blob: b0c76c8e8e71b35c77087ebdc94be02d58958f24 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
21#include "llvm/ParameterAttributes.h"
22#include "llvm/Pass.h"
23#include "llvm/PassManager.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Analysis/ConstantsScanner.h"
29#include "llvm/Analysis/FindUsedTypes.h"
30#include "llvm/Analysis/LoopInfo.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/Transforms/Scalar.h"
33#include "llvm/Target/TargetMachineRegistry.h"
34#include "llvm/Target/TargetAsmInfo.h"
35#include "llvm/Target/TargetData.h"
36#include "llvm/Support/CallSite.h"
37#include "llvm/Support/CFG.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/InstVisitor.h"
40#include "llvm/Support/Mangler.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/ADT/StringExtras.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Config/config.h"
46#include <algorithm>
47#include <sstream>
48using namespace llvm;
49
50namespace {
51 // Register the target.
52 RegisterTarget<CTargetMachine> X("c", " C backend");
53
54 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
55 /// any unnamed structure types that are used by the program, and merges
56 /// external functions with the same name.
57 ///
58 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
59 public:
60 static char ID;
61 CBackendNameAllUsedStructsAndMergeFunctions()
62 : ModulePass((intptr_t)&ID) {}
63 void getAnalysisUsage(AnalysisUsage &AU) const {
64 AU.addRequired<FindUsedTypes>();
65 }
66
67 virtual const char *getPassName() const {
68 return "C backend type canonicalizer";
69 }
70
71 virtual bool runOnModule(Module &M);
72 };
73
74 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
75
76 /// CWriter - This class is the main chunk of code that converts an LLVM
77 /// module to a C translation unit.
78 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
79 std::ostream &Out;
80 IntrinsicLowering *IL;
81 Mangler *Mang;
82 LoopInfo *LI;
83 const Module *TheModule;
84 const TargetAsmInfo* TAsm;
85 const TargetData* TD;
86 std::map<const Type *, std::string> TypeNames;
87 std::map<const ConstantFP *, unsigned> FPConstantMap;
88 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
89
90 public:
91 static char ID;
92 CWriter(std::ostream &o)
93 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
94 TheModule(0), TAsm(0), TD(0) {}
95
96 virtual const char *getPassName() const { return "C backend"; }
97
98 void getAnalysisUsage(AnalysisUsage &AU) const {
99 AU.addRequired<LoopInfo>();
100 AU.setPreservesAll();
101 }
102
103 virtual bool doInitialization(Module &M);
104
105 bool runOnFunction(Function &F) {
106 LI = &getAnalysis<LoopInfo>();
107
108 // Get rid of intrinsics we can't handle.
109 lowerIntrinsics(F);
110
111 // Output all floating point constants that cannot be printed accurately.
112 printFloatingPointConstants(F);
113
114 printFunction(F);
115 FPConstantMap.clear();
116 return false;
117 }
118
119 virtual bool doFinalization(Module &M) {
120 // Free memory...
121 delete Mang;
122 TypeNames.clear();
123 return false;
124 }
125
126 std::ostream &printType(std::ostream &Out, const Type *Ty,
127 bool isSigned = false,
128 const std::string &VariableName = "",
129 bool IgnoreName = false);
130 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
131 bool isSigned,
132 const std::string &NameSoFar = "");
133
134 void printStructReturnPointerFunctionType(std::ostream &Out,
135 const PointerType *Ty);
136
137 void writeOperand(Value *Operand);
138 void writeOperandRaw(Value *Operand);
139 void writeOperandInternal(Value *Operand);
140 void writeOperandWithCast(Value* Operand, unsigned Opcode);
141 void writeOperandWithCast(Value* Operand, ICmpInst::Predicate predicate);
142 bool writeInstructionCast(const Instruction &I);
143
144 private :
145 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
146
147 void lowerIntrinsics(Function &F);
148
149 void printModule(Module *M);
150 void printModuleTypes(const TypeSymbolTable &ST);
151 void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
152 void printFloatingPointConstants(Function &F);
153 void printFunctionSignature(const Function *F, bool Prototype);
154
155 void printFunction(Function &);
156 void printBasicBlock(BasicBlock *BB);
157 void printLoop(Loop *L);
158
159 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
160 void printConstant(Constant *CPV);
161 void printConstantWithCast(Constant *CPV, unsigned Opcode);
162 bool printConstExprCast(const ConstantExpr *CE);
163 void printConstantArray(ConstantArray *CPA);
164 void printConstantVector(ConstantVector *CP);
165
166 // isInlinableInst - Attempt to inline instructions into their uses to build
167 // trees as much as possible. To do this, we have to consistently decide
168 // what is acceptable to inline, so that variable declarations don't get
169 // printed and an extra copy of the expr is not emitted.
170 //
171 static bool isInlinableInst(const Instruction &I) {
172 // Always inline cmp instructions, even if they are shared by multiple
173 // expressions. GCC generates horrible code if we don't.
174 if (isa<CmpInst>(I))
175 return true;
176
177 // Must be an expression, must be used exactly once. If it is dead, we
178 // emit it inline where it would go.
179 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
180 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
181 isa<LoadInst>(I) || isa<VAArgInst>(I))
182 // Don't inline a load across a store or other bad things!
183 return false;
184
185 // Must not be used in inline asm
186 if (I.hasOneUse() && isInlineAsm(*I.use_back())) return false;
187
188 // Only inline instruction it if it's use is in the same BB as the inst.
189 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
190 }
191
192 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
193 // variables which are accessed with the & operator. This causes GCC to
194 // generate significantly better code than to emit alloca calls directly.
195 //
196 static const AllocaInst *isDirectAlloca(const Value *V) {
197 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
198 if (!AI) return false;
199 if (AI->isArrayAllocation())
200 return 0; // FIXME: we can also inline fixed size array allocas!
201 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
202 return 0;
203 return AI;
204 }
205
206 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
207 static bool isInlineAsm(const Instruction& I) {
208 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
209 return true;
210 return false;
211 }
212
213 // Instruction visitation functions
214 friend class InstVisitor<CWriter>;
215
216 void visitReturnInst(ReturnInst &I);
217 void visitBranchInst(BranchInst &I);
218 void visitSwitchInst(SwitchInst &I);
219 void visitInvokeInst(InvokeInst &I) {
220 assert(0 && "Lowerinvoke pass didn't work!");
221 }
222
223 void visitUnwindInst(UnwindInst &I) {
224 assert(0 && "Lowerinvoke pass didn't work!");
225 }
226 void visitUnreachableInst(UnreachableInst &I);
227
228 void visitPHINode(PHINode &I);
229 void visitBinaryOperator(Instruction &I);
230 void visitICmpInst(ICmpInst &I);
231 void visitFCmpInst(FCmpInst &I);
232
233 void visitCastInst (CastInst &I);
234 void visitSelectInst(SelectInst &I);
235 void visitCallInst (CallInst &I);
236 void visitInlineAsm(CallInst &I);
237
238 void visitMallocInst(MallocInst &I);
239 void visitAllocaInst(AllocaInst &I);
240 void visitFreeInst (FreeInst &I);
241 void visitLoadInst (LoadInst &I);
242 void visitStoreInst (StoreInst &I);
243 void visitGetElementPtrInst(GetElementPtrInst &I);
244 void visitVAArgInst (VAArgInst &I);
245
246 void visitInstruction(Instruction &I) {
247 cerr << "C Writer does not know about " << I;
248 abort();
249 }
250
251 void outputLValue(Instruction *I) {
252 Out << " " << GetValueName(I) << " = ";
253 }
254
255 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
256 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
257 BasicBlock *Successor, unsigned Indent);
258 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
259 unsigned Indent);
260 void printIndexingExpression(Value *Ptr, gep_type_iterator I,
261 gep_type_iterator E);
262
263 std::string GetValueName(const Value *Operand);
264 };
265}
266
267char CWriter::ID = 0;
268
269/// This method inserts names for any unnamed structure types that are used by
270/// the program, and removes names from structure types that are not used by the
271/// program.
