blob: 08831dfd227ee3e568c4f9695dbd7e9f8de3c95c [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Dan Gohman844731a2008-05-13 00:00:25 +0000106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202 unsigned SCEVTy, const SCEV *op, const Type *ty)
203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214 const SCEV *op, const Type *ty)
215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226 const SCEV *op, const Type *ty)
227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohmanc93b4cf2010-03-18 16:16:38 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238 const SCEV *op, const Type *ty)
239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000250 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000251 OS << "(";
252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253 OS << **I;
254 if (next(I) != E)
255 OS << OpStr;
256 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000257 OS << ")";
258}
259
Dan Gohmanecb403a2009-05-07 14:00:19 +0000260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000261 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
262 if (!getOperand(i)->dominates(BB, DT))
263 return false;
264 }
265 return true;
266}
267
Dan Gohman6e70e312009-09-27 15:26:03 +0000268bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
269 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
270 if (!getOperand(i)->properlyDominates(BB, DT))
271 return false;
272 }
273 return true;
274}
275
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000276bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
277 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
278}
279
Dan Gohman6e70e312009-09-27 15:26:03 +0000280bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
281 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
282}
283
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000284void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000285 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000286}
287
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000288const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000289 // In most cases the types of LHS and RHS will be the same, but in some
290 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
291 // depend on the type for correctness, but handling types carefully can
292 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
293 // a pointer type than the RHS, so use the RHS' type here.
294 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000295}
296
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000297bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000298 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000299 if (!QueryLoop)
300 return false;
301
302 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000303 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000304 return false;
305
306 // This recurrence is variant w.r.t. QueryLoop if any of its operands
307 // are variant.
308 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
309 if (!getOperand(i)->isLoopInvariant(QueryLoop))
310 return false;
311
312 // Otherwise it's loop-invariant.
313 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000314}
315
Dan Gohman39125d82010-02-13 00:19:39 +0000316bool
317SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
318 return DT->dominates(L->getHeader(), BB) &&
319 SCEVNAryExpr::dominates(BB, DT);
320}
321
322bool
323SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
324 // This uses a "dominates" query instead of "properly dominates" query because
325 // the instruction which produces the addrec's value is a PHI, and a PHI
326 // effectively properly dominates its entire containing block.
327 return DT->dominates(L->getHeader(), BB) &&
328 SCEVNAryExpr::properlyDominates(BB, DT);
329}
330
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000331void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000332 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000333 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000334 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000335 OS << "}<";
336 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
337 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338}
Chris Lattner53e677a2004-04-02 20:23:17 +0000339
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000340bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
341 // All non-instruction values are loop invariant. All instructions are loop
342 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000343 // Instructions are never considered invariant in the function body
344 // (null loop) because they are defined within the "loop".
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman92329c72009-12-18 01:24:09 +0000346 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000347 return true;
348}
Chris Lattner53e677a2004-04-02 20:23:17 +0000349
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000350bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
351 if (Instruction *I = dyn_cast<Instruction>(getValue()))
352 return DT->dominates(I->getParent(), BB);
353 return true;
354}
355
Dan Gohman6e70e312009-09-27 15:26:03 +0000356bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
357 if (Instruction *I = dyn_cast<Instruction>(getValue()))
358 return DT->properlyDominates(I->getParent(), BB);
359 return true;
360}
361
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000362const Type *SCEVUnknown::getType() const {
363 return V->getType();
364}
Chris Lattner53e677a2004-04-02 20:23:17 +0000365
Dan Gohman0f5efe52010-01-28 02:15:55 +0000366bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
367 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
368 if (VCE->getOpcode() == Instruction::PtrToInt)
369 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000370 if (CE->getOpcode() == Instruction::GetElementPtr &&
371 CE->getOperand(0)->isNullValue() &&
372 CE->getNumOperands() == 2)
373 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
374 if (CI->isOne()) {
375 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
376 ->getElementType();
377 return true;
378 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000379
380 return false;
381}
382
383bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
384 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
385 if (VCE->getOpcode() == Instruction::PtrToInt)
386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000387 if (CE->getOpcode() == Instruction::GetElementPtr &&
388 CE->getOperand(0)->isNullValue()) {
389 const Type *Ty =
390 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
391 if (const StructType *STy = dyn_cast<StructType>(Ty))
392 if (!STy->isPacked() &&
393 CE->getNumOperands() == 3 &&
394 CE->getOperand(1)->isNullValue()) {
395 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
396 if (CI->isOne() &&
397 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000398 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000399 AllocTy = STy->getElementType(1);
400 return true;
401 }
402 }
403 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000404
405 return false;
406}
407
Dan Gohman4f8eea82010-02-01 18:27:38 +0000408bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
409 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
410 if (VCE->getOpcode() == Instruction::PtrToInt)
411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
412 if (CE->getOpcode() == Instruction::GetElementPtr &&
413 CE->getNumOperands() == 3 &&
414 CE->getOperand(0)->isNullValue() &&
415 CE->getOperand(1)->isNullValue()) {
416 const Type *Ty =
417 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
418 // Ignore vector types here so that ScalarEvolutionExpander doesn't
419 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000420 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000421 CTy = Ty;
422 FieldNo = CE->getOperand(2);
423 return true;
424 }
425 }
426
427 return false;
428}
429
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000430void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000431 const Type *AllocTy;
432 if (isSizeOf(AllocTy)) {
433 OS << "sizeof(" << *AllocTy << ")";
434 return;
435 }
436 if (isAlignOf(AllocTy)) {
437 OS << "alignof(" << *AllocTy << ")";
438 return;
439 }
440
Dan Gohman4f8eea82010-02-01 18:27:38 +0000441 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000442 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000443 if (isOffsetOf(CTy, FieldNo)) {
444 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000445 WriteAsOperand(OS, FieldNo, false);
446 OS << ")";
447 return;
448 }
449
450 // Otherwise just print it normally.
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000451 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000452}
453
Chris Lattner8d741b82004-06-20 06:23:15 +0000454//===----------------------------------------------------------------------===//
455// SCEV Utilities
456//===----------------------------------------------------------------------===//
457
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000458static bool CompareTypes(const Type *A, const Type *B) {
459 if (A->getTypeID() != B->getTypeID())
460 return A->getTypeID() < B->getTypeID();
461 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
462 const IntegerType *BI = cast<IntegerType>(B);
463 return AI->getBitWidth() < BI->getBitWidth();
464 }
465 if (const PointerType *AI = dyn_cast<PointerType>(A)) {
466 const PointerType *BI = cast<PointerType>(B);
467 return CompareTypes(AI->getElementType(), BI->getElementType());
468 }
469 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
470 const ArrayType *BI = cast<ArrayType>(B);
471 if (AI->getNumElements() != BI->getNumElements())
472 return AI->getNumElements() < BI->getNumElements();
473 return CompareTypes(AI->getElementType(), BI->getElementType());
474 }
475 if (const VectorType *AI = dyn_cast<VectorType>(A)) {
476 const VectorType *BI = cast<VectorType>(B);
477 if (AI->getNumElements() != BI->getNumElements())
478 return AI->getNumElements() < BI->getNumElements();
479 return CompareTypes(AI->getElementType(), BI->getElementType());
480 }
481 if (const StructType *AI = dyn_cast<StructType>(A)) {
482 const StructType *BI = cast<StructType>(B);
483 if (AI->getNumElements() != BI->getNumElements())
484 return AI->getNumElements() < BI->getNumElements();
485 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
486 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
487 CompareTypes(BI->getElementType(i), AI->getElementType(i)))
488 return CompareTypes(AI->getElementType(i), BI->getElementType(i));
489 }
490 return false;
491}
492
Chris Lattner8d741b82004-06-20 06:23:15 +0000493namespace {
494 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
495 /// than the complexity of the RHS. This comparator is used to canonicalize
496 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000497 class SCEVComplexityCompare {
Dan Gohman72861302009-05-07 14:39:04 +0000498 LoopInfo *LI;
499 public:
500 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
501
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000502 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000503 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
504 if (LHS == RHS)
505 return false;
506
Dan Gohman72861302009-05-07 14:39:04 +0000507 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohmanef071582010-06-07 19:12:54 +0000508 unsigned LST = LHS->getSCEVType();
509 unsigned RST = RHS->getSCEVType();
510 if (LST != RST)
511 return LST < RST;
Dan Gohman72861302009-05-07 14:39:04 +0000512
Dan Gohman4d52c6d2010-06-07 19:06:13 +0000513 // Then, pick an arbitrary sort. Use the profiling data for speed.
514 const FoldingSetNodeIDRef &L = LHS->getProfile();
515 const FoldingSetNodeIDRef &R = RHS->getProfile();
516 size_t LSize = L.getSize();
517 size_t RSize = R.getSize();
518 if (LSize != RSize)
519 return LSize < RSize;
520 return memcmp(L.getData(), R.getData(),
521 LSize * sizeof(*L.getData())) < 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000522 }
523 };
524}
525
526/// GroupByComplexity - Given a list of SCEV objects, order them by their
527/// complexity, and group objects of the same complexity together by value.
528/// When this routine is finished, we know that any duplicates in the vector are
529/// consecutive and that complexity is monotonically increasing.
530///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000531/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000532/// results from this routine. In other words, we don't want the results of
533/// this to depend on where the addresses of various SCEV objects happened to
534/// land in memory.
535///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000536static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000537 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000538 if (Ops.size() < 2) return; // Noop
Dan Gohman4d52c6d2010-06-07 19:06:13 +0000539
540 SCEVComplexityCompare Comp(LI);
541
Chris Lattner8d741b82004-06-20 06:23:15 +0000542 if (Ops.size() == 2) {
543 // This is the common case, which also happens to be trivially simple.
544 // Special case it.
Dan Gohman4d52c6d2010-06-07 19:06:13 +0000545 if (Comp(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000546 std::swap(Ops[0], Ops[1]);
547 return;
548 }
549
Dan Gohman4d52c6d2010-06-07 19:06:13 +0000550 std::stable_sort(Ops.begin(), Ops.end(), Comp);
Chris Lattner8d741b82004-06-20 06:23:15 +0000551}
552
Chris Lattner53e677a2004-04-02 20:23:17 +0000553
Chris Lattner53e677a2004-04-02 20:23:17 +0000554
555//===----------------------------------------------------------------------===//
556// Simple SCEV method implementations
557//===----------------------------------------------------------------------===//
558
Eli Friedmanb42a6262008-08-04 23:49:06 +0000559/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000560/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000561static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000562 ScalarEvolution &SE,
563 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000564 // Handle the simplest case efficiently.
565 if (K == 1)
566 return SE.getTruncateOrZeroExtend(It, ResultTy);
567
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000568 // We are using the following formula for BC(It, K):
569 //
570 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
571 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000572 // Suppose, W is the bitwidth of the return value. We must be prepared for
573 // overflow. Hence, we must assure that the result of our computation is
574 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
575 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000576 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000577 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000578 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000579 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
580 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000581 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000582 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000583 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000584 // This formula is trivially equivalent to the previous formula. However,
585 // this formula can be implemented much more efficiently. The trick is that
586 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
587 // arithmetic. To do exact division in modular arithmetic, all we have
588 // to do is multiply by the inverse. Therefore, this step can be done at
589 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000590 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000591 // The next issue is how to safely do the division by 2^T. The way this
592 // is done is by doing the multiplication step at a width of at least W + T
593 // bits. This way, the bottom W+T bits of the product are accurate. Then,
594 // when we perform the division by 2^T (which is equivalent to a right shift
595 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
596 // truncated out after the division by 2^T.
597 //
598 // In comparison to just directly using the first formula, this technique
599 // is much more efficient; using the first formula requires W * K bits,
600 // but this formula less than W + K bits. Also, the first formula requires
601 // a division step, whereas this formula only requires multiplies and shifts.
602 //
603 // It doesn't matter whether the subtraction step is done in the calculation
604 // width or the input iteration count's width; if the subtraction overflows,
605 // the result must be zero anyway. We prefer here to do it in the width of
606 // the induction variable because it helps a lot for certain cases; CodeGen
607 // isn't smart enough to ignore the overflow, which leads to much less
608 // efficient code if the width of the subtraction is wider than the native
609 // register width.
610 //
611 // (It's possible to not widen at all by pulling out factors of 2 before
612 // the multiplication; for example, K=2 can be calculated as
613 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
614 // extra arithmetic, so it's not an obvious win, and it gets
615 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000616
Eli Friedmanb42a6262008-08-04 23:49:06 +0000617 // Protection from insane SCEVs; this bound is conservative,
618 // but it probably doesn't matter.
619 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000620 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000621
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000622 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000623
Eli Friedmanb42a6262008-08-04 23:49:06 +0000624 // Calculate K! / 2^T and T; we divide out the factors of two before
625 // multiplying for calculating K! / 2^T to avoid overflow.
626 // Other overflow doesn't matter because we only care about the bottom
627 // W bits of the result.
628 APInt OddFactorial(W, 1);
629 unsigned T = 1;
630 for (unsigned i = 3; i <= K; ++i) {
631 APInt Mult(W, i);
632 unsigned TwoFactors = Mult.countTrailingZeros();
633 T += TwoFactors;
634 Mult = Mult.lshr(TwoFactors);
635 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000636 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000637
Eli Friedmanb42a6262008-08-04 23:49:06 +0000638 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000639 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000640
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000641 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000642 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
643
644 // Calculate the multiplicative inverse of K! / 2^T;
645 // this multiplication factor will perform the exact division by
646 // K! / 2^T.
647 APInt Mod = APInt::getSignedMinValue(W+1);
648 APInt MultiplyFactor = OddFactorial.zext(W+1);
649 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
650 MultiplyFactor = MultiplyFactor.trunc(W);
651
652 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000653 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
654 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000655 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000656 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000657 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000658 Dividend = SE.getMulExpr(Dividend,
659 SE.getTruncateOrZeroExtend(S, CalculationTy));
660 }
661
662 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000663 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000664
665 // Truncate the result, and divide by K! / 2^T.
666
667 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
668 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000669}
670
Chris Lattner53e677a2004-04-02 20:23:17 +0000671/// evaluateAtIteration - Return the value of this chain of recurrences at
672/// the specified iteration number. We can evaluate this recurrence by
673/// multiplying each element in the chain by the binomial coefficient
674/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
675///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000676/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000677///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000678/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000679///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000680const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000681 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000682 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000683 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000684 // The computation is correct in the face of overflow provided that the
685 // multiplication is performed _after_ the evaluation of the binomial
686 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000687 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000688 if (isa<SCEVCouldNotCompute>(Coeff))
689 return Coeff;
690
691 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000692 }
693 return Result;
694}
695
Chris Lattner53e677a2004-04-02 20:23:17 +0000696//===----------------------------------------------------------------------===//
697// SCEV Expression folder implementations
698//===----------------------------------------------------------------------===//
699
Dan Gohman0bba49c2009-07-07 17:06:11 +0000700const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000701 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000702 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000703 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000704 assert(isSCEVable(Ty) &&
705 "This is not a conversion to a SCEVable type!");
706 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000707
Dan Gohmanc050fd92009-07-13 20:50:19 +0000708 FoldingSetNodeID ID;
709 ID.AddInteger(scTruncate);
710 ID.AddPointer(Op);
711 ID.AddPointer(Ty);
712 void *IP = 0;
713 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
714
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000715 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000716 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000717 return getConstant(
718 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000719
Dan Gohman20900ca2009-04-22 16:20:48 +0000720 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000721 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000722 return getTruncateExpr(ST->getOperand(), Ty);
723
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000724 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000725 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000726 return getTruncateOrSignExtend(SS->getOperand(), Ty);
727
728 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000729 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000730 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
731
Dan Gohman6864db62009-06-18 16:24:47 +0000732 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000733 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000734 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000735 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000736 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
737 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000738 }
739
Dan Gohmanc050fd92009-07-13 20:50:19 +0000740 // The cast wasn't folded; create an explicit cast node.
741 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000742 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000743 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
744 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000745 UniqueSCEVs.InsertNode(S, IP);
746 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000747}
748
Dan Gohman0bba49c2009-07-07 17:06:11 +0000749const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000750 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000751 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000752 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000753 assert(isSCEVable(Ty) &&
754 "This is not a conversion to a SCEVable type!");
755 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000756
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000757 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000758 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000759 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000760 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
761 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000762 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +0000763 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000764
Dan Gohman20900ca2009-04-22 16:20:48 +0000765 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000766 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000767 return getZeroExtendExpr(SZ->getOperand(), Ty);
768
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000769 // Before doing any expensive analysis, check to see if we've already
770 // computed a SCEV for this Op and Ty.
771 FoldingSetNodeID ID;
772 ID.AddInteger(scZeroExtend);
773 ID.AddPointer(Op);
774 ID.AddPointer(Ty);
775 void *IP = 0;
776 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
777
Dan Gohman01ecca22009-04-27 20:16:15 +0000778 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000779 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000780 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000781 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000782 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000783 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000784 const SCEV *Start = AR->getStart();
785 const SCEV *Step = AR->getStepRecurrence(*this);
786 unsigned BitWidth = getTypeSizeInBits(AR->getType());
787 const Loop *L = AR->getLoop();
788
Dan Gohmaneb490a72009-07-25 01:22:26 +0000789 // If we have special knowledge that this addrec won't overflow,
790 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000791 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000792 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
793 getZeroExtendExpr(Step, Ty),
794 L);
795
Dan Gohman01ecca22009-04-27 20:16:15 +0000796 // Check whether the backedge-taken count is SCEVCouldNotCompute.
797 // Note that this serves two purposes: It filters out loops that are
798 // simply not analyzable, and it covers the case where this code is
799 // being called from within backedge-taken count analysis, such that
800 // attempting to ask for the backedge-taken count would likely result
801 // in infinite recursion. In the later case, the analysis code will
802 // cope with a conservative value, and it will take care to purge
803 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000804 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000805 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000806 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000807 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000808
809 // Check whether the backedge-taken count can be losslessly casted to
810 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000811 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000812 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000813 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000814 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
815 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000816 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000817 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000818 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000819 const SCEV *Add = getAddExpr(Start, ZMul);
820 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000821 getAddExpr(getZeroExtendExpr(Start, WideTy),
822 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
823 getZeroExtendExpr(Step, WideTy)));
824 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000825 // Return the expression with the addrec on the outside.
826 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
827 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000828 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000829
830 // Similar to above, only this time treat the step value as signed.
831 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000832 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000833 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000834 OperandExtendedAdd =
835 getAddExpr(getZeroExtendExpr(Start, WideTy),
836 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
837 getSignExtendExpr(Step, WideTy)));
838 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000839 // Return the expression with the addrec on the outside.
840 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
841 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000842 L);
843 }
844
845 // If the backedge is guarded by a comparison with the pre-inc value
846 // the addrec is safe. Also, if the entry is guarded by a comparison
847 // with the start value and the backedge is guarded by a comparison
848 // with the post-inc value, the addrec is safe.
849 if (isKnownPositive(Step)) {
850 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
851 getUnsignedRange(Step).getUnsignedMax());
852 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000853 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000854 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
855 AR->getPostIncExpr(*this), N)))
856 // Return the expression with the addrec on the outside.
857 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
858 getZeroExtendExpr(Step, Ty),
859 L);
860 } else if (isKnownNegative(Step)) {
861 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
862 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +0000863 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
864 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000865 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
866 AR->getPostIncExpr(*this), N)))
867 // Return the expression with the addrec on the outside.
868 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
869 getSignExtendExpr(Step, Ty),
870 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000871 }
872 }
873 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000874
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000875 // The cast wasn't folded; create an explicit cast node.
