blob: 025ce1bd30923a2eaa60774974b2e0750fe49c8b [file] [log] [blame]
Lang Hames87e3bca2009-05-06 02:36:21 +00001//===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "virtregrewriter"
11#include "VirtRegRewriter.h"
12#include "llvm/Support/Compiler.h"
13#include "llvm/ADT/DepthFirstIterator.h"
14#include "llvm/ADT/Statistic.h"
15#include "llvm/ADT/STLExtras.h"
16#include <algorithm>
17using namespace llvm;
18
19STATISTIC(NumDSE , "Number of dead stores elided");
20STATISTIC(NumDSS , "Number of dead spill slots removed");
21STATISTIC(NumCommutes, "Number of instructions commuted");
22STATISTIC(NumDRM , "Number of re-materializable defs elided");
23STATISTIC(NumStores , "Number of stores added");
24STATISTIC(NumPSpills , "Number of physical register spills");
25STATISTIC(NumOmitted , "Number of reloads omited");
26STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
27STATISTIC(NumCopified, "Number of available reloads turned into copies");
28STATISTIC(NumReMats , "Number of re-materialization");
29STATISTIC(NumLoads , "Number of loads added");
30STATISTIC(NumReused , "Number of values reused");
31STATISTIC(NumDCE , "Number of copies elided");
32STATISTIC(NumSUnfold , "Number of stores unfolded");
33STATISTIC(NumModRefUnfold, "Number of modref unfolded");
34
35namespace {
36 enum RewriterName { simple, local };
37}
38
39static cl::opt<RewriterName>
40RewriterOpt("rewriter",
41 cl::desc("Rewriter to use: (default: local)"),
42 cl::Prefix,
43 cl::values(clEnumVal(simple, "simple rewriter"),
44 clEnumVal(local, "local rewriter"),
45 clEnumValEnd),
46 cl::init(local));
47
48VirtRegRewriter::~VirtRegRewriter() {}
49
50
51// ****************************** //
52// Simple Spiller Implementation //
53// ****************************** //
54
55struct VISIBILITY_HIDDEN SimpleRewriter : public VirtRegRewriter {
56
57 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
58 LiveIntervals* LIs) {
59 DOUT << "********** REWRITE MACHINE CODE **********\n";
60 DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
61 const TargetMachine &TM = MF.getTarget();
62 const TargetInstrInfo &TII = *TM.getInstrInfo();
63 const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
64
65
66 // LoadedRegs - Keep track of which vregs are loaded, so that we only load
67 // each vreg once (in the case where a spilled vreg is used by multiple
68 // operands). This is always smaller than the number of operands to the
69 // current machine instr, so it should be small.
70 std::vector<unsigned> LoadedRegs;
71
72 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
73 MBBI != E; ++MBBI) {
74 DOUT << MBBI->getBasicBlock()->getName() << ":\n";
75 MachineBasicBlock &MBB = *MBBI;
76 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
77 MII != E; ++MII) {
78 MachineInstr &MI = *MII;
79 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
80 MachineOperand &MO = MI.getOperand(i);
81 if (MO.isReg() && MO.getReg()) {
82 if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
83 unsigned VirtReg = MO.getReg();
84 unsigned SubIdx = MO.getSubReg();
85 unsigned PhysReg = VRM.getPhys(VirtReg);
86 unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg;
87 if (!VRM.isAssignedReg(VirtReg)) {
88 int StackSlot = VRM.getStackSlot(VirtReg);
89 const TargetRegisterClass* RC =
90 MF.getRegInfo().getRegClass(VirtReg);
91
92 if (MO.isUse() &&
93 std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
94 == LoadedRegs.end()) {
95 TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
96 MachineInstr *LoadMI = prior(MII);
97 VRM.addSpillSlotUse(StackSlot, LoadMI);
98 LoadedRegs.push_back(VirtReg);
99 ++NumLoads;
100 DOUT << '\t' << *LoadMI;
101 }
102
103 if (MO.isDef()) {
104 TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
105 StackSlot, RC);
106 MachineInstr *StoreMI = next(MII);
107 VRM.addSpillSlotUse(StackSlot, StoreMI);
108 ++NumStores;
109 }
110 }
111 MF.getRegInfo().setPhysRegUsed(RReg);
112 MI.getOperand(i).setReg(RReg);
113 MI.getOperand(i).setSubReg(0);
114 } else {
115 MF.getRegInfo().setPhysRegUsed(MO.getReg());
116 }
117 }
118 }
119
120 DOUT << '\t' << MI;
121 LoadedRegs.clear();
122 }
123 }
124 return true;
125 }
126
127};
128
129// ************************************************************************ //
130
131/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
132/// from top down, keep track of which spill slots or remat are available in
133/// each register.
134///
135/// Note that not all physregs are created equal here. In particular, some
136/// physregs are reloads that we are allowed to clobber or ignore at any time.
137/// Other physregs are values that the register allocated program is using
138/// that we cannot CHANGE, but we can read if we like. We keep track of this
139/// on a per-stack-slot / remat id basis as the low bit in the value of the
140/// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
141/// this bit and addAvailable sets it if.
142class VISIBILITY_HIDDEN AvailableSpills {
143 const TargetRegisterInfo *TRI;
144 const TargetInstrInfo *TII;
145
146 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
147 // or remat'ed virtual register values that are still available, due to
148 // being loaded or stored to, but not invalidated yet.
149 std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
150
151 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
152 // indicating which stack slot values are currently held by a physreg. This
153 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
154 // physreg is modified.
155 std::multimap<unsigned, int> PhysRegsAvailable;
156
157 void disallowClobberPhysRegOnly(unsigned PhysReg);
158
159 void ClobberPhysRegOnly(unsigned PhysReg);
160public:
161 AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
162 : TRI(tri), TII(tii) {
163 }
164
165 /// clear - Reset the state.
166 void clear() {
167 SpillSlotsOrReMatsAvailable.clear();
168 PhysRegsAvailable.clear();
169 }
170
171 const TargetRegisterInfo *getRegInfo() const { return TRI; }
172
173 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
174 /// available in a physical register, return that PhysReg, otherwise
175 /// return 0.
176 unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
177 std::map<int, unsigned>::const_iterator I =
178 SpillSlotsOrReMatsAvailable.find(Slot);
179 if (I != SpillSlotsOrReMatsAvailable.end()) {
180 return I->second >> 1; // Remove the CanClobber bit.
181 }
182 return 0;
183 }
184
185 /// addAvailable - Mark that the specified stack slot / remat is available
186 /// in the specified physreg. If CanClobber is true, the physreg can be
187 /// modified at any time without changing the semantics of the program.
188 void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
189 // If this stack slot is thought to be available in some other physreg,
190 // remove its record.
191 ModifyStackSlotOrReMat(SlotOrReMat);
192
193 PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
194 SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
195 (unsigned)CanClobber;
196
197 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
198 DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
199 else
200 DOUT << "Remembering SS#" << SlotOrReMat;
201 DOUT << " in physreg " << TRI->getName(Reg) << "\n";
202 }
203
204 /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
205 /// the value of the specified stackslot register if it desires. The
206 /// specified stack slot must be available in a physreg for this query to
207 /// make sense.
208 bool canClobberPhysRegForSS(int SlotOrReMat) const {
209 assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
210 "Value not available!");
211 return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
212 }
213
214 /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
215 /// physical register where values for some stack slot(s) might be
216 /// available.
217 bool canClobberPhysReg(unsigned PhysReg) const {
218 std::multimap<unsigned, int>::const_iterator I =
219 PhysRegsAvailable.lower_bound(PhysReg);
220 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
221 int SlotOrReMat = I->second;
222 I++;
223 if (!canClobberPhysRegForSS(SlotOrReMat))
224 return false;
225 }
226 return true;
227 }
228
229 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
230 /// stackslot register. The register is still available but is no longer
231 /// allowed to be modifed.
232 void disallowClobberPhysReg(unsigned PhysReg);
233
234 /// ClobberPhysReg - This is called when the specified physreg changes
235 /// value. We use this to invalidate any info about stuff that lives in
236 /// it and any of its aliases.
237 void ClobberPhysReg(unsigned PhysReg);
238
239 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
240 /// slot changes. This removes information about which register the
241 /// previous value for this slot lives in (as the previous value is dead
242 /// now).
243 void ModifyStackSlotOrReMat(int SlotOrReMat);
244
245 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
246 /// into the specified MBB. Add available physical registers as potential
247 /// live-in's. If they are reused in the MBB, they will be added to the
248 /// live-in set to make register scavenger and post-allocation scheduler.
249 void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
250 std::vector<MachineOperand*> &KillOps);
251};
252
253// ************************************************************************ //
254
255// ReusedOp - For each reused operand, we keep track of a bit of information,
256// in case we need to rollback upon processing a new operand. See comments
257// below.
258struct ReusedOp {
259 // The MachineInstr operand that reused an available value.
260 unsigned Operand;
261
262 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
263 unsigned StackSlotOrReMat;
264
265 // PhysRegReused - The physical register the value was available in.
266 unsigned PhysRegReused;
267
268 // AssignedPhysReg - The physreg that was assigned for use by the reload.
269 unsigned AssignedPhysReg;
270
271 // VirtReg - The virtual register itself.
272 unsigned VirtReg;
273
274 ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
275 unsigned vreg)
276 : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
277 AssignedPhysReg(apr), VirtReg(vreg) {}
278};
279
280/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
281/// is reused instead of reloaded.