272///
273bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
274 // Get a set of types that are used by the program...
275 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
276
277 // Loop over the module symbol table, removing types from UT that are
278 // already named, and removing names for types that are not used.
279 //
280 TypeSymbolTable &TST = M.getTypeSymbolTable();
281 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
282 TI != TE; ) {
283 TypeSymbolTable::iterator I = TI++;
284
285 // If this isn't a struct type, remove it from our set of types to name.
286 // This simplifies emission later.
287 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
288 TST.remove(I);
289 } else {
290 // If this is not used, remove it from the symbol table.
291 std::set<const Type *>::iterator UTI = UT.find(I->second);
292 if (UTI == UT.end())
293 TST.remove(I);
294 else
295 UT.erase(UTI); // Only keep one name for this type.
296 }
297 }
298
299 // UT now contains types that are not named. Loop over it, naming
300 // structure types.
301 //
302 bool Changed = false;
303 unsigned RenameCounter = 0;
304 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
305 I != E; ++I)
306 if (const StructType *ST = dyn_cast<StructType>(*I)) {
307 while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
308 ++RenameCounter;
309 Changed = true;
310 }
311
312
313 // Loop over all external functions and globals. If we have two with
314 // identical names, merge them.
315 // FIXME: This code should disappear when we don't allow values with the same
316 // names when they have different types!
317 std::map<std::string, GlobalValue*> ExtSymbols;
318 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
319 Function *GV = I++;
320 if (GV->isDeclaration() && GV->hasName()) {
321 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
322 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
323 if (!X.second) {
324 // Found a conflict, replace this global with the previous one.
325 GlobalValue *OldGV = X.first->second;
326 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
327 GV->eraseFromParent();
328 Changed = true;
329 }
330 }
331 }
332 // Do the same for globals.
333 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
334 I != E;) {
335 GlobalVariable *GV = I++;
336 if (GV->isDeclaration() && GV->hasName()) {
337 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
338 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
339 if (!X.second) {
340 // Found a conflict, replace this global with the previous one.
341 GlobalValue *OldGV = X.first->second;
342 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
343 GV->eraseFromParent();
344 Changed = true;
345 }
346 }
347 }
348
349 return Changed;
350}
351
352/// printStructReturnPointerFunctionType - This is like printType for a struct
353/// return type, except, instead of printing the type as void (*)(Struct*, ...)
354/// print it as "Struct (*)(...)", for struct return functions.
355void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
356 const PointerType *TheTy) {
357 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
358 std::stringstream FunctionInnards;
359 FunctionInnards << " (*) (";
360 bool PrintedType = false;
361
362 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
363 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
364 unsigned Idx = 1;
365 const ParamAttrsList *Attrs = FTy->getParamAttrs();
366 for (++I; I != E; ++I) {
367 if (PrintedType)
368 FunctionInnards << ", ";
369 printType(FunctionInnards, *I,
370 /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt), "");
371 PrintedType = true;
372 }
373 if (FTy->isVarArg()) {
374 if (PrintedType)
375 FunctionInnards << ", ...";
376 } else if (!PrintedType) {
377 FunctionInnards << "void";
378 }
379 FunctionInnards << ')';
380 std::string tstr = FunctionInnards.str();
381 printType(Out, RetTy,
382 /*isSigned=*/Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt), tstr);
383}
384
385std::ostream &
386CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
387 const std::string &NameSoFar) {
388 assert((Ty->isPrimitiveType() || Ty->isInteger()) &&
389 "Invalid type for printSimpleType");
390 switch (Ty->getTypeID()) {
391 case Type::VoidTyID: return Out << "void " << NameSoFar;
392 case Type::IntegerTyID: {
393 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
394 if (NumBits == 1)
395 return Out << "bool " << NameSoFar;
396 else if (NumBits <= 8)
397 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
398 else if (NumBits <= 16)
399 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
400 else if (NumBits <= 32)
401 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
402 else {
403 assert(NumBits <= 64 && "Bit widths > 64 not implemented yet");
404 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
405 }
406 }
407 case Type::FloatTyID: return Out << "float " << NameSoFar;
408 case Type::DoubleTyID: return Out << "double " << NameSoFar;
409 default :
410 cerr << "Unknown primitive type: " << *Ty << "\n";
411 abort();
412 }
413}
414
415// Pass the Type* and the variable name and this prints out the variable
416// declaration.
417//
418std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
419 bool isSigned, const std::string &NameSoFar,
420 bool IgnoreName) {
421 if (Ty->isPrimitiveType() || Ty->isInteger()) {
422 printSimpleType(Out, Ty, isSigned, NameSoFar);
423 return Out;
424 }
425
426 // Check to see if the type is named.