876 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000877 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000878 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
879 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000880 UniqueSCEVs.InsertNode(S, IP);
881 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000882}
883
Dan Gohman0bba49c2009-07-07 17:06:11 +0000884const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000885 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000886 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000887 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000888 assert(isSCEVable(Ty) &&
889 "This is not a conversion to a SCEVable type!");
890 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000891
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000892 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000893 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000894 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +0000895 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
896 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000897 return getConstant(cast<ConstantInt>(C));
Dan Gohman2d1be872009-04-16 03:18:22 +0000898 }
Dan Gohmand19534a2007-06-15 14:38:12 +0000899
Dan Gohman20900ca2009-04-22 16:20:48 +0000900 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000901 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000902 return getSignExtendExpr(SS->getOperand(), Ty);
903
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000904 // Before doing any expensive analysis, check to see if we've already
905 // computed a SCEV for this Op and Ty.
906 FoldingSetNodeID ID;
907 ID.AddInteger(scSignExtend);
908 ID.AddPointer(Op);
909 ID.AddPointer(Ty);
910 void *IP = 0;
911 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
912
Dan Gohman01ecca22009-04-27 20:16:15 +0000913 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +0000914 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000915 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +0000916 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000917 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000918 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000919 const SCEV *Start = AR->getStart();
920 const SCEV *Step = AR->getStepRecurrence(*this);
921 unsigned BitWidth = getTypeSizeInBits(AR->getType());
922 const Loop *L = AR->getLoop();
923
Dan Gohmaneb490a72009-07-25 01:22:26 +0000924 // If we have special knowledge that this addrec won't overflow,
925 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000926 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000927 return getAddRecExpr(getSignExtendExpr(Start, Ty),
928 getSignExtendExpr(Step, Ty),
929 L);
930
Dan Gohman01ecca22009-04-27 20:16:15 +0000931 // Check whether the backedge-taken count is SCEVCouldNotCompute.
932 // Note that this serves two purposes: It filters out loops that are
933 // simply not analyzable, and it covers the case where this code is
934 // being called from within backedge-taken count analysis, such that
935 // attempting to ask for the backedge-taken count would likely result
936 // in infinite recursion. In the later case, the analysis code will
937 // cope with a conservative value, and it will take care to purge
938 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000939 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000940 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000941 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000942 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000943
944 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +0000945 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000946 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000947 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000948 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000949 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
950 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000951 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000952 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000953 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000954 const SCEV *Add = getAddExpr(Start, SMul);
955 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000956 getAddExpr(getSignExtendExpr(Start, WideTy),
957 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
958 getSignExtendExpr(Step, WideTy)));
959 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000960 // Return the expression with the addrec on the outside.
961 return getAddRecExpr(getSignExtendExpr(Start, Ty),
962 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000963 L);
Dan Gohman850f7912009-07-16 17:34:36 +0000964
965 // Similar to above, only this time treat the step value as unsigned.
966 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +0000967 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +0000968 Add = getAddExpr(Start, UMul);
969 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +0000970 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +0000971 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
972 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +0000973 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +0000974 // Return the expression with the addrec on the outside.
975 return getAddRecExpr(getSignExtendExpr(Start, Ty),
976 getZeroExtendExpr(Step, Ty),
977 L);
Dan Gohman85b05a22009-07-13 21:35:55 +0000978 }
979
980 // If the backedge is guarded by a comparison with the pre-inc value
981 // the addrec is safe. Also, if the entry is guarded by a comparison
982 // with the start value and the backedge is guarded by a comparison
983 // with the post-inc value, the addrec is safe.
984 if (isKnownPositive(Step)) {
985 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
986 getSignedRange(Step).getSignedMax());
987 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000988 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000989 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
990 AR->getPostIncExpr(*this), N)))
991 // Return the expression with the addrec on the outside.
992 return getAddRecExpr(getSignExtendExpr(Start, Ty),
993 getSignExtendExpr(Step, Ty),
994 L);
995 } else if (isKnownNegative(Step)) {
996 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
997 getSignedRange(Step).getSignedMin());
998 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000999 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001000 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1001 AR->getPostIncExpr(*this), N)))
1002 // Return the expression with the addrec on the outside.
1003 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1004 getSignExtendExpr(Step, Ty),
1005 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001006 }
1007 }
1008 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001009
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001010 // The cast wasn't folded; create an explicit cast node.
1011 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001012 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001013 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1014 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001015 UniqueSCEVs.InsertNode(S, IP);
1016 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001017}
1018
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001019/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1020/// unspecified bits out to the given type.
1021///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001022const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001023 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001024 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1025 "This is not an extending conversion!");
1026 assert(isSCEVable(Ty) &&
1027 "This is not a conversion to a SCEVable type!");
1028 Ty = getEffectiveSCEVType(Ty);
1029
1030 // Sign-extend negative constants.
1031 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1032 if (SC->getValue()->getValue().isNegative())
1033 return getSignExtendExpr(Op, Ty);
1034
1035 // Peel off a truncate cast.
1036 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001037 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001038 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1039 return getAnyExtendExpr(NewOp, Ty);
1040 return getTruncateOrNoop(NewOp, Ty);
1041 }
1042
1043 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001044 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001045 if (!isa<SCEVZeroExtendExpr>(ZExt))
1046 return ZExt;
1047
1048 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001049 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001050 if (!isa<SCEVSignExtendExpr>(SExt))
1051 return SExt;
1052
Dan Gohmana10756e2010-01-21 02:09:26 +00001053 // Force the cast to be folded into the operands of an addrec.
1054 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1055 SmallVector<const SCEV *, 4> Ops;
1056 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1057 I != E; ++I)
1058 Ops.push_back(getAnyExtendExpr(*I, Ty));
1059 return getAddRecExpr(Ops, AR->getLoop());
1060 }
1061
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001062 // If the expression is obviously signed, use the sext cast value.
1063 if (isa<SCEVSMaxExpr>(Op))
1064 return SExt;
1065
1066 // Absent any other information, use the zext cast value.
1067 return ZExt;
1068}
1069
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001070/// CollectAddOperandsWithScales - Process the given Ops list, which is
1071/// a list of operands to be added under the given scale, update the given
1072/// map. This is a helper function for getAddRecExpr. As an example of
1073/// what it does, given a sequence of operands that would form an add
1074/// expression like this:
1075///
1076/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1077///
1078/// where A and B are constants, update the map with these values:
1079///
1080/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1081///
1082/// and add 13 + A*B*29 to AccumulatedConstant.
1083/// This will allow getAddRecExpr to produce this:
1084///
1085/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1086///
1087/// This form often exposes folding opportunities that are hidden in
1088/// the original operand list.
1089///
1090/// Return true iff it appears that any interesting folding opportunities
1091/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1092/// the common case where no interesting opportunities are present, and
1093/// is also used as a check to avoid infinite recursion.
1094///
1095static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001096CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1097 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001098 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001099 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001100 const APInt &Scale,
1101 ScalarEvolution &SE) {
1102 bool Interesting = false;
1103
1104 // Iterate over the add operands.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001105 for (unsigned i = 0, e = NumOperands; i != e; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001106 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1107 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1108 APInt NewScale =
1109 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1110 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1111 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001112 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001113 Interesting |=
1114 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001115 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001116 NewScale, SE);
1117 } else {
1118 // A multiplication of a constant with some other value. Update
1119 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001120 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1121 const SCEV *Key = SE.getMulExpr(MulOps);
1122 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001123 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001124 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001125 NewOps.push_back(Pair.first->first);
1126 } else {
1127 Pair.first->second += NewScale;
1128 // The map already had an entry for this value, which may indicate
1129 // a folding opportunity.
1130 Interesting = true;
1131 }
1132 }
1133 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1134 // Pull a buried constant out to the outside.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001135 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001136 Interesting = true;
1137 AccumulatedConstant += Scale * C->getValue()->getValue();
1138 } else {
1139 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001140 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001141 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001142 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001143 NewOps.push_back(Pair.first->first);
1144 } else {
1145 Pair.first->second += Scale;
1146 // The map already had an entry for this value, which may indicate
1147 // a folding opportunity.
1148 Interesting = true;
1149 }
1150 }
1151 }
1152
1153 return Interesting;
1154}
1155
1156namespace {
1157 struct APIntCompare {
1158 bool operator()(const APInt &LHS, const APInt &RHS) const {
1159 return LHS.ult(RHS);
1160 }
1161 };
1162}
1163
Dan Gohman6c0866c2009-05-24 23:45:28 +00001164/// getAddExpr - Get a canonical add expression, or something simpler if
1165/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001166const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1167 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001168 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001169 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001170#ifndef NDEBUG
1171 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1172 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1173 getEffectiveSCEVType(Ops[0]->getType()) &&
1174 "SCEVAddExpr operand types don't match!");
1175#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001176
Dan Gohmana10756e2010-01-21 02:09:26 +00001177 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1178 if (!HasNUW && HasNSW) {
1179 bool All = true;
1180 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1181 if (!isKnownNonNegative(Ops[i])) {
1182 All = false;
1183 break;
1184 }
1185 if (All) HasNUW = true;
1186 }
1187
Chris Lattner53e677a2004-04-02 20:23:17 +00001188 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001189 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001190
1191 // If there are any constants, fold them together.
1192 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001193 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001194 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001195 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001196 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001197 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001198 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1199 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001200 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001201 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001202 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001203 }
1204
1205 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001206 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001207 Ops.erase(Ops.begin());
1208 --Idx;
1209 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001210
Dan Gohmanbca091d2010-04-12 23:08:18 +00001211 if (Ops.size() == 1) return Ops[0];
1212 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001213
Chris Lattner53e677a2004-04-02 20:23:17 +00001214 // Okay, check to see if the same value occurs in the operand list twice. If
1215 // so, merge them together into an multiply expression. Since we sorted the
1216 // list, these values are required to be adjacent.
1217 const Type *Ty = Ops[0]->getType();
1218 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1219 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1220 // Found a match, merge the two values into a multiply, and add any
1221 // remaining values to the result.
Dan Gohmandeff6212010-05-03 22:09:21 +00001222 const SCEV *Two = getConstant(Ty, 2);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001223 const SCEV *Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00001224 if (Ops.size() == 2)
1225 return Mul;
1226 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1227 Ops.push_back(Mul);
Dan Gohman3645b012009-10-09 00:10:36 +00001228 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001229 }
1230
Dan Gohman728c7f32009-05-08 21:03:19 +00001231 // Check for truncates. If all the operands are truncated from the same
1232 // type, see if factoring out the truncate would permit the result to be
1233 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1234 // if the contents of the resulting outer trunc fold to something simple.
1235 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1236 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1237 const Type *DstType = Trunc->getType();
1238 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001239 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001240 bool Ok = true;
1241 // Check all the operands to see if they can be represented in the
1242 // source type of the truncate.
1243 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1244 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1245 if (T->getOperand()->getType() != SrcType) {
1246 Ok = false;
1247 break;
1248 }
1249 LargeOps.push_back(T->getOperand());
1250 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001251 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001252 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001253 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001254 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1255 if (const SCEVTruncateExpr *T =
1256 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1257 if (T->getOperand()->getType() != SrcType) {
1258 Ok = false;
1259 break;
1260 }
1261 LargeMulOps.push_back(T->getOperand());
1262 } else if (const SCEVConstant *C =
1263 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001264 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001265 } else {
1266 Ok = false;
1267 break;
1268 }
1269 }
1270 if (Ok)
1271 LargeOps.push_back(getMulExpr(LargeMulOps));
1272 } else {
1273 Ok = false;
1274 break;
1275 }
1276 }
1277 if (Ok) {
1278 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001279 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001280 // If it folds to something simple, use it. Otherwise, don't.
1281 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1282 return getTruncateExpr(Fold, DstType);
1283 }
1284 }
1285
1286 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001287 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1288 ++Idx;
1289
1290 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001291 if (Idx < Ops.size()) {
1292 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001293 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001294 // If we have an add, expand the add operands onto the end of the operands
1295 // list.
1296 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1297 Ops.erase(Ops.begin()+Idx);
1298 DeletedAdd = true;
1299 }
1300
1301 // If we deleted at least one add, we added operands to the end of the list,
1302 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001303 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001304 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001305 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001306 }
1307
1308 // Skip over the add expression until we get to a multiply.
1309 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1310 ++Idx;
1311
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001312 // Check to see if there are any folding opportunities present with
1313 // operands multiplied by constant values.
1314 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1315 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001316 DenseMap<const SCEV *, APInt> M;
1317 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001318 APInt AccumulatedConstant(BitWidth, 0);
1319 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001320 Ops.data(), Ops.size(),
1321 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001322 // Some interesting folding opportunity is present, so its worthwhile to
1323 // re-generate the operands list. Group the operands by constant scale,
1324 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001325 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1326 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001327 E = NewOps.end(); I != E; ++I)
1328 MulOpLists[M.find(*I)->second].push_back(*I);
1329 // Re-generate the operands list.
1330 Ops.clear();
1331 if (AccumulatedConstant != 0)
1332 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001333 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1334 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001335 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001336 Ops.push_back(getMulExpr(getConstant(I->first),
1337 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001338 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001339 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001340 if (Ops.size() == 1)
1341 return Ops[0];
1342 return getAddExpr(Ops);
1343 }
1344 }
1345
Chris Lattner53e677a2004-04-02 20:23:17 +00001346 // If we are adding something to a multiply expression, make sure the
1347 // something is not already an operand of the multiply. If so, merge it into
1348 // the multiply.
1349 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001350 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001351 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001352 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Chris Lattner53e677a2004-04-02 20:23:17 +00001353 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohmana82752c2009-06-14 22:47:23 +00001354 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001355 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001356 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001357 if (Mul->getNumOperands() != 2) {
1358 // If the multiply has more than two operands, we must get the
1359 // Y*Z term.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001360 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001361 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001362 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001363 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001364 const SCEV *One = getConstant(Ty, 1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001365 const SCEV *AddOne = getAddExpr(InnerMul, One);
1366 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001367 if (Ops.size() == 2) return OuterMul;
1368 if (AddOp < Idx) {
1369 Ops.erase(Ops.begin()+AddOp);
1370 Ops.erase(Ops.begin()+Idx-1);
1371 } else {
1372 Ops.erase(Ops.begin()+Idx);
1373 Ops.erase(Ops.begin()+AddOp-1);
1374 }
1375 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001376 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001377 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001378
Chris Lattner53e677a2004-04-02 20:23:17 +00001379 // Check this multiply against other multiplies being added together.
1380 for (unsigned OtherMulIdx = Idx+1;
1381 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1382 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001383 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001384 // If MulOp occurs in OtherMul, we can fold the two multiplies
1385 // together.
1386 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1387 OMulOp != e; ++OMulOp)
1388 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1389 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001390 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001391 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001392 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1393 Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001394 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001395 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001396 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001397 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001398 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001399 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1400 OtherMul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001401 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001402 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001403 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001404 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1405 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001406 if (Ops.size() == 2) return OuterMul;
1407 Ops.erase(Ops.begin()+Idx);
1408 Ops.erase(Ops.begin()+OtherMulIdx-1);
1409 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001410 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001411 }
1412 }
1413 }
1414 }
1415
1416 // If there are any add recurrences in the operands list, see if any other
1417 // added values are loop invariant. If so, we can fold them into the
1418 // recurrence.
1419 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1420 ++Idx;
1421
1422 // Scan over all recurrences, trying to fold loop invariants into them.
1423 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1424 // Scan all of the other operands to this add and add them to the vector if
1425 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001426 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001427 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001428 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001429 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001430 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001431 LIOps.push_back(Ops[i]);
1432 Ops.erase(Ops.begin()+i);
1433 --i; --e;
1434 }
1435
1436 // If we found some loop invariants, fold them into the recurrence.
1437 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001438 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001439 LIOps.push_back(AddRec->getStart());
1440
Dan Gohman0bba49c2009-07-07 17:06:11 +00001441 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001442 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001443 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001444
Dan Gohman355b4f32009-12-19 01:46:34 +00001445 // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
Dan Gohman59de33e2009-12-18 18:45:31 +00001446 // is not associative so this isn't necessarily safe.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001447 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop);
Dan Gohman59de33e2009-12-18 18:45:31 +00001448
Chris Lattner53e677a2004-04-02 20:23:17 +00001449 // If all of the other operands were loop invariant, we are done.
1450 if (Ops.size() == 1) return NewRec;
1451
1452 // Otherwise, add the folded AddRec by the non-liv parts.
1453 for (unsigned i = 0;; ++i)
1454 if (Ops[i] == AddRec) {
1455 Ops[i] = NewRec;
1456 break;
1457 }
Dan Gohman246b2562007-10-22 18:31:58 +00001458 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001459 }
1460
1461 // Okay, if there weren't any loop invariants to be folded, check to see if
1462 // there are multiple AddRec's with the same loop induction variable being
1463 // added together. If so, we can fold them.
1464 for (unsigned OtherIdx = Idx+1;
1465 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1466 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001467 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001468 if (AddRecLoop == OtherAddRec->getLoop()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001469 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman64a845e2009-06-24 04:48:43 +00001470 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1471 AddRec->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001472 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1473 if (i >= NewOps.size()) {
1474 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1475 OtherAddRec->op_end());
1476 break;
1477 }
Dan Gohman246b2562007-10-22 18:31:58 +00001478 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001479 }
Dan Gohmanbca091d2010-04-12 23:08:18 +00001480 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +00001481
1482 if (Ops.size() == 2) return NewAddRec;
1483
1484 Ops.erase(Ops.begin()+Idx);
1485 Ops.erase(Ops.begin()+OtherIdx-1);
1486 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001487 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001488 }
1489 }
1490
1491 // Otherwise couldn't fold anything into this recurrence. Move onto the
1492 // next one.
1493 }
1494
1495 // Okay, it looks like we really DO need an add expr. Check to see if we
1496 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001497 FoldingSetNodeID ID;
1498 ID.AddInteger(scAddExpr);
1499 ID.AddInteger(Ops.size());
1500 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1501 ID.AddPointer(Ops[i]);
1502 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001503 SCEVAddExpr *S =
1504 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1505 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001506 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1507 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001508 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1509 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001510 UniqueSCEVs.InsertNode(S, IP);
1511 }
Dan Gohman3645b012009-10-09 00:10:36 +00001512 if (HasNUW) S->setHasNoUnsignedWrap(true);
1513 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001514 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001515}
1516
Dan Gohman6c0866c2009-05-24 23:45:28 +00001517/// getMulExpr - Get a canonical multiply expression, or something simpler if
1518/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001519const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1520 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001521 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001522 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001523#ifndef NDEBUG
1524 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1525 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1526 getEffectiveSCEVType(Ops[0]->getType()) &&
1527 "SCEVMulExpr operand types don't match!");
1528#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001529
Dan Gohmana10756e2010-01-21 02:09:26 +00001530 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1531 if (!HasNUW && HasNSW) {
1532 bool All = true;
1533 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1534 if (!isKnownNonNegative(Ops[i])) {
1535 All = false;
1536 break;
1537 }
1538 if (All) HasNUW = true;
1539 }
1540
Chris Lattner53e677a2004-04-02 20:23:17 +00001541 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001542 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001543
1544 // If there are any constants, fold them together.
1545 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001546 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001547
1548 // C1*(C2+V) -> C1*C2 + C1*V
1549 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001550 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001551 if (Add->getNumOperands() == 2 &&
1552 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001553 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1554 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001555
Chris Lattner53e677a2004-04-02 20:23:17 +00001556 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001557 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001558 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001559 ConstantInt *Fold = ConstantInt::get(getContext(),
1560 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001561 RHSC->getValue()->getValue());
1562 Ops[0] = getConstant(Fold);
1563 Ops.erase(Ops.begin()+1); // Erase the folded element
1564 if (Ops.size() == 1) return Ops[0];
1565 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001566 }
1567
1568 // If we are left with a constant one being multiplied, strip it off.
