is an iterator. Well, extracting
589a reference or a pointer from an iterator is very straightforward.
590Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and
591<tt>j</tt> is a <tt>BasicBlock::const_iterator</tt>:
592
593<pre>
Chris Lattner83b5ee02002-09-06 22:12:58 +0000594 Instruction&amp; inst = *i; // grab reference to instruction reference
595 Instruction* pinst = &amp;*i; // grab pointer to instruction reference
596 const Instruction&amp; inst = *j;
Joel Stanley9b96c442002-09-06 21:55:13 +0000597</pre>
598However, the iterators you'll be working with in the LLVM framework
599are special: they will automatically convert to a ptr-to-instance type
600whenever they need to. Instead of dereferencing the iterator and then
601taking the address of the result, you can simply assign the iterator
602to the proper pointer type and you get the dereference and address-of
603operation as a result of the assignment (behind the scenes, this is a
604result of overloading casting mechanisms). Thus the last line of the
605last example,
606
Chris Lattner83b5ee02002-09-06 22:12:58 +0000607<pre>Instruction* pinst = &amp;*i;</pre>
Joel Stanley9b96c442002-09-06 21:55:13 +0000608
609is semantically equivalent to
610
611<pre>Instruction* pinst = i;</pre>
612
Chris Lattner979d9b72002-09-10 00:39:05 +0000613<b>Caveat emptor</b>: The above syntax works <i>only</i> when you're <i>not</i>
614working with <tt>dyn_cast</tt>. The template definition of <tt><a
615href="#isa">dyn_cast</a></tt> isn't implemented to handle this yet, so you'll
Joel Stanley9b96c442002-09-06 21:55:13 +0000616still need the following in order for things to work properly:
617
618<pre>
619BasicBlock::iterator bbi = ...;
Chris Lattnercaa5d132002-09-09 19:58:18 +0000620<a href="#BranchInst">BranchInst</a>* b = <a href="#isa">dyn_cast</a>&lt;<a href="#BranchInst">BranchInst</a>&gt;(&amp;*bbi);
Joel Stanley9b96c442002-09-06 21:55:13 +0000621</pre>
622
Joel Stanleye7be6502002-09-09 15:50:33 +0000623It's also possible to turn a class pointer into the corresponding
624iterator. Usually, this conversion is quite inexpensive. The
625following code snippet illustrates use of the conversion constructors
626provided by LLVM iterators. By using these, you can explicitly grab
627the iterator of something without actually obtaining it via iteration
628over some structure:
Joel Stanley9b96c442002-09-06 21:55:13 +0000629
630<pre>
631void printNextInstruction(Instruction* inst) {
632 BasicBlock::iterator it(inst);
633 ++it; // after this line, it refers to the instruction after *inst.
Chris Lattnercaa5d132002-09-09 19:58:18 +0000634 if(it != inst-&gt;getParent()->end()) cerr &lt;&lt; *it &lt;&lt; "\n";
Joel Stanley9b96c442002-09-06 21:55:13 +0000635}
636</pre>
Joel Stanleyaaeb1c12002-09-06 23:42:40 +0000637Of course, this example is strictly pedagogical, because it'd be much
638better to explicitly grab the next instruction directly from inst.
Joel Stanley9b96c442002-09-06 21:55:13 +0000639
Chris Lattnerae7f7592002-09-06 18:31:18 +0000640
Chris Lattner1a3105b2002-09-09 05:49:39 +0000641<!--_______________________________________________________________________-->
642</ul><h4><a name="iterate_complex"><hr size=0>Finding call sites: a slightly
643more complex example </h4><ul>
Joel Stanley9b96c442002-09-06 21:55:13 +0000644
645Say that you're writing a FunctionPass and would like to count all the
Joel Stanleye7be6502002-09-09 15:50:33 +0000646locations in the entire module (that is, across every
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000647<tt>Function</tt>) where a certain function (i.e. some
648<tt>Function</tt>*) already in scope. As you'll learn later, you may
649want to use an <tt>InstVisitor</tt> to accomplish this in a much more
650straightforward manner, but this example will allow us to explore how
651you'd do it if you didn't have <tt>InstVisitor</tt> around. In
Joel Stanleye7be6502002-09-09 15:50:33 +0000652pseudocode, this is what we want to do:
Joel Stanley9b96c442002-09-06 21:55:13 +0000653
654<pre>
655initialize callCounter to zero
656for each Function f in the Module
657 for each BasicBlock b in f
658 for each Instruction i in b
Joel Stanleye7be6502002-09-09 15:50:33 +0000659 if(i is a CallInst and calls the given function)
Joel Stanley9b96c442002-09-06 21:55:13 +0000660 increment callCounter
661</pre>
662
663And the actual code is (remember, since we're writing a
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000664<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply
Joel Stanley9b96c442002-09-06 21:55:13 +0000665has to override the <tt>runOnFunction</tt> method...):
666
667<pre>
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000668Function* targetFunc = ...;
669
Joel Stanleye7be6502002-09-09 15:50:33 +0000670class OurFunctionPass : public FunctionPass {
671 public:
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000672 OurFunctionPass(): callCounter(0) { }
Joel Stanley9b96c442002-09-06 21:55:13 +0000673
Chris Lattnercaa5d132002-09-09 19:58:18 +0000674 virtual runOnFunction(Function&amp; F) {
Joel Stanleye7be6502002-09-09 15:50:33 +0000675 for(Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
676 for(BasicBlock::iterator i = b-&gt;begin(); ie = b-&gt;end(); i != ie; ++i) {
Chris Lattnera9030cb2002-09-16 22:08:07 +0000677 if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
Joel Stanleye7be6502002-09-09 15:50:33 +0000678 // we know we've encountered a call instruction, so we
679 // need to determine if it's a call to the
680 // function pointed to by m_func or not.
681
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000682 if(callInst-&gt;getCalledFunction() == targetFunc)
Joel Stanleye7be6502002-09-09 15:50:33 +0000683 ++callCounter;
684 }
685 }
Joel Stanley9b96c442002-09-06 21:55:13 +0000686 }
Joel Stanleye7be6502002-09-09 15:50:33 +0000687
688 private:
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000689 unsigned callCounter;
Joel Stanleye7be6502002-09-09 15:50:33 +0000690};
Joel Stanley9b96c442002-09-06 21:55:13 +0000691</pre>
692
Chris Lattner1a3105b2002-09-09 05:49:39 +0000693<!--_______________________________________________________________________-->
694</ul><h4><a name="iterate_chains"><hr size=0>Iterating over def-use &amp;
695use-def chains</h4><ul>
696
Joel Stanley01040b22002-09-11 20:50:04 +0000697Frequently, we might have an instance of the <a
698href="/doxygen/classValue.html">Value Class</a> and we want to
699determine which <tt>User</tt>s use the <tt>Value</tt>. The list of
700all <tt>User</tt>s of a particular <tt>Value</tt> is called a
701<i>def-use</i> chain. For example, let's say we have a
702<tt>Function*</tt> named <tt>F</tt> to a particular function
703<tt>foo</tt>. Finding all of the instructions that <i>use</i>
704<tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain of
705<tt>F</tt>:
706
707<pre>
708Function* F = ...;
709
710for(Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i) {
Chris Lattner24b70922002-09-17 22:43:00 +0000711 if(Instruction* Inst = dyn_cast&lt;Instruction&gt;(*i)) {
712 cerr &lt;&lt; "F is used in instruction:\n";
713 cerr &lt;&lt; *Inst &lt;&lt; "\n";
Joel Stanley01040b22002-09-11 20:50:04 +0000714 }
715}
716</pre>
717
718Alternately, it's common to have an instance of the <a
719href="/doxygen/classUser.html">User Class</a> and need to know what
720<tt>Value</tt>s are used by it. The list of all <tt>Value</tt>s used
721by a <tt>User</tt> is known as a <i>use-def</i> chain. Instances of
722class <tt>Instruction</tt> are common <tt>User</tt>s, so we might want
723to iterate over all of the values that a particular instruction uses
724(that is, the operands of the particular <tt>Instruction</tt>):
725
726<pre>
727Instruction* pi = ...;
728
729for(User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
Joel Stanley753eb712002-09-11 22:32:24 +0000730 Value* v = *i;
Joel Stanley01040b22002-09-11 20:50:04 +0000731 ...