427 if (!IgnoreName || isa<OpaqueType>(Ty)) {
428 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
429 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
430 }
431
432 switch (Ty->getTypeID()) {
433 case Type::FunctionTyID: {
434 const FunctionType *FTy = cast<FunctionType>(Ty);
435 std::stringstream FunctionInnards;
436 FunctionInnards << " (" << NameSoFar << ") (";
437 const ParamAttrsList *Attrs = FTy->getParamAttrs();
438 unsigned Idx = 1;
439 for (FunctionType::param_iterator I = FTy->param_begin(),
440 E = FTy->param_end(); I != E; ++I) {
441 if (I != FTy->param_begin())
442 FunctionInnards << ", ";
443 printType(FunctionInnards, *I,
444 /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt), "");
445 ++Idx;
446 }
447 if (FTy->isVarArg()) {
448 if (FTy->getNumParams())
449 FunctionInnards << ", ...";
450 } else if (!FTy->getNumParams()) {
451 FunctionInnards << "void";
452 }
453 FunctionInnards << ')';
454 std::string tstr = FunctionInnards.str();
455 printType(Out, FTy->getReturnType(),
456 /*isSigned=*/Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt), tstr);
457 return Out;
458 }
459 case Type::StructTyID: {
460 const StructType *STy = cast<StructType>(Ty);
461 Out << NameSoFar + " {\n";
462 unsigned Idx = 0;
463 for (StructType::element_iterator I = STy->element_begin(),
464 E = STy->element_end(); I != E; ++I) {
465 Out << " ";
466 printType(Out, *I, false, "field" + utostr(Idx++));
467 Out << ";\n";
468 }
469 Out << '}';
470 if (STy->isPacked())
471 Out << " __attribute__ ((packed))";
472 return Out;
473 }
474
475 case Type::PointerTyID: {
476 const PointerType *PTy = cast<PointerType>(Ty);
477 std::string ptrName = "*" + NameSoFar;
478
479 if (isa<ArrayType>(PTy->getElementType()) ||
480 isa<VectorType>(PTy->getElementType()))
481 ptrName = "(" + ptrName + ")";
482
483 return printType(Out, PTy->getElementType(), false, ptrName);
484 }
485
486 case Type::ArrayTyID: {
487 const ArrayType *ATy = cast<ArrayType>(Ty);
488 unsigned NumElements = ATy->getNumElements();
489 if (NumElements == 0) NumElements = 1;
490 return printType(Out, ATy->getElementType(), false,
491 NameSoFar + "[" + utostr(NumElements) + "]");
492 }
493
494 case Type::VectorTyID: {
495 const VectorType *PTy = cast<VectorType>(Ty);
496 unsigned NumElements = PTy->getNumElements();
497 if (NumElements == 0) NumElements = 1;
498 return printType(Out, PTy->getElementType(), false,
499 NameSoFar + "[" + utostr(NumElements) + "]");
500 }
501
502 case Type::OpaqueTyID: {
503 static int Count = 0;
504 std::string TyName = "struct opaque_" + itostr(Count++);
505 assert(TypeNames.find(Ty) == TypeNames.end());
506 TypeNames[Ty] = TyName;
507 return Out << TyName << ' ' << NameSoFar;
508 }
509 default:
510 assert(0 && "Unhandled case in getTypeProps!");
511 abort();
512 }
513
514 return Out;
515}
516
517void CWriter::printConstantArray(ConstantArray *CPA) {
518
519 // As a special case, print the array as a string if it is an array of
520 // ubytes or an array of sbytes with positive values.
521 //
522 const Type *ETy = CPA->getType()->getElementType();
523 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
524
525 // Make sure the last character is a null char, as automatically added by C
526 if (isString && (CPA->getNumOperands() == 0 ||
527 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
528 isString = false;
529
530 if (isString) {
531 Out << '\"';
532 // Keep track of whether the last number was a hexadecimal escape
533 bool LastWasHex = false;
534
535 // Do not include the last character, which we know is null
536 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
537 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
538
539 // Print it out literally if it is a printable character. The only thing
540 // to be careful about is when the last letter output was a hex escape
541 // code, in which case we have to be careful not to print out hex digits
542 // explicitly (the C compiler thinks it is a continuation of the previous
543 // character, sheesh...)
544 //
545 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
546 LastWasHex = false;
547 if (C == '"' || C == '\\')
548 Out << "\\" << C;
549 else
550 Out << C;
551 } else {
552 LastWasHex = false;
553 switch (C) {
554 case '\n': Out << "\\n"; break;
555 case '\t': Out << "\\t"; break;
556 case '\r': Out << "\\r"; break;
557 case '\v': Out << "\\v"; break;
558 case '\a': Out << "\\a"; break;
559 case '\"': Out << "\\\""; break;
560 case '\'': Out << "\\\'"; break;
561 default:
562 Out << "\\x";
563 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
564 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
565 LastWasHex = true;
566 break;
567 }
568 }
569 }
570 Out << '\"';
571 } else {
572 Out << '{';
573 if (CPA->getNumOperands()) {
574 Out << ' ';
575 printConstant(cast<Constant>(CPA->getOperand(0)));
576 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
577 Out << ", ";
578 printConstant(cast<Constant>(CPA->getOperand(i)));
579 }
580 }
581 Out << " }";
582 }
583}
584
585void CWriter::printConstantVector(ConstantVector *CP) {
586 Out << '{';
587 if (CP->getNumOperands()) {
588 Out << ' ';
589 printConstant(cast<Constant>(CP->getOperand(0)));
590 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
591 Out << ", ";
592 printConstant(cast<Constant>(CP->getOperand(i)));
593 }
594 }
595 Out << " }";
596}
597
598// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
599// textually as a double (rather than as a reference to a stack-allocated
600// variable). We decide this by converting CFP to a string and back into a
601// double, and then checking whether the conversion results in a bit-equal
602// double to the original value of CFP. This depends on us and the target C
603// compiler agreeing on the conversion process (which is pretty likely since we
604// only deal in IEEE FP).
605//
606static bool isFPCSafeToPrint(const ConstantFP *CFP) {
607#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
608 char Buffer[100];
609 sprintf(Buffer, "%a", CFP->getValue());
610
611 if (!strncmp(Buffer, "0x", 2) ||
612 !strncmp(Buffer, "-0x", 3) ||
613 !strncmp(Buffer, "+0x", 3))
614 return atof(Buffer) == CFP->getValue();
615 return false;
616#else
617 std::string StrVal = ftostr(CFP->getValue());
618
619 while (StrVal[0] == ' ')
620 StrVal.erase(StrVal.begin());
621
622 // Check to make sure that the stringized number is not some string like "Inf"
623 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
624 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
625 ((StrVal[0] == '-' || StrVal[0] == '+') &&
626 (StrVal[1] >= '0' && StrVal[1] <= '9')))
627 // Reparse stringized version!
628 return atof(StrVal.c_str()) == CFP->getValue();
629 return false;
630#endif
631}
632
633/// Print out the casting for a cast operation. This does the double casting
634/// necessary for conversion to the destination type, if necessary.
635/// @brief Print a cast
636void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
637 // Print the destination type cast
638 switch (opc) {
639 case Instruction::UIToFP:
640 case Instruction::SIToFP:
641 case Instruction::IntToPtr:
642 case Instruction::Trunc:
643 case Instruction::BitCast:
644 case Instruction::FPExt:
645 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
646 Out << '(';
647 printType(Out, DstTy);
648 Out << ')';
649 break;
650 case Instruction::ZExt:
651 case Instruction::PtrToInt:
652 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
653 Out << '(';
654 printSimpleType(Out, DstTy, false);
655 Out << ')';
656 break;
657 case Instruction::SExt:
658 case Instruction::FPToSI: // For these, make sure we get a signed dest
659 Out << '(';
660 printSimpleType(Out, DstTy, true);
661 Out << ')';
662 break;
663 default:
664 assert(0 && "Invalid cast opcode");
665 }
666
667 // Print the source type cast
668 switch (opc) {
669 case Instruction::UIToFP:
670 case Instruction::ZExt:
671 Out << '(';
672 printSimpleType(Out, SrcTy, false);
673 Out << ')';
674 break;
675 case Instruction::SIToFP:
676 case Instruction::SExt:
677 Out << '(';
678 printSimpleType(Out, SrcTy, true);
679 Out << ')';
680 break;
681 case Instruction::IntToPtr:
682 case Instruction::PtrToInt:
683 // Avoid "cast to pointer from integer of different size" warnings
684 Out << "(unsigned long)";
685 break;
686 case Instruction::Trunc:
687 case Instruction::BitCast:
688 case Instruction::FPExt:
689 case Instruction::FPTrunc:
690 case Instruction::FPToSI:
691 case Instruction::FPToUI:
692 break; // These don't need a source cast.