1569 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1570 Ops.erase(Ops.begin());
1571 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001572 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001573 // If we have a multiply of zero, it will always be zero.
1574 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001575 } else if (Ops[0]->isAllOnesValue()) {
1576 // If we have a mul by -1 of an add, try distributing the -1 among the
1577 // add operands.
1578 if (Ops.size() == 2)
1579 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1580 SmallVector<const SCEV *, 4> NewOps;
1581 bool AnyFolded = false;
1582 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1583 I != E; ++I) {
1584 const SCEV *Mul = getMulExpr(Ops[0], *I);
1585 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1586 NewOps.push_back(Mul);
1587 }
1588 if (AnyFolded)
1589 return getAddExpr(NewOps);
1590 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001591 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001592
1593 if (Ops.size() == 1)
1594 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001595 }
1596
1597 // Skip over the add expression until we get to a multiply.
1598 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1599 ++Idx;
1600
Chris Lattner53e677a2004-04-02 20:23:17 +00001601 // If there are mul operands inline them all into this expression.
1602 if (Idx < Ops.size()) {
1603 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001604 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001605 // If we have an mul, expand the mul operands onto the end of the operands
1606 // list.
1607 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1608 Ops.erase(Ops.begin()+Idx);
1609 DeletedMul = true;
1610 }
1611
1612 // If we deleted at least one mul, we added operands to the end of the list,
1613 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001614 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001615 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001616 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001617 }
1618
1619 // If there are any add recurrences in the operands list, see if any other
1620 // added values are loop invariant. If so, we can fold them into the
1621 // recurrence.
1622 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1623 ++Idx;
1624
1625 // Scan over all recurrences, trying to fold loop invariants into them.
1626 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1627 // Scan all of the other operands to this mul and add them to the vector if
1628 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001629 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001630 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001631 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1632 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1633 LIOps.push_back(Ops[i]);
1634 Ops.erase(Ops.begin()+i);
1635 --i; --e;
1636 }
1637
1638 // If we found some loop invariants, fold them into the recurrence.
1639 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001640 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001641 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001642 NewOps.reserve(AddRec->getNumOperands());
1643 if (LIOps.size() == 1) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001644 const SCEV *Scale = LIOps[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001645 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman246b2562007-10-22 18:31:58 +00001646 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001647 } else {
1648 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001649 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001650 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman246b2562007-10-22 18:31:58 +00001651 NewOps.push_back(getMulExpr(MulOps));
Chris Lattner53e677a2004-04-02 20:23:17 +00001652 }
1653 }
1654
Dan Gohman355b4f32009-12-19 01:46:34 +00001655 // It's tempting to propagate the NSW flag here, but nsw multiplication
Dan Gohman59de33e2009-12-18 18:45:31 +00001656 // is not associative so this isn't necessarily safe.
Dan Gohmana10756e2010-01-21 02:09:26 +00001657 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1658 HasNUW && AddRec->hasNoUnsignedWrap(),
1659 /*HasNSW=*/false);
Chris Lattner53e677a2004-04-02 20:23:17 +00001660
1661 // If all of the other operands were loop invariant, we are done.
1662 if (Ops.size() == 1) return NewRec;
1663
1664 // Otherwise, multiply the folded AddRec by the non-liv parts.
1665 for (unsigned i = 0;; ++i)
1666 if (Ops[i] == AddRec) {
1667 Ops[i] = NewRec;
1668 break;
1669 }
Dan Gohman246b2562007-10-22 18:31:58 +00001670 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001671 }
1672
1673 // Okay, if there weren't any loop invariants to be folded, check to see if
1674 // there are multiple AddRec's with the same loop induction variable being
1675 // multiplied together. If so, we can fold them.
1676 for (unsigned OtherIdx = Idx+1;
1677 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1678 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001679 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001680 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1681 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001682 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0bba49c2009-07-07 17:06:11 +00001683 const SCEV *NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001684 G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001685 const SCEV *B = F->getStepRecurrence(*this);
1686 const SCEV *D = G->getStepRecurrence(*this);
1687 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman246b2562007-10-22 18:31:58 +00001688 getMulExpr(G, B),
1689 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001690 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman246b2562007-10-22 18:31:58 +00001691 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001692 if (Ops.size() == 2) return NewAddRec;
1693
1694 Ops.erase(Ops.begin()+Idx);
1695 Ops.erase(Ops.begin()+OtherIdx-1);
1696 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001697 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001698 }
1699 }
1700
1701 // Otherwise couldn't fold anything into this recurrence. Move onto the
1702 // next one.
1703 }
1704
1705 // Okay, it looks like we really DO need an mul expr. Check to see if we
1706 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001707 FoldingSetNodeID ID;
1708 ID.AddInteger(scMulExpr);
1709 ID.AddInteger(Ops.size());
1710 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1711 ID.AddPointer(Ops[i]);
1712 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001713 SCEVMulExpr *S =
1714 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1715 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001716 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1717 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001718 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1719 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001720 UniqueSCEVs.InsertNode(S, IP);
1721 }
Dan Gohman3645b012009-10-09 00:10:36 +00001722 if (HasNUW) S->setHasNoUnsignedWrap(true);
1723 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001724 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001725}
1726
Andreas Bolka8a11c982009-08-07 22:55:26 +00001727/// getUDivExpr - Get a canonical unsigned division expression, or something
1728/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001729const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1730 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001731 assert(getEffectiveSCEVType(LHS->getType()) ==
1732 getEffectiveSCEVType(RHS->getType()) &&
1733 "SCEVUDivExpr operand types don't match!");
1734
Dan Gohman622ed672009-05-04 22:02:23 +00001735 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001736 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001737 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001738 // If the denominator is zero, the result of the udiv is undefined. Don't
1739 // try to analyze it, because the resolution chosen here may differ from
1740 // the resolution chosen in other parts of the compiler.
1741 if (!RHSC->getValue()->isZero()) {
1742 // Determine if the division can be folded into the operands of
1743 // its operands.
1744 // TODO: Generalize this to non-constants by using known-bits information.
1745 const Type *Ty = LHS->getType();
1746 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1747 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1748 // For non-power-of-two values, effectively round the value up to the
1749 // nearest power of two.
1750 if (!RHSC->getValue()->getValue().isPowerOf2())
1751 ++MaxShiftAmt;
1752 const IntegerType *ExtTy =
1753 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1754 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1755 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1756 if (const SCEVConstant *Step =
1757 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1758 if (!Step->getValue()->getValue()
1759 .urem(RHSC->getValue()->getValue()) &&
1760 getZeroExtendExpr(AR, ExtTy) ==
1761 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1762 getZeroExtendExpr(Step, ExtTy),
1763 AR->getLoop())) {
1764 SmallVector<const SCEV *, 4> Operands;
1765 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1766 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1767 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001768 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001769 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1770 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1771 SmallVector<const SCEV *, 4> Operands;
1772 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1773 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1774 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1775 // Find an operand that's safely divisible.
1776 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1777 const SCEV *Op = M->getOperand(i);
1778 const SCEV *Div = getUDivExpr(Op, RHSC);
1779 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1780 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1781 M->op_end());
1782 Operands[i] = Div;
1783 return getMulExpr(Operands);
1784 }
1785 }
Dan Gohman185cf032009-05-08 20:18:49 +00001786 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001787 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1788 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1789 SmallVector<const SCEV *, 4> Operands;
1790 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1791 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1792 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1793 Operands.clear();
1794 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1795 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1796 if (isa<SCEVUDivExpr>(Op) ||
1797 getMulExpr(Op, RHS) != A->getOperand(i))
1798 break;
1799 Operands.push_back(Op);
1800 }
1801 if (Operands.size() == A->getNumOperands())
1802 return getAddExpr(Operands);
1803 }
1804 }
Dan Gohman185cf032009-05-08 20:18:49 +00001805
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001806 // Fold if both operands are constant.
1807 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1808 Constant *LHSCV = LHSC->getValue();
1809 Constant *RHSCV = RHSC->getValue();
1810 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1811 RHSCV)));
1812 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001813 }
1814 }
1815
Dan Gohman1c343752009-06-27 21:21:31 +00001816 FoldingSetNodeID ID;
1817 ID.AddInteger(scUDivExpr);
1818 ID.AddPointer(LHS);
1819 ID.AddPointer(RHS);
1820 void *IP = 0;
1821 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001822 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1823 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001824 UniqueSCEVs.InsertNode(S, IP);
1825 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001826}
1827
1828
Dan Gohman6c0866c2009-05-24 23:45:28 +00001829/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1830/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001831const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001832 const SCEV *Step, const Loop *L,
1833 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001834 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001835 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001836 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001837 if (StepChrec->getLoop() == L) {
1838 Operands.insert(Operands.end(), StepChrec->op_begin(),
1839 StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001840 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001841 }
1842
1843 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001844 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001845}
1846
Dan Gohman6c0866c2009-05-24 23:45:28 +00001847/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1848/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001849const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001850ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001851 const Loop *L,
1852 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001853 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001854#ifndef NDEBUG
1855 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1856 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1857 getEffectiveSCEVType(Operands[0]->getType()) &&
1858 "SCEVAddRecExpr operand types don't match!");
1859#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001860
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001861 if (Operands.back()->isZero()) {
1862 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001863 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001864 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001865
Dan Gohmanbc028532010-02-19 18:49:22 +00001866 // It's tempting to want to call getMaxBackedgeTakenCount count here and
1867 // use that information to infer NUW and NSW flags. However, computing a
1868 // BE count requires calling getAddRecExpr, so we may not yet have a
1869 // meaningful BE count at this point (and if we don't, we'd be stuck
1870 // with a SCEVCouldNotCompute as the cached BE count).
1871
Dan Gohmana10756e2010-01-21 02:09:26 +00001872 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1873 if (!HasNUW && HasNSW) {
1874 bool All = true;
1875 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1876 if (!isKnownNonNegative(Operands[i])) {
1877 All = false;
1878 break;
1879 }
1880 if (All) HasNUW = true;
1881 }
1882
Dan Gohmand9cc7492008-08-08 18:33:12 +00001883 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00001884 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00001885 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohmana10756e2010-01-21 02:09:26 +00001886 if (L->contains(NestedLoop->getHeader()) ?
1887 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
1888 (!NestedLoop->contains(L->getHeader()) &&
1889 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001890 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00001891 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00001892 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00001893 // AddRecs require their operands be loop-invariant with respect to their
1894 // loops. Don't perform this transformation if it would break this
1895 // requirement.
1896 bool AllInvariant = true;
1897 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1898 if (!Operands[i]->isLoopInvariant(L)) {
1899 AllInvariant = false;
1900 break;
1901 }
1902 if (AllInvariant) {
1903 NestedOperands[0] = getAddRecExpr(Operands, L);
1904 AllInvariant = true;
1905 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1906 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1907 AllInvariant = false;
1908 break;
1909 }
1910 if (AllInvariant)
1911 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00001912 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00001913 }
1914 // Reset Operands to its original state.
1915 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00001916 }
1917 }
1918
Dan Gohman67847532010-01-19 22:27:22 +00001919 // Okay, it looks like we really DO need an addrec expr. Check to see if we
1920 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001921 FoldingSetNodeID ID;
1922 ID.AddInteger(scAddRecExpr);
1923 ID.AddInteger(Operands.size());
1924 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1925 ID.AddPointer(Operands[i]);
1926 ID.AddPointer(L);
1927 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001928 SCEVAddRecExpr *S =
1929 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1930 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001931 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
1932 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001933 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
1934 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00001935 UniqueSCEVs.InsertNode(S, IP);
1936 }
Dan Gohman3645b012009-10-09 00:10:36 +00001937 if (HasNUW) S->setHasNoUnsignedWrap(true);
1938 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001939 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001940}
1941
Dan Gohman9311ef62009-06-24 14:49:00 +00001942const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
1943 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001944 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001945 Ops.push_back(LHS);
1946 Ops.push_back(RHS);
1947 return getSMaxExpr(Ops);
1948}
1949
Dan Gohman0bba49c2009-07-07 17:06:11 +00001950const SCEV *
1951ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001952 assert(!Ops.empty() && "Cannot get empty smax!");
1953 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001954#ifndef NDEBUG
1955 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1956 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1957 getEffectiveSCEVType(Ops[0]->getType()) &&
1958 "SCEVSMaxExpr operand types don't match!");
1959#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001960
1961 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001962 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001963
1964 // If there are any constants, fold them together.
1965 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001966 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001967 ++Idx;
1968 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001969 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001970 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001971 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001972 APIntOps::smax(LHSC->getValue()->getValue(),
1973 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00001974 Ops[0] = getConstant(Fold);
1975 Ops.erase(Ops.begin()+1); // Erase the folded element
1976 if (Ops.size() == 1) return Ops[0];
1977 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001978 }
1979
Dan Gohmane5aceed2009-06-24 14:46:22 +00001980 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001981 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1982 Ops.erase(Ops.begin());
1983 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00001984 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
1985 // If we have an smax with a constant maximum-int, it will always be
1986 // maximum-int.
1987 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001988 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001989
Dan Gohman3ab13122010-04-13 16:49:23 +00001990 if (Ops.size() == 1) return Ops[0];
1991 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00001992
1993 // Find the first SMax
1994 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1995 ++Idx;
1996
1997 // Check to see if one of the operands is an SMax. If so, expand its operands
1998 // onto our operand list, and recurse to simplify.
1999 if (Idx < Ops.size()) {
2000 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002001 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002002 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
2003 Ops.erase(Ops.begin()+Idx);
2004 DeletedSMax = true;
2005 }
2006
2007 if (DeletedSMax)
2008 return getSMaxExpr(Ops);
2009 }
2010
2011 // Okay, check to see if the same value occurs in the operand list twice. If
2012 // so, delete one. Since we sorted the list, these values are required to
2013 // be adjacent.
2014 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002015 // X smax Y smax Y --> X smax Y
2016 // X smax Y --> X, if X is always greater than Y
2017 if (Ops[i] == Ops[i+1] ||
2018 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2019 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2020 --i; --e;
2021 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002022 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2023 --i; --e;
2024 }
2025
2026 if (Ops.size() == 1) return Ops[0];
2027
2028 assert(!Ops.empty() && "Reduced smax down to nothing!");
2029
Nick Lewycky3e630762008-02-20 06:48:22 +00002030 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002031 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002032 FoldingSetNodeID ID;
2033 ID.AddInteger(scSMaxExpr);
2034 ID.AddInteger(Ops.size());
2035 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2036 ID.AddPointer(Ops[i]);
2037 void *IP = 0;
2038 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002039 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2040 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002041 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2042 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002043 UniqueSCEVs.InsertNode(S, IP);
2044 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002045}
2046
Dan Gohman9311ef62009-06-24 14:49:00 +00002047const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2048 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002049 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002050 Ops.push_back(LHS);
2051 Ops.push_back(RHS);
2052 return getUMaxExpr(Ops);
2053}
2054
Dan Gohman0bba49c2009-07-07 17:06:11 +00002055const SCEV *
2056ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002057 assert(!Ops.empty() && "Cannot get empty umax!");
2058 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002059#ifndef NDEBUG
2060 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2061 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2062 getEffectiveSCEVType(Ops[0]->getType()) &&
2063 "SCEVUMaxExpr operand types don't match!");
2064#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002065
2066 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002067 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002068
2069 // If there are any constants, fold them together.
2070 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002071 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002072 ++Idx;
2073 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002074 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002075 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002076 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002077 APIntOps::umax(LHSC->getValue()->getValue(),
2078 RHSC->getValue()->getValue()));
2079 Ops[0] = getConstant(Fold);
2080 Ops.erase(Ops.begin()+1); // Erase the folded element
2081 if (Ops.size() == 1) return Ops[0];
2082 LHSC = cast<SCEVConstant>(Ops[0]);
2083 }
2084
Dan Gohmane5aceed2009-06-24 14:46:22 +00002085 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002086 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2087 Ops.erase(Ops.begin());
2088 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002089 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2090 // If we have an umax with a constant maximum-int, it will always be
2091 // maximum-int.
2092 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002093 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002094
Dan Gohman3ab13122010-04-13 16:49:23 +00002095 if (Ops.size() == 1) return Ops[0];
2096 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002097
2098 // Find the first UMax
2099 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2100 ++Idx;
2101
2102 // Check to see if one of the operands is a UMax. If so, expand its operands
2103 // onto our operand list, and recurse to simplify.
2104 if (Idx < Ops.size()) {
2105 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002106 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002107 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2108 Ops.erase(Ops.begin()+Idx);
2109 DeletedUMax = true;
2110 }
2111
2112 if (DeletedUMax)
2113 return getUMaxExpr(Ops);
2114 }
2115
2116 // Okay, check to see if the same value occurs in the operand list twice. If
2117 // so, delete one. Since we sorted the list, these values are required to
2118 // be adjacent.
2119 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002120 // X umax Y umax Y --> X umax Y
2121 // X umax Y --> X, if X is always greater than Y
2122 if (Ops[i] == Ops[i+1] ||
2123 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2124 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2125 --i; --e;
2126 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002127 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2128 --i; --e;
2129 }
2130
2131 if (Ops.size() == 1) return Ops[0];
2132
2133 assert(!Ops.empty() && "Reduced umax down to nothing!");
2134
2135 // Okay, it looks like we really DO need a umax expr. Check to see if we
2136 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002137 FoldingSetNodeID ID;
2138 ID.AddInteger(scUMaxExpr);
2139 ID.AddInteger(Ops.size());
2140 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2141 ID.AddPointer(Ops[i]);
2142 void *IP = 0;
2143 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002144 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2145 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002146 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2147 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002148 UniqueSCEVs.InsertNode(S, IP);
2149 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002150}
2151
Dan Gohman9311ef62009-06-24 14:49:00 +00002152const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2153 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002154 // ~smax(~x, ~y) == smin(x, y).
2155 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2156}
2157
Dan Gohman9311ef62009-06-24 14:49:00 +00002158const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2159 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002160 // ~umax(~x, ~y) == umin(x, y)
2161 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2162}
2163
Dan Gohman4f8eea82010-02-01 18:27:38 +00002164const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002165 // If we have TargetData, we can bypass creating a target-independent
2166 // constant expression and then folding it back into a ConstantInt.
2167 // This is just a compile-time optimization.
2168 if (TD)
2169 return getConstant(TD->getIntPtrType(getContext()),
2170 TD->getTypeAllocSize(AllocTy));
2171
Dan Gohman4f8eea82010-02-01 18:27:38 +00002172 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2173 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002174 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2175 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002176 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2177 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2178}
2179
2180const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2181 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2182 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002183 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2184 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002185 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2186 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2187}
2188
2189const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2190 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002191 // If we have TargetData, we can bypass creating a target-independent
2192 // constant expression and then folding it back into a ConstantInt.
2193 // This is just a compile-time optimization.
2194 if (TD)
2195 return getConstant(TD->getIntPtrType(getContext()),
2196 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2197
Dan Gohman0f5efe52010-01-28 02:15:55 +00002198 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2199 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002200 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2201 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002202 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002203 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002204}
2205
Dan Gohman4f8eea82010-02-01 18:27:38 +00002206const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2207 Constant *FieldNo) {
2208 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002209 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002210 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2211 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002212 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002213 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002214}
2215
Dan Gohman0bba49c2009-07-07 17:06:11 +00002216const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002217 // Don't attempt to do anything other than create a SCEVUnknown object
2218 // here. createSCEV only calls getUnknown after checking for all other
2219 // interesting possibilities, and any other code that calls getUnknown
2220 // is doing so in order to hide a value from SCEV canonicalization.