732}
733</pre>
734
735
Chris Lattner1a3105b2002-09-09 05:49:39 +0000736<!--
737 def-use chains ("finding all users of"): Value::use_begin/use_end
738 use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
739-->
740
Chris Lattnerae7f7592002-09-06 18:31:18 +0000741<!-- ======================================================================= -->
742</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
743<tr><td>&nbsp;</td><td width="100%">&nbsp;
744<font color="#EEEEFF" face="Georgia,Palatino"><b>
745<a name="simplechanges">Making simple changes</a>
746</b></font></td></tr></table><ul>
747
Joel Stanley753eb712002-09-11 22:32:24 +0000748There are some primitive transformation operations present in the LLVM
749infrastructure that are worth knowing about. When performing
750transformations, it's fairly common to manipulate the contents of
751basic blocks. This section describes some of the common methods for
752doing so and gives example code.
753
754<!--_______________________________________________________________________-->
755</ul><h4><a name="schanges_creating"><hr size=0>Creating and inserting
756 new <tt>Instruction</tt>s</h4><ul>
757
758<i>Instantiating Instructions</i>
759
760<p>Creation of <tt>Instruction</tt>s is straightforward: simply call the
761constructor for the kind of instruction to instantiate and provide the
762necessary parameters. For example, an <tt>AllocaInst</tt> only
763<i>requires</i> a (const-ptr-to) <tt>Type</tt>. Thus:
764
765<pre>AllocaInst* ai = new AllocaInst(Type::IntTy);</pre>
766
767will create an <tt>AllocaInst</tt> instance that represents the
768allocation of one integer in the current stack frame, at runtime.
769Each <tt>Instruction</tt> subclass is likely to have varying default
770parameters which change the semantics of the instruction, so refer to
Chris Lattner4e1f96b2002-09-12 19:06:51 +0000771the <a href="/doxygen/classInstruction.html">doxygen documentation for
Joel Stanley753eb712002-09-11 22:32:24 +0000772the subclass of Instruction</a> that you're interested in
773instantiating.</p>
774
775<p><i>Naming values</i></p>
776
777<p>
778It is very useful to name the values of instructions when you're able
779to, as this facilitates the debugging of your transformations. If you
780end up looking at generated LLVM machine code, you definitely want to
781have logical names associated with the results of instructions! By
782supplying a value for the <tt>Name</tt> (default) parameter of the
783<tt>Instruction</tt> constructor, you associate a logical name with
784the result of the instruction's execution at runtime. For example,
785say that I'm writing a transformation that dynamically allocates space
786for an integer on the stack, and that integer is going to be used as
787some kind of index by some other code. To accomplish this, I place an
788<tt>AllocaInst</tt> at the first point in the first
789<tt>BasicBlock</tt> of some <tt>Function</tt>, and I'm intending to
790use it within the same <tt>Function</tt>. I might do:
791
792<pre>AllocaInst* pa = new AllocaInst(Type::IntTy, 0, "indexLoc");</pre>
793
794where <tt>indexLoc</tt> is now the logical name of the instruction's
795execution value, which is a pointer to an integer on the runtime
796stack.
797</p>
798
799<p><i>Inserting instructions</i></p>
800
801<p>
802There are essentially two ways to insert an <tt>Instruction</tt> into
803an existing sequence of instructions that form a <tt>BasicBlock</tt>:
804<ul>
805<li>Insertion into an explicit instruction list
806
807<p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within
808that <tt>BasicBlock</tt>, and a newly-created instruction
809we wish to insert before <tt>*pi</tt>, we do the following:
810
811<pre>
812BasicBlock* pb = ...;
813Instruction* pi = ...;
814Instruction* newInst = new Instruction(...);
815pb->getInstList().insert(pi, newInst); // inserts newInst before pi in pb
816</pre>
817</p>
818
819<li>Insertion into an implicit instruction list
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000820<p><tt>Instruction</tt> instances that are already in
Joel Stanley753eb712002-09-11 22:32:24 +0000821<tt>BasicBlock</tt>s are implicitly associated with an existing
822instruction list: the instruction list of the enclosing basic block.
823Thus, we could have accomplished the same thing as the above code
824without being given a <tt>BasicBlock</tt> by doing:
825<pre>
826Instruction* pi = ...;
827Instruction* newInst = new Instruction(...);
828pi->getParent()->getInstList().insert(pi, newInst);
829</pre>
830In fact, this sequence of steps occurs so frequently that the
831<tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes
832provide constructors which take (as a default parameter) a pointer to
833an <tt>Instruction</tt> which the newly-created <tt>Instruction</tt>
834should precede. That is, <tt>Instruction</tt> constructors are
835capable of inserting the newly-created instance into the
836<tt>BasicBlock</tt> of a provided instruction, immediately before that
837instruction. Using an <tt>Instruction</tt> constructor with a
838<tt>insertBefore</tt> (default) parameter, the above code becomes:
839<pre>
840Instruction* pi = ...;
841Instruction* newInst = new Instruction(..., pi);
842</pre>
843which is much cleaner, especially if you're creating a lot of
844instructions and adding them to <tt>BasicBlock</tt>s.