693 default:
694 assert(0 && "Invalid cast opcode");
695 break;
696 }
697}
698
699// printConstant - The LLVM Constant to C Constant converter.
700void CWriter::printConstant(Constant *CPV) {
701 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
702 switch (CE->getOpcode()) {
703 case Instruction::Trunc:
704 case Instruction::ZExt:
705 case Instruction::SExt:
706 case Instruction::FPTrunc:
707 case Instruction::FPExt:
708 case Instruction::UIToFP:
709 case Instruction::SIToFP:
710 case Instruction::FPToUI:
711 case Instruction::FPToSI:
712 case Instruction::PtrToInt:
713 case Instruction::IntToPtr:
714 case Instruction::BitCast:
715 Out << "(";
716 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
717 if (CE->getOpcode() == Instruction::SExt &&
718 CE->getOperand(0)->getType() == Type::Int1Ty) {
719 // Make sure we really sext from bool here by subtracting from 0
720 Out << "0-";
721 }
722 printConstant(CE->getOperand(0));
723 if (CE->getType() == Type::Int1Ty &&
724 (CE->getOpcode() == Instruction::Trunc ||
725 CE->getOpcode() == Instruction::FPToUI ||
726 CE->getOpcode() == Instruction::FPToSI ||
727 CE->getOpcode() == Instruction::PtrToInt)) {
728 // Make sure we really truncate to bool here by anding with 1
729 Out << "&1u";
730 }
731 Out << ')';
732 return;
733
734 case Instruction::GetElementPtr:
735 Out << "(&(";
736 printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV),
737 gep_type_end(CPV));
738 Out << "))";
739 return;
740 case Instruction::Select:
741 Out << '(';
742 printConstant(CE->getOperand(0));
743 Out << '?';
744 printConstant(CE->getOperand(1));
745 Out << ':';
746 printConstant(CE->getOperand(2));
747 Out << ')';
748 return;
749 case Instruction::Add:
750 case Instruction::Sub:
751 case Instruction::Mul:
752 case Instruction::SDiv:
753 case Instruction::UDiv:
754 case Instruction::FDiv:
755 case Instruction::URem:
756 case Instruction::SRem:
757 case Instruction::FRem:
758 case Instruction::And:
759 case Instruction::Or:
760 case Instruction::Xor:
761 case Instruction::ICmp:
762 case Instruction::Shl:
763 case Instruction::LShr:
764 case Instruction::AShr:
765 {
766 Out << '(';
767 bool NeedsClosingParens = printConstExprCast(CE);
768 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
769 switch (CE->getOpcode()) {
770 case Instruction::Add: Out << " + "; break;
771 case Instruction::Sub: Out << " - "; break;
772 case Instruction::Mul: Out << " * "; break;
773 case Instruction::URem:
774 case Instruction::SRem:
775 case Instruction::FRem: Out << " % "; break;
776 case Instruction::UDiv:
777 case Instruction::SDiv:
778 case Instruction::FDiv: Out << " / "; break;
779 case Instruction::And: Out << " & "; break;
780 case Instruction::Or: Out << " | "; break;
781 case Instruction::Xor: Out << " ^ "; break;
782 case Instruction::Shl: Out << " << "; break;
783 case Instruction::LShr:
784 case Instruction::AShr: Out << " >> "; break;
785 case Instruction::ICmp:
786 switch (CE->getPredicate()) {
787 case ICmpInst::ICMP_EQ: Out << " == "; break;
788 case ICmpInst::ICMP_NE: Out << " != "; break;
789 case ICmpInst::ICMP_SLT:
790 case ICmpInst::ICMP_ULT: Out << " < "; break;
791 case ICmpInst::ICMP_SLE:
792 case ICmpInst::ICMP_ULE: Out << " <= "; break;
793 case ICmpInst::ICMP_SGT:
794 case ICmpInst::ICMP_UGT: Out << " > "; break;
795 case ICmpInst::ICMP_SGE:
796 case ICmpInst::ICMP_UGE: Out << " >= "; break;
797 default: assert(0 && "Illegal ICmp predicate");
798 }
799 break;
800 default: assert(0 && "Illegal opcode here!");
801 }
802 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
803 if (NeedsClosingParens)
804 Out << "))";
805 Out << ')';
806 return;
807 }
808 case Instruction::FCmp: {
809 Out << '(';
810 bool NeedsClosingParens = printConstExprCast(CE);
811 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
812 Out << "0";
813 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
814 Out << "1";
815 else {
816 const char* op = 0;
817 switch (CE->getPredicate()) {
818 default: assert(0 && "Illegal FCmp predicate");
819 case FCmpInst::FCMP_ORD: op = "ord"; break;
820 case FCmpInst::FCMP_UNO: op = "uno"; break;
821 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
822 case FCmpInst::FCMP_UNE: op = "une"; break;
823 case FCmpInst::FCMP_ULT: op = "ult"; break;
824 case FCmpInst::FCMP_ULE: op = "ule"; break;
825 case FCmpInst::FCMP_UGT: op = "ugt"; break;
826 case FCmpInst::FCMP_UGE: op = "uge"; break;
827 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
828 case FCmpInst::FCMP_ONE: op = "one"; break;
829 case FCmpInst::FCMP_OLT: op = "olt"; break;
830 case FCmpInst::FCMP_OLE: op = "ole"; break;
831 case FCmpInst::FCMP_OGT: op = "ogt"; break;
832 case FCmpInst::FCMP_OGE: op = "oge"; break;
833 }
834 Out << "llvm_fcmp_" << op << "(";
835 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
836 Out << ", ";
837 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
838 Out << ")";
839 }
840 if (NeedsClosingParens)
841 Out << "))";
842 Out << ')';
843 }
844 default:
845 cerr << "CWriter Error: Unhandled constant expression: "
846 << *CE << "\n";
847 abort();
848 }
849 } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
850 Out << "((";
851 printType(Out, CPV->getType()); // sign doesn't matter
852 Out << ")/*UNDEF*/0)";
853 return;
854 }
855
856 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
857 const Type* Ty = CI->getType();
858 if (Ty == Type::Int1Ty)
859 Out << (CI->getZExtValue() ? '1' : '0') ;
860 else {
861 Out << "((";
862 printSimpleType(Out, Ty, false) << ')';
863 if (CI->isMinValue(true))
864 Out << CI->getZExtValue() << 'u';
865 else
866 Out << CI->getSExtValue();
867 if (Ty->getPrimitiveSizeInBits() > 32)
868 Out << "ll";
869 Out << ')';
870 }
871 return;
872 }
873
874 switch (CPV->getType()->getTypeID()) {
875 case Type::FloatTyID:
876 case Type::DoubleTyID: {
877 ConstantFP *FPC = cast<ConstantFP>(CPV);
878 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
879 if (I != FPConstantMap.end()) {
880 // Because of FP precision problems we must load from a stack allocated
881 // value that holds the value in hex.
