blob: 291dd42dc896b0d77585b47d8d80f26d218b4903 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
3// This file defines a simple peephole instruction selector for the x86 platform
4//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner72614082002-10-25 22:55:53 +00009#include "llvm/Function.h"
10#include "llvm/iTerminators.h"
Brian Gaekea1719c92002-10-31 23:03:59 +000011#include "llvm/iOther.h"
Chris Lattner51b49a92002-11-02 19:45:49 +000012#include "llvm/iPHINode.h"
Chris Lattner72614082002-10-25 22:55:53 +000013#include "llvm/Type.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000014#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000015#include "llvm/Pass.h"
Chris Lattner341a9372002-10-29 17:43:55 +000016#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000018#include "llvm/Support/InstVisitor.h"
19#include <map>
20
21namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000022 struct ISel : public FunctionPass, InstVisitor<ISel> {
23 TargetMachine &TM;
Chris Lattner341a9372002-10-29 17:43:55 +000024 MachineFunction *F; // The function we are compiling into
25 MachineBasicBlock *BB; // The current MBB we are compiling
Chris Lattner72614082002-10-25 22:55:53 +000026
27 unsigned CurReg;
28 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
29
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000030 ISel(TargetMachine &tm)
31 : TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
Chris Lattner72614082002-10-25 22:55:53 +000032
33 /// runOnFunction - Top level implementation of instruction selection for
34 /// the entire function.
35 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000036 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000037 F = &MachineFunction::construct(&Fn, TM);
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000038 visit(Fn);
Chris Lattner72614082002-10-25 22:55:53 +000039 RegMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000040 F = 0;
Chris Lattner72614082002-10-25 22:55:53 +000041 return false; // We never modify the LLVM itself.
42 }
43
44 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000045 /// block. This simply creates a new MachineBasicBlock to emit code into
46 /// and adds it to the current MachineFunction. Subsequent visit* for
47 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +000048 ///
49 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner42c77862002-10-30 00:47:40 +000050 BB = new MachineBasicBlock(&LLVM_BB);
Chris Lattner72614082002-10-25 22:55:53 +000051 // FIXME: Use the auto-insert form when it's available
52 F->getBasicBlockList().push_back(BB);
53 }
54
55 // Visitation methods for various instructions. These methods simply emit
56 // fixed X86 code for each instruction.
57 //
58 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +000059 void visitBranchInst(BranchInst &BI);
Chris Lattnere2954c82002-11-02 20:04:26 +000060
61 // Arithmetic operators
Chris Lattner68aad932002-11-02 20:13:22 +000062 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
63 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattnerca9671d2002-11-02 20:28:58 +000064 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +000065
66 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +000067 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
68 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
69 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
70 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattnere2954c82002-11-02 20:04:26 +000071
72 // Binary comparison operators
73
74 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +000075 void visitShiftInst(ShiftInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +000076 void visitPHINode(PHINode &I);
Chris Lattner72614082002-10-25 22:55:53 +000077
78 void visitInstruction(Instruction &I) {
79 std::cerr << "Cannot instruction select: " << I;
80 abort();
81 }
82
Chris Lattnerc5291f52002-10-27 21:16:59 +000083
84 /// copyConstantToRegister - Output the instructions required to put the
85 /// specified constant into the specified register.
86 ///
87 void copyConstantToRegister(Constant *C, unsigned Reg);
88
Chris Lattner72614082002-10-25 22:55:53 +000089 /// getReg - This method turns an LLVM value into a register number. This
90 /// is guaranteed to produce the same register number for a particular value
91 /// every time it is queried.
92 ///
93 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
94 unsigned getReg(Value *V) {
95 unsigned &Reg = RegMap[V];
96 if (Reg == 0)
97 Reg = CurReg++;
98
Chris Lattner6f8fd252002-10-27 21:23:43 +000099 // If this operand is a constant, emit the code to copy the constant into
100 // the register here...
101 //
Chris Lattnerc5291f52002-10-27 21:16:59 +0000102 if (Constant *C = dyn_cast<Constant>(V))
103 copyConstantToRegister(C, Reg);
104
Chris Lattner72614082002-10-25 22:55:53 +0000105 return Reg;
106 }
Chris Lattner72614082002-10-25 22:55:53 +0000107 };
108}
109
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000110/// getClass - Turn a primitive type into a "class" number which is based on the
111/// size of the type, and whether or not it is floating point.