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000845 </p>
Joel Stanley753eb712002-09-11 22:32:24 +0000846</p>
Chris Lattner9ebf5162002-09-12 19:08:16 +0000847</ul>
Joel Stanley753eb712002-09-11 22:32:24 +0000848
849<!--_______________________________________________________________________-->
850</ul><h4><a name="schanges_deleting"><hr size=0>Deleting
Chris Lattner4e1f96b2002-09-12 19:06:51 +0000851<tt>Instruction</tt>s</h4><ul>
852
853Deleting an instruction from an existing sequence of instructions that form a <a
854href="#BasicBlock"><tt>BasicBlock</tt></a> is very straightforward. First, you
855must have a pointer to the instruction that you wish to delete. Second, you
856need to obtain the pointer to that instruction's basic block. You use the
857pointer to the basic block to get its list of instructions and then use the
858erase function to remove your instruction.<p>
859
860For example:<p>
861
862<pre>
863 <a href="#Instruction">Instruction</a> *I = .. ;
Chris Lattner7dbf6832002-09-18 05:14:25 +0000864 <a href="#BasicBlock">BasicBlock</a> *BB = I-&gt;getParent();
865 BB-&gt;getInstList().erase(I);
Chris Lattner4e1f96b2002-09-12 19:06:51 +0000866</pre><p>
867
Joel Stanley753eb712002-09-11 22:32:24 +0000868<!--_______________________________________________________________________-->
869</ul><h4><a name="schanges_replacing"><hr size=0>Replacing an
870 <tt>Instruction</tt> with another <tt>Value</tt></h4><ul>
871
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000872<p><i>Replacing individual instructions</i></p>
873<p>
874Including "<a
Chris Lattner7dbf6832002-09-18 05:14:25 +0000875href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000876</a>" permits use of two very useful replace functions:
877<tt>ReplaceInstWithValue</tt> and <tt>ReplaceInstWithInst</tt>.
Chris Lattnerae7f7592002-09-06 18:31:18 +0000878
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000879<ul>
880
Chris Lattner7dbf6832002-09-18 05:14:25 +0000881<li><tt>ReplaceInstWithValue</tt>
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000882
883<p>This function replaces all uses (within a basic block) of a given
884instruction with a value, and then removes the original instruction.
885The following example illustrates the replacement of the result of a
886particular <tt>AllocaInst</tt> that allocates memory for a single
887integer with an null pointer to an integer.</p>
888
889<pre>
890AllocaInst* instToReplace = ...;
Joel Stanley4b287932002-09-29 17:31:54 +0000891BasicBlock::iterator ii(instToReplace);
892ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000893 Constant::getNullValue(PointerType::get(Type::IntTy)));
894</pre>
895
Chris Lattner7dbf6832002-09-18 05:14:25 +0000896<li><tt>ReplaceInstWithInst</tt>
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000897
898<p>This function replaces a particular instruction with another
899instruction. The following example illustrates the replacement of one
900<tt>AllocaInst</tt> with another.<p>
901
902<pre>
903AllocaInst* instToReplace = ...;
Joel Stanley4b287932002-09-29 17:31:54 +0000904BasicBlock::iterator ii(instToReplace);
905ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000906 new AllocaInst(Type::IntTy, 0, "ptrToReplacedInt");
907</pre>
908
909</ul>
910<p><i>Replacing multiple uses of <tt>User</tt>s and
911 <tt>Value</tt>s</i></p>
912
913You can use <tt>Value::replaceAllUsesWith</tt> and
914<tt>User::replaceUsesOfWith</tt> to change more than one use at a
915time. See the doxygen documentation for the <a
916href="/doxygen/classValue.html">Value Class</a> and <a
917href="/doxygen/classUser.html">User Class</a>, respectively, for more
918information.
919
920<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
921include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
922ReplaceInstWithValue, ReplaceInstWithInst
Chris Lattnerae7f7592002-09-06 18:31:18 +0000923-->
Chris Lattnerb99344f2002-09-06 16:40:10 +0000924
Chris Lattner9355b472002-09-06 02:50:58 +0000925<!-- *********************************************************************** -->
926</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
927<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
Joel Stanley9b96c442002-09-06 21:55:13 +0000928<a name="coreclasses">The Core LLVM Class Hierarchy Reference
Chris Lattner9355b472002-09-06 02:50:58 +0000929</b></font></td></tr></table><ul>
930<!-- *********************************************************************** -->
931
932The Core LLVM classes are the primary means of representing the program being
933inspected or transformed. The core LLVM classes are defined in header files in
934the <tt>include/llvm/</tt> directory, and implemented in the <tt>lib/VMCore</tt>
935directory.<p>
936
937
938<!-- ======================================================================= -->
939</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
940<tr><td>&nbsp;</td><td width="100%">&nbsp;
941<font color="#EEEEFF" face="Georgia,Palatino"><b>
942<a name="Value">The <tt>Value</tt> class</a>
943</b></font></td></tr></table><ul>
944
945<tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt></b><br>
946doxygen info: <a href="/doxygen/classValue.html">Value Class</a><p>
947
948
949The <tt>Value</tt> class is the most important class in LLVM Source base. It
950represents a typed value that may be used (among other things) as an operand to
951an instruction. There are many different types of <tt>Value</tt>s, such as <a
952href="#Constant"><tt>Constant</tt></a>s, <a
953href="#Argument"><tt>Argument</tt></a>s, and even <a
954href="#Instruction"><tt>Instruction</tt></a>s and <a
955href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.<p>
956
957A particular <tt>Value</tt> may be used many times in the LLVM representation
958for a program. For example, an incoming argument to a function (represented
959with an instance of the <a href="#Argument">Argument</a> class) is "used" by
960every instruction in the function that references the argument. To keep track
961of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
962href="#User"><tt>User</tt></a>s that is using it (the <a
963href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
964graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
Joel Stanley9b96c442002-09-06 21:55:13 +0000965def-use information in the program, and is accessible through the <tt>use_</tt>*
Chris Lattner9355b472002-09-06 02:50:58 +0000966methods, shown below.<p>
967
968Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed, and
969this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
970method. <a name="#nameWarning">In addition, all LLVM values can be named. The
971"name" of the <tt>Value</tt> is symbolic string printed in the LLVM code:<p>
972
973<pre>
974 %<b>foo</b> = add int 1, 2
975</pre>
976
977The name of this instruction is "foo". <b>NOTE</b> that the name of any value
978may be missing (an empty string), so names should <b>ONLY</b> be used for
979debugging (making the source code easier to read, debugging printouts), they
980should not be used to keep track of values or map between them. For this
981purpose, use a <tt>std::map</tt> of pointers to the <tt>Value</tt> itself
982instead.<p>
983
984One important aspect of LLVM is that there is no distinction between an SSA
985variable and the operation that produces it. Because of this, any reference to
986the value produced by an instruction (or the value available as an incoming
987argument, for example) is represented as a direct pointer to the class that
988represents this value. Although this may take some getting used to, it
989simplifies the representation and makes it easier to manipulate.<p>
990
991
992<!-- _______________________________________________________________________ -->
993</ul><h4><a name="m_Value"><hr size=0>Important Public Members of
994the <tt>Value</tt> class</h4><ul>
995
996<li><tt>Value::use_iterator</tt> - Typedef for iterator over the use-list<br>
997 <tt>Value::use_const_iterator</tt>
998 - Typedef for const_iterator over the use-list<br>
999 <tt>unsigned use_size()</tt> - Returns the number of users of the value.<br>
1000 <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
1001 <tt>use_iterator use_begin()</tt>
1002 - Get an iterator to the start of the use-list.<br>
1003 <tt>use_iterator use_end()</tt>
1004 - Get an iterator to the end of the use-list.<br>
1005 <tt><a href="#User">User</a> *use_back()</tt>
1006 - Returns the last element in the list.<p>
1007
1008These methods are the interface to access the def-use information in LLVM. As with all other iterators in LLVM, the naming conventions follow the conventions defined by the <a href="#stl">STL</a>.<p>
1009
1010<li><tt><a href="#Type">Type</a> *getType() const</tt><p>
1011This method returns the Type of the Value.