2221
Dan Gohman1c343752009-06-27 21:21:31 +00002222 FoldingSetNodeID ID;
2223 ID.AddInteger(scUnknown);
2224 ID.AddPointer(V);
2225 void *IP = 0;
2226 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002227 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +00002228 UniqueSCEVs.InsertNode(S, IP);
2229 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002230}
2231
Chris Lattner53e677a2004-04-02 20:23:17 +00002232//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002233// Basic SCEV Analysis and PHI Idiom Recognition Code
2234//
2235
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002236/// isSCEVable - Test if values of the given type are analyzable within
2237/// the SCEV framework. This primarily includes integer types, and it
2238/// can optionally include pointer types if the ScalarEvolution class
2239/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002240bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002241 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002242 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002243}
2244
2245/// getTypeSizeInBits - Return the size in bits of the specified type,
2246/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002247uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002248 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2249
2250 // If we have a TargetData, use it!
2251 if (TD)
2252 return TD->getTypeSizeInBits(Ty);
2253
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002254 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002255 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002256 return Ty->getPrimitiveSizeInBits();
2257
2258 // The only other support type is pointer. Without TargetData, conservatively
2259 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002260 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002261 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002262}
2263
2264/// getEffectiveSCEVType - Return a type with the same bitwidth as
2265/// the given type and which represents how SCEV will treat the given
2266/// type, for which isSCEVable must return true. For pointer types,
2267/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002268const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002269 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2270
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002271 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002272 return Ty;
2273
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002274 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002275 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002276 if (TD) return TD->getIntPtrType(getContext());
2277
2278 // Without TargetData, conservatively assume pointers are 64-bit.
2279 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002280}
Chris Lattner53e677a2004-04-02 20:23:17 +00002281
Dan Gohman0bba49c2009-07-07 17:06:11 +00002282const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002283 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002284}
2285
Chris Lattner53e677a2004-04-02 20:23:17 +00002286/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2287/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002288const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002289 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002290
Dan Gohman0bba49c2009-07-07 17:06:11 +00002291 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002292 if (I != Scalars.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002293 const SCEV *S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00002294 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002295 return S;
2296}
2297
Dan Gohman6bbcba12009-06-24 00:54:57 +00002298/// getIntegerSCEV - Given a SCEVable type, create a constant for the
Dan Gohman2d1be872009-04-16 03:18:22 +00002299/// specified signed integer value and return a SCEV for the constant.
Dan Gohman32efba62010-02-04 02:43:51 +00002300const SCEV *ScalarEvolution::getIntegerSCEV(int64_t Val, const Type *Ty) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002301 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Owen Andersoneed707b2009-07-24 23:12:02 +00002302 return getConstant(ConstantInt::get(ITy, Val));
Dan Gohman2d1be872009-04-16 03:18:22 +00002303}
2304
2305/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2306///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002307const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002308 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002309 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002310 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002311
2312 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002313 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002314 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002315 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002316}
2317
2318/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002319const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002320 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002321 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002322 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002323
2324 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002325 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002326 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002327 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002328 return getMinusSCEV(AllOnes, V);
2329}
2330
2331/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2332///
Dan Gohman9311ef62009-06-24 14:49:00 +00002333const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2334 const SCEV *RHS) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002335 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002336 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002337}
2338
2339/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2340/// input value to the specified type. If the type must be extended, it is zero
2341/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002342const SCEV *
2343ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002344 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002345 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002346 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2347 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002348 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002349 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002350 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002351 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002352 return getTruncateExpr(V, Ty);
2353 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002354}
2355
2356/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2357/// input value to the specified type. If the type must be extended, it is sign
2358/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002359const SCEV *
2360ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002361 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002362 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002363 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2364 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002365 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002366 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002367 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002368 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002369 return getTruncateExpr(V, Ty);
2370 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002371}
2372
Dan Gohman467c4302009-05-13 03:46:30 +00002373/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2374/// input value to the specified type. If the type must be extended, it is zero
2375/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002376const SCEV *
2377ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002378 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002379 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2380 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002381 "Cannot noop or zero extend with non-integer arguments!");
2382 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2383 "getNoopOrZeroExtend cannot truncate!");
2384 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2385 return V; // No conversion
2386 return getZeroExtendExpr(V, Ty);
2387}
2388
2389/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2390/// input value to the specified type. If the type must be extended, it is sign
2391/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002392const SCEV *
2393ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002394 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002395 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2396 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002397 "Cannot noop or sign extend with non-integer arguments!");
2398 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2399 "getNoopOrSignExtend cannot truncate!");
2400 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2401 return V; // No conversion
2402 return getSignExtendExpr(V, Ty);
2403}
2404
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002405/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2406/// the input value to the specified type. If the type must be extended,
2407/// it is extended with unspecified bits. The conversion must not be
2408/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002409const SCEV *
2410ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002411 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002412 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2413 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002414 "Cannot noop or any extend with non-integer arguments!");
2415 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2416 "getNoopOrAnyExtend cannot truncate!");
2417 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2418 return V; // No conversion
2419 return getAnyExtendExpr(V, Ty);
2420}
2421
Dan Gohman467c4302009-05-13 03:46:30 +00002422/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2423/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002424const SCEV *
2425ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002426 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002427 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2428 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002429 "Cannot truncate or noop with non-integer arguments!");
2430 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2431 "getTruncateOrNoop cannot extend!");
2432 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2433 return V; // No conversion
2434 return getTruncateExpr(V, Ty);
2435}
2436
Dan Gohmana334aa72009-06-22 00:31:57 +00002437/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2438/// the types using zero-extension, and then perform a umax operation
2439/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002440const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2441 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002442 const SCEV *PromotedLHS = LHS;
2443 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002444
2445 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2446 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2447 else
2448 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2449
2450 return getUMaxExpr(PromotedLHS, PromotedRHS);
2451}
2452
Dan Gohmanc9759e82009-06-22 15:03:27 +00002453/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2454/// the types using zero-extension, and then perform a umin operation
2455/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002456const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2457 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002458 const SCEV *PromotedLHS = LHS;
2459 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002460
2461 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2462 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2463 else
2464 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2465
2466 return getUMinExpr(PromotedLHS, PromotedRHS);
2467}
2468
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002469/// PushDefUseChildren - Push users of the given Instruction
2470/// onto the given Worklist.
2471static void
2472PushDefUseChildren(Instruction *I,
2473 SmallVectorImpl<Instruction *> &Worklist) {
2474 // Push the def-use children onto the Worklist stack.
2475 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2476 UI != UE; ++UI)
2477 Worklist.push_back(cast<Instruction>(UI));
2478}
2479
2480/// ForgetSymbolicValue - This looks up computed SCEV values for all
2481/// instructions that depend on the given instruction and removes them from
2482/// the Scalars map if they reference SymName. This is used during PHI
2483/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002484void
Dan Gohman85669632010-02-25 06:57:05 +00002485ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002486 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002487 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002488
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002489 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002490 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002491 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002492 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002493 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002494
Dan Gohman5d984912009-12-18 01:14:11 +00002495 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002496 Scalars.find(static_cast<Value *>(I));
2497 if (It != Scalars.end()) {
2498 // Short-circuit the def-use traversal if the symbolic name
2499 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002500 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002501 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002502
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002503 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002504 // structure, it's a PHI that's in the progress of being computed
2505 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2506 // additional loop trip count information isn't going to change anything.
2507 // In the second case, createNodeForPHI will perform the necessary
2508 // updates on its own when it gets to that point. In the third, we do
2509 // want to forget the SCEVUnknown.
2510 if (!isa<PHINode>(I) ||
2511 !isa<SCEVUnknown>(It->second) ||
2512 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002513 ValuesAtScopes.erase(It->second);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002514 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002515 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002516 }
2517
2518 PushDefUseChildren(I, Worklist);
2519 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002520}
Chris Lattner53e677a2004-04-02 20:23:17 +00002521
2522/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2523/// a loop header, making it a potential recurrence, or it doesn't.
2524///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002525const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002526 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2527 if (L->getHeader() == PN->getParent()) {
2528 // The loop may have multiple entrances or multiple exits; we can analyze
2529 // this phi as an addrec if it has a unique entry value and a unique
2530 // backedge value.
2531 Value *BEValueV = 0, *StartValueV = 0;
2532 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2533 Value *V = PN->getIncomingValue(i);
2534 if (L->contains(PN->getIncomingBlock(i))) {
2535 if (!BEValueV) {
2536 BEValueV = V;
2537 } else if (BEValueV != V) {
2538 BEValueV = 0;
2539 break;
2540 }
2541 } else if (!StartValueV) {
2542 StartValueV = V;
2543 } else if (StartValueV != V) {
2544 StartValueV = 0;
2545 break;
2546 }
2547 }
2548 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002549 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002550 const SCEV *SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002551 assert(Scalars.find(PN) == Scalars.end() &&
2552 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00002553 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002554
2555 // Using this symbolic name for the PHI, analyze the value coming around
2556 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002557 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002558
2559 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2560 // has a special value for the first iteration of the loop.
2561
2562 // If the value coming around the backedge is an add with the symbolic
2563 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002564 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002565 // If there is a single occurrence of the symbolic value, replace it
2566 // with a recurrence.
2567 unsigned FoundIndex = Add->getNumOperands();
2568 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2569 if (Add->getOperand(i) == SymbolicName)
2570 if (FoundIndex == e) {
2571 FoundIndex = i;
2572 break;
2573 }
2574
2575 if (FoundIndex != Add->getNumOperands()) {
2576 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002577 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002578 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2579 if (i != FoundIndex)
2580 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002581 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002582
2583 // This is not a valid addrec if the step amount is varying each
2584 // loop iteration, but is not itself an addrec in this loop.
2585 if (Accum->isLoopInvariant(L) ||
2586 (isa<SCEVAddRecExpr>(Accum) &&
2587 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002588 bool HasNUW = false;
2589 bool HasNSW = false;
2590
2591 // If the increment doesn't overflow, then neither the addrec nor
2592 // the post-increment will overflow.
2593 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2594 if (OBO->hasNoUnsignedWrap())
2595 HasNUW = true;
2596 if (OBO->hasNoSignedWrap())
2597 HasNSW = true;
2598 }
2599
Dan Gohman27dead42010-04-12 07:49:36 +00002600 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002601 const SCEV *PHISCEV =
2602 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002603
Dan Gohmana10756e2010-01-21 02:09:26 +00002604 // Since the no-wrap flags are on the increment, they apply to the
2605 // post-incremented value as well.
2606 if (Accum->isLoopInvariant(L))
2607 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2608 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002609
2610 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002611 // to be symbolic. We now need to go back and purge all of the
2612 // entries for the scalars that use the symbolic expression.
2613 ForgetSymbolicName(PN, SymbolicName);
2614 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002615 return PHISCEV;
2616 }
2617 }
Dan Gohman622ed672009-05-04 22:02:23 +00002618 } else if (const SCEVAddRecExpr *AddRec =
2619 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002620 // Otherwise, this could be a loop like this:
2621 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2622 // In this case, j = {1,+,1} and BEValue is j.
2623 // Because the other in-value of i (0) fits the evolution of BEValue
2624 // i really is an addrec evolution.
2625 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002626 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002627
2628 // If StartVal = j.start - j.stride, we can use StartVal as the
2629 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002630 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002631 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002632 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002633 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002634
2635 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002636 // to be symbolic. We now need to go back and purge all of the
2637 // entries for the scalars that use the symbolic expression.
2638 ForgetSymbolicName(PN, SymbolicName);
2639 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002640 return PHISCEV;
2641 }
2642 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002643 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002644 }
Dan Gohman27dead42010-04-12 07:49:36 +00002645 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002646
Dan Gohman85669632010-02-25 06:57:05 +00002647 // If the PHI has a single incoming value, follow that value, unless the
2648 // PHI's incoming blocks are in a different loop, in which case doing so
2649 // risks breaking LCSSA form. Instcombine would normally zap these, but
2650 // it doesn't have DominatorTree information, so it may miss cases.
2651 if (Value *V = PN->hasConstantValue(DT)) {
2652 bool AllSameLoop = true;
2653 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2654 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2655 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2656 AllSameLoop = false;
2657 break;
2658 }
2659 if (AllSameLoop)
2660 return getSCEV(V);
2661 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002662
Chris Lattner53e677a2004-04-02 20:23:17 +00002663 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002664 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002665}
2666
Dan Gohman26466c02009-05-08 20:26:55 +00002667/// createNodeForGEP - Expand GEP instructions into add and multiply
2668/// operations. This allows them to be analyzed by regular SCEV code.
2669///
Dan Gohmand281ed22009-12-18 02:09:29 +00002670const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002671
Dan Gohmand281ed22009-12-18 02:09:29 +00002672 bool InBounds = GEP->isInBounds();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002673 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002674 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002675 // Don't attempt to analyze GEPs over unsized objects.
2676 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2677 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002678 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002679 gep_type_iterator GTI = gep_type_begin(GEP);
2680 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2681 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002682 I != E; ++I) {
2683 Value *Index = *I;
2684 // Compute the (potentially symbolic) offset in bytes for this index.
2685 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2686 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002687 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002688 TotalOffset = getAddExpr(TotalOffset,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002689 getOffsetOfExpr(STy, FieldNo),
Dan Gohmand281ed22009-12-18 02:09:29 +00002690 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002691 } else {
2692 // For an array, add the element offset, explicitly scaled.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002693 const SCEV *LocalOffset = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002694 // Getelementptr indices are signed.
Dan Gohman8db08df2010-02-02 01:38:49 +00002695 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
Dan Gohmand281ed22009-12-18 02:09:29 +00002696 // Lower "inbounds" GEPs to NSW arithmetic.
Dan Gohman4f8eea82010-02-01 18:27:38 +00002697 LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI),
Dan Gohmand281ed22009-12-18 02:09:29 +00002698 /*HasNUW=*/false, /*HasNSW=*/InBounds);
2699 TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2700 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002701 }
2702 }
Dan Gohmand281ed22009-12-18 02:09:29 +00002703 return getAddExpr(getSCEV(Base), TotalOffset,
2704 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002705}
2706
Nick Lewycky83bb0052007-11-22 07:59:40 +00002707/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2708/// guaranteed to end in (at every loop iteration). It is, at the same time,
2709/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2710/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002711uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002712ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002713 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002714 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002715
Dan Gohman622ed672009-05-04 22:02:23 +00002716 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002717 return std::min(GetMinTrailingZeros(T->getOperand()),
2718 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002719
Dan Gohman622ed672009-05-04 22:02:23 +00002720 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002721 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2722 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2723 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002724 }
2725
Dan Gohman622ed672009-05-04 22:02:23 +00002726 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002727 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2728 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2729 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002730 }
2731
Dan Gohman622ed672009-05-04 22:02:23 +00002732 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002733 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002734 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002735 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002736 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002737 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002738 }
2739
Dan Gohman622ed672009-05-04 22:02:23 +00002740 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002741 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002742 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2743 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002744 for (unsigned i = 1, e = M->getNumOperands();
2745 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002746 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002747 BitWidth);
2748 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002749 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002750
Dan Gohman622ed672009-05-04 22:02:23 +00002751 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002752 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002753 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002754 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002755 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002756 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002757 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002758
Dan Gohman622ed672009-05-04 22:02:23 +00002759 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002760 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002761 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002762 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002763 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002764 return MinOpRes;
2765 }
2766
Dan Gohman622ed672009-05-04 22:02:23 +00002767 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002768 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002769 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002770 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002771 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002772 return MinOpRes;
2773 }
2774
Dan Gohman2c364ad2009-06-19 23:29:04 +00002775 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2776 // For a SCEVUnknown, ask ValueTracking.
2777 unsigned BitWidth = getTypeSizeInBits(U->getType());
2778 APInt Mask = APInt::getAllOnesValue(BitWidth);
2779 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2780 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2781 return Zeros.countTrailingOnes();
2782 }
2783
2784 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002785 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002786}
Chris Lattner53e677a2004-04-02 20:23:17 +00002787
Dan Gohman85b05a22009-07-13 21:35:55 +00002788/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2789///
2790ConstantRange
2791ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002792
2793 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00002794 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00002795
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002796 unsigned BitWidth = getTypeSizeInBits(S->getType());
2797 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2798
2799 // If the value has known zeros, the maximum unsigned value will have those
2800 // known zeros as well.
2801 uint32_t TZ = GetMinTrailingZeros(S);
2802 if (TZ != 0)
2803 ConservativeResult =
2804 ConstantRange(APInt::getMinValue(BitWidth),
2805 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2806
Dan Gohman85b05a22009-07-13 21:35:55 +00002807 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2808 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2809 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2810 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002811 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002812 }
2813
2814 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2815 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2816 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2817 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002818 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002819 }
2820
2821 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2822 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2823 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2824 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002825 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002826 }
2827
2828 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2829 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2830 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2831 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002832 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002833 }
2834
2835 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2836 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2837 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002838 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00002839 }
2840
2841 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2842 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002843 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002844 }
2845
2846 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2847 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002848 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002849 }
2850
2851 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2852 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002853 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002854 }
2855
Dan Gohman85b05a22009-07-13 21:35:55 +00002856 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002857 // If there's no unsigned wrap, the value will never be less than its
2858 // initial value.
2859 if (AddRec->hasNoUnsignedWrap())
2860 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00002861 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00002862 ConservativeResult =
Dan Gohmanb64cf892010-04-11 22:13:11 +00002863 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0));
Dan Gohman85b05a22009-07-13 21:35:55 +00002864
2865 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002866 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002867 const Type *Ty = AddRec->getType();
2868 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002869 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
2870 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002871 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2872
2873 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00002874 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00002875
2876 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00002877 ConstantRange StepRange = getSignedRange(Step);
2878 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
2879 ConstantRange EndRange =
2880 StartRange.add(MaxBECountRange.multiply(StepRange));
2881
2882 // Check for overflow. This must be done with ConstantRange arithmetic
2883 // because we could be called from within the ScalarEvolution overflow
2884 // checking code.
2885 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
2886 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
2887 ConstantRange ExtMaxBECountRange =
2888 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
2889 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
2890 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
2891 ExtEndRange)
2892 return ConservativeResult;
2893
Dan Gohman85b05a22009-07-13 21:35:55 +00002894 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2895 EndRange.getUnsignedMin());
2896 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2897 EndRange.getUnsignedMax());
2898 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00002899 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002900 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00002901 }
2902 }
Dan Gohmana10756e2010-01-21 02:09:26 +00002903
2904 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002905 }
2906
2907 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2908 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002909 APInt Mask = APInt::getAllOnesValue(BitWidth);
2910 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2911 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00002912 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002913 return ConservativeResult;
2914 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00002915 }
2916
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002917 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002918}
2919
Dan Gohman85b05a22009-07-13 21:35:55 +00002920/// getSignedRange - Determine the signed range for a particular SCEV.
2921///
2922ConstantRange
2923ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002924
Dan Gohman85b05a22009-07-13 21:35:55 +00002925 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2926 return ConstantRange(C->getValue()->getValue());
2927
Dan Gohman52fddd32010-01-26 04:40:18 +00002928 unsigned BitWidth = getTypeSizeInBits(S->getType());
2929 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2930
2931 // If the value has known zeros, the maximum signed value will have those
2932 // known zeros as well.