282class VISIBILITY_HIDDEN ReuseInfo {
283 MachineInstr &MI;
284 std::vector<ReusedOp> Reuses;
285 BitVector PhysRegsClobbered;
286public:
287 ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
288 PhysRegsClobbered.resize(tri->getNumRegs());
289 }
290
291 bool hasReuses() const {
292 return !Reuses.empty();
293 }
294
295 /// addReuse - If we choose to reuse a virtual register that is already
296 /// available instead of reloading it, remember that we did so.
297 void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
298 unsigned PhysRegReused, unsigned AssignedPhysReg,
299 unsigned VirtReg) {
300 // If the reload is to the assigned register anyway, no undo will be
301 // required.
302 if (PhysRegReused == AssignedPhysReg) return;
303
304 // Otherwise, remember this.
305 Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
306 AssignedPhysReg, VirtReg));
307 }
308
309 void markClobbered(unsigned PhysReg) {
310 PhysRegsClobbered.set(PhysReg);
311 }
312
313 bool isClobbered(unsigned PhysReg) const {
314 return PhysRegsClobbered.test(PhysReg);
315 }
316
317 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
318 /// is some other operand that is using the specified register, either pick
319 /// a new register to use, or evict the previous reload and use this reg.
320 unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
321 AvailableSpills &Spills,
322 std::vector<MachineInstr*> &MaybeDeadStores,
323 SmallSet<unsigned, 8> &Rejected,
324 BitVector &RegKills,
325 std::vector<MachineOperand*> &KillOps,
326 VirtRegMap &VRM);
327
328 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
329 /// 'Rejected' set to remember which registers have been considered and
330 /// rejected for the reload. This avoids infinite looping in case like
331 /// this:
332 /// t1 := op t2, t3
333 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
334 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
335 /// t1 <- desires r1
336 /// sees r1 is taken by t2, tries t2's reload register r0
337 /// sees r0 is taken by t3, tries t3's reload register r1
338 /// sees r1 is taken by t2, tries t2's reload register r0 ...
339 unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
340 AvailableSpills &Spills,
341 std::vector<MachineInstr*> &MaybeDeadStores,
342 BitVector &RegKills,
343 std::vector<MachineOperand*> &KillOps,
344 VirtRegMap &VRM) {
345 SmallSet<unsigned, 8> Rejected;
346 return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
347 RegKills, KillOps, VRM);
348 }
349};
350
351
352// ****************** //
353// Utility Functions //
354// ****************** //
355
356/// InvalidateKill - A MI that defines the specified register is being deleted,
357/// invalidate the register kill information.
358static void InvalidateKill(unsigned Reg, BitVector &RegKills,
359 std::vector<MachineOperand*> &KillOps) {
360 if (RegKills[Reg]) {
361 KillOps[Reg]->setIsKill(false);
362 KillOps[Reg] = NULL;
363 RegKills.reset(Reg);
364 }
365}
366
367/// findSinglePredSuccessor - Return via reference a vector of machine basic
368/// blocks each of which is a successor of the specified BB and has no other
369/// predecessor.
370static void findSinglePredSuccessor(MachineBasicBlock *MBB,
371 SmallVectorImpl<MachineBasicBlock *> &Succs) {
372 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
373 SE = MBB->succ_end(); SI != SE; ++SI) {
374 MachineBasicBlock *SuccMBB = *SI;
375 if (SuccMBB->pred_size() == 1)
376 Succs.push_back(SuccMBB);
377 }
378}
379
380/// InvalidateKills - MI is going to be deleted. If any of its operands are
381/// marked kill, then invalidate the information.
382static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
383 std::vector<MachineOperand*> &KillOps,
384 SmallVector<unsigned, 2> *KillRegs = NULL) {
385 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
386 MachineOperand &MO = MI.getOperand(i);
387 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
388 continue;
389 unsigned Reg = MO.getReg();
390 if (TargetRegisterInfo::isVirtualRegister(Reg))
391 continue;
392 if (KillRegs)
393 KillRegs->push_back(Reg);
394 assert(Reg < KillOps.size());
395 if (KillOps[Reg] == &MO) {
396 RegKills.reset(Reg);
397 KillOps[Reg] = NULL;
398 }
399 }
400}
401
402/// InvalidateRegDef - If the def operand of the specified def MI is now dead
403/// (since it's spill instruction is removed), mark it isDead. Also checks if
404/// the def MI has other definition operands that are not dead. Returns it by
405/// reference.
406static bool InvalidateRegDef(MachineBasicBlock::iterator I,
407 MachineInstr &NewDef, unsigned Reg,
408 bool &HasLiveDef) {
409 // Due to remat, it's possible this reg isn't being reused. That is,
410 // the def of this reg (by prev MI) is now dead.
411 MachineInstr *DefMI = I;
412 MachineOperand *DefOp = NULL;
413 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
414 MachineOperand &MO = DefMI->getOperand(i);
415 if (MO.isReg() && MO.isDef()) {
416 if (MO.getReg() == Reg)
417 DefOp = &MO;
418 else if (!MO.isDead())
419 HasLiveDef = true;
420 }
421 }
422 if (!DefOp)
423 return false;
424
425 bool FoundUse = false, Done = false;
426 MachineBasicBlock::iterator E = &NewDef;
427 ++I; ++E;
428 for (; !Done && I != E; ++I) {
429 MachineInstr *NMI = I;
430 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
431 MachineOperand &MO = NMI->getOperand(j);
432 if (!MO.isReg() || MO.getReg() != Reg)
433 continue;
434 if (MO.isUse())
435 FoundUse = true;
436 Done = true; // Stop after scanning all the operands of this MI.
437 }
438 }
439 if (!FoundUse) {
440 // Def is dead!
441 DefOp->setIsDead();
442 return true;
443 }
444 return false;
445}
446
447/// UpdateKills - Track and update kill info. If a MI reads a register that is
448/// marked kill, then it must be due to register reuse. Transfer the kill info
449/// over.
450static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
451 std::vector<MachineOperand*> &KillOps,
452 const TargetRegisterInfo* TRI) {
453 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
454 MachineOperand &MO = MI.getOperand(i);
455 if (!MO.isReg() || !MO.isUse())
456 continue;
457 unsigned Reg = MO.getReg();
458 if (Reg == 0)
459 continue;
460
461 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
462 // That can't be right. Register is killed but not re-defined and it's
463 // being reused. Let's fix that.
464 KillOps[Reg]->setIsKill(false);
465 KillOps[Reg] = NULL;
466 RegKills.reset(Reg);
467 if (!MI.isRegTiedToDefOperand(i))
468 // Unless it's a two-address operand, this is the new kill.
469 MO.setIsKill();
470 }
471 if (MO.isKill()) {
472 RegKills.set(Reg);
473 KillOps[Reg] = &MO;
474 }
475 }
476
477 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
478 const MachineOperand &MO = MI.getOperand(i);
479 if (!MO.isReg() || !MO.isDef())
480 continue;
481 unsigned Reg = MO.getReg();
482 RegKills.reset(Reg);
483 KillOps[Reg] = NULL;
484 // It also defines (or partially define) aliases.
485 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) {
486 RegKills.reset(*AS);
487 KillOps[*AS] = NULL;
488 }
489 }
490}
491
492/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
493///
494static void ReMaterialize(MachineBasicBlock &MBB,
495 MachineBasicBlock::iterator &MII,
496 unsigned DestReg, unsigned Reg,
497 const TargetInstrInfo *TII,
498 const TargetRegisterInfo *TRI,
499 VirtRegMap &VRM) {
500 TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
501 MachineInstr *NewMI = prior(MII);
502 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
503 MachineOperand &MO = NewMI->getOperand(i);
504 if (!MO.isReg() || MO.getReg() == 0)
505 continue;
506 unsigned VirtReg = MO.getReg();
507 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
508 continue;
509 assert(MO.isUse());
510 unsigned SubIdx = MO.getSubReg();
511 unsigned Phys = VRM.getPhys(VirtReg);
512 assert(Phys);
513 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
514 MO.setReg(RReg);
515 MO.setSubReg(0);
516 }
517 ++NumReMats;
518}
519
520/// findSuperReg - Find the SubReg's super-register of given register class
521/// where its SubIdx sub-register is SubReg.
522static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
523 unsigned SubIdx, const TargetRegisterInfo *TRI) {
524 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
525 I != E; ++I) {
526 unsigned Reg = *I;
527 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
528 return Reg;
529 }
530 return 0;
531}
532
533// ******************************** //
534// Available Spills Implementation //
535// ******************************** //
536
537/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
538/// stackslot register. The register is still available but is no longer
539/// allowed to be modifed.
540void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
541 std::multimap<unsigned, int>::iterator I =
542 PhysRegsAvailable.lower_bound(PhysReg);
543 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
544 int SlotOrReMat = I->second;
545 I++;
546 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
547 "Bidirectional map mismatch!");
548 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
549 DOUT << "PhysReg " << TRI->getName(PhysReg)
550 << " copied, it is available for use but can no longer be modified\n";
551 }
552}
553
554/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
555/// stackslot register and its aliases. The register and its aliases may
556/// still available but is no longer allowed to be modifed.
557void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
558 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
559 disallowClobberPhysRegOnly(*AS);
560 disallowClobberPhysRegOnly(PhysReg);
561}
562
563/// ClobberPhysRegOnly - This is called when the specified physreg changes
564/// value. We use this to invalidate any info about stuff we thing lives in it.