1012
1013<li><tt>bool hasName() const</tt><br>
1014 <tt>std::string getName() const</tt><br>
1015 <tt>void setName(const std::string &amp;Name)</tt><p>
1016
1017This family of methods is used to access and assign a name to a <tt>Value</tt>,
1018be aware of the <a href="#nameWarning">precaution above</a>.<p>
1019
1020
1021<li><tt>void replaceAllUsesWith(Value *V)</tt><p>
1022
1023This method traverses the use list of a <tt>Value</tt> changing all <a
Misha Brukmanc4f5bb02002-09-18 02:21:57 +00001024href="#User"><tt>User</tt>s</a> of the current value to refer to "<tt>V</tt>"
Chris Lattner9355b472002-09-06 02:50:58 +00001025instead. For example, if you detect that an instruction always produces a
1026constant value (for example through constant folding), you can replace all uses
1027of the instruction with the constant like this:<p>
1028
1029<pre>
1030 Inst-&gt;replaceAllUsesWith(ConstVal);
1031</pre><p>
1032
1033
1034
1035<!-- ======================================================================= -->
1036</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1037<tr><td>&nbsp;</td><td width="100%">&nbsp;
1038<font color="#EEEEFF" face="Georgia,Palatino"><b>
1039<a name="User">The <tt>User</tt> class</a>
1040</b></font></td></tr></table><ul>
1041
1042<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt></b><br>
1043doxygen info: <a href="/doxygen/classUser.html">User Class</a><br>
1044Superclass: <a href="#Value"><tt>Value</tt></a><p>
1045
1046
1047The <tt>User</tt> class is the common base class of all LLVM nodes that may
1048refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
1049that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
1050referring to. The <tt>User</tt> class itself is a subclass of
1051<tt>Value</tt>.<p>
1052
1053The operands of a <tt>User</tt> point directly to the LLVM <a
1054href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
1055Single Assignment (SSA) form, there can only be one definition referred to,
1056allowing this direct connection. This connection provides the use-def
1057information in LLVM.<p>
1058
1059<!-- _______________________________________________________________________ -->
1060</ul><h4><a name="m_User"><hr size=0>Important Public Members of
1061the <tt>User</tt> class</h4><ul>
1062
1063The <tt>User</tt> class exposes the operand list in two ways: through an index
1064access interface and through an iterator based interface.<p>
1065
1066<li><tt>Value *getOperand(unsigned i)</tt><br>
1067 <tt>unsigned getNumOperands()</tt><p>
1068
1069These two methods expose the operands of the <tt>User</tt> in a convenient form
1070for direct access.<p>
1071
1072<li><tt>User::op_iterator</tt> - Typedef for iterator over the operand list<br>
1073 <tt>User::op_const_iterator</tt>
1074 <tt>use_iterator op_begin()</tt>
1075 - Get an iterator to the start of the operand list.<br>
1076 <tt>use_iterator op_end()</tt>
1077 - Get an iterator to the end of the operand list.<p>
1078
1079Together, these methods make up the iterator based interface to the operands of
1080a <tt>User</tt>.<p>
1081
1082
1083
1084<!-- ======================================================================= -->
1085</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1086<tr><td>&nbsp;</td><td width="100%">&nbsp;
1087<font color="#EEEEFF" face="Georgia,Palatino"><b>
1088<a name="Instruction">The <tt>Instruction</tt> class</a>
1089</b></font></td></tr></table><ul>
1090
1091<tt>#include "<a
1092href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt></b><br>
1093doxygen info: <a href="/doxygen/classInstruction.html">Instruction Class</a><br>
1094Superclasses: <a href="#User"><tt>User</tt></a>, <a
1095href="#Value"><tt>Value</tt></a><p>
1096
1097The <tt>Instruction</tt> class is the common base class for all LLVM
1098instructions. It provides only a few methods, but is a very commonly used
1099class. The primary data tracked by the <tt>Instruction</tt> class itself is the
1100opcode (instruction type) and the parent <a
1101href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
1102into. To represent a specific type of instruction, one of many subclasses of
1103<tt>Instruction</tt> are used.<p>
1104
1105Because the <tt>Instruction</tt> class subclasses the <a
1106href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
1107way as for other <a href="#User"><tt>User</tt></a>s (with the
1108<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
1109<tt>op_begin()</tt>/<tt>op_end()</tt> methods).<p>
1110
Chris Lattner17635252002-09-12 17:18:46 +00001111An important file for the <tt>Instruction</tt> class is the
1112<tt>llvm/Instruction.def</tt> file. This file contains some meta-data about the
1113various different types of instructions in LLVM. It describes the enum values
1114that are used as opcodes (for example <tt>Instruction::Add</tt> and
1115<tt>Instruction::SetLE</tt>), as well as the concrete sub-classes of
1116<tt>Instruction</tt> that implement the instruction (for example <tt><a
1117href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
1118href="#SetCondInst">SetCondInst</a></tt>). Unfortunately, the use of macros in
1119this file confused doxygen, so these enum values don't show up correctly in the
1120<a href="/doxygen/classInstruction.html">doxygen output</a>.<p>
1121
Chris Lattner9355b472002-09-06 02:50:58 +00001122
1123<!-- _______________________________________________________________________ -->
1124</ul><h4><a name="m_Instruction"><hr size=0>Important Public Members of
1125the <tt>Instruction</tt> class</h4><ul>
1126
1127<li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt><p>
1128
1129Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that this
1130<tt>Instruction</tt> is embedded into.<p>
1131
1132<li><tt>bool hasSideEffects()</tt><p>
1133
1134Returns true if the instruction has side effects, i.e. it is a <tt>call</tt>,
1135<tt>free</tt>, <tt>invoke</tt>, or <tt>store</tt>.<p>
1136
1137<li><tt>unsigned getOpcode()</tt><p>
1138
1139Returns the opcode for the <tt>Instruction</tt>.<p>
1140
Chris Lattner17635252002-09-12 17:18:46 +00001141<li><tt><a href="#Instruction">Instruction</a> *clone() const</tt><p>
1142
1143Returns another instance of the specified instruction, identical in all ways to
1144the original except that the instruction has no parent (ie it's not embedded
1145into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>), and it has no name.<p>
1146
1147
1148
Chris Lattner9355b472002-09-06 02:50:58 +00001149<!--
1150
1151\subsection{Subclasses of Instruction :}
1152\begin{itemize}
1153<li>BinaryOperator : This subclass of Instruction defines a general interface to the all the instructions involvong binary operators in LLVM.
1154 \begin{itemize}
1155 <li><tt>bool swapOperands()</tt>: Exchange the two operands to this instruction. If the instruction cannot be reversed (i.e. if it's a Div), it returns true.
1156 \end{itemize}
1157<li>TerminatorInst : This subclass of Instructions defines an interface for all instructions that can terminate a BasicBlock.
