blob: 4868c9e29e15358766907ed9df5715cf4d59a77e [file] [log] [blame]
Dan Gohman6277eb22009-11-23 17:16:22 +00001//===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating functions from LLVM IR into
11// Machine IR.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "function-lowering-info"
16#include "FunctionLoweringInfo.h"
17#include "llvm/CallingConv.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Function.h"
20#include "llvm/Instructions.h"
Dan Gohman5fca8b12009-11-23 18:12:11 +000021#include "llvm/IntrinsicInst.h"
Dan Gohman6277eb22009-11-23 17:16:22 +000022#include "llvm/LLVMContext.h"
23#include "llvm/Module.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineModuleInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/Analysis/DebugInfo.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Target/TargetFrameInfo.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetIntrinsicInfo.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/Support/raw_ostream.h"
43#include <algorithm>
44using namespace llvm;
45
46/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
47/// of insertvalue or extractvalue indices that identify a member, return
48/// the linearized index of the start of the member.
49///
50unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
51 const unsigned *Indices,
52 const unsigned *IndicesEnd,
53 unsigned CurIndex) {
54 // Base case: We're done.
55 if (Indices && Indices == IndicesEnd)
56 return CurIndex;
57
58 // Given a struct type, recursively traverse the elements.
59 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
60 for (StructType::element_iterator EB = STy->element_begin(),
61 EI = EB,
62 EE = STy->element_end();
63 EI != EE; ++EI) {
64 if (Indices && *Indices == unsigned(EI - EB))
65 return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
66 CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
67 }
68 return CurIndex;
69 }
70 // Given an array type, recursively traverse the elements.
71 else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
72 const Type *EltTy = ATy->getElementType();
73 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
74 if (Indices && *Indices == i)
75 return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
76 CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
77 }
78 return CurIndex;
79 }
80 // We haven't found the type we're looking for, so keep searching.
81 return CurIndex + 1;
82}
83
84/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
85/// EVTs that represent all the individual underlying
86/// non-aggregate types that comprise it.
87///
88/// If Offsets is non-null, it points to a vector to be filled in
89/// with the in-memory offsets of each of the individual values.
90///
91void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
92 SmallVectorImpl<EVT> &ValueVTs,
93 SmallVectorImpl<uint64_t> *Offsets,
94 uint64_t StartingOffset) {
95 // Given a struct type, recursively traverse the elements.
96 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
97 const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
98 for (StructType::element_iterator EB = STy->element_begin(),
99 EI = EB,
100 EE = STy->element_end();
101 EI != EE; ++EI)
102 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
103 StartingOffset + SL->getElementOffset(EI - EB));
104 return;
105 }
106 // Given an array type, recursively traverse the elements.
107 if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
108 const Type *EltTy = ATy->getElementType();
109 uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
110 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
111 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
112 StartingOffset + i * EltSize);
113 return;
114 }
115 // Interpret void as zero return values.
Benjamin Kramerf0127052010-01-05 13:12:22 +0000116 if (Ty->isVoidTy())
Dan Gohman6277eb22009-11-23 17:16:22 +0000117 return;
118 // Base case: we can get an EVT for this LLVM IR type.
119 ValueVTs.push_back(TLI.getValueType(Ty));
120 if (Offsets)
121 Offsets->push_back(StartingOffset);
122}
123
124/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
125/// PHI nodes or outside of the basic block that defines it, or used by a
126/// switch or atomic instruction, which may expand to multiple basic blocks.
127static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
128 if (isa<PHINode>(I)) return true;
129 BasicBlock *BB = I->getParent();
130 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
131 if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
132 return true;
133 return false;
134}
135
136/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
137/// entry block, return true. This includes arguments used by switches, since
138/// the switch may expand into multiple basic blocks.
139static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) {
140 // With FastISel active, we may be splitting blocks, so force creation
141 // of virtual registers for all non-dead arguments.
142 // Don't force virtual registers for byval arguments though, because
143 // fast-isel can't handle those in all cases.
144 if (EnableFastISel && !A->hasByValAttr())
145 return A->use_empty();
146
147 BasicBlock *Entry = A->getParent()->begin();
148 for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
149 if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
150 return false; // Use not in entry block.
151 return true;
152}
153
154FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
155 : TLI(tli) {
156}
157
158void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
159 bool EnableFastISel) {
160 Fn = &fn;
161 MF = &mf;
162 RegInfo = &MF->getRegInfo();
163
164 // Create a vreg for each argument register that is not dead and is used
165 // outside of the entry block for the function.
166 for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
167 AI != E; ++AI)
168 if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
169 InitializeRegForValue(AI);
170
171 // Initialize the mapping of values to registers. This is only set up for
172 // instruction values that are used outside of the block that defines
173 // them.
174 Function::iterator BB = Fn->begin(), EB = Fn->end();
175 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
176 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
177 if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
178 const Type *Ty = AI->getAllocatedType();
179 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
180 unsigned Align =
181 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
182 AI->getAlignment());
183
184 TySize *= CUI->getZExtValue(); // Get total allocated size.
185 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
186 StaticAllocaMap[AI] =
187 MF->getFrameInfo()->CreateStackObject(TySize, Align, false);
188 }
189
190 for (; BB != EB; ++BB)
191 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
192 if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
193 if (!isa<AllocaInst>(I) ||
194 !StaticAllocaMap.count(cast<AllocaInst>(I)))
195 InitializeRegForValue(I);
196
197 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
198 // also creates the initial PHI MachineInstrs, though none of the input
199 // operands are populated.