2933 uint32_t TZ = GetMinTrailingZeros(S);
2934 if (TZ != 0)
2935 ConservativeResult =
2936 ConstantRange(APInt::getSignedMinValue(BitWidth),
2937 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
2938
Dan Gohman85b05a22009-07-13 21:35:55 +00002939 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2940 ConstantRange X = getSignedRange(Add->getOperand(0));
2941 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2942 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00002943 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00002944 }
2945
Dan Gohman85b05a22009-07-13 21:35:55 +00002946 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2947 ConstantRange X = getSignedRange(Mul->getOperand(0));
2948 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2949 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00002950 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00002951 }
2952
Dan Gohman85b05a22009-07-13 21:35:55 +00002953 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2954 ConstantRange X = getSignedRange(SMax->getOperand(0));
2955 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2956 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00002957 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002958 }
Dan Gohman62849c02009-06-24 01:05:09 +00002959
Dan Gohman85b05a22009-07-13 21:35:55 +00002960 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2961 ConstantRange X = getSignedRange(UMax->getOperand(0));
2962 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2963 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00002964 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002965 }
Dan Gohman62849c02009-06-24 01:05:09 +00002966
Dan Gohman85b05a22009-07-13 21:35:55 +00002967 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2968 ConstantRange X = getSignedRange(UDiv->getLHS());
2969 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00002970 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00002971 }
Dan Gohman62849c02009-06-24 01:05:09 +00002972
Dan Gohman85b05a22009-07-13 21:35:55 +00002973 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2974 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00002975 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002976 }
2977
2978 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2979 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00002980 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002981 }
2982
2983 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2984 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00002985 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002986 }
2987
Dan Gohman85b05a22009-07-13 21:35:55 +00002988 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002989 // If there's no signed wrap, and all the operands have the same sign or
2990 // zero, the value won't ever change sign.
2991 if (AddRec->hasNoSignedWrap()) {
2992 bool AllNonNeg = true;
2993 bool AllNonPos = true;
2994 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
2995 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
2996 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
2997 }
Dan Gohmana10756e2010-01-21 02:09:26 +00002998 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00002999 ConservativeResult = ConservativeResult.intersectWith(
3000 ConstantRange(APInt(BitWidth, 0),
3001 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003002 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003003 ConservativeResult = ConservativeResult.intersectWith(
3004 ConstantRange(APInt::getSignedMinValue(BitWidth),
3005 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003006 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003007
3008 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003009 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003010 const Type *Ty = AddRec->getType();
3011 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003012 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3013 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003014 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3015
3016 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003017 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003018
3019 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003020 ConstantRange StepRange = getSignedRange(Step);
3021 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3022 ConstantRange EndRange =
3023 StartRange.add(MaxBECountRange.multiply(StepRange));
3024
3025 // Check for overflow. This must be done with ConstantRange arithmetic
3026 // because we could be called from within the ScalarEvolution overflow
3027 // checking code.
3028 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3029 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3030 ConstantRange ExtMaxBECountRange =
3031 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3032 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3033 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3034 ExtEndRange)
3035 return ConservativeResult;
3036
Dan Gohman85b05a22009-07-13 21:35:55 +00003037 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3038 EndRange.getSignedMin());
3039 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3040 EndRange.getSignedMax());
3041 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003042 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003043 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003044 }
Dan Gohman62849c02009-06-24 01:05:09 +00003045 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003046
3047 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003048 }
3049
Dan Gohman2c364ad2009-06-19 23:29:04 +00003050 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3051 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003052 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003053 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003054 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3055 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003056 return ConservativeResult;
3057 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003058 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003059 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003060 }
3061
Dan Gohman52fddd32010-01-26 04:40:18 +00003062 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003063}
3064
Chris Lattner53e677a2004-04-02 20:23:17 +00003065/// createSCEV - We know that there is no SCEV for the specified value.
3066/// Analyze the expression.
3067///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003068const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003069 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003070 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003071
Dan Gohman6c459a22008-06-22 19:56:46 +00003072 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003073 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003074 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003075
3076 // Don't attempt to analyze instructions in blocks that aren't
3077 // reachable. Such instructions don't matter, and they aren't required
3078 // to obey basic rules for definitions dominating uses which this
3079 // analysis depends on.
3080 if (!DT->isReachableFromEntry(I->getParent()))
3081 return getUnknown(V);
3082 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003083 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003084 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3085 return getConstant(CI);
3086 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003087 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003088 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3089 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003090 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003091 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003092
Dan Gohmanca178902009-07-17 20:47:02 +00003093 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003094 switch (Opcode) {
Dan Gohman7a721952009-10-09 16:35:06 +00003095 case Instruction::Add:
3096 // Don't transfer the NSW and NUW bits from the Add instruction to the
3097 // Add expression, because the Instruction may be guarded by control
3098 // flow and the no-overflow bits may not be valid for the expression in
3099 // any context.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003100 return getAddExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003101 getSCEV(U->getOperand(1)));
3102 case Instruction::Mul:
3103 // Don't transfer the NSW and NUW bits from the Mul instruction to the
3104 // Mul expression, as with Add.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003105 return getMulExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003106 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003107 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003108 return getUDivExpr(getSCEV(U->getOperand(0)),
3109 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003110 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003111 return getMinusSCEV(getSCEV(U->getOperand(0)),
3112 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003113 case Instruction::And:
3114 // For an expression like x&255 that merely masks off the high bits,
3115 // use zext(trunc(x)) as the SCEV expression.
3116 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003117 if (CI->isNullValue())
3118 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003119 if (CI->isAllOnesValue())
3120 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003121 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003122
3123 // Instcombine's ShrinkDemandedConstant may strip bits out of
3124 // constants, obscuring what would otherwise be a low-bits mask.
3125 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3126 // knew about to reconstruct a low-bits mask value.
3127 unsigned LZ = A.countLeadingZeros();
3128 unsigned BitWidth = A.getBitWidth();
3129 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3130 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3131 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3132
3133 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3134
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003135 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003136 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003137 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003138 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003139 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003140 }
3141 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003142
Dan Gohman6c459a22008-06-22 19:56:46 +00003143 case Instruction::Or:
3144 // If the RHS of the Or is a constant, we may have something like:
3145 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3146 // optimizations will transparently handle this case.
3147 //
3148 // In order for this transformation to be safe, the LHS must be of the
3149 // form X*(2^n) and the Or constant must be less than 2^n.
3150 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003151 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003152 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003153 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003154 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3155 // Build a plain add SCEV.
3156 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3157 // If the LHS of the add was an addrec and it has no-wrap flags,
3158 // transfer the no-wrap flags, since an or won't introduce a wrap.
3159 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3160 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3161 if (OldAR->hasNoUnsignedWrap())
3162 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3163 if (OldAR->hasNoSignedWrap())
3164 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3165 }
3166 return S;
3167 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003168 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003169 break;
3170 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003171 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003172 // If the RHS of the xor is a signbit, then this is just an add.
3173 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003174 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003175 return getAddExpr(getSCEV(U->getOperand(0)),
3176 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003177
3178 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003179 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003180 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003181
3182 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3183 // This is a variant of the check for xor with -1, and it handles
3184 // the case where instcombine has trimmed non-demanded bits out
3185 // of an xor with -1.
3186 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3187 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3188 if (BO->getOpcode() == Instruction::And &&
3189 LCI->getValue() == CI->getValue())
3190 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003191 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003192 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003193 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003194 const Type *Z0Ty = Z0->getType();
3195 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3196
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003197 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003198 // mask off the high bits. Complement the operand and
3199 // re-apply the zext.
3200 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3201 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3202
3203 // If C is a single bit, it may be in the sign-bit position
3204 // before the zero-extend. In this case, represent the xor
3205 // using an add, which is equivalent, and re-apply the zext.
3206 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3207 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3208 Trunc.isSignBit())
3209 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3210 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003211 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003212 }
3213 break;
3214
3215 case Instruction::Shl:
3216 // Turn shift left of a constant amount into a multiply.
3217 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003218 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003219
3220 // If the shift count is not less than the bitwidth, the result of
3221 // the shift is undefined. Don't try to analyze it, because the
3222 // resolution chosen here may differ from the resolution chosen in
3223 // other parts of the compiler.
3224 if (SA->getValue().uge(BitWidth))
3225 break;
3226
Owen Andersoneed707b2009-07-24 23:12:02 +00003227 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003228 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003229 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003230 }
3231 break;
3232
Nick Lewycky01eaf802008-07-07 06:15:49 +00003233 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003234 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003235 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003236 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003237
3238 // If the shift count is not less than the bitwidth, the result of
3239 // the shift is undefined. Don't try to analyze it, because the
3240 // resolution chosen here may differ from the resolution chosen in
3241 // other parts of the compiler.
3242 if (SA->getValue().uge(BitWidth))
3243 break;
3244
Owen Andersoneed707b2009-07-24 23:12:02 +00003245 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003246 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003247 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003248 }
3249 break;
3250
Dan Gohman4ee29af2009-04-21 02:26:00 +00003251 case Instruction::AShr:
3252 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3253 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003254 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003255 if (L->getOpcode() == Instruction::Shl &&
3256 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003257 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3258
3259 // If the shift count is not less than the bitwidth, the result of
3260 // the shift is undefined. Don't try to analyze it, because the
3261 // resolution chosen here may differ from the resolution chosen in
3262 // other parts of the compiler.
3263 if (CI->getValue().uge(BitWidth))
3264 break;
3265
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003266 uint64_t Amt = BitWidth - CI->getZExtValue();
3267 if (Amt == BitWidth)
3268 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003269 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003270 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003271 IntegerType::get(getContext(),
3272 Amt)),
3273 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003274 }
3275 break;
3276
Dan Gohman6c459a22008-06-22 19:56:46 +00003277 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003278 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003279
3280 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003281 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003282
3283 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003284 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003285
3286 case Instruction::BitCast:
3287 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003288 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003289 return getSCEV(U->getOperand(0));
3290 break;
3291
Dan Gohman4f8eea82010-02-01 18:27:38 +00003292 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3293 // lead to pointer expressions which cannot safely be expanded to GEPs,
3294 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3295 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003296
Dan Gohman26466c02009-05-08 20:26:55 +00003297 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003298 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003299
Dan Gohman6c459a22008-06-22 19:56:46 +00003300 case Instruction::PHI:
3301 return createNodeForPHI(cast<PHINode>(U));
3302
3303 case Instruction::Select:
3304 // This could be a smax or umax that was lowered earlier.
3305 // Try to recover it.
3306 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3307 Value *LHS = ICI->getOperand(0);
3308 Value *RHS = ICI->getOperand(1);
3309 switch (ICI->getPredicate()) {
3310 case ICmpInst::ICMP_SLT:
3311 case ICmpInst::ICMP_SLE:
3312 std::swap(LHS, RHS);
3313 // fall through
3314 case ICmpInst::ICMP_SGT:
3315 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003316 // a >s b ? a+x : b+x -> smax(a, b)+x
3317 // a >s b ? b+x : a+x -> smin(a, b)+x
3318 if (LHS->getType() == U->getType()) {
3319 const SCEV *LS = getSCEV(LHS);
3320 const SCEV *RS = getSCEV(RHS);
3321 const SCEV *LA = getSCEV(U->getOperand(1));
3322 const SCEV *RA = getSCEV(U->getOperand(2));
3323 const SCEV *LDiff = getMinusSCEV(LA, LS);
3324 const SCEV *RDiff = getMinusSCEV(RA, RS);
3325 if (LDiff == RDiff)
3326 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3327 LDiff = getMinusSCEV(LA, RS);
3328 RDiff = getMinusSCEV(RA, LS);
3329 if (LDiff == RDiff)
3330 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3331 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003332 break;
3333 case ICmpInst::ICMP_ULT:
3334 case ICmpInst::ICMP_ULE:
3335 std::swap(LHS, RHS);
3336 // fall through
3337 case ICmpInst::ICMP_UGT:
3338 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003339 // a >u b ? a+x : b+x -> umax(a, b)+x
3340 // a >u b ? b+x : a+x -> umin(a, b)+x
3341 if (LHS->getType() == U->getType()) {
3342 const SCEV *LS = getSCEV(LHS);
3343 const SCEV *RS = getSCEV(RHS);
3344 const SCEV *LA = getSCEV(U->getOperand(1));
3345 const SCEV *RA = getSCEV(U->getOperand(2));
3346 const SCEV *LDiff = getMinusSCEV(LA, LS);
3347 const SCEV *RDiff = getMinusSCEV(RA, RS);
3348 if (LDiff == RDiff)
3349 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3350 LDiff = getMinusSCEV(LA, RS);
3351 RDiff = getMinusSCEV(RA, LS);
3352 if (LDiff == RDiff)
3353 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3354 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003355 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003356 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003357 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3358 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003359 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003360 cast<ConstantInt>(RHS)->isZero()) {
3361 const SCEV *One = getConstant(LHS->getType(), 1);
3362 const SCEV *LS = getSCEV(LHS);
3363 const SCEV *LA = getSCEV(U->getOperand(1));
3364 const SCEV *RA = getSCEV(U->getOperand(2));
3365 const SCEV *LDiff = getMinusSCEV(LA, LS);
3366 const SCEV *RDiff = getMinusSCEV(RA, One);
3367 if (LDiff == RDiff)
3368 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3369 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003370 break;
3371 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003372 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3373 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003374 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003375 cast<ConstantInt>(RHS)->isZero()) {
3376 const SCEV *One = getConstant(LHS->getType(), 1);
3377 const SCEV *LS = getSCEV(LHS);
3378 const SCEV *LA = getSCEV(U->getOperand(1));
3379 const SCEV *RA = getSCEV(U->getOperand(2));
3380 const SCEV *LDiff = getMinusSCEV(LA, One);
3381 const SCEV *RDiff = getMinusSCEV(RA, LS);
3382 if (LDiff == RDiff)
3383 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3384 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003385 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003386 default:
3387 break;
3388 }
3389 }
3390
3391 default: // We cannot analyze this expression.
3392 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003393 }
3394
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003395 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003396}
3397
3398
3399
3400//===----------------------------------------------------------------------===//
3401// Iteration Count Computation Code
3402//
3403
Dan Gohman46bdfb02009-02-24 18:55:53 +00003404/// getBackedgeTakenCount - If the specified loop has a predictable
3405/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3406/// object. The backedge-taken count is the number of times the loop header
3407/// will be branched to from within the loop. This is one less than the
3408/// trip count of the loop, since it doesn't count the first iteration,
3409/// when the header is branched to from outside the loop.
3410///
3411/// Note that it is not valid to call this method on a loop without a
3412/// loop-invariant backedge-taken count (see
3413/// hasLoopInvariantBackedgeTakenCount).
3414///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003415const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003416 return getBackedgeTakenInfo(L).Exact;
3417}
3418
3419/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3420/// return the least SCEV value that is known never to be less than the
3421/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003422const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003423 return getBackedgeTakenInfo(L).Max;
3424}
3425
Dan Gohman59ae6b92009-07-08 19:23:34 +00003426/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3427/// onto the given Worklist.
3428static void
3429PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3430 BasicBlock *Header = L->getHeader();
3431
3432 // Push all Loop-header PHIs onto the Worklist stack.
3433 for (BasicBlock::iterator I = Header->begin();
3434 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3435 Worklist.push_back(PN);
3436}
3437
Dan Gohmana1af7572009-04-30 20:47:05 +00003438const ScalarEvolution::BackedgeTakenInfo &
3439ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003440 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003441 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003442 // update the value. The temporary CouldNotCompute value tells SCEV
3443 // code elsewhere that it shouldn't attempt to request a new
3444 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003445 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003446 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3447 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003448 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3449 if (BECount.Exact != getCouldNotCompute()) {
3450 assert(BECount.Exact->isLoopInvariant(L) &&
3451 BECount.Max->isLoopInvariant(L) &&
3452 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003453 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003454
Dan Gohman01ecca22009-04-27 20:16:15 +00003455 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003456 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003457 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003458 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003459 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003460 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003461 if (isa<PHINode>(L->getHeader()->begin()))
3462 // Only count loops that have phi nodes as not being computable.
3463 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003464 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003465
3466 // Now that we know more about the trip count for this loop, forget any
3467 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003468 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003469 // information. This is similar to the code in forgetLoop, except that
3470 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003471 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003472 SmallVector<Instruction *, 16> Worklist;
3473 PushLoopPHIs(L, Worklist);
3474
3475 SmallPtrSet<Instruction *, 8> Visited;
3476 while (!Worklist.empty()) {
3477 Instruction *I = Worklist.pop_back_val();
3478 if (!Visited.insert(I)) continue;
3479
Dan Gohman5d984912009-12-18 01:14:11 +00003480 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003481 Scalars.find(static_cast<Value *>(I));
3482 if (It != Scalars.end()) {
3483 // SCEVUnknown for a PHI either means that it has an unrecognized
3484 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003485 // by createNodeForPHI. In the former case, additional loop trip
3486 // count information isn't going to change anything. In the later
3487 // case, createNodeForPHI will perform the necessary updates on its
3488 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003489 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3490 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003491 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003492 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003493 if (PHINode *PN = dyn_cast<PHINode>(I))
3494 ConstantEvolutionLoopExitValue.erase(PN);
3495 }
3496
3497 PushDefUseChildren(I, Worklist);
3498 }
3499 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003500 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003501 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003502}
3503
Dan Gohman4c7279a2009-10-31 15:04:55 +00003504/// forgetLoop - This method should be called by the client when it has
3505/// changed a loop in a way that may effect ScalarEvolution's ability to
3506/// compute a trip count, or if the loop is deleted.
3507void ScalarEvolution::forgetLoop(const Loop *L) {
3508 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003509 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003510
Dan Gohman4c7279a2009-10-31 15:04:55 +00003511 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003512 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003513 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003514
Dan Gohman59ae6b92009-07-08 19:23:34 +00003515 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003516 while (!Worklist.empty()) {
3517 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003518 if (!Visited.insert(I)) continue;
3519
Dan Gohman5d984912009-12-18 01:14:11 +00003520 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003521 Scalars.find(static_cast<Value *>(I));
3522 if (It != Scalars.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003523 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003524 Scalars.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003525 if (PHINode *PN = dyn_cast<PHINode>(I))
3526 ConstantEvolutionLoopExitValue.erase(PN);
3527 }
3528
3529 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003530 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003531}
3532
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003533/// forgetValue - This method should be called by the client when it has
3534/// changed a value in a way that may effect its value, or which may
3535/// disconnect it from a def-use chain linking it to a loop.
3536void ScalarEvolution::forgetValue(Value *V) {
3537 Instruction *I = dyn_cast<Instruction>(V);
3538 if (!I) return;
3539
3540 // Drop information about expressions based on loop-header PHIs.
3541 SmallVector<Instruction *, 16> Worklist;
3542 Worklist.push_back(I);
3543
3544 SmallPtrSet<Instruction *, 8> Visited;
3545 while (!Worklist.empty()) {
3546 I = Worklist.pop_back_val();
3547 if (!Visited.insert(I)) continue;
3548
3549 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3550 Scalars.find(static_cast<Value *>(I));
3551 if (It != Scalars.end()) {
3552 ValuesAtScopes.erase(It->second);
3553 Scalars.erase(It);
3554 if (PHINode *PN = dyn_cast<PHINode>(I))
3555 ConstantEvolutionLoopExitValue.erase(PN);
3556 }
3557
3558 PushDefUseChildren(I, Worklist);
3559 }
3560}
3561
Dan Gohman46bdfb02009-02-24 18:55:53 +00003562/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3563/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003564ScalarEvolution::BackedgeTakenInfo
3565ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003566 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003567 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003568
Dan Gohmana334aa72009-06-22 00:31:57 +00003569 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003570 const SCEV *BECount = getCouldNotCompute();
3571 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003572 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003573 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3574 BackedgeTakenInfo NewBTI =
3575 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003576
Dan Gohman1c343752009-06-27 21:21:31 +00003577 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003578 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003579 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003580 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003581 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003582 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003583 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003584 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003585 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003586 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003587 }
Dan Gohman1c343752009-06-27 21:21:31 +00003588 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003589 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003590 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003591 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003592 }
3593
3594 return BackedgeTakenInfo(BECount, MaxBECount);
3595}
3596
3597/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3598/// of the specified loop will execute if it exits via the specified block.