1158 \begin{itemize}
1159 <li> <tt>unsigned getNumSuccessors()</tt>: Returns the number of successors for this terminator instruction.
1160 <li><tt>BasicBlock *getSuccessor(unsigned i)</tt>: As the name suggests returns the ith successor BasicBlock.
1161 <li><tt>void setSuccessor(unsigned i, BasicBlock *B)</tt>: sets BasicBlock B as the ith succesor to this terminator instruction.
1162 \end{itemize}
1163
1164<li>PHINode : This represents the PHI instructions in the SSA form.
1165 \begin{itemize}
1166 <li><tt> unsigned getNumIncomingValues()</tt>: Returns the number of incoming edges to this PHI node.
1167 <li><tt> Value *getIncomingValue(unsigned i)</tt>: Returns the ith incoming Value.
1168 <li><tt>void setIncomingValue(unsigned i, Value *V)</tt>: Sets the ith incoming Value as V
1169 <li><tt>BasicBlock *getIncomingBlock(unsigned i)</tt>: Returns the Basic Block corresponding to the ith incoming Value.
1170 <li><tt> void addIncoming(Value *D, BasicBlock *BB)</tt>:
1171 Add an incoming value to the end of the PHI list
1172 <li><tt> int getBasicBlockIndex(const BasicBlock *BB) const</tt>:
1173 Returns the first index of the specified basic block in the value list for this PHI. Returns -1 if no instance.
1174 \end{itemize}
1175<li>CastInst : In LLVM all casts have to be done through explicit cast instructions. CastInst defines the interface to the cast instructions.
1176<li>CallInst : This defines an interface to the call instruction in LLVM. ARguments to the function are nothing but operands of the instruction.
1177 \begin{itemize}
1178 <li>: <tt>Function *getCalledFunction()</tt>: Returns a handle to the function that is being called by this Function.
1179 \end{itemize}
1180<li>LoadInst, StoreInst, GetElemPtrInst : These subclasses represent load, store and getelementptr instructions in LLVM.
1181 \begin{itemize}
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001182 <li><tt>Value * getPointerOperand()</tt>: Returns the Pointer Operand which is typically the 0th operand.
Chris Lattner9355b472002-09-06 02:50:58 +00001183 \end{itemize}
1184<li>BranchInst : This is a subclass of TerminatorInst and defines the interface for conditional and unconditional branches in LLVM.
1185 \begin{itemize}
1186 <li><tt>bool isConditional()</tt>: Returns true if the branch is a conditional branch else returns false
1187 <li> <tt>Value *getCondition()</tt>: Returns the condition if it is a conditional branch else returns null.
1188 <li> <tt>void setUnconditionalDest(BasicBlock *Dest)</tt>: Changes the current branch to an unconditional one targetting the specified block.
1189 \end{itemize}
1190
1191\end{itemize}
1192
1193-->
1194
1195
1196<!-- ======================================================================= -->
1197</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1198<tr><td>&nbsp;</td><td width="100%">&nbsp;
1199<font color="#EEEEFF" face="Georgia,Palatino"><b>
1200<a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
1201</b></font></td></tr></table><ul>
1202
1203<tt>#include "<a
1204href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt></b><br>
1205doxygen info: <a href="/doxygen/classBasicBlock.html">BasicBlock Class</a><br>
1206Superclass: <a href="#Value"><tt>Value</tt></a><p>
1207
1208
1209This class represents a single entry multiple exit section of the code, commonly
1210known as a basic block by the compiler community. The <tt>BasicBlock</tt> class
1211maintains a list of <a href="#Instruction"><tt>Instruction</tt></a>s, which form
1212the body of the block. Matching the language definition, the last element of
1213this list of instructions is always a terminator instruction (a subclass of the
1214<a href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).<p>
1215
1216In addition to tracking the list of instructions that make up the block, the
1217<tt>BasicBlock</tt> class also keeps track of the <a
1218href="#Function"><tt>Function</tt></a> that it is embedded into.<p>
1219
1220Note that <tt>BasicBlock</tt>s themselves are <a
1221href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
1222like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
1223<tt>label</tt>.<p>
1224
1225
1226<!-- _______________________________________________________________________ -->
1227</ul><h4><a name="m_BasicBlock"><hr size=0>Important Public Members of
1228the <tt>BasicBlock</tt> class</h4><ul>
1229
1230<li><tt>BasicBlock(const std::string &amp;Name = "", <a
1231href="#Function">Function</a> *Parent = 0)</tt><p>
1232
1233The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
1234insertion into a function. The constructor simply takes a name for the new
1235block, and optionally a <a href="#Function"><tt>Function</tt></a> to insert it
1236into. If the <tt>Parent</tt> parameter is specified, the new
1237<tt>BasicBlock</tt> is automatically inserted at the end of the specified <a
1238href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
1239manually inserted into the <a href="#Function"><tt>Function</tt></a>.<p>
1240
1241<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
1242 <tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
1243 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
1244 <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
1245
1246These methods and typedefs are forwarding functions that have the same semantics
1247as the standard library methods of the same names. These methods expose the
1248underlying instruction list of a basic block in a way that is easy to
1249manipulate. To get the full complement of container operations (including
1250operations to update the list), you must use the <tt>getInstList()</tt>
1251method.<p>
1252
1253<li><tt>BasicBlock::InstListType &amp;getInstList()</tt><p>
1254
1255This method is used to get access to the underlying container that actually
1256holds the Instructions. This method must be used when there isn't a forwarding
1257function in the <tt>BasicBlock</tt> class for the operation that you would like
1258to perform. Because there are no forwarding functions for "updating"
1259operations, you need to use this if you want to update the contents of a
1260<tt>BasicBlock</tt>.<p>
1261
1262<li><tt><A href="#Function">Function</a> *getParent()</tt><p>
1263
1264Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
1265embedded into, or a null pointer if it is homeless.<p>
1266
1267<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt><p>
1268
1269Returns a pointer to the terminator instruction that appears at the end of the
1270<tt>BasicBlock</tt>. If there is no terminator instruction, or if the last
1271instruction in the block is not a terminator, then a null pointer is
1272returned.<p>
1273
1274
1275<!-- ======================================================================= -->
1276</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1277<tr><td>&nbsp;</td><td width="100%">&nbsp;
1278<font color="#EEEEFF" face="Georgia,Palatino"><b>
1279<a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
1280</b></font></td></tr></table><ul>
1281
1282<tt>#include "<a
1283href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt></b><br>
1284doxygen info: <a href="/doxygen/classGlobalValue.html">GlobalValue Class</a><br>
1285Superclasses: <a href="#User"><tt>User</tt></a>, <a
1286href="#Value"><tt>Value</tt></a><p>
1287
1288Global values (<A href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
1289href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
1290visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
1291Because they are visible at global scope, they are also subject to linking with
1292other globals defined in different translation units. To control the linking
1293process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
1294<tt>GlobalValue</tt>s know whether they have internal or external linkage.<p>
1295
1296If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
1297<tt>static</tt> in C), it is not visible to code outside the current translation
1298unit, and does not participate in linking. If it has external linkage, it is
1299visible to external code, and does participate in linking. In addition to
1300linkage information, <tt>GlobalValue</tt>s keep track of which <a
1301href="#Module"><tt>Module</tt></a> they are currently part of.<p>
1302
1303Because <tt>GlobalValue</tt>s are memory objects, they are always referred to by
1304their address. As such, the <a href="#Type"><tt>Type</tt></a> of a global is