882 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double")
883 << "*)&FPConstant" << I->second << ')';
884 } else {
885 if (IsNAN(FPC->getValue())) {
886 // The value is NaN
887
888 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
889 // it's 0x7ff4.
890 const unsigned long QuietNaN = 0x7ff8UL;
891 //const unsigned long SignalNaN = 0x7ff4UL;
892
893 // We need to grab the first part of the FP #
894 char Buffer[100];
895
896 uint64_t ll = DoubleToBits(FPC->getValue());
897 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
898
899 std::string Num(&Buffer[0], &Buffer[6]);
900 unsigned long Val = strtoul(Num.c_str(), 0, 16);
901
902 if (FPC->getType() == Type::FloatTy)
903 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
904 << Buffer << "\") /*nan*/ ";
905 else
906 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
907 << Buffer << "\") /*nan*/ ";
908 } else if (IsInf(FPC->getValue())) {
909 // The value is Inf
910 if (FPC->getValue() < 0) Out << '-';
911 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
912 << " /*inf*/ ";
913 } else {
914 std::string Num;
915#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
916 // Print out the constant as a floating point number.
917 char Buffer[100];
918 sprintf(Buffer, "%a", FPC->getValue());
919 Num = Buffer;
920#else
921 Num = ftostr(FPC->getValue());
922#endif
923 Out << Num;
924 }
925 }
926 break;
927 }
928
929 case Type::ArrayTyID:
930 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
931 const ArrayType *AT = cast<ArrayType>(CPV->getType());
932 Out << '{';
933 if (AT->getNumElements()) {
934 Out << ' ';
935 Constant *CZ = Constant::getNullValue(AT->getElementType());
936 printConstant(CZ);
937 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
938 Out << ", ";
939 printConstant(CZ);
940 }
941 }
942 Out << " }";
943 } else {
944 printConstantArray(cast<ConstantArray>(CPV));
945 }
946 break;
947
948 case Type::VectorTyID:
949 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
950 const VectorType *AT = cast<VectorType>(CPV->getType());
951 Out << '{';
952 if (AT->getNumElements()) {
953 Out << ' ';
954 Constant *CZ = Constant::getNullValue(AT->getElementType());
955 printConstant(CZ);
956 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
957 Out << ", ";
958 printConstant(CZ);
959 }
960 }
961 Out << " }";
962 } else {
963 printConstantVector(cast<ConstantVector>(CPV));
964 }
965 break;
966
967 case Type::StructTyID:
968 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
969 const StructType *ST = cast<StructType>(CPV->getType());
970 Out << '{';
971 if (ST->getNumElements()) {
972 Out << ' ';
973 printConstant(Constant::getNullValue(ST->getElementType(0)));
974 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
975 Out << ", ";
976 printConstant(Constant::getNullValue(ST->getElementType(i)));
977 }
978 }
979 Out << " }";
980 } else {
981 Out << '{';
982 if (CPV->getNumOperands()) {
983 Out << ' ';
984 printConstant(cast<Constant>(CPV->getOperand(0)));
985 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
986 Out << ", ";
987 printConstant(cast<Constant>(CPV->getOperand(i)));
988 }
989 }
990 Out << " }";
991 }
992 break;
993
994 case Type::PointerTyID:
995 if (isa<ConstantPointerNull>(CPV)) {
996 Out << "((";
997 printType(Out, CPV->getType()); // sign doesn't matter
998 Out << ")/*NULL*/0)";
999 break;
1000 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1001 writeOperand(GV);
1002 break;
1003 }
1004 // FALL THROUGH
1005 default:
1006 cerr << "Unknown constant type: " << *CPV << "\n";
1007 abort();
1008 }
1009}
1010
1011// Some constant expressions need to be casted back to the original types
1012// because their operands were casted to the expected type. This function takes
1013// care of detecting that case and printing the cast for the ConstantExpr.
1014bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1015 bool NeedsExplicitCast = false;
1016 const Type *Ty = CE->getOperand(0)->getType();
1017 bool TypeIsSigned = false;
1018 switch (CE->getOpcode()) {
1019 case Instruction::LShr:
1020 case Instruction::URem:
1021 case Instruction::UDiv: NeedsExplicitCast = true; break;
1022 case Instruction::AShr:
1023 case Instruction::SRem:
1024 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1025 case Instruction::SExt:
1026 Ty = CE->getType();
1027 NeedsExplicitCast = true;
1028 TypeIsSigned = true;
1029 break;
1030 case Instruction::ZExt:
1031 case Instruction::Trunc:
1032 case Instruction::FPTrunc:
1033 case Instruction::FPExt:
1034 case Instruction::UIToFP:
1035 case Instruction::SIToFP:
1036 case Instruction::FPToUI:
1037 case Instruction::FPToSI:
1038 case Instruction::PtrToInt:
1039 case Instruction::IntToPtr:
1040 case Instruction::BitCast:
1041 Ty = CE->getType();
1042 NeedsExplicitCast = true;
1043 break;
1044 default: break;
1045 }
1046 if (NeedsExplicitCast) {
1047 Out << "((";
1048 if (Ty->isInteger() && Ty != Type::Int1Ty)
1049 printSimpleType(Out, Ty, TypeIsSigned);
1050 else
1051 printType(Out, Ty); // not integer, sign doesn't matter
1052 Out << ")(";
1053 }
1054 return NeedsExplicitCast;
1055}
1056
1057// Print a constant assuming that it is the operand for a given Opcode. The
1058// opcodes that care about sign need to cast their operands to the expected
1059// type before the operation proceeds. This function does the casting.
1060void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1061
1062 // Extract the operand's type, we'll need it.
1063 const Type* OpTy = CPV->getType();
1064
1065 // Indicate whether to do the cast or not.
1066 bool shouldCast = false;
1067 bool typeIsSigned = false;
1068
1069 // Based on the Opcode for which this Constant is being written, determine
1070 // the new type to which the operand should be casted by setting the value
1071 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1072 // casted below.
1073 switch (Opcode) {
1074 default:
1075 // for most instructions, it doesn't matter
1076 break;
1077 case Instruction::LShr:
1078 case Instruction::UDiv:
1079 case Instruction::URem:
1080 shouldCast = true;
1081 break;
1082 case Instruction::AShr:
1083 case Instruction::SDiv:
1084 case Instruction::SRem:
1085 shouldCast = true;
1086 typeIsSigned = true;
1087 break;
1088 }
1089
1090 // Write out the casted constant if we should, otherwise just write the
1091 // operand.