565void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
566 std::multimap<unsigned, int>::iterator I =
567 PhysRegsAvailable.lower_bound(PhysReg);
568 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
569 int SlotOrReMat = I->second;
570 PhysRegsAvailable.erase(I++);
571 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
572 "Bidirectional map mismatch!");
573 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
574 DOUT << "PhysReg " << TRI->getName(PhysReg)
575 << " clobbered, invalidating ";
576 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
577 DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
578 else
579 DOUT << "SS#" << SlotOrReMat << "\n";
580 }
581}
582
583/// ClobberPhysReg - This is called when the specified physreg changes
584/// value. We use this to invalidate any info about stuff we thing lives in
585/// it and any of its aliases.
586void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
587 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
588 ClobberPhysRegOnly(*AS);
589 ClobberPhysRegOnly(PhysReg);
590}
591
592/// AddAvailableRegsToLiveIn - Availability information is being kept coming
593/// into the specified MBB. Add available physical registers as potential
594/// live-in's. If they are reused in the MBB, they will be added to the
595/// live-in set to make register scavenger and post-allocation scheduler.
596void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
597 BitVector &RegKills,
598 std::vector<MachineOperand*> &KillOps) {
599 std::set<unsigned> NotAvailable;
600 for (std::multimap<unsigned, int>::iterator
601 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
602 I != E; ++I) {
603 unsigned Reg = I->first;
604 const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
605 // FIXME: A temporary workaround. We can't reuse available value if it's
606 // not safe to move the def of the virtual register's class. e.g.
607 // X86::RFP* register classes. Do not add it as a live-in.
608 if (!TII->isSafeToMoveRegClassDefs(RC))
609 // This is no longer available.
610 NotAvailable.insert(Reg);
611 else {
612 MBB.addLiveIn(Reg);
613 InvalidateKill(Reg, RegKills, KillOps);
614 }
615
616 // Skip over the same register.
617 std::multimap<unsigned, int>::iterator NI = next(I);
618 while (NI != E && NI->first == Reg) {
619 ++I;
620 ++NI;
621 }
622 }
623
624 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
625 E = NotAvailable.end(); I != E; ++I) {
626 ClobberPhysReg(*I);
627 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
628 *SubRegs; ++SubRegs)
629 ClobberPhysReg(*SubRegs);
630 }
631}
632
633/// ModifyStackSlotOrReMat - This method is called when the value in a stack
634/// slot changes. This removes information about which register the previous
635/// value for this slot lives in (as the previous value is dead now).
636void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
637 std::map<int, unsigned>::iterator It =
638 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
639 if (It == SpillSlotsOrReMatsAvailable.end()) return;
640 unsigned Reg = It->second >> 1;
641 SpillSlotsOrReMatsAvailable.erase(It);
642
643 // This register may hold the value of multiple stack slots, only remove this
644 // stack slot from the set of values the register contains.
645 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
646 for (; ; ++I) {
647 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
648 "Map inverse broken!");
649 if (I->second == SlotOrReMat) break;
650 }
651 PhysRegsAvailable.erase(I);
652}
653
654// ************************** //
655// Reuse Info Implementation //
656// ************************** //
657
658/// GetRegForReload - We are about to emit a reload into PhysReg. If there
659/// is some other operand that is using the specified register, either pick
660/// a new register to use, or evict the previous reload and use this reg.
661unsigned ReuseInfo::GetRegForReload(unsigned PhysReg, MachineInstr *MI,
662 AvailableSpills &Spills,
663 std::vector<MachineInstr*> &MaybeDeadStores,
664 SmallSet<unsigned, 8> &Rejected,
665 BitVector &RegKills,
666 std::vector<MachineOperand*> &KillOps,
667 VirtRegMap &VRM) {
668 const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
669 .getInstrInfo();
670
671 if (Reuses.empty()) return PhysReg; // This is most often empty.
672
673 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
674 ReusedOp &Op = Reuses[ro];
675 // If we find some other reuse that was supposed to use this register
676 // exactly for its reload, we can change this reload to use ITS reload
677 // register. That is, unless its reload register has already been
678 // considered and subsequently rejected because it has also been reused
679 // by another operand.
680 if (Op.PhysRegReused == PhysReg &&
681 Rejected.count(Op.AssignedPhysReg) == 0) {
682 // Yup, use the reload register that we didn't use before.
683 unsigned NewReg = Op.AssignedPhysReg;
684 Rejected.insert(PhysReg);
685 return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
686 RegKills, KillOps, VRM);
687 } else {
688 // Otherwise, we might also have a problem if a previously reused
689 // value aliases the new register. If so, codegen the previous reload
690 // and use this one.
691 unsigned PRRU = Op.PhysRegReused;
692 const TargetRegisterInfo *TRI = Spills.getRegInfo();
693 if (TRI->areAliases(PRRU, PhysReg)) {
694 // Okay, we found out that an alias of a reused register
695 // was used. This isn't good because it means we have
696 // to undo a previous reuse.
697 MachineBasicBlock *MBB = MI->getParent();
698 const TargetRegisterClass *AliasRC =
699 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
700
701 // Copy Op out of the vector and remove it, we're going to insert an
702 // explicit load for it.
703 ReusedOp NewOp = Op;
704 Reuses.erase(Reuses.begin()+ro);
705
706 // Ok, we're going to try to reload the assigned physreg into the
707 // slot that we were supposed to in the first place. However, that
708 // register could hold a reuse. Check to see if it conflicts or
709 // would prefer us to use a different register.
710 unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
711 MI, Spills, MaybeDeadStores,
712 Rejected, RegKills, KillOps, VRM);
713
714 MachineBasicBlock::iterator MII = MI;
715 if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
716 ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
717 } else {
718 TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
719 NewOp.StackSlotOrReMat, AliasRC);
720 MachineInstr *LoadMI = prior(MII);
721 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
722 // Any stores to this stack slot are not dead anymore.
723 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
724 ++NumLoads;
725 }
726 Spills.ClobberPhysReg(NewPhysReg);
727 Spills.ClobberPhysReg(NewOp.PhysRegReused);
728
729 unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
730 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
731 MI->getOperand(NewOp.Operand).setReg(RReg);
732 MI->getOperand(NewOp.Operand).setSubReg(0);
733
734 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
735 --MII;
736 UpdateKills(*MII, RegKills, KillOps, TRI);
737 DOUT << '\t' << *MII;
738
739 DOUT << "Reuse undone!\n";
740 --NumReused;
741
742 // Finally, PhysReg is now available, go ahead and use it.
743 return PhysReg;
744 }
745 }
746 }
747 return PhysReg;
748}
749
750// ************************************************************************ //
751
752/// FoldsStackSlotModRef - Return true if the specified MI folds the specified
753/// stack slot mod/ref. It also checks if it's possible to unfold the
754/// instruction by having it define a specified physical register instead.
755static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
756 const TargetInstrInfo *TII,
757 const TargetRegisterInfo *TRI,
758 VirtRegMap &VRM) {
759 if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
760 return false;
761
762 bool Found = false;
763 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
764 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
765 unsigned VirtReg = I->second.first;
766 VirtRegMap::ModRef MR = I->second.second;
767 if (MR & VirtRegMap::isModRef)
768 if (VRM.getStackSlot(VirtReg) == SS) {
769 Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
770 break;
771 }
772 }
773 if (!Found)
774 return false;
775
776 // Does the instruction uses a register that overlaps the scratch register?
777 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
778 MachineOperand &MO = MI.getOperand(i);
779 if (!MO.isReg() || MO.getReg() == 0)
780 continue;
781 unsigned Reg = MO.getReg();
782 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
783 if (!VRM.hasPhys(Reg))
784 continue;
785 Reg = VRM.getPhys(Reg);
786 }
787 if (TRI->regsOverlap(PhysReg, Reg))
788 return false;
789 }
790 return true;
791}
792
793/// FindFreeRegister - Find a free register of a given register class by looking
794/// at (at most) the last two machine instructions.
795static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
796 MachineBasicBlock &MBB,
797 const TargetRegisterClass *RC,
798 const TargetRegisterInfo *TRI,
799 BitVector &AllocatableRegs) {
800 BitVector Defs(TRI->getNumRegs());
801 BitVector Uses(TRI->getNumRegs());
802 SmallVector<unsigned, 4> LocalUses;
803 SmallVector<unsigned, 4> Kills;
804
805 // Take a look at 2 instructions at most.
806 for (unsigned Count = 0; Count < 2; ++Count) {
807 if (MII == MBB.begin())
808 break;
809 MachineInstr *PrevMI = prior(MII);
810 for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
811 MachineOperand &MO = PrevMI->getOperand(i);
812 if (!MO.isReg() || MO.getReg() == 0)
813 continue;
814 unsigned Reg = MO.getReg();
815 if (MO.isDef()) {
816 Defs.set(Reg);
817 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
818 Defs.set(*AS);
819 } else {
820 LocalUses.push_back(Reg);
821 if (MO.isKill() && AllocatableRegs[Reg])
822 Kills.push_back(Reg);
823 }
824 }
825
826 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
827 unsigned Kill = Kills[i];
828 if (!Defs[Kill] && !Uses[Kill] &&
829 TRI->getPhysicalRegisterRegClass(Kill) == RC)
830 return Kill;
831 }
832 for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
833 unsigned Reg = LocalUses[i];
834 Uses.set(Reg);
835 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
836 Uses.set(*AS);
837 }
838
839 MII = PrevMI;
840 }
841
842 return 0;
843}
844
845static
846void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) {
847 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
848 MachineOperand &MO = MI->getOperand(i);
849 if (MO.isReg() && MO.getReg() == VirtReg)
850 MO.setReg(PhysReg);
851 }
852}
853
854
855// ***************************** //
856// Local Spiller Implementation //
857// ***************************** //
858
859class VISIBILITY_HIDDEN LocalRewriter : public VirtRegRewriter {
860 MachineRegisterInfo *RegInfo;
861 const TargetRegisterInfo *TRI;
862 const TargetInstrInfo *TII;
863 BitVector AllocatableRegs;
864 DenseMap<MachineInstr*, unsigned> DistanceMap;
865public:
866
867 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
868 LiveIntervals* LIs) {
869 RegInfo = &MF.getRegInfo();
870 TRI = MF.getTarget().getRegisterInfo();
871 TII = MF.getTarget().getInstrInfo();
872 AllocatableRegs = TRI->getAllocatableSet(MF);
873 DOUT << "\n**** Local spiller rewriting function '"
874 << MF.getFunction()->getName() << "':\n";
875 DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
876 " ****\n";
877 DEBUG(MF.dump());
878
879 // Spills - Keep track of which spilled values are available in physregs
880 // so that we can choose to reuse the physregs instead of emitting
881 // reloads. This is usually refreshed per basic block.