200 for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) {
201 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
202 MBBMap[BB] = MBB;
203 MF->push_back(MBB);
204
205 // Transfer the address-taken flag. This is necessary because there could
206 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
207 // the first one should be marked.
208 if (BB->hasAddressTaken())
209 MBB->setHasAddressTaken();
210
211 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
212 // appropriate.
213 PHINode *PN;
214 DebugLoc DL;
215 for (BasicBlock::iterator
216 I = BB->begin(), E = BB->end(); I != E; ++I) {
217
218 PN = dyn_cast<PHINode>(I);
219 if (!PN || PN->use_empty()) continue;
220
221 unsigned PHIReg = ValueMap[PN];
222 assert(PHIReg && "PHI node does not have an assigned virtual register!");
223
224 SmallVector<EVT, 4> ValueVTs;
225 ComputeValueVTs(TLI, PN->getType(), ValueVTs);
226 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
227 EVT VT = ValueVTs[vti];
228 unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT);
229 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
230 for (unsigned i = 0; i != NumRegisters; ++i)
231 BuildMI(MBB, DL, TII->get(TargetInstrInfo::PHI), PHIReg + i);
232 PHIReg += NumRegisters;
233 }
234 }
235 }
236}
237
238/// clear - Clear out all the function-specific state. This returns this
239/// FunctionLoweringInfo to an empty state, ready to be used for a
240/// different function.
241void FunctionLoweringInfo::clear() {
242 MBBMap.clear();
243 ValueMap.clear();
244 StaticAllocaMap.clear();
245#ifndef NDEBUG
246 CatchInfoLost.clear();
247 CatchInfoFound.clear();
248#endif
249 LiveOutRegInfo.clear();
250}
251
252unsigned FunctionLoweringInfo::MakeReg(EVT VT) {
253 return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
254}
255
256/// CreateRegForValue - Allocate the appropriate number of virtual registers of
257/// the correctly promoted or expanded types. Assign these registers
258/// consecutive vreg numbers and return the first assigned number.
259///
260/// In the case that the given value has struct or array type, this function
261/// will assign registers for each member or element.
262///
263unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
264 SmallVector<EVT, 4> ValueVTs;
265 ComputeValueVTs(TLI, V->getType(), ValueVTs);
266
267 unsigned FirstReg = 0;
268 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
269 EVT ValueVT = ValueVTs[Value];
270 EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT);
271
272 unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT);
273 for (unsigned i = 0; i != NumRegs; ++i) {
274 unsigned R = MakeReg(RegisterVT);
275 if (!FirstReg) FirstReg = R;
276 }
277 }
278 return FirstReg;
279}
Dan Gohman66336ed2009-11-23 17:42:46 +0000280
281/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
282GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
283 V = V->stripPointerCasts();
284 GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
285 assert ((GV || isa<ConstantPointerNull>(V)) &&
286 "TypeInfo must be a global variable or NULL");
287 return GV;
288}
289
290/// AddCatchInfo - Extract the personality and type infos from an eh.selector
291/// call, and add them to the specified machine basic block.
292void llvm::AddCatchInfo(CallInst &I, MachineModuleInfo *MMI,
293 MachineBasicBlock *MBB) {
294 // Inform the MachineModuleInfo of the personality for this landing pad.
295 ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
296 assert(CE->getOpcode() == Instruction::BitCast &&
297 isa<Function>(CE->getOperand(0)) &&
298 "Personality should be a function");
299 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
300
301 // Gather all the type infos for this landing pad and pass them along to
302 // MachineModuleInfo.
303 std::vector<GlobalVariable *> TyInfo;
304 unsigned N = I.getNumOperands();
305
306 for (unsigned i = N - 1; i > 2; --i) {
307 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
308 unsigned FilterLength = CI->getZExtValue();
309 unsigned FirstCatch = i + FilterLength + !FilterLength;
310 assert (FirstCatch <= N && "Invalid filter length");
311
312 if (FirstCatch < N) {
313 TyInfo.reserve(N - FirstCatch);
314 for (unsigned j = FirstCatch; j < N; ++j)
315 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
316 MMI->addCatchTypeInfo(MBB, TyInfo);
317 TyInfo.clear();
318 }
319
320 if (!FilterLength) {
321 // Cleanup.
322 MMI->addCleanup(MBB);
323 } else {
324 // Filter.
325 TyInfo.reserve(FilterLength - 1);
326 for (unsigned j = i + 1; j < FirstCatch; ++j)
327 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
328 MMI->addFilterTypeInfo(MBB, TyInfo);
329 TyInfo.clear();
330 }
331
332 N = i;
333 }
334 }
335
336 if (N > 3) {
337 TyInfo.reserve(N - 3);
338 for (unsigned j = 3; j < N; ++j)
339 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
340 MMI->addCatchTypeInfo(MBB, TyInfo);
341 }
342}
343
Dan Gohman5fca8b12009-11-23 18:12:11 +0000344void llvm::CopyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
345 MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
346 for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
347 if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
348 // Apply the catch info to DestBB.
349 AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
350#ifndef NDEBUG
351 if (!FLI.MBBMap[SrcBB]->isLandingPad())
352 FLI.CatchInfoFound.insert(EHSel);
353#endif
354 }
355}