1092 if (shouldCast) {
1093 Out << "((";
1094 printSimpleType(Out, OpTy, typeIsSigned);
1095 Out << ")";
1096 printConstant(CPV);
1097 Out << ")";
1098 } else
1099 printConstant(CPV);
1100}
1101
1102std::string CWriter::GetValueName(const Value *Operand) {
1103 std::string Name;
1104
1105 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1106 std::string VarName;
1107
1108 Name = Operand->getName();
1109 VarName.reserve(Name.capacity());
1110
1111 for (std::string::iterator I = Name.begin(), E = Name.end();
1112 I != E; ++I) {
1113 char ch = *I;
1114
1115 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
1116 (ch >= '0' && ch <= '9') || ch == '_'))
1117 VarName += '_';
1118 else
1119 VarName += ch;
1120 }
1121
1122 Name = "llvm_cbe_" + VarName;
1123 } else {
1124 Name = Mang->getValueName(Operand);
1125 }
1126
1127 return Name;
1128}
1129
1130void CWriter::writeOperandInternal(Value *Operand) {
1131 if (Instruction *I = dyn_cast<Instruction>(Operand))
1132 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1133 // Should we inline this instruction to build a tree?
1134 Out << '(';
1135 visit(*I);
1136 Out << ')';
1137 return;
1138 }
1139
1140 Constant* CPV = dyn_cast<Constant>(Operand);
1141
1142 if (CPV && !isa<GlobalValue>(CPV))
1143 printConstant(CPV);
1144 else
1145 Out << GetValueName(Operand);
1146}
1147
1148void CWriter::writeOperandRaw(Value *Operand) {
1149 Constant* CPV = dyn_cast<Constant>(Operand);
1150 if (CPV && !isa<GlobalValue>(CPV)) {
1151 printConstant(CPV);
1152 } else {
1153 Out << GetValueName(Operand);
1154 }
1155}
1156
1157void CWriter::writeOperand(Value *Operand) {
1158 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
1159 Out << "(&"; // Global variables are referenced as their addresses by llvm
1160
1161 writeOperandInternal(Operand);
1162
1163 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
1164 Out << ')';
1165}
1166
1167// Some instructions need to have their result value casted back to the
1168// original types because their operands were casted to the expected type.
1169// This function takes care of detecting that case and printing the cast
1170// for the Instruction.
1171bool CWriter::writeInstructionCast(const Instruction &I) {
1172 const Type *Ty = I.getOperand(0)->getType();
1173 switch (I.getOpcode()) {
1174 case Instruction::LShr:
1175 case Instruction::URem:
1176 case Instruction::UDiv:
1177 Out << "((";
1178 printSimpleType(Out, Ty, false);
1179 Out << ")(";
1180 return true;
1181 case Instruction::AShr:
1182 case Instruction::SRem:
1183 case Instruction::SDiv:
1184 Out << "((";
1185 printSimpleType(Out, Ty, true);
1186 Out << ")(";
1187 return true;
1188 default: break;
1189 }
1190 return false;
1191}
1192
1193// Write the operand with a cast to another type based on the Opcode being used.
1194// This will be used in cases where an instruction has specific type
1195// requirements (usually signedness) for its operands.
1196void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1197
1198 // Extract the operand's type, we'll need it.
1199 const Type* OpTy = Operand->getType();
1200
1201 // Indicate whether to do the cast or not.
1202 bool shouldCast = false;
1203
1204 // Indicate whether the cast should be to a signed type or not.
1205 bool castIsSigned = false;
1206
1207 // Based on the Opcode for which this Operand is being written, determine
1208 // the new type to which the operand should be casted by setting the value
1209 // of OpTy. If we change OpTy, also set shouldCast to true.
1210 switch (Opcode) {
1211 default:
1212 // for most instructions, it doesn't matter
1213 break;
1214 case Instruction::LShr:
1215 case Instruction::UDiv:
1216 case Instruction::URem: // Cast to unsigned first
1217 shouldCast = true;
1218 castIsSigned = false;
1219 break;
1220 case Instruction::AShr:
1221 case Instruction::SDiv:
1222 case Instruction::SRem: // Cast to signed first
1223 shouldCast = true;
1224 castIsSigned = true;
1225 break;
1226 }
1227
1228 // Write out the casted operand if we should, otherwise just write the
1229 // operand.
1230 if (shouldCast) {
1231 Out << "((";
1232 printSimpleType(Out, OpTy, castIsSigned);
1233 Out << ")";
1234 writeOperand(Operand);
1235 Out << ")";
1236 } else
1237 writeOperand(Operand);
1238}
1239
1240// Write the operand with a cast to another type based on the icmp predicate
1241// being used.
1242void CWriter::writeOperandWithCast(Value* Operand, ICmpInst::Predicate predicate) {
1243
1244 // Extract the operand's type, we'll need it.
1245 const Type* OpTy = Operand->getType();
1246
1247 // Indicate whether to do the cast or not.
1248 bool shouldCast = false;
1249
1250 // Indicate whether the cast should be to a signed type or not.
1251 bool castIsSigned = false;
1252
1253 // Based on the Opcode for which this Operand is being written, determine
1254 // the new type to which the operand should be casted by setting the value
1255 // of OpTy. If we change OpTy, also set shouldCast to true.
1256 switch (predicate) {
1257 default:
1258 // for eq and ne, it doesn't matter
1259 break;
1260 case ICmpInst::ICMP_UGT:
1261 case ICmpInst::ICMP_UGE:
1262 case ICmpInst::ICMP_ULT:
1263 case ICmpInst::ICMP_ULE:
1264 shouldCast = true;
1265 break;
1266 case ICmpInst::ICMP_SGT:
1267 case ICmpInst::ICMP_SGE:
1268 case ICmpInst::ICMP_SLT:
1269 case ICmpInst::ICMP_SLE:
1270 shouldCast = true;
1271 castIsSigned = true;
1272 break;
1273 }
1274
1275 // Write out the casted operand if we should, otherwise just write the
1276 // operand.
1277 if (shouldCast) {
1278 Out << "((";
1279 if (OpTy->isInteger() && OpTy != Type::Int1Ty)
1280 printSimpleType(Out, OpTy, castIsSigned);
1281 else
1282 printType(Out, OpTy); // not integer, sign doesn't matter
1283 Out << ")";
1284 writeOperand(Operand);
1285 Out << ")";
1286 } else
1287 writeOperand(Operand);
1288}
1289
1290// generateCompilerSpecificCode - This is where we add conditional compilation
1291// directives to cater to specific compilers as need be.
1292//
1293static void generateCompilerSpecificCode(std::ostream& Out) {
1294 // Alloca is hard to get, and we don't want to include stdlib.h here.