882 AvailableSpills Spills(TRI, TII);
883
884 // Keep track of kill information.
885 BitVector RegKills(TRI->getNumRegs());
886 std::vector<MachineOperand*> KillOps;
887 KillOps.resize(TRI->getNumRegs(), NULL);
888
889 // SingleEntrySuccs - Successor blocks which have a single predecessor.
890 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
891 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
892
893 // Traverse the basic blocks depth first.
894 MachineBasicBlock *Entry = MF.begin();
895 SmallPtrSet<MachineBasicBlock*,16> Visited;
896 for (df_ext_iterator<MachineBasicBlock*,
897 SmallPtrSet<MachineBasicBlock*,16> >
898 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
899 DFI != E; ++DFI) {
900 MachineBasicBlock *MBB = *DFI;
901 if (!EarlyVisited.count(MBB))
902 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
903
904 // If this MBB is the only predecessor of a successor. Keep the
905 // availability information and visit it next.
906 do {
907 // Keep visiting single predecessor successor as long as possible.
908 SinglePredSuccs.clear();
909 findSinglePredSuccessor(MBB, SinglePredSuccs);
910 if (SinglePredSuccs.empty())
911 MBB = 0;
912 else {
913 // FIXME: More than one successors, each of which has MBB has
914 // the only predecessor.
915 MBB = SinglePredSuccs[0];
916 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
917 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
918 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
919 }
920 }
921 } while (MBB);
922
923 // Clear the availability info.
924 Spills.clear();
925 }
926
927 DOUT << "**** Post Machine Instrs ****\n";
928 DEBUG(MF.dump());
929
930 // Mark unused spill slots.
931 MachineFrameInfo *MFI = MF.getFrameInfo();
932 int SS = VRM.getLowSpillSlot();
933 if (SS != VirtRegMap::NO_STACK_SLOT)
934 for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
935 if (!VRM.isSpillSlotUsed(SS)) {
936 MFI->RemoveStackObject(SS);
937 ++NumDSS;
938 }
939
940 return true;
941 }
942
943private:
944
945 /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
946 /// a scratch register is available.
947 /// xorq %r12<kill>, %r13
948 /// addq %rax, -184(%rbp)
949 /// addq %r13, -184(%rbp)
950 /// ==>
951 /// xorq %r12<kill>, %r13
952 /// movq -184(%rbp), %r12
953 /// addq %rax, %r12
954 /// addq %r13, %r12
955 /// movq %r12, -184(%rbp)
956 bool OptimizeByUnfold2(unsigned VirtReg, int SS,
957 MachineBasicBlock &MBB,
958 MachineBasicBlock::iterator &MII,
959 std::vector<MachineInstr*> &MaybeDeadStores,
960 AvailableSpills &Spills,
961 BitVector &RegKills,
962 std::vector<MachineOperand*> &KillOps,
963 VirtRegMap &VRM) {
964
965 MachineBasicBlock::iterator NextMII = next(MII);
966 if (NextMII == MBB.end())
967 return false;
968
969 if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
970 return false;
971
972 // Now let's see if the last couple of instructions happens to have freed up
973 // a register.
974 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
975 unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs);
976 if (!PhysReg)
977 return false;
978
979 MachineFunction &MF = *MBB.getParent();
980 TRI = MF.getTarget().getRegisterInfo();
981 MachineInstr &MI = *MII;
982 if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM))
983 return false;
984
985 // If the next instruction also folds the same SS modref and can be unfoled,
986 // then it's worthwhile to issue a load from SS into the free register and
987 // then unfold these instructions.
988 if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM))
989 return false;
990
991 // Load from SS to the spare physical register.
992 TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC);
993 // This invalidates Phys.
994 Spills.ClobberPhysReg(PhysReg);
995 // Remember it's available.
996 Spills.addAvailable(SS, PhysReg);
997 MaybeDeadStores[SS] = NULL;
998
999 // Unfold current MI.
1000 SmallVector<MachineInstr*, 4> NewMIs;
1001 if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
1002 assert(0 && "Unable unfold the load / store folding instruction!");
1003 assert(NewMIs.size() == 1);
1004 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1005 VRM.transferRestorePts(&MI, NewMIs[0]);
1006 MII = MBB.insert(MII, NewMIs[0]);
1007 InvalidateKills(MI, RegKills, KillOps);
1008 VRM.RemoveMachineInstrFromMaps(&MI);
1009 MBB.erase(&MI);
1010 ++NumModRefUnfold;
1011
1012 // Unfold next instructions that fold the same SS.
1013 do {
1014 MachineInstr &NextMI = *NextMII;
1015 NextMII = next(NextMII);
1016 NewMIs.clear();
1017 if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
1018 assert(0 && "Unable unfold the load / store folding instruction!");
1019 assert(NewMIs.size() == 1);
1020 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1021 VRM.transferRestorePts(&NextMI, NewMIs[0]);
1022 MBB.insert(NextMII, NewMIs[0]);
1023 InvalidateKills(NextMI, RegKills, KillOps);
1024 VRM.RemoveMachineInstrFromMaps(&NextMI);
1025 MBB.erase(&NextMI);
1026 ++NumModRefUnfold;
1027 } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM));
1028
1029 // Store the value back into SS.
1030 TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC);
1031 MachineInstr *StoreMI = prior(NextMII);
1032 VRM.addSpillSlotUse(SS, StoreMI);
1033 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1034
1035 return true;
1036 }
1037
1038 /// OptimizeByUnfold - Turn a store folding instruction into a load folding
1039 /// instruction. e.g.
1040 /// xorl %edi, %eax
1041 /// movl %eax, -32(%ebp)
1042 /// movl -36(%ebp), %eax
1043 /// orl %eax, -32(%ebp)
1044 /// ==>
1045 /// xorl %edi, %eax
1046 /// orl -36(%ebp), %eax
1047 /// mov %eax, -32(%ebp)
1048 /// This enables unfolding optimization for a subsequent instruction which will
1049 /// also eliminate the newly introduced store instruction.
1050 bool OptimizeByUnfold(MachineBasicBlock &MBB,
1051 MachineBasicBlock::iterator &MII,
1052 std::vector<MachineInstr*> &MaybeDeadStores,
1053 AvailableSpills &Spills,
1054 BitVector &RegKills,
1055 std::vector<MachineOperand*> &KillOps,
1056 VirtRegMap &VRM) {
1057 MachineFunction &MF = *MBB.getParent();
1058 MachineInstr &MI = *MII;
1059 unsigned UnfoldedOpc = 0;
1060 unsigned UnfoldPR = 0;
1061 unsigned UnfoldVR = 0;
1062 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
1063 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1064 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1065 // Only transform a MI that folds a single register.
1066 if (UnfoldedOpc)
1067 return false;
1068 UnfoldVR = I->second.first;
1069 VirtRegMap::ModRef MR = I->second.second;
1070 // MI2VirtMap be can updated which invalidate the iterator.
1071 // Increment the iterator first.
1072 ++I;
1073 if (VRM.isAssignedReg(UnfoldVR))
1074 continue;
1075 // If this reference is not a use, any previous store is now dead.
1076 // Otherwise, the store to this stack slot is not dead anymore.
1077 FoldedSS = VRM.getStackSlot(UnfoldVR);
1078 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
1079 if (DeadStore && (MR & VirtRegMap::isModRef)) {
1080 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
1081 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
1082 continue;
1083 UnfoldPR = PhysReg;
1084 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1085 false, true);
1086 }
1087 }
1088
1089 if (!UnfoldedOpc) {
1090 if (!UnfoldVR)
1091 return false;
1092
1093 // Look for other unfolding opportunities.
1094 return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII,
1095 MaybeDeadStores, Spills, RegKills, KillOps, VRM);
1096 }
1097
1098 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1099 MachineOperand &MO = MI.getOperand(i);
1100 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
1101 continue;
1102 unsigned VirtReg = MO.getReg();
1103 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
1104 continue;
1105 if (VRM.isAssignedReg(VirtReg)) {
1106 unsigned PhysReg = VRM.getPhys(VirtReg);
1107 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
1108 return false;
1109 } else if (VRM.isReMaterialized(VirtReg))
1110 continue;
1111 int SS = VRM.getStackSlot(VirtReg);
1112 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1113 if (PhysReg) {
1114 if (TRI->regsOverlap(PhysReg, UnfoldPR))
1115 return false;
1116 continue;
1117 }
1118 if (VRM.hasPhys(VirtReg)) {
1119 PhysReg = VRM.getPhys(VirtReg);
1120 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
1121 continue;
1122 }
1123
1124 // Ok, we'll need to reload the value into a register which makes
1125 // it impossible to perform the store unfolding optimization later.
1126 // Let's see if it is possible to fold the load if the store is
1127 // unfolded. This allows us to perform the store unfolding
1128 // optimization.