3599ScalarEvolution::BackedgeTakenInfo
3600ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3601 BasicBlock *ExitingBlock) {
3602
3603 // Okay, we've chosen an exiting block. See what condition causes us to
3604 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003605 //
3606 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003607 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003608 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003609 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003610
Chris Lattner8b0e3602007-01-07 02:24:26 +00003611 // At this point, we know we have a conditional branch that determines whether
3612 // the loop is exited. However, we don't know if the branch is executed each
3613 // time through the loop. If not, then the execution count of the branch will
3614 // not be equal to the trip count of the loop.
3615 //
3616 // Currently we check for this by checking to see if the Exit branch goes to
3617 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003618 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003619 // loop header. This is common for un-rotated loops.
3620 //
3621 // If both of those tests fail, walk up the unique predecessor chain to the
3622 // header, stopping if there is an edge that doesn't exit the loop. If the
3623 // header is reached, the execution count of the branch will be equal to the
3624 // trip count of the loop.
3625 //
3626 // More extensive analysis could be done to handle more cases here.
3627 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003628 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003629 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003630 ExitBr->getParent() != L->getHeader()) {
3631 // The simple checks failed, try climbing the unique predecessor chain
3632 // up to the header.
3633 bool Ok = false;
3634 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3635 BasicBlock *Pred = BB->getUniquePredecessor();
3636 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003637 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003638 TerminatorInst *PredTerm = Pred->getTerminator();
3639 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3640 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3641 if (PredSucc == BB)
3642 continue;
3643 // If the predecessor has a successor that isn't BB and isn't
3644 // outside the loop, assume the worst.
3645 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003646 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003647 }
3648 if (Pred == L->getHeader()) {
3649 Ok = true;
3650 break;
3651 }
3652 BB = Pred;
3653 }
3654 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003655 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003656 }
3657
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003658 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003659 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3660 ExitBr->getSuccessor(0),
3661 ExitBr->getSuccessor(1));
3662}
3663
3664/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3665/// backedge of the specified loop will execute if its exit condition
3666/// were a conditional branch of ExitCond, TBB, and FBB.
3667ScalarEvolution::BackedgeTakenInfo
3668ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3669 Value *ExitCond,
3670 BasicBlock *TBB,
3671 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003672 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003673 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3674 if (BO->getOpcode() == Instruction::And) {
3675 // Recurse on the operands of the and.
3676 BackedgeTakenInfo BTI0 =
3677 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3678 BackedgeTakenInfo BTI1 =
3679 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003680 const SCEV *BECount = getCouldNotCompute();
3681 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003682 if (L->contains(TBB)) {
3683 // Both conditions must be true for the loop to continue executing.
3684 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003685 if (BTI0.Exact == getCouldNotCompute() ||
3686 BTI1.Exact == getCouldNotCompute())
3687 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003688 else
3689 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003690 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003691 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003692 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003693 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003694 else
3695 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003696 } else {
3697 // Both conditions must be true for the loop to exit.
3698 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003699 if (BTI0.Exact != getCouldNotCompute() &&
3700 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003701 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003702 if (BTI0.Max != getCouldNotCompute() &&
3703 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003704 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3705 }
3706
3707 return BackedgeTakenInfo(BECount, MaxBECount);
3708 }
3709 if (BO->getOpcode() == Instruction::Or) {
3710 // Recurse on the operands of the or.
3711 BackedgeTakenInfo BTI0 =
3712 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3713 BackedgeTakenInfo BTI1 =
3714 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003715 const SCEV *BECount = getCouldNotCompute();
3716 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003717 if (L->contains(FBB)) {
3718 // Both conditions must be false for the loop to continue executing.
3719 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003720 if (BTI0.Exact == getCouldNotCompute() ||
3721 BTI1.Exact == getCouldNotCompute())
3722 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003723 else
3724 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003725 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003726 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003727 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003728 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003729 else
3730 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003731 } else {
3732 // Both conditions must be false for the loop to exit.
3733 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003734 if (BTI0.Exact != getCouldNotCompute() &&
3735 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003736 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003737 if (BTI0.Max != getCouldNotCompute() &&
3738 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003739 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3740 }
3741
3742 return BackedgeTakenInfo(BECount, MaxBECount);
3743 }
3744 }
3745
3746 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003747 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003748 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3749 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003750
Dan Gohman00cb5b72010-02-19 18:12:07 +00003751 // Check for a constant condition. These are normally stripped out by
3752 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3753 // preserve the CFG and is temporarily leaving constant conditions
3754 // in place.
3755 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3756 if (L->contains(FBB) == !CI->getZExtValue())
3757 // The backedge is always taken.
3758 return getCouldNotCompute();
3759 else
3760 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00003761 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00003762 }
3763
Eli Friedman361e54d2009-05-09 12:32:42 +00003764 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003765 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3766}
3767
3768/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3769/// backedge of the specified loop will execute if its exit condition
3770/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3771ScalarEvolution::BackedgeTakenInfo
3772ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3773 ICmpInst *ExitCond,
3774 BasicBlock *TBB,
3775 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003776
Reid Spencere4d87aa2006-12-23 06:05:41 +00003777 // If the condition was exit on true, convert the condition to exit on false
3778 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003779 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003780 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003781 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003782 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003783
3784 // Handle common loops like: for (X = "string"; *X; ++X)
3785 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3786 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003787 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003788 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003789 if (ItCnt.hasAnyInfo())
3790 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00003791 }
3792
Dan Gohman0bba49c2009-07-07 17:06:11 +00003793 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3794 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00003795
3796 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003797 LHS = getSCEVAtScope(LHS, L);
3798 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003799
Dan Gohman64a845e2009-06-24 04:48:43 +00003800 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00003801 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003802 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3803 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003804 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003805 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003806 }
3807
Dan Gohman03557dc2010-05-03 16:35:17 +00003808 // Simplify the operands before analyzing them.
3809 (void)SimplifyICmpOperands(Cond, LHS, RHS);
3810
Chris Lattner53e677a2004-04-02 20:23:17 +00003811 // If we have a comparison of a chrec against a constant, try to use value
3812 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003813 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3814 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003815 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003816 // Form the constant range.
3817 ConstantRange CompRange(
3818 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003819
Dan Gohman0bba49c2009-07-07 17:06:11 +00003820 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00003821 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003822 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003823
Chris Lattner53e677a2004-04-02 20:23:17 +00003824 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003825 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003826 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003827 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3828 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003829 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003830 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00003831 case ICmpInst::ICMP_EQ: { // while (X == Y)
3832 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003833 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3834 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003835 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003836 }
3837 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003838 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3839 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003840 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003841 }
3842 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003843 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3844 getNotSCEV(RHS), L, true);
3845 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003846 break;
3847 }
3848 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003849 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3850 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003851 break;
3852 }
3853 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003854 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3855 getNotSCEV(RHS), L, false);
3856 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003857 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003858 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003859 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003860#if 0
David Greene25e0e872009-12-23 22:18:14 +00003861 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00003862 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00003863 dbgs() << "[unsigned] ";
3864 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00003865 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00003866 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003867#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00003868 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003869 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00003870 return
Dan Gohmana334aa72009-06-22 00:31:57 +00003871 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00003872}
3873
Chris Lattner673e02b2004-10-12 01:49:27 +00003874static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00003875EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3876 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003877 const SCEV *InVal = SE.getConstant(C);
3878 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00003879 assert(isa<SCEVConstant>(Val) &&
3880 "Evaluation of SCEV at constant didn't fold correctly?");
3881 return cast<SCEVConstant>(Val)->getValue();
3882}
3883
3884/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3885/// and a GEP expression (missing the pointer index) indexing into it, return
3886/// the addressed element of the initializer or null if the index expression is
3887/// invalid.
3888static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00003889GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00003890 const std::vector<ConstantInt*> &Indices) {
3891 Constant *Init = GV->getInitializer();
3892 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00003893 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00003894 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3895 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3896 Init = cast<Constant>(CS->getOperand(Idx));
3897 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3898 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
3899 Init = cast<Constant>(CA->getOperand(Idx));
3900 } else if (isa<ConstantAggregateZero>(Init)) {
3901 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3902 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00003903 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00003904 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3905 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00003906 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00003907 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00003908 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00003909 }
3910 return 0;
3911 } else {
3912 return 0; // Unknown initializer type
3913 }
3914 }
3915 return Init;
3916}
3917
Dan Gohman46bdfb02009-02-24 18:55:53 +00003918/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3919/// 'icmp op load X, cst', try to see if we can compute the backedge
3920/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003921ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00003922ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3923 LoadInst *LI,
3924 Constant *RHS,
3925 const Loop *L,
3926 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00003927 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003928
3929 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003930 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00003931 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00003932 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003933
3934 // Make sure that it is really a constant global we are gepping, with an
3935 // initializer, and make sure the first IDX is really 0.
3936 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00003937 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00003938 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3939 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00003940 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003941
3942 // Okay, we allow one non-constant index into the GEP instruction.
3943 Value *VarIdx = 0;
3944 std::vector<ConstantInt*> Indexes;
3945 unsigned VarIdxNum = 0;
3946 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3947 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3948 Indexes.push_back(CI);
3949 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00003950 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00003951 VarIdx = GEP->getOperand(i);
3952 VarIdxNum = i-2;
3953 Indexes.push_back(0);
3954 }
3955
3956 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3957 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003958 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00003959 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00003960
3961 // We can only recognize very limited forms of loop index expressions, in
3962 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00003963 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00003964 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3965 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3966 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00003967 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003968
3969 unsigned MaxSteps = MaxBruteForceIterations;
3970 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00003971 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00003972 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003973 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00003974
3975 // Form the GEP offset.
3976 Indexes[VarIdxNum] = Val;
3977
Nick Lewyckyc6501b12009-11-23 03:26:09 +00003978 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00003979 if (Result == 0) break; // Cannot compute!
3980
3981 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00003982 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00003983 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00003984 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00003985#if 0
David Greene25e0e872009-12-23 22:18:14 +00003986 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00003987 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3988 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00003989#endif
3990 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003991 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00003992 }
3993 }
Dan Gohman1c343752009-06-27 21:21:31 +00003994 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00003995}
3996
3997
Chris Lattner3221ad02004-04-17 22:58:41 +00003998/// CanConstantFold - Return true if we can constant fold an instruction of the
3999/// specified type, assuming that all operands were constants.
4000static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004001 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004002 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4003 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004004
Chris Lattner3221ad02004-04-17 22:58:41 +00004005 if (const CallInst *CI = dyn_cast<CallInst>(I))
4006 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004007 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004008 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004009}
4010
Chris Lattner3221ad02004-04-17 22:58:41 +00004011/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4012/// in the loop that V is derived from. We allow arbitrary operations along the
4013/// way, but the operands of an operation must either be constants or a value
4014/// derived from a constant PHI. If this expression does not fit with these
4015/// constraints, return null.
4016static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4017 // If this is not an instruction, or if this is an instruction outside of the
4018 // loop, it can't be derived from a loop PHI.
4019 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004020 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004021
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004022 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004023 if (L->getHeader() == I->getParent())
4024 return PN;
4025 else
4026 // We don't currently keep track of the control flow needed to evaluate
4027 // PHIs, so we cannot handle PHIs inside of loops.
4028 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004029 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004030
4031 // If we won't be able to constant fold this expression even if the operands
4032 // are constants, return early.
4033 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004034
Chris Lattner3221ad02004-04-17 22:58:41 +00004035 // Otherwise, we can evaluate this instruction if all of its operands are
4036 // constant or derived from a PHI node themselves.
4037 PHINode *PHI = 0;
4038 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4039 if (!(isa<Constant>(I->getOperand(Op)) ||
4040 isa<GlobalValue>(I->getOperand(Op)))) {
4041 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4042 if (P == 0) return 0; // Not evolving from PHI
4043 if (PHI == 0)
4044 PHI = P;
4045 else if (PHI != P)
4046 return 0; // Evolving from multiple different PHIs.
4047 }
4048
4049 // This is a expression evolving from a constant PHI!
4050 return PHI;
4051}
4052
4053/// EvaluateExpression - Given an expression that passes the
4054/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4055/// in the loop has the value PHIVal. If we can't fold this expression for some
4056/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004057static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4058 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004059 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004060 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman2d1be872009-04-16 03:18:22 +00004061 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Chris Lattner3221ad02004-04-17 22:58:41 +00004062 Instruction *I = cast<Instruction>(V);
4063
4064 std::vector<Constant*> Operands;
4065 Operands.resize(I->getNumOperands());
4066
4067 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004068 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004069 if (Operands[i] == 0) return 0;
4070 }
4071
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004072 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004073 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004074 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004075 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004076 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004077}
4078
4079/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4080/// in the header of its containing loop, we know the loop executes a
4081/// constant number of times, and the PHI node is just a recurrence
4082/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004083Constant *
4084ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004085 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004086 const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004087 std::map<PHINode*, Constant*>::iterator I =
4088 ConstantEvolutionLoopExitValue.find(PN);
4089 if (I != ConstantEvolutionLoopExitValue.end())
4090 return I->second;
4091
Dan Gohmane0567812010-04-08 23:03:40 +00004092 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004093 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4094
4095 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4096
4097 // Since the loop is canonicalized, the PHI node must have two entries. One
4098 // entry must be a constant (coming in from outside of the loop), and the
4099 // second must be derived from the same PHI.
4100 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4101 Constant *StartCST =
4102 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4103 if (StartCST == 0)
4104 return RetVal = 0; // Must be a constant.
4105
4106 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4107 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
4108 if (PN2 != PN)
4109 return RetVal = 0; // Not derived from same PHI.
4110
4111 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004112 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004113 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004114
Dan Gohman46bdfb02009-02-24 18:55:53 +00004115 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004116 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004117 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4118 if (IterationNum == NumIterations)
4119 return RetVal = PHIVal; // Got exit value!
4120
4121 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004122 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004123 if (NextPHI == PHIVal)
4124 return RetVal = NextPHI; // Stopped evolving!
4125 if (NextPHI == 0)
4126 return 0; // Couldn't evaluate!
4127 PHIVal = NextPHI;
4128 }
4129}
4130
Dan Gohman07ad19b2009-07-27 16:09:48 +00004131/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004132/// constant number of times (the condition evolves only from constants),
4133/// try to evaluate a few iterations of the loop until we get the exit
4134/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004135/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004136const SCEV *
4137ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4138 Value *Cond,
4139 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004140 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004141 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004142
4143 // Since the loop is canonicalized, the PHI node must have two entries. One
4144 // entry must be a constant (coming in from outside of the loop), and the
4145 // second must be derived from the same PHI.
4146 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4147 Constant *StartCST =
4148 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004149 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004150
4151 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4152 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004153 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004154
4155 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4156 // the loop symbolically to determine when the condition gets a value of
4157 // "ExitWhen".
4158 unsigned IterationNum = 0;
4159 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4160 for (Constant *PHIVal = StartCST;
4161 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004162 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004163 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004164
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004165 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004166 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004167
Reid Spencere8019bb2007-03-01 07:25:48 +00004168 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004169 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004170 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004171 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004172
Chris Lattner3221ad02004-04-17 22:58:41 +00004173 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004174 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004175 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004176 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004177 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004178 }
4179
4180 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004181 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004182}
4183
Dan Gohmane7125f42009-09-03 15:00:26 +00004184/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004185/// at the specified scope in the program. The L value specifies a loop
4186/// nest to evaluate the expression at, where null is the top-level or a
4187/// specified loop is immediately inside of the loop.
4188///
4189/// This method can be used to compute the exit value for a variable defined
4190/// in a loop by querying what the value will hold in the parent loop.
4191///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004192/// In the case that a relevant loop exit value cannot be computed, the
4193/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004194const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004195 // Check to see if we've folded this expression at this loop before.
4196 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4197 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4198 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4199 if (!Pair.second)
4200 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004201
Dan Gohman42214892009-08-31 21:15:23 +00004202 // Otherwise compute it.
4203 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004204 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004205 return C;
4206}
4207
4208const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004209 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004210
Nick Lewycky3e630762008-02-20 06:48:22 +00004211 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004212 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004213 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004214 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004215 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004216 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4217 if (PHINode *PN = dyn_cast<PHINode>(I))
4218 if (PN->getParent() == LI->getHeader()) {
4219 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004220 // to see if the loop that contains it has a known backedge-taken
4221 // count. If so, we may be able to force computation of the exit
4222 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004223 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004224 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004225 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004226 // Okay, we know how many times the containing loop executes. If
4227 // this is a constant evolving PHI node, get the final value at
4228 // the specified iteration number.
4229 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004230 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004231 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004232 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004233 }
4234 }
4235
Reid Spencer09906f32006-12-04 21:33:23 +00004236 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004237 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004238 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004239 // result. This is particularly useful for computing loop exit values.
4240 if (CanConstantFold(I)) {
4241 std::vector<Constant*> Operands;
4242 Operands.reserve(I->getNumOperands());
4243 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4244 Value *Op = I->getOperand(i);
4245 if (Constant *C = dyn_cast<Constant>(Op)) {
4246 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004247 } else {
Chris Lattner42b5e082007-11-23 08:46:22 +00004248 // If any of the operands is non-constant and if they are
Dan Gohman2d1be872009-04-16 03:18:22 +00004249 // non-integer and non-pointer, don't even try to analyze them
4250 // with scev techniques.
Dan Gohman4acd12a2009-04-30 16:40:30 +00004251 if (!isSCEVable(Op->getType()))
Chris Lattner42b5e082007-11-23 08:46:22 +00004252 return V;
Dan Gohman2d1be872009-04-16 03:18:22 +00004253
Dan Gohman5d984912009-12-18 01:14:11 +00004254 const SCEV *OpV = getSCEVAtScope(Op, L);
Dan Gohman622ed672009-05-04 22:02:23 +00004255 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004256 Constant *C = SC->getValue();
4257 if (C->getType() != Op->getType())
4258 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4259 Op->getType(),
4260 false),
4261 C, Op->getType());
4262 Operands.push_back(C);
Dan Gohman622ed672009-05-04 22:02:23 +00004263 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004264 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4265 if (C->getType() != Op->getType())
4266 C =
4267 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4268 Op->getType(),
4269 false),
4270 C, Op->getType());
4271 Operands.push_back(C);
4272 } else
Chris Lattner3221ad02004-04-17 22:58:41 +00004273 return V;
4274 } else {
4275 return V;
4276 }
4277 }
4278 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004279
Dan Gohmane177c9a2010-02-24 19:31:47 +00004280 Constant *C = 0;
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004281 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4282 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004283 Operands[0], Operands[1], TD);
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004284 else
4285 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004286 &Operands[0], Operands.size(), TD);
Dan Gohmane177c9a2010-02-24 19:31:47 +00004287 if (C)
4288 return getSCEV(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004289 }
4290 }
4291
4292 // This is some other type of SCEVUnknown, just return it.
4293 return V;
4294 }
4295
Dan Gohman622ed672009-05-04 22:02:23 +00004296 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004297 // Avoid performing the look-up in the common case where the specified
4298 // expression has no loop-variant portions.
4299 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004300 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004301 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004302 // Okay, at least one of these operands is loop variant but might be
4303 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004304 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4305 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004306 NewOps.push_back(OpAtScope);
4307
4308 for (++i; i != e; ++i) {
4309 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004310 NewOps.push_back(OpAtScope);
4311 }
4312 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004313 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004314 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004315 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004316 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004317 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004318 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004319 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004320 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004321 }
4322 }
4323 // If we got here, all operands are loop invariant.