1295 Out << "/* get a declaration for alloca */\n"
1296 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1297 << "#define alloca(x) __builtin_alloca((x))\n"
1298 << "#define _alloca(x) __builtin_alloca((x))\n"
1299 << "#elif defined(__APPLE__)\n"
1300 << "extern void *__builtin_alloca(unsigned long);\n"
1301 << "#define alloca(x) __builtin_alloca(x)\n"
1302 << "#define longjmp _longjmp\n"
1303 << "#define setjmp _setjmp\n"
1304 << "#elif defined(__sun__)\n"
1305 << "#if defined(__sparcv9)\n"
1306 << "extern void *__builtin_alloca(unsigned long);\n"
1307 << "#else\n"
1308 << "extern void *__builtin_alloca(unsigned int);\n"
1309 << "#endif\n"
1310 << "#define alloca(x) __builtin_alloca(x)\n"
1311 << "#elif defined(__FreeBSD__) || defined(__OpenBSD__)\n"
1312 << "#define alloca(x) __builtin_alloca(x)\n"
1313 << "#elif defined(_MSC_VER)\n"
1314 << "#define inline _inline\n"
1315 << "#define alloca(x) _alloca(x)\n"
1316 << "#else\n"
1317 << "#include <alloca.h>\n"
1318 << "#endif\n\n";
1319
1320 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1321 // If we aren't being compiled with GCC, just drop these attributes.
1322 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1323 << "#define __attribute__(X)\n"
1324 << "#endif\n\n";
1325
1326 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1327 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1328 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1329 << "#elif defined(__GNUC__)\n"
1330 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1331 << "#else\n"
1332 << "#define __EXTERNAL_WEAK__\n"
1333 << "#endif\n\n";
1334
1335 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1336 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1337 << "#define __ATTRIBUTE_WEAK__\n"
1338 << "#elif defined(__GNUC__)\n"
1339 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1340 << "#else\n"
1341 << "#define __ATTRIBUTE_WEAK__\n"
1342 << "#endif\n\n";
1343
1344 // Add hidden visibility support. FIXME: APPLE_CC?
1345 Out << "#if defined(__GNUC__)\n"
1346 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1347 << "#endif\n\n";
1348
1349 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1350 // From the GCC documentation:
1351 //
1352 // double __builtin_nan (const char *str)
1353 //
1354 // This is an implementation of the ISO C99 function nan.
1355 //
1356 // Since ISO C99 defines this function in terms of strtod, which we do
1357 // not implement, a description of the parsing is in order. The string is
1358 // parsed as by strtol; that is, the base is recognized by leading 0 or
1359 // 0x prefixes. The number parsed is placed in the significand such that
1360 // the least significant bit of the number is at the least significant
1361 // bit of the significand. The number is truncated to fit the significand
1362 // field provided. The significand is forced to be a quiet NaN.
1363 //
1364 // This function, if given a string literal, is evaluated early enough
1365 // that it is considered a compile-time constant.
1366 //
1367 // float __builtin_nanf (const char *str)
1368 //
1369 // Similar to __builtin_nan, except the return type is float.
1370 //
1371 // double __builtin_inf (void)
1372 //
1373 // Similar to __builtin_huge_val, except a warning is generated if the
1374 // target floating-point format does not support infinities. This
1375 // function is suitable for implementing the ISO C99 macro INFINITY.
1376 //
1377 // float __builtin_inff (void)
1378 //
1379 // Similar to __builtin_inf, except the return type is float.
1380 Out << "#ifdef __GNUC__\n"
1381 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1382 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1383 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1384 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1385 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1386 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1387 << "#define LLVM_PREFETCH(addr,rw,locality) "
1388 "__builtin_prefetch(addr,rw,locality)\n"
1389 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1390 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1391 << "#define LLVM_ASM __asm__\n"
1392 << "#else\n"
1393 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1394 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1395 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1396 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1397 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1398 << "#define LLVM_INFF 0.0F /* Float */\n"
1399 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1400 << "#define __ATTRIBUTE_CTOR__\n"
1401 << "#define __ATTRIBUTE_DTOR__\n"
1402 << "#define LLVM_ASM(X)\n"
1403 << "#endif\n\n";
1404
1405 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1406 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1407 << "#define __builtin_stack_restore(X) /* noop */\n"
1408 << "#endif\n\n";
1409
1410 // Output target-specific code that should be inserted into main.
1411 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
1412 // On X86, set the FP control word to 64-bits of precision instead of 80 bits.
1413 Out << "#if defined(__GNUC__) && !defined(__llvm__)\n"
1414 << "#if defined(i386) || defined(__i386__) || defined(__i386) || "
1415 << "defined(__x86_64__)\n"
1416 << "#undef CODE_FOR_MAIN\n"
1417 << "#define CODE_FOR_MAIN() \\\n"
1418 << " {short F;__asm__ (\"fnstcw %0\" : \"=m\" (*&F)); \\\n"
1419 << " F=(F&~0x300)|0x200;__asm__(\"fldcw %0\"::\"m\"(*&F));}\n"
1420 << "#endif\n#endif\n";
1421
1422}
1423
1424/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1425/// the StaticTors set.
1426static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1427 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1428 if (!InitList) return;
1429
1430 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1431 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1432 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1433
1434 if (CS->getOperand(1)->isNullValue())
1435 return; // Found a null terminator, exit printing.
1436 Constant *FP = CS->getOperand(1);
1437 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1438 if (CE->isCast())
1439 FP = CE->getOperand(0);
1440 if (Function *F = dyn_cast<Function>(FP))
1441 StaticTors.insert(F);
1442 }
1443}
1444
1445enum SpecialGlobalClass {
1446 NotSpecial = 0,
1447 GlobalCtors, GlobalDtors,
1448 NotPrinted
1449};
1450
1451/// getGlobalVariableClass - If this is a global that is specially recognized
1452/// by LLVM, return a code that indicates how we should handle it.
1453static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1454 // If this is a global ctors/dtors list, handle it now.
1455 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1456 if (GV->getName() == "llvm.global_ctors")
1457 return GlobalCtors;
1458 else if (GV->getName() == "llvm.global_dtors")
1459 return GlobalDtors;
1460 }
1461
1462 // Otherwise, it it is other metadata, don't print it. This catches things
1463 // like debug information.
1464 if (GV->getSection() == "llvm.metadata")
1465 return NotPrinted;
1466
1467 return NotSpecial;
1468}
1469
1470
1471bool CWriter::doInitialization(Module &M) {
1472 // Initialize
1473 TheModule = &M;
1474
1475 TD = new TargetData(&M);
1476 IL = new IntrinsicLowering(*TD);
1477 IL->AddPrototypes(M);
1478
1479 // Ensure that all structure types have names...
1480 Mang = new Mangler(M);
1481 Mang->markCharUnacceptable('.');
1482
1483 // Keep track of which functions are static ctors/dtors so they can have
1484 // an attribute added to their prototypes.