1129 SmallVector<MachineInstr*, 4> NewMIs;
1130 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
1131 assert(NewMIs.size() == 1);
1132 MachineInstr *NewMI = NewMIs.back();
1133 NewMIs.clear();
1134 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
1135 assert(Idx != -1);
1136 SmallVector<unsigned, 1> Ops;
1137 Ops.push_back(Idx);
1138 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
1139 if (FoldedMI) {
1140 VRM.addSpillSlotUse(SS, FoldedMI);
1141 if (!VRM.hasPhys(UnfoldVR))
1142 VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
1143 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1144 MII = MBB.insert(MII, FoldedMI);
1145 InvalidateKills(MI, RegKills, KillOps);
1146 VRM.RemoveMachineInstrFromMaps(&MI);
1147 MBB.erase(&MI);
1148 MF.DeleteMachineInstr(NewMI);
1149 return true;
1150 }
1151 MF.DeleteMachineInstr(NewMI);
1152 }
1153 }
1154
1155 return false;
1156 }
1157
1158 /// CommuteToFoldReload -
1159 /// Look for
1160 /// r1 = load fi#1
1161 /// r1 = op r1, r2<kill>
1162 /// store r1, fi#1
1163 ///
1164 /// If op is commutable and r2 is killed, then we can xform these to
1165 /// r2 = op r2, fi#1
1166 /// store r2, fi#1
1167 bool CommuteToFoldReload(MachineBasicBlock &MBB,
1168 MachineBasicBlock::iterator &MII,
1169 unsigned VirtReg, unsigned SrcReg, int SS,
1170 AvailableSpills &Spills,
1171 BitVector &RegKills,
1172 std::vector<MachineOperand*> &KillOps,
1173 const TargetRegisterInfo *TRI,
1174 VirtRegMap &VRM) {
1175 if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
1176 return false;
1177
1178 MachineFunction &MF = *MBB.getParent();
1179 MachineInstr &MI = *MII;
1180 MachineBasicBlock::iterator DefMII = prior(MII);
1181 MachineInstr *DefMI = DefMII;
1182 const TargetInstrDesc &TID = DefMI->getDesc();
1183 unsigned NewDstIdx;
1184 if (DefMII != MBB.begin() &&
1185 TID.isCommutable() &&
1186 TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
1187 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1188 unsigned NewReg = NewDstMO.getReg();
1189 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1190 return false;
1191 MachineInstr *ReloadMI = prior(DefMII);
1192 int FrameIdx;
1193 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1194 if (DestReg != SrcReg || FrameIdx != SS)
1195 return false;
1196 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1197 if (UseIdx == -1)
1198 return false;
1199 unsigned DefIdx;
1200 if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
1201 return false;
1202 assert(DefMI->getOperand(DefIdx).isReg() &&
1203 DefMI->getOperand(DefIdx).getReg() == SrcReg);
1204
1205 // Now commute def instruction.
1206 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1207 if (!CommutedMI)
1208 return false;
1209 SmallVector<unsigned, 1> Ops;
1210 Ops.push_back(NewDstIdx);
1211 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1212 // Not needed since foldMemoryOperand returns new MI.
1213 MF.DeleteMachineInstr(CommutedMI);
1214 if (!FoldedMI)
1215 return false;
1216
1217 VRM.addSpillSlotUse(SS, FoldedMI);
1218 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1219 // Insert new def MI and spill MI.
1220 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1221 TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
1222 MII = prior(MII);
1223 MachineInstr *StoreMI = MII;
1224 VRM.addSpillSlotUse(SS, StoreMI);
1225 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1226 MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack.
1227
1228 // Delete all 3 old instructions.
1229 InvalidateKills(*ReloadMI, RegKills, KillOps);
1230 VRM.RemoveMachineInstrFromMaps(ReloadMI);
1231 MBB.erase(ReloadMI);
1232 InvalidateKills(*DefMI, RegKills, KillOps);
1233 VRM.RemoveMachineInstrFromMaps(DefMI);
1234 MBB.erase(DefMI);
1235 InvalidateKills(MI, RegKills, KillOps);
1236 VRM.RemoveMachineInstrFromMaps(&MI);
1237 MBB.erase(&MI);
1238
1239 // If NewReg was previously holding value of some SS, it's now clobbered.
1240 // This has to be done now because it's a physical register. When this
1241 // instruction is re-visited, it's ignored.
1242 Spills.ClobberPhysReg(NewReg);
1243
1244 ++NumCommutes;
1245 return true;
1246 }
1247
1248 return false;
1249 }
1250
1251 /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1252 /// the last store to the same slot is now dead. If so, remove the last store.
1253 void SpillRegToStackSlot(MachineBasicBlock &MBB,
1254 MachineBasicBlock::iterator &MII,
1255 int Idx, unsigned PhysReg, int StackSlot,
1256 const TargetRegisterClass *RC,
1257 bool isAvailable, MachineInstr *&LastStore,
1258 AvailableSpills &Spills,
1259 SmallSet<MachineInstr*, 4> &ReMatDefs,
1260 BitVector &RegKills,
1261 std::vector<MachineOperand*> &KillOps,
1262 VirtRegMap &VRM) {
1263
1264 TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
1265 MachineInstr *StoreMI = next(MII);
1266 VRM.addSpillSlotUse(StackSlot, StoreMI);
1267 DOUT << "Store:\t" << *StoreMI;
1268
1269 // If there is a dead store to this stack slot, nuke it now.
1270 if (LastStore) {
1271 DOUT << "Removed dead store:\t" << *LastStore;
1272 ++NumDSE;
1273 SmallVector<unsigned, 2> KillRegs;
1274 InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
1275 MachineBasicBlock::iterator PrevMII = LastStore;
1276 bool CheckDef = PrevMII != MBB.begin();
1277 if (CheckDef)
1278 --PrevMII;
1279 VRM.RemoveMachineInstrFromMaps(LastStore);
1280 MBB.erase(LastStore);
1281 if (CheckDef) {
1282 // Look at defs of killed registers on the store. Mark the defs
1283 // as dead since the store has been deleted and they aren't
1284 // being reused.
1285 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1286 bool HasOtherDef = false;
1287 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1288 MachineInstr *DeadDef = PrevMII;
1289 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1290 // FIXME: This assumes a remat def does not have side
1291 // effects.
1292 VRM.RemoveMachineInstrFromMaps(DeadDef);
1293 MBB.erase(DeadDef);
1294 ++NumDRM;
1295 }
1296 }
1297 }
1298 }
1299 }
1300
1301 LastStore = next(MII);
1302
1303 // If the stack slot value was previously available in some other
1304 // register, change it now. Otherwise, make the register available,
1305 // in PhysReg.
1306 Spills.ModifyStackSlotOrReMat(StackSlot);
1307 Spills.ClobberPhysReg(PhysReg);
1308 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1309 ++NumStores;
1310 }
1311
1312 /// TransferDeadness - A identity copy definition is dead and it's being
1313 /// removed. Find the last def or use and mark it as dead / kill.
1314 void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1315 unsigned Reg, BitVector &RegKills,
1316 std::vector<MachineOperand*> &KillOps) {
1317 int LastUDDist = -1;
1318 MachineInstr *LastUDMI = NULL;
1319 for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1320 RE = RegInfo->reg_end(); RI != RE; ++RI) {
1321 MachineInstr *UDMI = &*RI;
1322 if (UDMI->getParent() != MBB)
1323 continue;
1324 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1325 if (DI == DistanceMap.end() || DI->second > CurDist)
1326 continue;
1327 if ((int)DI->second < LastUDDist)
1328 continue;
1329 LastUDDist = DI->second;
1330 LastUDMI = UDMI;
1331 }
1332
1333 if (LastUDMI) {
1334 MachineOperand *LastUD = NULL;
1335 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1336 MachineOperand &MO = LastUDMI->getOperand(i);
1337 if (!MO.isReg() || MO.getReg() != Reg)
1338 continue;
1339 if (!LastUD || (LastUD->isUse() && MO.isDef()))
1340 LastUD = &MO;
1341 if (LastUDMI->isRegTiedToDefOperand(i))
1342 return;
1343 }
1344 if (LastUD->isDef())
1345 LastUD->setIsDead();
1346 else {
1347 LastUD->setIsKill();
1348 RegKills.set(Reg);
1349 KillOps[Reg] = LastUD;
1350 }
1351 }
1352 }
1353
1354 /// rewriteMBB - Keep track of which spills are available even after the
1355 /// register allocator is done with them. If possible, avid reloading vregs.
1356 void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
1357 LiveIntervals *LIs,
1358 AvailableSpills &Spills, BitVector &RegKills,
1359 std::vector<MachineOperand*> &KillOps) {
1360
1361 DOUT << "\n**** Local spiller rewriting MBB '"
1362 << MBB.getBasicBlock()->getName() << "':\n";
1363
1364 MachineFunction &MF = *MBB.getParent();
1365
1366 // MaybeDeadStores - When we need to write a value back into a stack slot,
1367 // keep track of the inserted store. If the stack slot value is never read
1368 // (because the value was used from some available register, for example), and
1369 // subsequently stored to, the original store is dead. This map keeps track
1370 // of inserted stores that are not used. If we see a subsequent store to the
1371 // same stack slot, the original store is deleted.
1372 std::vector<MachineInstr*> MaybeDeadStores;
1373 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1374
1375 // ReMatDefs - These are rematerializable def MIs which are not deleted.
1376 SmallSet<MachineInstr*, 4> ReMatDefs;
1377
1378 // Clear kill info.