112///
113static inline unsigned getClass(const Type *Ty) {
114 switch (Ty->getPrimitiveID()) {
115 case Type::SByteTyID:
116 case Type::UByteTyID: return 0; // Byte operands are class #0
117 case Type::ShortTyID:
118 case Type::UShortTyID: return 1; // Short operands are class #1
119 case Type::IntTyID:
120 case Type::UIntTyID:
121 case Type::PointerTyID: return 2; // Int's and pointers are class #2
122
123 case Type::LongTyID:
124 case Type::ULongTyID: return 3; // Longs are class #3
125 case Type::FloatTyID: return 4; // Float is class #4
126 case Type::DoubleTyID: return 5; // Doubles are class #5
127 default:
128 assert(0 && "Invalid type to getClass!");
129 return 0; // not reached
130 }
131}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000132
133/// copyConstantToRegister - Output the instructions required to put the
134/// specified constant into the specified register.
135///
136void ISel::copyConstantToRegister(Constant *C, unsigned R) {
137 assert (!isa<ConstantExpr>(C) && "Constant expressions not yet handled!\n");
138
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000139 if (C->getType()->isIntegral()) {
140 unsigned Class = getClass(C->getType());
141 assert(Class != 3 && "Type not handled yet!");
142
143 static const unsigned IntegralOpcodeTab[] = {
144 X86::MOVir8, X86::MOVir16, X86::MOVir32
145 };
146
147 if (C->getType()->isSigned()) {
148 ConstantSInt *CSI = cast<ConstantSInt>(C);
149 BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue());
150 } else {
151 ConstantUInt *CUI = cast<ConstantUInt>(C);
152 BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
153 }
154 } else {
155 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000156 }
157}
158
Chris Lattner51b49a92002-11-02 19:45:49 +0000159
Chris Lattnerc5291f52002-10-27 21:16:59 +0000160
Chris Lattner72614082002-10-25 22:55:53 +0000161/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
162/// we have the following possibilities:
163///
164/// ret void: No return value, simply emit a 'ret' instruction
165/// ret sbyte, ubyte : Extend value into EAX and return
166/// ret short, ushort: Extend value into EAX and return
167/// ret int, uint : Move value into EAX and return
168/// ret pointer : Move value into EAX and return
169/// ret long, ulong : Move value into EAX/EDX (?) and return
170/// ret float/double : ? Top of FP stack? XMM0?
171///
172void ISel::visitReturnInst(ReturnInst &I) {
173 if (I.getNumOperands() != 0) { // Not 'ret void'?
174 // Move result into a hard register... then emit a ret
175 visitInstruction(I); // abort
176 }
177
178 // Emit a simple 'ret' instruction... appending it to the end of the basic
179 // block
Chris Lattner341a9372002-10-29 17:43:55 +0000180 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000181}
182
Chris Lattner51b49a92002-11-02 19:45:49 +0000183/// visitBranchInst - Handle conditional and unconditional branches here. Note
184/// that since code layout is frozen at this point, that if we are trying to
185/// jump to a block that is the immediate successor of the current block, we can
186/// just make a fall-through. (but we don't currently).
187///
Chris Lattner2df035b2002-11-02 19:27:56 +0000188void ISel::visitBranchInst(BranchInst &BI) {
189 if (BI.isConditional()) // Only handles unconditional branches so far...
190 visitInstruction(BI);
191
192 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
193}
194
195
Chris Lattner68aad932002-11-02 20:13:22 +0000196/// visitSimpleBinary - Implement simple binary operators for integral types...
197/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
198/// 4 for Xor.
199///
200void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
201 if (B.getType() == Type::BoolTy) // FIXME: Handle bools for logicals
Chris Lattnere2954c82002-11-02 20:04:26 +0000202 visitInstruction(B);
203
204 unsigned Class = getClass(B.getType());
205 if (Class > 2) // FIXME: Handle longs
206 visitInstruction(B);
207
208 static const unsigned OpcodeTab[][4] = {
Chris Lattner68aad932002-11-02 20:13:22 +0000209 // Arithmetic operators
210 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 }, // ADD
211 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 }, // SUB
212
213 // Bitwise operators
Chris Lattnere2954c82002-11-02 20:04:26 +0000214 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
215 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
216 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
217 };
218
219 unsigned Opcode = OpcodeTab[OperatorClass][Class];
220 unsigned Op0r = getReg(B.getOperand(0));
221 unsigned Op1r = getReg(B.getOperand(1));
222 BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r);
223}
224
Chris Lattnerca9671d2002-11-02 20:28:58 +0000225/// visitMul - Multiplies are not simple binary operators because they must deal
226/// with the EAX register explicitly.
227///
228void ISel::visitMul(BinaryOperator &I) {
229 unsigned Class = getClass(I.getType());
230 if (Class > 2) // FIXME: Handle longs
231 visitInstruction(I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000232
Chris Lattnerca9671d2002-11-02 20:28:58 +0000233 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
234 static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 };
235 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
236
237 unsigned Reg = Regs[Class];
238 unsigned Op0Reg = getReg(I.getOperand(1));
239 unsigned Op1Reg = getReg(I.getOperand(1));
240
241 // Put the first operand into one of the A registers...