1305always a pointer to its contents. This is explained in the LLVM Language
1306Reference Manual.<p>
1307
1308
1309<!-- _______________________________________________________________________ -->
1310</ul><h4><a name="m_GlobalValue"><hr size=0>Important Public Members of
1311the <tt>GlobalValue</tt> class</h4><ul>
1312
1313<li><tt>bool hasInternalLinkage() const</tt><br>
1314 <tt>bool hasExternalLinkage() const</tt><br>
1315 <tt>void setInternalLinkage(bool HasInternalLinkage)</tt><p>
1316
1317These methods manipulate the linkage characteristics of the
1318<tt>GlobalValue</tt>.<p>
1319
1320<li><tt><a href="#Module">Module</a> *getParent()</tt><p>
1321
1322This returns the <a href="#Module"><tt>Module</tt></a> that the GlobalValue is
1323currently embedded into.<p>
1324
1325
1326
1327<!-- ======================================================================= -->
1328</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1329<tr><td>&nbsp;</td><td width="100%">&nbsp;
1330<font color="#EEEEFF" face="Georgia,Palatino"><b>
1331<a name="Function">The <tt>Function</tt> class</a>
1332</b></font></td></tr></table><ul>
1333
1334<tt>#include "<a
1335href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt></b><br>
1336doxygen info: <a href="/doxygen/classFunction.html">Function Class</a><br>
1337Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
1338href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a><p>
1339
1340The <tt>Function</tt> class represents a single procedure in LLVM. It is
1341actually one of the more complex classes in the LLVM heirarchy because it must
1342keep track of a large amount of data. The <tt>Function</tt> class keeps track
1343of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal <a
1344href="#Argument"><tt>Argument</tt></a>s, and a <a
1345href="#SymbolTable"><tt>SymbolTable</tt></a>.<p>
1346
1347The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most commonly
1348used part of <tt>Function</tt> objects. The list imposes an implicit ordering
1349of the blocks in the function, which indicate how the code will be layed out by
1350the backend. Additionally, the first <a
1351href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
1352<tt>Function</tt>. It is not legal in LLVM explicitly branch to this initial
1353block. There are no implicit exit nodes, and in fact there may be multiple exit
1354nodes from a single <tt>Function</tt>. If the <a
1355href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
1356the <tt>Function</tt> is actually a function declaration: the actual body of the
1357function hasn't been linked in yet.<p>
1358
1359In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
1360<tt>Function</tt> class also keeps track of the list of formal <a
1361href="#Argument"><tt>Argument</tt></a>s that the function receives. This
1362container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
1363nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
1364the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.<p>
1365
1366The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used LLVM
1367feature that is only used when you have to look up a value by name. Aside from
1368that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used internally to
1369make sure that there are not conflicts between the names of <a
1370href="#Instruction"><tt>Instruction</tt></a>s, <a
1371href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
1372href="#Argument"><tt>Argument</tt></a>s in the function body.<p>
1373
1374
1375<!-- _______________________________________________________________________ -->
1376</ul><h4><a name="m_Function"><hr size=0>Important Public Members of
1377the <tt>Function</tt> class</h4><ul>
1378
1379<li><tt>Function(const <a href="#FunctionType">FunctionType</a> *Ty, bool isInternal, const std::string &amp;N = "")</tt><p>
1380
1381Constructor used when you need to create new <tt>Function</tt>s to add the the
1382program. The constructor must specify the type of the function to create and
1383whether or not it should start out with internal or external linkage.<p>
1384
1385<li><tt>bool isExternal()</tt><p>
1386
1387Return whether or not the <tt>Function</tt> has a body defined. If the function
1388is "external", it does not have a body, and thus must be resolved by linking
1389with a function defined in a different translation unit.<p>
1390
1391
1392<li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
1393 <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
1394 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
1395 <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
1396
1397These are forwarding methods that make it easy to access the contents of a
1398<tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
1399list.<p>
1400
1401<li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt><p>
1402
1403Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This is
1404neccesary to use when you need to update the list or perform a complex action
1405that doesn't have a forwarding method.<p>
1406
1407
1408<li><tt>Function::aiterator</tt> - Typedef for the argument list iterator<br>
1409 <tt>Function::const_aiterator</tt> - Typedef for const_iterator.<br>
1410 <tt>abegin()</tt>, <tt>aend()</tt>, <tt>afront()</tt>, <tt>aback()</tt>,
1411 <tt>asize()</tt>, <tt>aempty()</tt>, <tt>arbegin()</tt>, <tt>arend()</tt><p>
1412
1413These are forwarding methods that make it easy to access the contents of a
1414<tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a> list.<p>
1415
1416<li><tt>Function::ArgumentListType &amp;getArgumentList()</tt><p>
1417
1418Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
1419neccesary to use when you need to update the list or perform a complex action
1420that doesn't have a forwarding method.<p>
1421
1422
1423
1424<li><tt><a href="#BasicBlock">BasicBlock</a> &getEntryNode()</tt><p>
1425
1426Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
1427function. Because the entry block for the function is always the first block,
1428this returns the first block of the <tt>Function</tt>.<p>
1429
1430<li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
1431 <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt><p>
1432
1433This traverses the <a href="#Type"><tt>Type</tt></a> of the <tt>Function</tt>
1434and returns the return type of the function, or the <a
1435href="#FunctionType"><tt>FunctionType</tt></a> of the actual function.<p>
1436
1437
1438<li><tt>bool hasSymbolTable() const</tt><p>
1439
1440Return true if the <tt>Function</tt> has a symbol table allocated to it and if
1441there is at least one entry in it.<p>
1442
1443<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt><p>
1444
1445Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
1446<tt>Function</tt> or a null pointer if one has not been allocated (because there
1447are no named values in the function).<p>
1448
1449<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTableSure()</tt><p>
1450
1451Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
1452<tt>Function</tt> or allocate a new <a
1453href="#SymbolTable"><tt>SymbolTable</tt></a> if one is not already around. This
1454should only be used when adding elements to the <a
1455href="#SymbolTable"><tt>SymbolTable</tt></a>, so that empty symbol tables are
1456not left laying around.<p>
1457
1458
1459
1460<!-- ======================================================================= -->
1461</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1462<tr><td>&nbsp;</td><td width="100%">&nbsp;
1463<font color="#EEEEFF" face="Georgia,Palatino"><b>
1464<a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
1465</b></font></td></tr></table><ul>
1466
1467<tt>#include "<a
1468href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt></b><br>
1469doxygen info: <a href="/doxygen/classGlobalVariable.html">GlobalVariable Class</a><br>
1470Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
1471href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a><p>
1472
Chris Lattner0377de42002-09-06 14:50:55 +00001473Global variables are represented with the (suprise suprise)
1474<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are
1475also subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such
1476are always referenced by their address (global values must live in memory, so
1477their "name" refers to their address). Global variables may have an initial