4324 return Comm;
4325 }
4326
Dan Gohman622ed672009-05-04 22:02:23 +00004327 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004328 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4329 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004330 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4331 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004332 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004333 }
4334
4335 // If this is a loop recurrence for a loop that does not contain L, then we
4336 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004337 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman92329c72009-12-18 01:24:09 +00004338 if (!L || !AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004339 // To evaluate this recurrence, we need to know how many times the AddRec
4340 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004341 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004342 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004343
Eli Friedmanb42a6262008-08-04 23:49:06 +00004344 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004345 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004346 }
Dan Gohmand594e6f2009-05-24 23:25:42 +00004347 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004348 }
4349
Dan Gohman622ed672009-05-04 22:02:23 +00004350 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004351 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004352 if (Op == Cast->getOperand())
4353 return Cast; // must be loop invariant
4354 return getZeroExtendExpr(Op, Cast->getType());
4355 }
4356
Dan Gohman622ed672009-05-04 22:02:23 +00004357 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004358 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004359 if (Op == Cast->getOperand())
4360 return Cast; // must be loop invariant
4361 return getSignExtendExpr(Op, Cast->getType());
4362 }
4363
Dan Gohman622ed672009-05-04 22:02:23 +00004364 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004365 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004366 if (Op == Cast->getOperand())
4367 return Cast; // must be loop invariant
4368 return getTruncateExpr(Op, Cast->getType());
4369 }
4370
Torok Edwinc23197a2009-07-14 16:55:14 +00004371 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004372 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004373}
4374
Dan Gohman66a7e852009-05-08 20:38:54 +00004375/// getSCEVAtScope - This is a convenience function which does
4376/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004377const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004378 return getSCEVAtScope(getSCEV(V), L);
4379}
4380
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004381/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4382/// following equation:
4383///
4384/// A * X = B (mod N)
4385///
4386/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4387/// A and B isn't important.
4388///
4389/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004390static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004391 ScalarEvolution &SE) {
4392 uint32_t BW = A.getBitWidth();
4393 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4394 assert(A != 0 && "A must be non-zero.");
4395
4396 // 1. D = gcd(A, N)
4397 //
4398 // The gcd of A and N may have only one prime factor: 2. The number of
4399 // trailing zeros in A is its multiplicity
4400 uint32_t Mult2 = A.countTrailingZeros();
4401 // D = 2^Mult2
4402
4403 // 2. Check if B is divisible by D.
4404 //
4405 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4406 // is not less than multiplicity of this prime factor for D.
4407 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004408 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004409
4410 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4411 // modulo (N / D).
4412 //
4413 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4414 // bit width during computations.
4415 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4416 APInt Mod(BW + 1, 0);
4417 Mod.set(BW - Mult2); // Mod = N / D
4418 APInt I = AD.multiplicativeInverse(Mod);
4419
4420 // 4. Compute the minimum unsigned root of the equation:
4421 // I * (B / D) mod (N / D)
4422 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4423
4424 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4425 // bits.
4426 return SE.getConstant(Result.trunc(BW));
4427}
Chris Lattner53e677a2004-04-02 20:23:17 +00004428
4429/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4430/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4431/// might be the same) or two SCEVCouldNotCompute objects.
4432///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004433static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004434SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004435 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004436 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4437 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4438 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004439
Chris Lattner53e677a2004-04-02 20:23:17 +00004440 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004441 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004442 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004443 return std::make_pair(CNC, CNC);
4444 }
4445
Reid Spencere8019bb2007-03-01 07:25:48 +00004446 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004447 const APInt &L = LC->getValue()->getValue();
4448 const APInt &M = MC->getValue()->getValue();
4449 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004450 APInt Two(BitWidth, 2);
4451 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004452
Dan Gohman64a845e2009-06-24 04:48:43 +00004453 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004454 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004455 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004456 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4457 // The B coefficient is M-N/2
4458 APInt B(M);
4459 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004460
Reid Spencere8019bb2007-03-01 07:25:48 +00004461 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004462 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004463
Reid Spencere8019bb2007-03-01 07:25:48 +00004464 // Compute the B^2-4ac term.
4465 APInt SqrtTerm(B);
4466 SqrtTerm *= B;
4467 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004468
Reid Spencere8019bb2007-03-01 07:25:48 +00004469 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4470 // integer value or else APInt::sqrt() will assert.
4471 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004472
Dan Gohman64a845e2009-06-24 04:48:43 +00004473 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004474 // The divisions must be performed as signed divisions.
4475 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004476 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004477 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004478 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004479 return std::make_pair(CNC, CNC);
4480 }
4481
Owen Andersone922c022009-07-22 00:24:57 +00004482 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004483
4484 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004485 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004486 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004487 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004488
Dan Gohman64a845e2009-06-24 04:48:43 +00004489 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004490 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004491 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004492}
4493
4494/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004495/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004496ScalarEvolution::BackedgeTakenInfo
4497ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004498 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004499 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004500 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004501 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004502 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004503 }
4504
Dan Gohman35738ac2009-05-04 22:30:44 +00004505 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004506 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004507 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004508
4509 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004510 // If this is an affine expression, the execution count of this branch is
4511 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004512 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004513 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004514 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004515 // equivalent to:
4516 //
4517 // Step*N = -Start (mod 2^BW)
4518 //
4519 // where BW is the common bit width of Start and Step.
4520
Chris Lattner53e677a2004-04-02 20:23:17 +00004521 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004522 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4523 L->getParentLoop());
4524 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4525 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004526
Dan Gohman622ed672009-05-04 22:02:23 +00004527 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004528 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004529
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004530 // First, handle unitary steps.
4531 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004532 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004533 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4534 return Start; // N = Start (as unsigned)
4535
4536 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004537 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004538 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004539 -StartC->getValue()->getValue(),
4540 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004541 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004542 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004543 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4544 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004545 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004546 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004547 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4548 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004549 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004550#if 0
David Greene25e0e872009-12-23 22:18:14 +00004551 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004552 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004553#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004554 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004555 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004556 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004557 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004558 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004559 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004560
Chris Lattner53e677a2004-04-02 20:23:17 +00004561 // We can only use this value if the chrec ends up with an exact zero
4562 // value at this index. When solving for "X*X != 5", for example, we
4563 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004564 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004565 if (Val->isZero())
4566 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004567 }
4568 }
4569 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004570
Dan Gohman1c343752009-06-27 21:21:31 +00004571 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004572}
4573
4574/// HowFarToNonZero - Return the number of times a backedge checking the
4575/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004576/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004577ScalarEvolution::BackedgeTakenInfo
4578ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004579 // Loops that look like: while (X == 0) are very strange indeed. We don't
4580 // handle them yet except for the trivial case. This could be expanded in the
4581 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004582
Chris Lattner53e677a2004-04-02 20:23:17 +00004583 // If the value is a constant, check to see if it is known to be non-zero
4584 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004585 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004586 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004587 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004588 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004589 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004590
Chris Lattner53e677a2004-04-02 20:23:17 +00004591 // We could implement others, but I really doubt anyone writes loops like
4592 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004593 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004594}
4595
Dan Gohman859b4822009-05-18 15:36:09 +00004596/// getLoopPredecessor - If the given loop's header has exactly one unique
4597/// predecessor outside the loop, return it. Otherwise return null.
Dan Gohman2c93e392010-04-14 16:08:56 +00004598/// This is less strict that the loop "preheader" concept, which requires
4599/// the predecessor to have only one single successor.
Dan Gohman859b4822009-05-18 15:36:09 +00004600///
4601BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4602 BasicBlock *Header = L->getHeader();
4603 BasicBlock *Pred = 0;
4604 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4605 PI != E; ++PI)
4606 if (!L->contains(*PI)) {
4607 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4608 Pred = *PI;
4609 }
4610 return Pred;
4611}
4612
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004613/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4614/// (which may not be an immediate predecessor) which has exactly one
4615/// successor from which BB is reachable, or null if no such block is
4616/// found.
4617///
Dan Gohman005752b2010-04-15 16:19:08 +00004618std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004619ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004620 // If the block has a unique predecessor, then there is no path from the
4621 // predecessor to the block that does not go through the direct edge
4622 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004623 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004624 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004625
4626 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004627 // If the header has a unique predecessor outside the loop, it must be
4628 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004629 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman005752b2010-04-15 16:19:08 +00004630 return std::make_pair(getLoopPredecessor(L), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004631
Dan Gohman005752b2010-04-15 16:19:08 +00004632 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004633}
4634
Dan Gohman763bad12009-06-20 00:35:32 +00004635/// HasSameValue - SCEV structural equivalence is usually sufficient for
4636/// testing whether two expressions are equal, however for the purposes of
4637/// looking for a condition guarding a loop, it can be useful to be a little
4638/// more general, since a front-end may have replicated the controlling
4639/// expression.
4640///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004641static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004642 // Quick check to see if they are the same SCEV.
4643 if (A == B) return true;
4644
4645 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4646 // two different instructions with the same value. Check for this case.
4647 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4648 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4649 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4650 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004651 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004652 return true;
4653
4654 // Otherwise assume they may have a different value.
4655 return false;
4656}
4657
Dan Gohmane9796502010-04-24 01:28:42 +00004658/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4659/// predicate Pred. Return true iff any changes were made.
4660///
4661bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4662 const SCEV *&LHS, const SCEV *&RHS) {
4663 bool Changed = false;
4664
4665 // Canonicalize a constant to the right side.
4666 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4667 // Check for both operands constant.
4668 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4669 if (ConstantExpr::getICmp(Pred,
4670 LHSC->getValue(),
4671 RHSC->getValue())->isNullValue())
4672 goto trivially_false;
4673 else
4674 goto trivially_true;
4675 }
4676 // Otherwise swap the operands to put the constant on the right.
4677 std::swap(LHS, RHS);
4678 Pred = ICmpInst::getSwappedPredicate(Pred);
4679 Changed = true;
4680 }
4681
4682 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004683 // addrec's loop, put the addrec on the left. Also make a dominance check,
4684 // as both operands could be addrecs loop-invariant in each other's loop.
4685 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4686 const Loop *L = AR->getLoop();
4687 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004688 std::swap(LHS, RHS);
4689 Pred = ICmpInst::getSwappedPredicate(Pred);
4690 Changed = true;
4691 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004692 }
Dan Gohmane9796502010-04-24 01:28:42 +00004693
4694 // If there's a constant operand, canonicalize comparisons with boundary
4695 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4696 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4697 const APInt &RA = RC->getValue()->getValue();
4698 switch (Pred) {
4699 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4700 case ICmpInst::ICMP_EQ:
4701 case ICmpInst::ICMP_NE:
4702 break;
4703 case ICmpInst::ICMP_UGE:
4704 if ((RA - 1).isMinValue()) {
4705 Pred = ICmpInst::ICMP_NE;
4706 RHS = getConstant(RA - 1);
4707 Changed = true;
4708 break;
4709 }
4710 if (RA.isMaxValue()) {
4711 Pred = ICmpInst::ICMP_EQ;
4712 Changed = true;
4713 break;
4714 }
4715 if (RA.isMinValue()) goto trivially_true;
4716
4717 Pred = ICmpInst::ICMP_UGT;
4718 RHS = getConstant(RA - 1);
4719 Changed = true;
4720 break;
4721 case ICmpInst::ICMP_ULE:
4722 if ((RA + 1).isMaxValue()) {
4723 Pred = ICmpInst::ICMP_NE;
4724 RHS = getConstant(RA + 1);
4725 Changed = true;
4726 break;
4727 }
4728 if (RA.isMinValue()) {
4729 Pred = ICmpInst::ICMP_EQ;
4730 Changed = true;
4731 break;
4732 }
4733 if (RA.isMaxValue()) goto trivially_true;
4734
4735 Pred = ICmpInst::ICMP_ULT;
4736 RHS = getConstant(RA + 1);
4737 Changed = true;
4738 break;
4739 case ICmpInst::ICMP_SGE:
4740 if ((RA - 1).isMinSignedValue()) {
4741 Pred = ICmpInst::ICMP_NE;
4742 RHS = getConstant(RA - 1);
4743 Changed = true;
4744 break;
4745 }
4746 if (RA.isMaxSignedValue()) {
4747 Pred = ICmpInst::ICMP_EQ;
4748 Changed = true;
4749 break;
4750 }
4751 if (RA.isMinSignedValue()) goto trivially_true;
4752
4753 Pred = ICmpInst::ICMP_SGT;
4754 RHS = getConstant(RA - 1);
4755 Changed = true;
4756 break;
4757 case ICmpInst::ICMP_SLE:
4758 if ((RA + 1).isMaxSignedValue()) {
4759 Pred = ICmpInst::ICMP_NE;
4760 RHS = getConstant(RA + 1);
4761 Changed = true;
4762 break;
4763 }
4764 if (RA.isMinSignedValue()) {
4765 Pred = ICmpInst::ICMP_EQ;
4766 Changed = true;
4767 break;
4768 }
4769 if (RA.isMaxSignedValue()) goto trivially_true;
4770
4771 Pred = ICmpInst::ICMP_SLT;
4772 RHS = getConstant(RA + 1);
4773 Changed = true;
4774 break;
4775 case ICmpInst::ICMP_UGT:
4776 if (RA.isMinValue()) {
4777 Pred = ICmpInst::ICMP_NE;
4778 Changed = true;
4779 break;
4780 }
4781 if ((RA + 1).isMaxValue()) {
4782 Pred = ICmpInst::ICMP_EQ;
4783 RHS = getConstant(RA + 1);
4784 Changed = true;
4785 break;
4786 }
4787 if (RA.isMaxValue()) goto trivially_false;
4788 break;
4789 case ICmpInst::ICMP_ULT:
4790 if (RA.isMaxValue()) {
4791 Pred = ICmpInst::ICMP_NE;
4792 Changed = true;
4793 break;
4794 }
4795 if ((RA - 1).isMinValue()) {
4796 Pred = ICmpInst::ICMP_EQ;
4797 RHS = getConstant(RA - 1);
4798 Changed = true;
4799 break;
4800 }
4801 if (RA.isMinValue()) goto trivially_false;
4802 break;
4803 case ICmpInst::ICMP_SGT:
4804 if (RA.isMinSignedValue()) {
4805 Pred = ICmpInst::ICMP_NE;
4806 Changed = true;
4807 break;
4808 }
4809 if ((RA + 1).isMaxSignedValue()) {
4810 Pred = ICmpInst::ICMP_EQ;
4811 RHS = getConstant(RA + 1);
4812 Changed = true;
4813 break;
4814 }
4815 if (RA.isMaxSignedValue()) goto trivially_false;
4816 break;
4817 case ICmpInst::ICMP_SLT:
4818 if (RA.isMaxSignedValue()) {
4819 Pred = ICmpInst::ICMP_NE;
4820 Changed = true;
4821 break;
4822 }
4823 if ((RA - 1).isMinSignedValue()) {
4824 Pred = ICmpInst::ICMP_EQ;
4825 RHS = getConstant(RA - 1);
4826 Changed = true;
4827 break;
4828 }
4829 if (RA.isMinSignedValue()) goto trivially_false;
4830 break;
4831 }
4832 }
4833
4834 // Check for obvious equality.
4835 if (HasSameValue(LHS, RHS)) {
4836 if (ICmpInst::isTrueWhenEqual(Pred))
4837 goto trivially_true;
4838 if (ICmpInst::isFalseWhenEqual(Pred))
4839 goto trivially_false;
4840 }
4841
Dan Gohman03557dc2010-05-03 16:35:17 +00004842 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
4843 // adding or subtracting 1 from one of the operands.
4844 switch (Pred) {
4845 case ICmpInst::ICMP_SLE:
4846 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
4847 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
4848 /*HasNUW=*/false, /*HasNSW=*/true);
4849 Pred = ICmpInst::ICMP_SLT;
4850 Changed = true;
4851 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004852 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004853 /*HasNUW=*/false, /*HasNSW=*/true);
4854 Pred = ICmpInst::ICMP_SLT;
4855 Changed = true;
4856 }
4857 break;
4858 case ICmpInst::ICMP_SGE:
4859 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004860 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004861 /*HasNUW=*/false, /*HasNSW=*/true);
4862 Pred = ICmpInst::ICMP_SGT;
4863 Changed = true;
4864 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
4865 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
4866 /*HasNUW=*/false, /*HasNSW=*/true);
4867 Pred = ICmpInst::ICMP_SGT;
4868 Changed = true;
4869 }
4870 break;
4871 case ICmpInst::ICMP_ULE:
4872 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004873 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004874 /*HasNUW=*/true, /*HasNSW=*/false);
4875 Pred = ICmpInst::ICMP_ULT;
4876 Changed = true;
4877 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004878 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004879 /*HasNUW=*/true, /*HasNSW=*/false);
4880 Pred = ICmpInst::ICMP_ULT;
4881 Changed = true;
4882 }
4883 break;
4884 case ICmpInst::ICMP_UGE:
4885 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004886 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004887 /*HasNUW=*/true, /*HasNSW=*/false);
4888 Pred = ICmpInst::ICMP_UGT;
4889 Changed = true;
4890 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004891 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004892 /*HasNUW=*/true, /*HasNSW=*/false);
4893 Pred = ICmpInst::ICMP_UGT;
4894 Changed = true;
4895 }
4896 break;
4897 default:
4898 break;
4899 }
4900
Dan Gohmane9796502010-04-24 01:28:42 +00004901 // TODO: More simplifications are possible here.
4902
4903 return Changed;
4904
4905trivially_true:
4906 // Return 0 == 0.
4907 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
4908 Pred = ICmpInst::ICMP_EQ;
4909 return true;
4910
4911trivially_false:
4912 // Return 0 != 0.
4913 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
4914 Pred = ICmpInst::ICMP_NE;
4915 return true;
4916}
4917
Dan Gohman85b05a22009-07-13 21:35:55 +00004918bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4919 return getSignedRange(S).getSignedMax().isNegative();
4920}
4921
4922bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4923 return getSignedRange(S).getSignedMin().isStrictlyPositive();
4924}
4925
4926bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4927 return !getSignedRange(S).getSignedMin().isNegative();
4928}
4929
4930bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4931 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4932}
4933
4934bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4935 return isKnownNegative(S) || isKnownPositive(S);
4936}
4937
4938bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4939 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00004940 // Canonicalize the inputs first.
4941 (void)SimplifyICmpOperands(Pred, LHS, RHS);
4942
Dan Gohman53c66ea2010-04-11 22:16:48 +00004943 // If LHS or RHS is an addrec, check to see if the condition is true in
4944 // every iteration of the loop.
4945 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
4946 if (isLoopEntryGuardedByCond(
4947 AR->getLoop(), Pred, AR->getStart(), RHS) &&
4948 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00004949 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00004950 return true;
4951 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
4952 if (isLoopEntryGuardedByCond(
4953 AR->getLoop(), Pred, LHS, AR->getStart()) &&
4954 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00004955 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00004956 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00004957
Dan Gohman53c66ea2010-04-11 22:16:48 +00004958 // Otherwise see what can be done with known constant ranges.