242 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
243
244 // Emit the appropriate multiple instruction...
245 // FIXME: We need to mark that this modified AH, DX, or EDX also!!
246 BuildMI(BB, MulOpcode[Class], 2, Reg).addReg(Reg).addReg(Op1Reg);
247
248 // Put the result into the destination register...
249 BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(Reg);
250
251}
Chris Lattnere2954c82002-11-02 20:04:26 +0000252
Brian Gaekea1719c92002-10-31 23:03:59 +0000253/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
254/// for constant immediate shift values, and for constant immediate
255/// shift values equal to 1. Even the general case is sort of special,
256/// because the shift amount has to be in CL, not just any old register.
257///
258void
259ISel::visitShiftInst (ShiftInst & I)
260{
261 unsigned Op0r = getReg (I.getOperand (0));
262 unsigned DestReg = getReg (I);
Chris Lattnere9913f22002-11-02 01:41:55 +0000263 bool isLeftShift = I.getOpcode() == Instruction::Shl;
264 bool isOperandSigned = I.getType()->isUnsigned();
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000265 unsigned OperandClass = getClass(I.getType());
266
267 if (OperandClass > 2)
268 visitInstruction(I); // Can't handle longs yet!
Chris Lattner796df732002-11-02 00:44:25 +0000269
Brian Gaekea1719c92002-10-31 23:03:59 +0000270 if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1)))
271 {
Chris Lattner796df732002-11-02 00:44:25 +0000272 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
273 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
274 unsigned char shAmt = CUI->getValue();
275
Chris Lattnere9913f22002-11-02 01:41:55 +0000276 static const unsigned ConstantOperand[][4] = {
277 { X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 }, // SHR
278 { X86::SARir8, X86::SARir16, X86::SARir32, 0 }, // SAR
279 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SHL
280 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000281 };
282
Chris Lattnere9913f22002-11-02 01:41:55 +0000283 const unsigned *OpTab = // Figure out the operand table to use
284 ConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000285
Brian Gaekea1719c92002-10-31 23:03:59 +0000286 // Emit: <insn> reg, shamt (shift-by-immediate opcode "ir" form.)
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000287 BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt);
Brian Gaekea1719c92002-10-31 23:03:59 +0000288 }
289 else
290 {
291 // The shift amount is non-constant.
292 //
293 // In fact, you can only shift with a variable shift amount if
294 // that amount is already in the CL register, so we have to put it
295 // there first.
296 //
Chris Lattnere9913f22002-11-02 01:41:55 +0000297
Brian Gaekea1719c92002-10-31 23:03:59 +0000298 // Emit: move cl, shiftAmount (put the shift amount in CL.)
Chris Lattnerca9671d2002-11-02 20:28:58 +0000299 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000300
301 // This is a shift right (SHR).
Chris Lattnere9913f22002-11-02 01:41:55 +0000302 static const unsigned NonConstantOperand[][4] = {
303 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 }, // SHR
304 { X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 }, // SAR
305 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SHL
306 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000307 };
308
Chris Lattnere9913f22002-11-02 01:41:55 +0000309 const unsigned *OpTab = // Figure out the operand table to use
310 NonConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000311
Chris Lattnere9913f22002-11-02 01:41:55 +0000312 BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addReg(X86::CL);
Brian Gaekea1719c92002-10-31 23:03:59 +0000313 }
314}
315
Chris Lattnere2954c82002-11-02 20:04:26 +0000316/// visitPHINode - Turn an LLVM PHI node into an X86 PHI node...
317///
318void ISel::visitPHINode(PHINode &PN) {
319 MachineInstr *MI = BuildMI(BB, X86::PHI, PN.getNumOperands(), getReg(PN));
Chris Lattner72614082002-10-25 22:55:53 +0000320
Chris Lattnere2954c82002-11-02 20:04:26 +0000321 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
322 // FIXME: This will put constants after the PHI nodes in the block, which
323 // is invalid. They should be put inline into the PHI node eventually.
324 //
325 MI->addRegOperand(getReg(PN.getIncomingValue(i)));
326 MI->addPCDispOperand(PN.getIncomingBlock(i));
327 }
Chris Lattner72614082002-10-25 22:55:53 +0000328}
329
Brian Gaekea1719c92002-10-31 23:03:59 +0000330
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000331/// createSimpleX86InstructionSelector - This pass converts an LLVM function
332/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +0000333/// generated code sucks but the implementation is nice and simple.
334///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000335Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
336 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +0000337}