1379 SmallSet<unsigned, 2> KilledMIRegs;
1380 RegKills.reset();
1381 KillOps.clear();
1382 KillOps.resize(TRI->getNumRegs(), NULL);
1383
1384 unsigned Dist = 0;
1385 DistanceMap.clear();
1386 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1387 MII != E; ) {
1388 MachineBasicBlock::iterator NextMII = next(MII);
1389
1390 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1391 bool Erased = false;
1392 bool BackTracked = false;
1393 if (OptimizeByUnfold(MBB, MII,
1394 MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1395 NextMII = next(MII);
1396
1397 MachineInstr &MI = *MII;
1398
1399 if (VRM.hasEmergencySpills(&MI)) {
1400 // Spill physical register(s) in the rare case the allocator has run out
1401 // of registers to allocate.
1402 SmallSet<int, 4> UsedSS;
1403 std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1404 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1405 unsigned PhysReg = EmSpills[i];
1406 const TargetRegisterClass *RC =
1407 TRI->getPhysicalRegisterRegClass(PhysReg);
1408 assert(RC && "Unable to determine register class!");
1409 int SS = VRM.getEmergencySpillSlot(RC);
1410 if (UsedSS.count(SS))
1411 assert(0 && "Need to spill more than one physical registers!");
1412 UsedSS.insert(SS);
1413 TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1414 MachineInstr *StoreMI = prior(MII);
1415 VRM.addSpillSlotUse(SS, StoreMI);
1416 TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
1417 MachineInstr *LoadMI = next(MII);
1418 VRM.addSpillSlotUse(SS, LoadMI);
1419 ++NumPSpills;
1420 }
1421 NextMII = next(MII);
1422 }
1423
1424 // Insert restores here if asked to.
1425 if (VRM.isRestorePt(&MI)) {
1426 std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1427 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1428 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
1429 if (!VRM.getPreSplitReg(VirtReg))
1430 continue; // Split interval spilled again.
1431 unsigned Phys = VRM.getPhys(VirtReg);
1432 RegInfo->setPhysRegUsed(Phys);
1433
1434 // Check if the value being restored if available. If so, it must be
1435 // from a predecessor BB that fallthrough into this BB. We do not
1436 // expect:
1437 // BB1:
1438 // r1 = load fi#1
1439 // ...
1440 // = r1<kill>
1441 // ... # r1 not clobbered
1442 // ...
1443 // = load fi#1
1444 bool DoReMat = VRM.isReMaterialized(VirtReg);
1445 int SSorRMId = DoReMat
1446 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1447 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1448 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1449 if (InReg == Phys) {
1450 // If the value is already available in the expected register, save
1451 // a reload / remat.
1452 if (SSorRMId)
1453 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1454 else
1455 DOUT << "Reusing SS#" << SSorRMId;
1456 DOUT << " from physreg "
1457 << TRI->getName(InReg) << " for vreg"
1458 << VirtReg <<" instead of reloading into physreg "
1459 << TRI->getName(Phys) << "\n";
1460 ++NumOmitted;
1461 continue;
1462 } else if (InReg && InReg != Phys) {
1463 if (SSorRMId)
1464 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1465 else
1466 DOUT << "Reusing SS#" << SSorRMId;
1467 DOUT << " from physreg "
1468 << TRI->getName(InReg) << " for vreg"
1469 << VirtReg <<" by copying it into physreg "
1470 << TRI->getName(Phys) << "\n";
1471
1472 // If the reloaded / remat value is available in another register,
1473 // copy it to the desired register.
1474 TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC);
1475
1476 // This invalidates Phys.
1477 Spills.ClobberPhysReg(Phys);
1478 // Remember it's available.
1479 Spills.addAvailable(SSorRMId, Phys);
1480
1481 // Mark is killed.
1482 MachineInstr *CopyMI = prior(MII);
1483 MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1484 KillOpnd->setIsKill();
1485 UpdateKills(*CopyMI, RegKills, KillOps, TRI);
1486
1487 DOUT << '\t' << *CopyMI;
1488 ++NumCopified;
1489 continue;
1490 }
1491
1492 if (VRM.isReMaterialized(VirtReg)) {
1493 ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
1494 } else {
1495 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1496 TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC);
1497 MachineInstr *LoadMI = prior(MII);
1498 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1499 ++NumLoads;
1500 }
1501
1502 // This invalidates Phys.
1503 Spills.ClobberPhysReg(Phys);
1504 // Remember it's available.
1505 Spills.addAvailable(SSorRMId, Phys);
1506
1507 UpdateKills(*prior(MII), RegKills, KillOps, TRI);
1508 DOUT << '\t' << *prior(MII);
1509 }
1510 }
1511
1512 // Insert spills here if asked to.
1513 if (VRM.isSpillPt(&MI)) {
1514 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1515 VRM.getSpillPtSpills(&MI);
1516 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1517 unsigned VirtReg = SpillRegs[i].first;
1518 bool isKill = SpillRegs[i].second;
1519 if (!VRM.getPreSplitReg(VirtReg))
1520 continue; // Split interval spilled again.
1521 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1522 unsigned Phys = VRM.getPhys(VirtReg);
1523 int StackSlot = VRM.getStackSlot(VirtReg);
1524 TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1525 MachineInstr *StoreMI = next(MII);
1526 VRM.addSpillSlotUse(StackSlot, StoreMI);
1527 DOUT << "Store:\t" << *StoreMI;
1528 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1529 }
1530 NextMII = next(MII);
1531 }
1532
1533 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1534 /// reuse.
1535 ReuseInfo ReusedOperands(MI, TRI);
1536 SmallVector<unsigned, 4> VirtUseOps;
1537 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1538 MachineOperand &MO = MI.getOperand(i);
1539 if (!MO.isReg() || MO.getReg() == 0)
1540 continue; // Ignore non-register operands.
1541
1542 unsigned VirtReg = MO.getReg();
1543 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1544 // Ignore physregs for spilling, but remember that it is used by this
1545 // function.
1546 RegInfo->setPhysRegUsed(VirtReg);
1547 continue;
1548 }
1549
1550 // We want to process implicit virtual register uses first.
1551 if (MO.isImplicit())
1552 // If the virtual register is implicitly defined, emit a implicit_def
1553 // before so scavenger knows it's "defined".
1554 VirtUseOps.insert(VirtUseOps.begin(), i);
1555 else
1556 VirtUseOps.push_back(i);
1557 }
1558
1559 // Process all of the spilled uses and all non spilled reg references.
1560 SmallVector<int, 2> PotentialDeadStoreSlots;
1561 KilledMIRegs.clear();
1562 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1563 unsigned i = VirtUseOps[j];
1564 MachineOperand &MO = MI.getOperand(i);
1565 unsigned VirtReg = MO.getReg();
1566 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1567 "Not a virtual register?");
1568
1569 unsigned SubIdx = MO.getSubReg();
1570 if (VRM.isAssignedReg(VirtReg)) {
1571 // This virtual register was assigned a physreg!
1572 unsigned Phys = VRM.getPhys(VirtReg);
1573 RegInfo->setPhysRegUsed(Phys);
1574 if (MO.isDef())
1575 ReusedOperands.markClobbered(Phys);
1576 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1577 MI.getOperand(i).setReg(RReg);
1578 MI.getOperand(i).setSubReg(0);
1579 if (VRM.isImplicitlyDefined(VirtReg))
1580 BuildMI(MBB, &MI, MI.getDebugLoc(),
1581 TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1582 continue;
1583 }
1584
1585 // This virtual register is now known to be a spilled value.
1586 if (!MO.isUse())
1587 continue; // Handle defs in the loop below (handle use&def here though)
1588
1589 bool AvoidReload = false;
1590 if (LIs->hasInterval(VirtReg)) {
1591 LiveInterval &LI = LIs->getInterval(VirtReg);
1592 if (!LI.liveAt(LIs->getUseIndex(LI.beginNumber())))
1593 // Must be defined by an implicit def. It should not be spilled. Note,
1594 // this is for correctness reason. e.g.
1595 // 8 %reg1024<def> = IMPLICIT_DEF
1596 // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
1597 // The live range [12, 14) are not part of the r1024 live interval since
1598 // it's defined by an implicit def. It will not conflicts with live
1599 // interval of r1025. Now suppose both registers are spilled, you can
1600 // easily see a situation where both registers are reloaded before
1601 // the INSERT_SUBREG and both target registers that would overlap.
1602 AvoidReload = true;
1603 }
1604
1605 bool DoReMat = VRM.isReMaterialized(VirtReg);
1606 int SSorRMId = DoReMat
1607 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1608 int ReuseSlot = SSorRMId;
1609
1610 // Check to see if this stack slot is available.
1611 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1612
1613 // If this is a sub-register use, make sure the reuse register is in the
1614 // right register class. For example, for x86 not all of the 32-bit
1615 // registers have accessible sub-registers.
1616 // Similarly so for EXTRACT_SUBREG. Consider this:
1617 // EDI = op
1618 // MOV32_mr fi#1, EDI
1619 // ...
1620 // = EXTRACT_SUBREG fi#1
1621 // fi#1 is available in EDI, but it cannot be reused because it's not in
1622 // the right register file.
1623 if (PhysReg && !AvoidReload &&
1624 (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1625 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1626 if (!RC->contains(PhysReg))
1627 PhysReg = 0;
1628 }
1629
1630 if (PhysReg && !AvoidReload) {
1631 // This spilled operand might be part of a two-address operand. If this
1632 // is the case, then changing it will necessarily require changing the
1633 // def part of the instruction as well. However, in some cases, we
1634 // aren't allowed to modify the reused register. If none of these cases
1635 // apply, reuse it.