1478value (which must be a <a href="#Constant"><tt>Constant</tt></a>), and if they
1479have an initializer, they may be marked as "constant" themselves (indicating
1480that their contents never change at runtime).<p>
Chris Lattner9355b472002-09-06 02:50:58 +00001481
1482
1483<!-- _______________________________________________________________________ -->
Chris Lattner0377de42002-09-06 14:50:55 +00001484</ul><h4><a name="m_GlobalVariable"><hr size=0>Important Public Members of the
1485<tt>GlobalVariable</tt> class</h4><ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001486
1487<li><tt>GlobalVariable(const <a href="#Type">Type</a> *Ty, bool isConstant, bool
1488isInternal, <a href="#Constant">Constant</a> *Initializer = 0, const std::string
1489&amp;Name = "")</tt><p>
1490
Chris Lattner0377de42002-09-06 14:50:55 +00001491Create a new global variable of the specified type. If <tt>isConstant</tt> is
1492true then the global variable will be marked as unchanging for the program, and
1493if <tt>isInternal</tt> is true the resultant global variable will have internal
1494linkage. Optionally an initializer and name may be specified for the global variable as well.<p>
1495
1496
Chris Lattner9355b472002-09-06 02:50:58 +00001497<li><tt>bool isConstant() const</tt><p>
1498
1499Returns true if this is a global variable is known not to be modified at
1500runtime.<p>
1501
Chris Lattner0377de42002-09-06 14:50:55 +00001502
Chris Lattner9355b472002-09-06 02:50:58 +00001503<li><tt>bool hasInitializer()</tt><p>
1504
1505Returns true if this <tt>GlobalVariable</tt> has an intializer.<p>
1506
Chris Lattner0377de42002-09-06 14:50:55 +00001507
Chris Lattner9355b472002-09-06 02:50:58 +00001508<li><tt><a href="#Constant">Constant</a> *getInitializer()</tt><p>
1509
Chris Lattner0377de42002-09-06 14:50:55 +00001510Returns the intial value for a <tt>GlobalVariable</tt>. It is not legal to call
1511this method if there is no initializer.<p>
1512
1513
1514<!-- ======================================================================= -->
1515</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1516<tr><td>&nbsp;</td><td width="100%">&nbsp;
1517<font color="#EEEEFF" face="Georgia,Palatino"><b>
1518<a name="Module">The <tt>Module</tt> class</a>
1519</b></font></td></tr></table><ul>
1520
1521<tt>#include "<a
1522href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt></b><br>
1523doxygen info: <a href="/doxygen/classModule.html">Module Class</a><p>
1524
1525The <tt>Module</tt> class represents the top level structure present in LLVM
1526programs. An LLVM module is effectively either a translation unit of the
1527original program or a combination of several translation units merged by the
1528linker. The <tt>Module</tt> class keeps track of a list of <a
1529href="#Function"><tt>Function</tt></a>s, a list of <a
1530href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
1531href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
1532helpful member functions that try to make common operations easy.<p>
1533
1534
1535<!-- _______________________________________________________________________ -->
1536</ul><h4><a name="m_Module"><hr size=0>Important Public Members of the
1537<tt>Module</tt> class</h4><ul>
1538
1539<li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
1540 <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
1541 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
1542 <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
1543
1544These are forwarding methods that make it easy to access the contents of a
1545<tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
1546list.<p>
1547
1548<li><tt>Module::FunctionListType &amp;getFunctionList()</tt><p>
1549
1550Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
1551neccesary to use when you need to update the list or perform a complex action
1552that doesn't have a forwarding method.<p>
1553
1554<!-- Global Variable -->
1555<hr size=0>
1556
1557<li><tt>Module::giterator</tt> - Typedef for global variable list iterator<br>
1558 <tt>Module::const_giterator</tt> - Typedef for const_iterator.<br>
1559 <tt>gbegin()</tt>, <tt>gend()</tt>, <tt>gfront()</tt>, <tt>gback()</tt>,
1560 <tt>gsize()</tt>, <tt>gempty()</tt>, <tt>grbegin()</tt>, <tt>grend()</tt><p>
1561
1562These are forwarding methods that make it easy to access the contents of a
1563<tt>Module</tt> object's <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>
1564list.<p>
1565
1566<li><tt>Module::GlobalListType &amp;getGlobalList()</tt><p>
1567
1568Returns the list of <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.
1569This is neccesary to use when you need to update the list or perform a complex
1570action that doesn't have a forwarding method.<p>
1571
1572
1573<!-- Symbol table stuff -->
1574<hr size=0>
1575
1576<li><tt>bool hasSymbolTable() const</tt><p>
1577
1578Return true if the <tt>Module</tt> has a symbol table allocated to it and if
1579there is at least one entry in it.<p>
1580
1581<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt><p>
1582
1583Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
1584<tt>Module</tt> or a null pointer if one has not been allocated (because there
1585are no named values in the function).<p>
1586
1587<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTableSure()</tt><p>
1588
1589Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
1590<tt>Module</tt> or allocate a new <a
1591href="#SymbolTable"><tt>SymbolTable</tt></a> if one is not already around. This
1592should only be used when adding elements to the <a
1593href="#SymbolTable"><tt>SymbolTable</tt></a>, so that empty symbol tables are
1594not left laying around.<p>
1595
1596
1597<!-- Convenience methods -->
1598<hr size=0>
1599
1600<li><tt><a href="#Function">Function</a> *getFunction(const std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt><p>
1601
1602Look up the specified function in the <tt>Module</tt> <a
1603href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
1604<tt>null</tt>.<p>
1605
1606
1607<li><tt><a href="#Function">Function</a> *getOrInsertFunction(const std::string
1608 &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt><p>
1609
1610Look up the specified function in the <tt>Module</tt> <a
1611href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
1612external declaration for the function and return it.<p>
1613
1614
1615<li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt><p>
1616
1617If there is at least one entry in the <a
1618href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
1619href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
1620string.<p>
1621
1622
1623<li><tt>bool addTypeName(const std::string &Name, const <a href="#Type">Type</a>
1624*Ty)</tt><p>
1625
1626Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a> mapping
1627<tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this name, true
1628is returned and the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is not
1629modified.<p>
1630
Chris Lattner9355b472002-09-06 02:50:58 +00001631
1632<!-- ======================================================================= -->
1633</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1634<tr><td>&nbsp;</td><td width="100%">&nbsp;
1635<font color="#EEEEFF" face="Georgia,Palatino"><b>
1636<a name="Constant">The <tt>Constant</tt> class and subclasses</a>
1637</b></font></td></tr></table><ul>
1638
1639Constant represents a base class for different types of constants. It is
1640subclassed by ConstantBool, ConstantInt, ConstantSInt, ConstantUInt,
1641ConstantArray etc for representing the various types of Constants.<p>
1642
1643
1644<!-- _______________________________________________________________________ -->
1645</ul><h4><a name="m_Value"><hr size=0>Important Public Methods</h4><ul>
1646
1647<li><tt>bool isConstantExpr()</tt>: Returns true if it is a ConstantExpr
1648
1649
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001650<hr>
1651Important Subclasses of Constant<p>
Chris Lattner9355b472002-09-06 02:50:58 +00001652
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001653<ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001654<li>ConstantSInt : This subclass of Constant represents a signed integer constant.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001655<ul>
1656 <li><tt>int64_t getValue() const</tt>: Returns the underlying value of this constant.