4959 return isKnownPredicateWithRanges(Pred, LHS, RHS);
4960}
4961
4962bool
4963ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
4964 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00004965 if (HasSameValue(LHS, RHS))
4966 return ICmpInst::isTrueWhenEqual(Pred);
4967
Dan Gohman53c66ea2010-04-11 22:16:48 +00004968 // This code is split out from isKnownPredicate because it is called from
4969 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00004970 switch (Pred) {
4971 default:
Dan Gohman850f7912009-07-16 17:34:36 +00004972 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00004973 break;
4974 case ICmpInst::ICMP_SGT:
4975 Pred = ICmpInst::ICMP_SLT;
4976 std::swap(LHS, RHS);
4977 case ICmpInst::ICMP_SLT: {
4978 ConstantRange LHSRange = getSignedRange(LHS);
4979 ConstantRange RHSRange = getSignedRange(RHS);
4980 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4981 return true;
4982 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4983 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004984 break;
4985 }
4986 case ICmpInst::ICMP_SGE:
4987 Pred = ICmpInst::ICMP_SLE;
4988 std::swap(LHS, RHS);
4989 case ICmpInst::ICMP_SLE: {
4990 ConstantRange LHSRange = getSignedRange(LHS);
4991 ConstantRange RHSRange = getSignedRange(RHS);
4992 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4993 return true;
4994 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4995 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00004996 break;
4997 }
4998 case ICmpInst::ICMP_UGT:
4999 Pred = ICmpInst::ICMP_ULT;
5000 std::swap(LHS, RHS);
5001 case ICmpInst::ICMP_ULT: {
5002 ConstantRange LHSRange = getUnsignedRange(LHS);
5003 ConstantRange RHSRange = getUnsignedRange(RHS);
5004 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5005 return true;
5006 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5007 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005008 break;
5009 }
5010 case ICmpInst::ICMP_UGE:
5011 Pred = ICmpInst::ICMP_ULE;
5012 std::swap(LHS, RHS);
5013 case ICmpInst::ICMP_ULE: {
5014 ConstantRange LHSRange = getUnsignedRange(LHS);
5015 ConstantRange RHSRange = getUnsignedRange(RHS);
5016 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5017 return true;
5018 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5019 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005020 break;
5021 }
5022 case ICmpInst::ICMP_NE: {
5023 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5024 return true;
5025 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5026 return true;
5027
5028 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5029 if (isKnownNonZero(Diff))
5030 return true;
5031 break;
5032 }
5033 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005034 // The check at the top of the function catches the case where
5035 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005036 break;
5037 }
5038 return false;
5039}
5040
5041/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5042/// protected by a conditional between LHS and RHS. This is used to
5043/// to eliminate casts.
5044bool
5045ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5046 ICmpInst::Predicate Pred,
5047 const SCEV *LHS, const SCEV *RHS) {
5048 // Interpret a null as meaning no loop, where there is obviously no guard
5049 // (interprocedural conditions notwithstanding).
5050 if (!L) return true;
5051
5052 BasicBlock *Latch = L->getLoopLatch();
5053 if (!Latch)
5054 return false;
5055
5056 BranchInst *LoopContinuePredicate =
5057 dyn_cast<BranchInst>(Latch->getTerminator());
5058 if (!LoopContinuePredicate ||
5059 LoopContinuePredicate->isUnconditional())
5060 return false;
5061
Dan Gohman0f4b2852009-07-21 23:03:19 +00005062 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
5063 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005064}
5065
Dan Gohman3948d0b2010-04-11 19:27:13 +00005066/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005067/// by a conditional between LHS and RHS. This is used to help avoid max
5068/// expressions in loop trip counts, and to eliminate casts.
5069bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005070ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5071 ICmpInst::Predicate Pred,
5072 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005073 // Interpret a null as meaning no loop, where there is obviously no guard
5074 // (interprocedural conditions notwithstanding).
5075 if (!L) return false;
5076
Dan Gohman859b4822009-05-18 15:36:09 +00005077 // Starting at the loop predecessor, climb up the predecessor chain, as long
5078 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005079 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005080 for (std::pair<BasicBlock *, BasicBlock *>
5081 Pair(getLoopPredecessor(L), L->getHeader());
5082 Pair.first;
5083 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005084
5085 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005086 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005087 if (!LoopEntryPredicate ||
5088 LoopEntryPredicate->isUnconditional())
5089 continue;
5090
Dan Gohman0f4b2852009-07-21 23:03:19 +00005091 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
Dan Gohman005752b2010-04-15 16:19:08 +00005092 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005093 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005094 }
5095
Dan Gohman38372182008-08-12 20:17:31 +00005096 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005097}
5098
Dan Gohman0f4b2852009-07-21 23:03:19 +00005099/// isImpliedCond - Test whether the condition described by Pred, LHS,
5100/// and RHS is true whenever the given Cond value evaluates to true.
5101bool ScalarEvolution::isImpliedCond(Value *CondValue,
5102 ICmpInst::Predicate Pred,
5103 const SCEV *LHS, const SCEV *RHS,
5104 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005105 // Recursively handle And and Or conditions.
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005106 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
5107 if (BO->getOpcode() == Instruction::And) {
5108 if (!Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005109 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5110 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005111 } else if (BO->getOpcode() == Instruction::Or) {
5112 if (Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005113 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5114 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005115 }
5116 }
5117
5118 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
5119 if (!ICI) return false;
5120
Dan Gohman85b05a22009-07-13 21:35:55 +00005121 // Bail if the ICmp's operands' types are wider than the needed type
5122 // before attempting to call getSCEV on them. This avoids infinite
5123 // recursion, since the analysis of widening casts can require loop
5124 // exit condition information for overflow checking, which would
5125 // lead back here.
5126 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005127 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005128 return false;
5129
Dan Gohman0f4b2852009-07-21 23:03:19 +00005130 // Now that we found a conditional branch that dominates the loop, check to
5131 // see if it is the comparison we are looking for.
5132 ICmpInst::Predicate FoundPred;
5133 if (Inverse)
5134 FoundPred = ICI->getInversePredicate();
5135 else
5136 FoundPred = ICI->getPredicate();
5137
5138 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5139 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005140
5141 // Balance the types. The case where FoundLHS' type is wider than
5142 // LHS' type is checked for above.
5143 if (getTypeSizeInBits(LHS->getType()) >
5144 getTypeSizeInBits(FoundLHS->getType())) {
5145 if (CmpInst::isSigned(Pred)) {
5146 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5147 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5148 } else {
5149 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5150 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5151 }
5152 }
5153
Dan Gohman0f4b2852009-07-21 23:03:19 +00005154 // Canonicalize the query to match the way instcombine will have
5155 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005156 if (SimplifyICmpOperands(Pred, LHS, RHS))
5157 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005158 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005159 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5160 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005161 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005162
5163 // Check to see if we can make the LHS or RHS match.
5164 if (LHS == FoundRHS || RHS == FoundLHS) {
5165 if (isa<SCEVConstant>(RHS)) {
5166 std::swap(FoundLHS, FoundRHS);
5167 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5168 } else {
5169 std::swap(LHS, RHS);
5170 Pred = ICmpInst::getSwappedPredicate(Pred);
5171 }
5172 }
5173
5174 // Check whether the found predicate is the same as the desired predicate.
5175 if (FoundPred == Pred)
5176 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5177
5178 // Check whether swapping the found predicate makes it the same as the
5179 // desired predicate.
5180 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5181 if (isa<SCEVConstant>(RHS))
5182 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5183 else
5184 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5185 RHS, LHS, FoundLHS, FoundRHS);
5186 }
5187
5188 // Check whether the actual condition is beyond sufficient.
5189 if (FoundPred == ICmpInst::ICMP_EQ)
5190 if (ICmpInst::isTrueWhenEqual(Pred))
5191 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5192 return true;
5193 if (Pred == ICmpInst::ICMP_NE)
5194 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5195 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5196 return true;
5197
5198 // Otherwise assume the worst.
5199 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005200}
5201
Dan Gohman0f4b2852009-07-21 23:03:19 +00005202/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005203/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005204/// and FoundRHS is true.
5205bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5206 const SCEV *LHS, const SCEV *RHS,
5207 const SCEV *FoundLHS,
5208 const SCEV *FoundRHS) {
5209 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5210 FoundLHS, FoundRHS) ||
5211 // ~x < ~y --> x > y
5212 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5213 getNotSCEV(FoundRHS),
5214 getNotSCEV(FoundLHS));
5215}
5216
5217/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005218/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005219/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005220bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005221ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5222 const SCEV *LHS, const SCEV *RHS,
5223 const SCEV *FoundLHS,
5224 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005225 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005226 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5227 case ICmpInst::ICMP_EQ:
5228 case ICmpInst::ICMP_NE:
5229 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5230 return true;
5231 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005232 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005233 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005234 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5235 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005236 return true;
5237 break;
5238 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005239 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005240 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5241 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005242 return true;
5243 break;
5244 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005245 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005246 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5247 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005248 return true;
5249 break;
5250 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005251 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005252 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5253 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005254 return true;
5255 break;
5256 }
5257
5258 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005259}
5260
Dan Gohman51f53b72009-06-21 23:46:38 +00005261/// getBECount - Subtract the end and start values and divide by the step,
5262/// rounding up, to get the number of times the backedge is executed. Return
5263/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005264const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005265 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005266 const SCEV *Step,
5267 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005268 assert(!isKnownNegative(Step) &&
5269 "This code doesn't handle negative strides yet!");
5270
Dan Gohman51f53b72009-06-21 23:46:38 +00005271 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005272 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005273 const SCEV *Diff = getMinusSCEV(End, Start);
5274 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005275
5276 // Add an adjustment to the difference between End and Start so that
5277 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005278 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005279
Dan Gohman1f96e672009-09-17 18:05:20 +00005280 if (!NoWrap) {
5281 // Check Add for unsigned overflow.
5282 // TODO: More sophisticated things could be done here.
5283 const Type *WideTy = IntegerType::get(getContext(),
5284 getTypeSizeInBits(Ty) + 1);
5285 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5286 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5287 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5288 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5289 return getCouldNotCompute();
5290 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005291
5292 return getUDivExpr(Add, Step);
5293}
5294
Chris Lattnerdb25de42005-08-15 23:33:51 +00005295/// HowManyLessThans - Return the number of times a backedge containing the
5296/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005297/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005298ScalarEvolution::BackedgeTakenInfo
5299ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5300 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005301 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005302 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005303
Dan Gohman35738ac2009-05-04 22:30:44 +00005304 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005305 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005306 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005307
Dan Gohman1f96e672009-09-17 18:05:20 +00005308 // Check to see if we have a flag which makes analysis easy.
5309 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5310 AddRec->hasNoUnsignedWrap();
5311
Chris Lattnerdb25de42005-08-15 23:33:51 +00005312 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005313 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005314 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005315
Dan Gohman52fddd32010-01-26 04:40:18 +00005316 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005317 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005318 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005319 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005320 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005321 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005322 // value and past the maximum value for its type in a single step.
5323 // Note that it's not sufficient to check NoWrap here, because even
5324 // though the value after a wrap is undefined, it's not undefined
5325 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005326 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005327 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005328 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005329 if (isSigned) {
5330 APInt Max = APInt::getSignedMaxValue(BitWidth);
5331 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5332 .slt(getSignedRange(RHS).getSignedMax()))
5333 return getCouldNotCompute();
5334 } else {
5335 APInt Max = APInt::getMaxValue(BitWidth);
5336 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5337 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5338 return getCouldNotCompute();
5339 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005340 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005341 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005342 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005343
Dan Gohmana1af7572009-04-30 20:47:05 +00005344 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5345 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5346 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005347 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005348
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005349 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005350 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005351
Dan Gohmana1af7572009-04-30 20:47:05 +00005352 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005353 const SCEV *MinStart = getConstant(isSigned ?
5354 getSignedRange(Start).getSignedMin() :
5355 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005356
Dan Gohmana1af7572009-04-30 20:47:05 +00005357 // If we know that the condition is true in order to enter the loop,
5358 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005359 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5360 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005361 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005362 if (!isLoopEntryGuardedByCond(L,
5363 isSigned ? ICmpInst::ICMP_SLT :
5364 ICmpInst::ICMP_ULT,
5365 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005366 End = isSigned ? getSMaxExpr(RHS, Start)
5367 : getUMaxExpr(RHS, Start);
5368
5369 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005370 const SCEV *MaxEnd = getConstant(isSigned ?
5371 getSignedRange(End).getSignedMax() :
5372 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005373
Dan Gohman52fddd32010-01-26 04:40:18 +00005374 // If MaxEnd is within a step of the maximum integer value in its type,
5375 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005376 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005377 // compute the correct value.
5378 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005379 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005380 MaxEnd = isSigned ?
5381 getSMinExpr(MaxEnd,
5382 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5383 StepMinusOne)) :
5384 getUMinExpr(MaxEnd,
5385 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5386 StepMinusOne));
5387
Dan Gohmana1af7572009-04-30 20:47:05 +00005388 // Finally, we subtract these two values and divide, rounding up, to get
5389 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005390 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005391
5392 // The maximum backedge count is similar, except using the minimum start
5393 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005394 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005395
5396 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005397 }
5398
Dan Gohman1c343752009-06-27 21:21:31 +00005399 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005400}
5401
Chris Lattner53e677a2004-04-02 20:23:17 +00005402/// getNumIterationsInRange - Return the number of iterations of this loop that
5403/// produce values in the specified constant range. Another way of looking at
5404/// this is that it returns the first iteration number where the value is not in
5405/// the condition, thus computing the exit count. If the iteration count can't
5406/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005407const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005408 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005409 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005410 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005411
5412 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005413 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005414 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005415 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005416 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005417 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005418 if (const SCEVAddRecExpr *ShiftedAddRec =
5419 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005420 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005421 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005422 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005423 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005424 }
5425
5426 // The only time we can solve this is when we have all constant indices.
5427 // Otherwise, we cannot determine the overflow conditions.
5428 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5429 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005430 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005431
5432
5433 // Okay at this point we know that all elements of the chrec are constants and
5434 // that the start element is zero.
5435
5436 // First check to see if the range contains zero. If not, the first
5437 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005438 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005439 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005440 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005441
Chris Lattner53e677a2004-04-02 20:23:17 +00005442 if (isAffine()) {
5443 // If this is an affine expression then we have this situation:
5444 // Solve {0,+,A} in Range === Ax in Range
5445
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005446 // We know that zero is in the range. If A is positive then we know that
5447 // the upper value of the range must be the first possible exit value.
5448 // If A is negative then the lower of the range is the last possible loop
5449 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005450 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005451 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5452 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005453
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005454 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005455 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005456 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005457
5458 // Evaluate at the exit value. If we really did fall out of the valid
5459 // range, then we computed our trip count, otherwise wrap around or other
5460 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005461 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005462 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005463 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005464
5465 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005466 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005467 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005468 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005469 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005470 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005471 } else if (isQuadratic()) {
5472 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5473 // quadratic equation to solve it. To do this, we must frame our problem in
5474 // terms of figuring out when zero is crossed, instead of when
5475 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005476 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005477 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005478 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005479
5480 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005481 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005482 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005483 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5484 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005485 if (R1) {
5486 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005487 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005488 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005489 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005490 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005491 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005492
Chris Lattner53e677a2004-04-02 20:23:17 +00005493 // Make sure the root is not off by one. The returned iteration should
5494 // not be in the range, but the previous one should be. When solving
5495 // for "X*X < 5", for example, we should not return a root of 2.
5496 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005497 R1->getValue(),
5498 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005499 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005500 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005501 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005502 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005503
Dan Gohman246b2562007-10-22 18:31:58 +00005504 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005505 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005506 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005507 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005508 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005509
Chris Lattner53e677a2004-04-02 20:23:17 +00005510 // If R1 was not in the range, then it is a good return value. Make
5511 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005512 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005513 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005514 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005515 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005516 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005517 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005518 }
5519 }
5520 }
5521
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005522 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005523}
5524
5525
5526
5527//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005528// SCEVCallbackVH Class Implementation
5529//===----------------------------------------------------------------------===//
5530
Dan Gohman1959b752009-05-19 19:22:47 +00005531void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005532 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005533 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5534 SE->ConstantEvolutionLoopExitValue.erase(PN);
5535 SE->Scalars.erase(getValPtr());
5536 // this now dangles!
5537}
5538
Dan Gohman1959b752009-05-19 19:22:47 +00005539void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005540 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005541
5542 // Forget all the expressions associated with users of the old value,
5543 // so that future queries will recompute the expressions using the new
5544 // value.
5545 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005546 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005547 Value *Old = getValPtr();
5548 bool DeleteOld = false;
5549 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5550 UI != UE; ++UI)
5551 Worklist.push_back(*UI);
5552 while (!Worklist.empty()) {
5553 User *U = Worklist.pop_back_val();
5554 // Deleting the Old value will cause this to dangle. Postpone
5555 // that until everything else is done.
5556 if (U == Old) {
5557 DeleteOld = true;
5558 continue;
5559 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005560 if (!Visited.insert(U))
5561 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005562 if (PHINode *PN = dyn_cast<PHINode>(U))
5563 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman69fcae92009-07-14 14:34:04 +00005564 SE->Scalars.erase(U);
5565 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5566 UI != UE; ++UI)
5567 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005568 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005569 // Delete the Old value if it (indirectly) references itself.
Dan Gohman35738ac2009-05-04 22:30:44 +00005570 if (DeleteOld) {
5571 if (PHINode *PN = dyn_cast<PHINode>(Old))
5572 SE->ConstantEvolutionLoopExitValue.erase(PN);
5573 SE->Scalars.erase(Old);
5574 // this now dangles!
5575 }
5576 // this may dangle!
5577}
5578
Dan Gohman1959b752009-05-19 19:22:47 +00005579ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005580 : CallbackVH(V), SE(se) {}
5581
5582//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005583// ScalarEvolution Class Implementation
5584//===----------------------------------------------------------------------===//
5585
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005586ScalarEvolution::ScalarEvolution()
Dan Gohman1c343752009-06-27 21:21:31 +00005587 : FunctionPass(&ID) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005588}
5589
Chris Lattner53e677a2004-04-02 20:23:17 +00005590bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005591 this->F = &F;
5592 LI = &getAnalysis<LoopInfo>();
5593 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005594 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005595 return false;
5596}
5597
5598void ScalarEvolution::releaseMemory() {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005599 Scalars.clear();
5600 BackedgeTakenCounts.clear();
5601 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005602 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005603 UniqueSCEVs.clear();
5604 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005605}
5606
5607void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5608 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005609 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005610 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005611}
5612
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005613bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005614 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005615}
5616
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005617static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005618 const Loop *L) {
5619 // Print all inner loops first
5620 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5621 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005622
Dan Gohman30733292010-01-09 18:17:45 +00005623 OS << "Loop ";
5624 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5625 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005626
Dan Gohman5d984912009-12-18 01:14:11 +00005627 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005628 L->getExitBlocks(ExitBlocks);
5629 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005630 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005631
Dan Gohman46bdfb02009-02-24 18:55:53 +00005632 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5633 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005634 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005635 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005636 }
5637
Dan Gohman30733292010-01-09 18:17:45 +00005638 OS << "\n"
5639 "Loop ";
5640 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5641 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005642
5643 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5644 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5645 } else {
5646 OS << "Unpredictable max backedge-taken count. ";
5647 }
5648
5649 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005650}
5651
Dan Gohman5d984912009-12-18 01:14:11 +00005652void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005653 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005654 // out SCEV values of all instructions that are interesting. Doing
5655 // this potentially causes it to create new SCEV objects though,
5656 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005657 // observable from outside the class though, so casting away the
5658 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005659 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005660
Dan Gohman30733292010-01-09 18:17:45 +00005661 OS << "Classifying expressions for: ";
5662 WriteAsOperand(OS, F, /*PrintType=*/false);
5663 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005664 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005665 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005666 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005667 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005668 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005669 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005670
Dan Gohman0c689c52009-06-19 17:49:54 +00005671 const Loop *L = LI->getLoopFor((*I).getParent());
5672
Dan Gohman0bba49c2009-07-07 17:06:11 +00005673 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005674 if (AtUse != SV) {
5675 OS << " --> ";
5676 AtUse->print(OS);
5677 }
5678
5679 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005680 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005681 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005682 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005683 OS << "<<Unknown>>";
5684 } else {
5685 OS << *ExitValue;
5686 }
5687 }
5688
Chris Lattner53e677a2004-04-02 20:23:17 +00005689 OS << "\n";
5690 }
5691
Dan Gohman30733292010-01-09 18:17:45 +00005692 OS << "Determining loop execution counts for: ";
5693 WriteAsOperand(OS, F, /*PrintType=*/false);
5694 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005695 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5696 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005697}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005698