1636 bool CanReuse = true;
1637 bool isTied = MI.isRegTiedToDefOperand(i);
1638 if (isTied) {
1639 // Okay, we have a two address operand. We can reuse this physreg as
1640 // long as we are allowed to clobber the value and there isn't an
1641 // earlier def that has already clobbered the physreg.
1642 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
1643 Spills.canClobberPhysReg(PhysReg);
1644 }
1645
1646 if (CanReuse) {
1647 // If this stack slot value is already available, reuse it!
1648 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1649 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1650 else
1651 DOUT << "Reusing SS#" << ReuseSlot;
1652 DOUT << " from physreg "
1653 << TRI->getName(PhysReg) << " for vreg"
1654 << VirtReg <<" instead of reloading into physreg "
1655 << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1656 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1657 MI.getOperand(i).setReg(RReg);
1658 MI.getOperand(i).setSubReg(0);
1659
1660 // The only technical detail we have is that we don't know that
1661 // PhysReg won't be clobbered by a reloaded stack slot that occurs
1662 // later in the instruction. In particular, consider 'op V1, V2'.
1663 // If V1 is available in physreg R0, we would choose to reuse it
1664 // here, instead of reloading it into the register the allocator
1665 // indicated (say R1). However, V2 might have to be reloaded
1666 // later, and it might indicate that it needs to live in R0. When
1667 // this occurs, we need to have information available that
1668 // indicates it is safe to use R1 for the reload instead of R0.
1669 //
1670 // To further complicate matters, we might conflict with an alias,
1671 // or R0 and R1 might not be compatible with each other. In this
1672 // case, we actually insert a reload for V1 in R1, ensuring that
1673 // we can get at R0 or its alias.
1674 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1675 VRM.getPhys(VirtReg), VirtReg);
1676 if (isTied)
1677 // Only mark it clobbered if this is a use&def operand.
1678 ReusedOperands.markClobbered(PhysReg);
1679 ++NumReused;
1680
1681 if (MI.getOperand(i).isKill() &&
1682 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1683
1684 // The store of this spilled value is potentially dead, but we
1685 // won't know for certain until we've confirmed that the re-use
1686 // above is valid, which means waiting until the other operands
1687 // are processed. For now we just track the spill slot, we'll
1688 // remove it after the other operands are processed if valid.
1689
1690 PotentialDeadStoreSlots.push_back(ReuseSlot);
1691 }
1692
1693 // Mark is isKill if it's there no other uses of the same virtual
1694 // register and it's not a two-address operand. IsKill will be
1695 // unset if reg is reused.
1696 if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
1697 MI.getOperand(i).setIsKill();
1698 KilledMIRegs.insert(VirtReg);
1699 }
1700
1701 continue;
1702 } // CanReuse
1703
1704 // Otherwise we have a situation where we have a two-address instruction
1705 // whose mod/ref operand needs to be reloaded. This reload is already
1706 // available in some register "PhysReg", but if we used PhysReg as the
1707 // operand to our 2-addr instruction, the instruction would modify
1708 // PhysReg. This isn't cool if something later uses PhysReg and expects
1709 // to get its initial value.
1710 //
1711 // To avoid this problem, and to avoid doing a load right after a store,
1712 // we emit a copy from PhysReg into the designated register for this
1713 // operand.
1714 unsigned DesignatedReg = VRM.getPhys(VirtReg);
1715 assert(DesignatedReg && "Must map virtreg to physreg!");
1716
1717 // Note that, if we reused a register for a previous operand, the
1718 // register we want to reload into might not actually be
1719 // available. If this occurs, use the register indicated by the
1720 // reuser.
1721 if (ReusedOperands.hasReuses())
1722 DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1723 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1724
1725 // If the mapped designated register is actually the physreg we have
1726 // incoming, we don't need to inserted a dead copy.
1727 if (DesignatedReg == PhysReg) {
1728 // If this stack slot value is already available, reuse it!
1729 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1730 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1731 else
1732 DOUT << "Reusing SS#" << ReuseSlot;
1733 DOUT << " from physreg " << TRI->getName(PhysReg)
1734 << " for vreg" << VirtReg
1735 << " instead of reloading into same physreg.\n";
1736 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1737 MI.getOperand(i).setReg(RReg);
1738 MI.getOperand(i).setSubReg(0);
1739 ReusedOperands.markClobbered(RReg);
1740 ++NumReused;
1741 continue;
1742 }
1743
1744 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1745 RegInfo->setPhysRegUsed(DesignatedReg);
1746 ReusedOperands.markClobbered(DesignatedReg);
1747 TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1748
1749 MachineInstr *CopyMI = prior(MII);
1750 UpdateKills(*CopyMI, RegKills, KillOps, TRI);
1751
1752 // This invalidates DesignatedReg.
1753 Spills.ClobberPhysReg(DesignatedReg);
1754
1755 Spills.addAvailable(ReuseSlot, DesignatedReg);
1756 unsigned RReg =
1757 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1758 MI.getOperand(i).setReg(RReg);
1759 MI.getOperand(i).setSubReg(0);
1760 DOUT << '\t' << *prior(MII);
1761 ++NumReused;
1762 continue;
1763 } // if (PhysReg)
1764
1765 // Otherwise, reload it and remember that we have it.
1766 PhysReg = VRM.getPhys(VirtReg);
1767 assert(PhysReg && "Must map virtreg to physreg!");
1768
1769 // Note that, if we reused a register for a previous operand, the
1770 // register we want to reload into might not actually be
1771 // available. If this occurs, use the register indicated by the
1772 // reuser.
1773 if (ReusedOperands.hasReuses())
1774 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1775 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1776
1777 RegInfo->setPhysRegUsed(PhysReg);
1778 ReusedOperands.markClobbered(PhysReg);
1779 if (AvoidReload)
1780 ++NumAvoided;
1781 else {
1782 if (DoReMat) {
1783 ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
1784 } else {
1785 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1786 TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1787 MachineInstr *LoadMI = prior(MII);
1788 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1789 ++NumLoads;
1790 }
1791 // This invalidates PhysReg.
1792 Spills.ClobberPhysReg(PhysReg);
1793
1794 // Any stores to this stack slot are not dead anymore.
1795 if (!DoReMat)
1796 MaybeDeadStores[SSorRMId] = NULL;
1797 Spills.addAvailable(SSorRMId, PhysReg);
1798 // Assumes this is the last use. IsKill will be unset if reg is reused
1799 // unless it's a two-address operand.
1800 if (!MI.isRegTiedToDefOperand(i) &&
1801 KilledMIRegs.count(VirtReg) == 0) {
1802 MI.getOperand(i).setIsKill();
1803 KilledMIRegs.insert(VirtReg);
1804 }
1805
1806 UpdateKills(*prior(MII), RegKills, KillOps, TRI);
1807 DOUT << '\t' << *prior(MII);
1808 }
1809 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1810 MI.getOperand(i).setReg(RReg);
1811 MI.getOperand(i).setSubReg(0);
1812 }
1813
1814 // Ok - now we can remove stores that have been confirmed dead.
1815 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
1816 // This was the last use and the spilled value is still available
1817 // for reuse. That means the spill was unnecessary!
1818 int PDSSlot = PotentialDeadStoreSlots[j];
1819 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
1820 if (DeadStore) {
1821 DOUT << "Removed dead store:\t" << *DeadStore;
1822 InvalidateKills(*DeadStore, RegKills, KillOps);
1823 VRM.RemoveMachineInstrFromMaps(DeadStore);
1824 MBB.erase(DeadStore);
1825 MaybeDeadStores[PDSSlot] = NULL;
1826 ++NumDSE;
1827 }
1828 }
1829
1830
1831 DOUT << '\t' << MI;
1832
1833
1834 // If we have folded references to memory operands, make sure we clear all
1835 // physical registers that may contain the value of the spilled virtual
1836 // register
1837 SmallSet<int, 2> FoldedSS;
1838 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1839 unsigned VirtReg = I->second.first;
1840 VirtRegMap::ModRef MR = I->second.second;
1841 DOUT << "Folded vreg: " << VirtReg << " MR: " << MR;
1842
1843 // MI2VirtMap be can updated which invalidate the iterator.
1844 // Increment the iterator first.
1845 ++I;
1846 int SS = VRM.getStackSlot(VirtReg);
1847 if (SS == VirtRegMap::NO_STACK_SLOT)
1848 continue;
1849 FoldedSS.insert(SS);
1850 DOUT << " - StackSlot: " << SS << "\n";
1851
1852 // If this folded instruction is just a use, check to see if it's a
1853 // straight load from the virt reg slot.
1854 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1855 int FrameIdx;
1856 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1857 if (DestReg && FrameIdx == SS) {
1858 // If this spill slot is available, turn it into a copy (or nothing)
1859 // instead of leaving it as a load!
1860 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1861 DOUT << "Promoted Load To Copy: " << MI;
1862 if (DestReg != InReg) {
1863 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1864 TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1865 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
1866 unsigned SubIdx = DefMO->getSubReg();
1867 // Revisit the copy so we make sure to notice the effects of the
1868 // operation on the destreg (either needing to RA it if it's
1869 // virtual or needing to clobber any values if it's physical).
1870 NextMII = &MI;
1871 --NextMII; // backtrack to the copy.
1872 // Propagate the sub-register index over.
1873 if (SubIdx) {
1874 DefMO = NextMII->findRegisterDefOperand(DestReg);
1875 DefMO->setSubReg(SubIdx);
1876 }
1877
1878 // Mark is killed.