1657</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001658<li>ConstantUInt : This class represents an unsigned integer.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001659<ul>
1660 <li><tt>uint64_t getValue() const</tt>: Returns the underlying value of this constant.
1661</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001662<li>ConstantFP : This class represents a floating point constant.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001663<ul>
1664 <li><tt>double getValue() const</tt>: Returns the underlying value of this constant.
1665</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001666<li>ConstantBool : This represents a boolean constant.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001667<ul>
1668 <li><tt>bool getValue() const</tt>: Returns the underlying value of this constant.
1669</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001670<li>ConstantArray : This represents a constant array.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001671<ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001672 <li><tt>const std::vector<Use> &amp;getValues() const</tt>: Returns a Vecotr of component constants that makeup this array.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001673</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001674<li>ConstantStruct : This represents a constant struct.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001675<ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001676 <li><tt>const std::vector<Use> &amp;getValues() const</tt>: Returns a Vecotr of component constants that makeup this array.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001677</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001678<li>ConstantPointerRef : This represents a constant pointer value that is initialized to point to a global value, which lies at a constant fixed address.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001679<ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001680<li><tt>GlobalValue *getValue()</tt>: Returns the global value to which this pointer is pointing to.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001681</ul>
1682</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001683
1684
1685<!-- ======================================================================= -->
1686</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1687<tr><td>&nbsp;</td><td width="100%">&nbsp;
1688<font color="#EEEEFF" face="Georgia,Palatino"><b>
1689<a name="Type">The <tt>Type</tt> class and Derived Types</a>
1690</b></font></td></tr></table><ul>
1691
1692Type as noted earlier is also a subclass of a Value class. Any primitive
1693type (like int, short etc) in LLVM is an instance of Type Class. All
1694other types are instances of subclasses of type like FunctionType,
1695ArrayType etc. DerivedType is the interface for all such dervied types
1696including FunctionType, ArrayType, PointerType, StructType. Types can have
1697names. They can be recursive (StructType). There exists exactly one instance
1698of any type structure at a time. This allows using pointer equality of Type *s for comparing types.
1699
1700<!-- _______________________________________________________________________ -->
1701</ul><h4><a name="m_Value"><hr size=0>Important Public Methods</h4><ul>
1702
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001703<li><tt>PrimitiveID getPrimitiveID() const</tt>: Returns the base type of the type.
1704<li><tt> bool isSigned() const</tt>: Returns whether an integral numeric type is signed. This is true for SByteTy, ShortTy, IntTy, LongTy. Note that this is not true for Float and Double.
1705<li><tt>bool isUnsigned() const</tt>: Returns whether a numeric type is unsigned. This is not quite the complement of isSigned... nonnumeric types return false as they do with isSigned. This returns true for UByteTy, UShortTy, UIntTy, and ULongTy.
1706<li><tt> bool isInteger() const</tt>: Equilivent to isSigned() || isUnsigned(), but with only a single virtual function invocation.
1707<li><tt>bool isIntegral() const</tt>: Returns true if this is an integral type, which is either Bool type or one of the Integer types.
Chris Lattner9355b472002-09-06 02:50:58 +00001708
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001709<li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two floating point types.
1710<li><tt>bool isRecursive() const</tt>: Returns rue if the type graph contains a cycle.
Chris Lattner9355b472002-09-06 02:50:58 +00001711<li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return true if this type can be converted to 'Ty' without any reinterpretation of bits. For example, uint to int.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001712<li><tt>bool isPrimitiveType() const</tt>: Returns true if it is a primitive type.
1713<li><tt>bool isDerivedType() const</tt>: Returns true if it is a derived type.
Chris Lattner9355b472002-09-06 02:50:58 +00001714<li><tt>const Type * getContainedType (unsigned i) const</tt>:
1715This method is used to implement the type iterator. For derived types, this returns the types 'contained' in the derived type, returning 0 when 'i' becomes invalid. This allows the user to iterate over the types in a struct, for example, really easily.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001716<li><tt>unsigned getNumContainedTypes() const</tt>: Return the number of types in the derived type.
Chris Lattner9355b472002-09-06 02:50:58 +00001717
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001718<p>
Chris Lattner9355b472002-09-06 02:50:58 +00001719
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001720<hr>
1721Derived Types<p>
Chris Lattner9355b472002-09-06 02:50:58 +00001722
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001723<ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001724<li>SequentialType : This is subclassed by ArrayType and PointerType
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001725<ul>
1726 <li><tt>const Type * getElementType() const</tt>: Returns the type of each of the elements in the sequential type.
1727</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001728<li>ArrayType : This is a subclass of SequentialType and defines interface for array types.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001729<ul>
1730 <li><tt>unsigned getNumElements() const</tt>: Returns the number of elements in the array.
1731</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001732<li>PointerType : Subclass of SequentialType for pointer types.
1733<li>StructType : subclass of DerivedTypes for struct types
1734<li>FunctionType : subclass of DerivedTypes for function types.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001735
1736<ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001737
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001738 <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg function
1739 <li><tt> const Type * getReturnType() const</tt>: Returns the return type of the function.
1740 <li><tt> const ParamTypes &amp;getParamTypes() const</tt>: Returns a vector of parameter types.
Chris Lattner9355b472002-09-06 02:50:58 +00001741 <li><tt>const Type * getParamType (unsigned i)</tt>: Returns the type of the ith parameter.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001742 <li><tt> const unsigned getNumParams() const</tt>: Returns the number of formal parameters.
1743</ul>
1744</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001745
1746
1747
1748
1749<!-- ======================================================================= -->
1750</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1751<tr><td>&nbsp;</td><td width="100%">&nbsp;
1752<font color="#EEEEFF" face="Georgia,Palatino"><b>
1753<a name="Argument">The <tt>Argument</tt> class</a>
1754</b></font></td></tr></table><ul>
1755
1756This subclass of Value defines the interface for incoming formal arguments to a
1757function. A Function maitanis a list of its formal arguments. An argument has a
1758pointer to the parent Function.
1759
1760
1761
1762
1763<!-- *********************************************************************** -->
1764</ul>
1765<!-- *********************************************************************** -->
1766
1767<hr><font size-1>
1768<address>By: <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
1769<a href="mailto:sabre@nondot.org">Chris Lattner</a></address>
1770<!-- Created: Tue Aug 6 15:00:33 CDT 2002 -->
1771<!-- hhmts start -->
Chris Lattnere9ddc7f2002-10-21 02:38:02 +00001772Last modified: Sun Oct 20 21:37:06 CDT 2002
Chris Lattner9355b472002-09-06 02:50:58 +00001773<!-- hhmts end -->
1774</font></body></html>