1879 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
1880 KillOpnd->setIsKill();
1881
1882 BackTracked = true;
1883 } else {
1884 DOUT << "Removing now-noop copy: " << MI;
1885 // Unset last kill since it's being reused.
1886 InvalidateKill(InReg, RegKills, KillOps);
1887 Spills.disallowClobberPhysReg(InReg);
1888 }
1889
1890 InvalidateKills(MI, RegKills, KillOps);
1891 VRM.RemoveMachineInstrFromMaps(&MI);
1892 MBB.erase(&MI);
1893 Erased = true;
1894 goto ProcessNextInst;
1895 }
1896 } else {
1897 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1898 SmallVector<MachineInstr*, 4> NewMIs;
1899 if (PhysReg &&
1900 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1901 MBB.insert(MII, NewMIs[0]);
1902 InvalidateKills(MI, RegKills, KillOps);
1903 VRM.RemoveMachineInstrFromMaps(&MI);
1904 MBB.erase(&MI);
1905 Erased = true;
1906 --NextMII; // backtrack to the unfolded instruction.
1907 BackTracked = true;
1908 goto ProcessNextInst;
1909 }
1910 }
1911 }
1912
1913 // If this reference is not a use, any previous store is now dead.
1914 // Otherwise, the store to this stack slot is not dead anymore.
1915 MachineInstr* DeadStore = MaybeDeadStores[SS];
1916 if (DeadStore) {
1917 bool isDead = !(MR & VirtRegMap::isRef);
1918 MachineInstr *NewStore = NULL;
1919 if (MR & VirtRegMap::isModRef) {
1920 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1921 SmallVector<MachineInstr*, 4> NewMIs;
1922 // We can reuse this physreg as long as we are allowed to clobber
1923 // the value and there isn't an earlier def that has already clobbered
1924 // the physreg.
1925 if (PhysReg &&
1926 !ReusedOperands.isClobbered(PhysReg) &&
1927 Spills.canClobberPhysReg(PhysReg) &&
1928 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
1929 MachineOperand *KillOpnd =
1930 DeadStore->findRegisterUseOperand(PhysReg, true);
1931 // Note, if the store is storing a sub-register, it's possible the
1932 // super-register is needed below.
1933 if (KillOpnd && !KillOpnd->getSubReg() &&
1934 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
1935 MBB.insert(MII, NewMIs[0]);
1936 NewStore = NewMIs[1];
1937 MBB.insert(MII, NewStore);
1938 VRM.addSpillSlotUse(SS, NewStore);
1939 InvalidateKills(MI, RegKills, KillOps);
1940 VRM.RemoveMachineInstrFromMaps(&MI);
1941 MBB.erase(&MI);
1942 Erased = true;
1943 --NextMII;
1944 --NextMII; // backtrack to the unfolded instruction.
1945 BackTracked = true;
1946 isDead = true;
1947 ++NumSUnfold;
1948 }
1949 }
1950 }
1951
1952 if (isDead) { // Previous store is dead.
1953 // If we get here, the store is dead, nuke it now.
1954 DOUT << "Removed dead store:\t" << *DeadStore;
1955 InvalidateKills(*DeadStore, RegKills, KillOps);
1956 VRM.RemoveMachineInstrFromMaps(DeadStore);
1957 MBB.erase(DeadStore);
1958 if (!NewStore)
1959 ++NumDSE;
1960 }
1961
1962 MaybeDeadStores[SS] = NULL;
1963 if (NewStore) {
1964 // Treat this store as a spill merged into a copy. That makes the
1965 // stack slot value available.
1966 VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
1967 goto ProcessNextInst;
1968 }
1969 }
1970
1971 // If the spill slot value is available, and this is a new definition of
1972 // the value, the value is not available anymore.
1973 if (MR & VirtRegMap::isMod) {
1974 // Notice that the value in this stack slot has been modified.
1975 Spills.ModifyStackSlotOrReMat(SS);
1976
1977 // If this is *just* a mod of the value, check to see if this is just a
1978 // store to the spill slot (i.e. the spill got merged into the copy). If
1979 // so, realize that the vreg is available now, and add the store to the
1980 // MaybeDeadStore info.
1981 int StackSlot;
1982 if (!(MR & VirtRegMap::isRef)) {
1983 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
1984 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1985 "Src hasn't been allocated yet?");
1986
1987 if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
1988 Spills, RegKills, KillOps, TRI, VRM)) {
1989 NextMII = next(MII);
1990 BackTracked = true;
1991 goto ProcessNextInst;
1992 }
1993
1994 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
1995 // this as a potentially dead store in case there is a subsequent
1996 // store into the stack slot without a read from it.
1997 MaybeDeadStores[StackSlot] = &MI;
1998
1999 // If the stack slot value was previously available in some other
2000 // register, change it now. Otherwise, make the register
2001 // available in PhysReg.
2002 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
2003 }
2004 }
2005 }
2006 }
2007
2008 // Process all of the spilled defs.
2009 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2010 MachineOperand &MO = MI.getOperand(i);
2011 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
2012 continue;
2013
2014 unsigned VirtReg = MO.getReg();
2015 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
2016 // Check to see if this is a noop copy. If so, eliminate the
2017 // instruction before considering the dest reg to be changed.
2018 unsigned Src, Dst, SrcSR, DstSR;
2019 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
2020 ++NumDCE;
2021 DOUT << "Removing now-noop copy: " << MI;
2022 SmallVector<unsigned, 2> KillRegs;
2023 InvalidateKills(MI, RegKills, KillOps, &KillRegs);
2024 if (MO.isDead() && !KillRegs.empty()) {
2025 // Source register or an implicit super/sub-register use is killed.
2026 assert(KillRegs[0] == Dst ||
2027 TRI->isSubRegister(KillRegs[0], Dst) ||
2028 TRI->isSuperRegister(KillRegs[0], Dst));
2029 // Last def is now dead.
2030 TransferDeadness(&MBB, Dist, Src, RegKills, KillOps);
2031 }
2032 VRM.RemoveMachineInstrFromMaps(&MI);
2033 MBB.erase(&MI);
2034 Erased = true;
2035 Spills.disallowClobberPhysReg(VirtReg);
2036 goto ProcessNextInst;
2037 }
2038
2039 // If it's not a no-op copy, it clobbers the value in the destreg.
2040 Spills.ClobberPhysReg(VirtReg);
2041 ReusedOperands.markClobbered(VirtReg);
2042
2043 // Check to see if this instruction is a load from a stack slot into
2044 // a register. If so, this provides the stack slot value in the reg.
2045 int FrameIdx;
2046 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
2047 assert(DestReg == VirtReg && "Unknown load situation!");
2048
2049 // If it is a folded reference, then it's not safe to clobber.
2050 bool Folded = FoldedSS.count(FrameIdx);
2051 // Otherwise, if it wasn't available, remember that it is now!
2052 Spills.addAvailable(FrameIdx, DestReg, !Folded);
2053 goto ProcessNextInst;
2054 }
2055
2056 continue;
2057 }
2058
2059 unsigned SubIdx = MO.getSubReg();
2060 bool DoReMat = VRM.isReMaterialized(VirtReg);
2061 if (DoReMat)
2062 ReMatDefs.insert(&MI);
2063
2064 // The only vregs left are stack slot definitions.
2065 int StackSlot = VRM.getStackSlot(VirtReg);
2066 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
2067
2068 // If this def is part of a two-address operand, make sure to execute
2069 // the store from the correct physical register.
2070 unsigned PhysReg;
2071 unsigned TiedOp;
2072 if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
2073 PhysReg = MI.getOperand(TiedOp).getReg();
2074 if (SubIdx) {
2075 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
2076 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
2077 "Can't find corresponding super-register!");
2078 PhysReg = SuperReg;
2079 }
2080 } else {
2081 PhysReg = VRM.getPhys(VirtReg);
2082 if (ReusedOperands.isClobbered(PhysReg)) {
2083 // Another def has taken the assigned physreg. It must have been a
2084 // use&def which got it due to reuse. Undo the reuse!
2085 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
2086 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
2087 }
2088 }
2089
2090 assert(PhysReg && "VR not assigned a physical register?");
2091 RegInfo->setPhysRegUsed(PhysReg);
2092 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2093 ReusedOperands.markClobbered(RReg);
2094 MI.getOperand(i).setReg(RReg);
2095 MI.getOperand(i).setSubReg(0);
2096
2097 if (!MO.isDead()) {
2098 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
2099 SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
2100 LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
2101 NextMII = next(MII);
2102
2103 // Check to see if this is a noop copy. If so, eliminate the
2104 // instruction before considering the dest reg to be changed.
2105 {
2106 unsigned Src, Dst, SrcSR, DstSR;
2107 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
2108 ++NumDCE;
2109 DOUT << "Removing now-noop copy: " << MI;
2110 InvalidateKills(MI, RegKills, KillOps);
2111 VRM.RemoveMachineInstrFromMaps(&MI);
2112 MBB.erase(&MI);
2113 Erased = true;
2114 UpdateKills(*LastStore, RegKills, KillOps, TRI);
2115 goto ProcessNextInst;
2116 }
2117 }
2118 }
2119 }
2120 ProcessNextInst:
2121 DistanceMap.insert(std::make_pair(&MI, Dist++));
2122 if (!Erased && !BackTracked) {
2123 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
2124 UpdateKills(*II, RegKills, KillOps, TRI);
2125 }
2126 MII = NextMII;
2127 }
2128
2129 }
2130
2131};
2132
2133llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
2134 switch (RewriterOpt) {
2135 default: assert(0 && "Unreachable!");
2136 case local:
2137 return new LocalRewriter();
2138 case simple:
2139 return new SimpleRewriter();
2140 }
2141}