1485 std::set<Function*> StaticCtors, StaticDtors;
1486 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1487 I != E; ++I) {
1488 switch (getGlobalVariableClass(I)) {
1489 default: break;
1490 case GlobalCtors:
1491 FindStaticTors(I, StaticCtors);
1492 break;
1493 case GlobalDtors:
1494 FindStaticTors(I, StaticDtors);
1495 break;
1496 }
1497 }
1498
1499 // get declaration for alloca
1500 Out << "/* Provide Declarations */\n";
1501 Out << "#include <stdarg.h>\n"; // Varargs support
1502 Out << "#include <setjmp.h>\n"; // Unwind support
1503 generateCompilerSpecificCode(Out);
1504
1505 // Provide a definition for `bool' if not compiling with a C++ compiler.
1506 Out << "\n"
1507 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1508
1509 << "\n\n/* Support for floating point constants */\n"
1510 << "typedef unsigned long long ConstantDoubleTy;\n"
1511 << "typedef unsigned int ConstantFloatTy;\n"
1512
1513 << "\n\n/* Global Declarations */\n";
1514
1515 // First output all the declarations for the program, because C requires
1516 // Functions & globals to be declared before they are used.
1517 //
1518
1519 // Loop over the symbol table, emitting all named constants...
1520 printModuleTypes(M.getTypeSymbolTable());
1521
1522 // Global variable declarations...
1523 if (!M.global_empty()) {
1524 Out << "\n/* External Global Variable Declarations */\n";
1525 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1526 I != E; ++I) {
1527
1528 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
1529 Out << "extern ";
1530 else if (I->hasDLLImportLinkage())
1531 Out << "__declspec(dllimport) ";
1532 else
1533 continue; // Internal Global
1534
1535 // Thread Local Storage
1536 if (I->isThreadLocal())
1537 Out << "__thread ";
1538
1539 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1540
1541 if (I->hasExternalWeakLinkage())
1542 Out << " __EXTERNAL_WEAK__";
1543 Out << ";\n";
1544 }
1545 }
1546
1547 // Function declarations
1548 Out << "\n/* Function Declarations */\n";
1549 Out << "double fmod(double, double);\n"; // Support for FP rem
1550 Out << "float fmodf(float, float);\n";
1551
1552 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1553 // Don't print declarations for intrinsic functions.
1554 if (!I->getIntrinsicID() && I->getName() != "setjmp" &&
1555 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1556 if (I->hasExternalWeakLinkage())
1557 Out << "extern ";
1558 printFunctionSignature(I, true);
1559 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1560 Out << " __ATTRIBUTE_WEAK__";
1561 if (I->hasExternalWeakLinkage())
1562 Out << " __EXTERNAL_WEAK__";
1563 if (StaticCtors.count(I))
1564 Out << " __ATTRIBUTE_CTOR__";
1565 if (StaticDtors.count(I))
1566 Out << " __ATTRIBUTE_DTOR__";
1567 if (I->hasHiddenVisibility())
1568 Out << " __HIDDEN__";
1569
1570 if (I->hasName() && I->getName()[0] == 1)
1571 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
1572
1573 Out << ";\n";
1574 }
1575 }
1576
1577 // Output the global variable declarations
1578 if (!M.global_empty()) {
1579 Out << "\n\n/* Global Variable Declarations */\n";
1580 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1581 I != E; ++I)
1582 if (!I->isDeclaration()) {
1583 // Ignore special globals, such as debug info.
1584 if (getGlobalVariableClass(I))
1585 continue;
1586
1587 if (I->hasInternalLinkage())
1588 Out << "static ";
1589 else
1590 Out << "extern ";
1591
1592 // Thread Local Storage
1593 if (I->isThreadLocal())
1594 Out << "__thread ";
1595
1596 printType(Out, I->getType()->getElementType(), false,
1597 GetValueName(I));
1598
1599 if (I->hasLinkOnceLinkage())
1600 Out << " __attribute__((common))";
1601 else if (I->hasWeakLinkage())
1602 Out << " __ATTRIBUTE_WEAK__";
1603 else if (I->hasExternalWeakLinkage())
1604 Out << " __EXTERNAL_WEAK__";
1605 if (I->hasHiddenVisibility())
1606 Out << " __HIDDEN__";
1607 Out << ";\n";
1608 }
1609 }
1610
1611 // Output the global variable definitions and contents...
1612 if (!M.global_empty()) {
1613 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1614 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1615 I != E; ++I)
1616 if (!I->isDeclaration()) {
1617 // Ignore special globals, such as debug info.
1618 if (getGlobalVariableClass(I))
1619 continue;
1620
1621 if (I->hasInternalLinkage())
1622 Out << "static ";
1623 else if (I->hasDLLImportLinkage())
1624 Out << "__declspec(dllimport) ";
1625 else if (I->hasDLLExportLinkage())
1626 Out << "__declspec(dllexport) ";
1627
1628 // Thread Local Storage
1629 if (I->isThreadLocal())
1630 Out << "__thread ";
1631
1632 printType(Out, I->getType()->getElementType(), false,
1633 GetValueName(I));
1634 if (I->hasLinkOnceLinkage())
1635 Out << " __attribute__((common))";
1636 else if (I->hasWeakLinkage())
1637 Out << " __ATTRIBUTE_WEAK__";
1638
1639 if (I->hasHiddenVisibility())
1640 Out << " __HIDDEN__";
1641
1642 // If the initializer is not null, emit the initializer. If it is null,
1643 // we try to avoid emitting large amounts of zeros. The problem with
1644 // this, however, occurs when the variable has weak linkage. In this
1645 // case, the assembler will complain about the variable being both weak
1646 // and common, so we disable this optimization.
1647 if (!I->getInitializer()->isNullValue()) {
1648 Out << " = " ;
1649 writeOperand(I->getInitializer());
1650 } else if (I->hasWeakLinkage()) {
1651 // We have to specify an initializer, but it doesn't have to be
1652 // complete. If the value is an aggregate, print out { 0 }, and let
1653 // the compiler figure out the rest of the zeros.
1654 Out << " = " ;
1655 if (isa<StructType>(I->getInitializer()->getType()) ||
1656 isa<ArrayType>(I->getInitializer()->getType()) ||
1657 isa<VectorType>(I->getInitializer()->getType())) {
1658 Out << "{ 0 }";
1659 } else {
1660 // Just print it out normally.
1661 writeOperand(I->getInitializer());
1662 }
1663 }
1664 Out << ";\n";
1665 }
1666 }
1667
1668 if (!M.empty())
1669 Out << "\n\n/* Function Bodies */\n";
1670
1671 // Emit some helper functions for dealing with FCMP instruction's
1672 // predicates
1673 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1674 Out << "return X == X && Y == Y; }\n";
1675 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1676 Out << "return X != X || Y != Y; }\n";
1677 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1678 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1679 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1680 Out << "return X != Y; }\n";
1681 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1682 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1683 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1684 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1685 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1686 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1687 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1688 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1689 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1690 Out << "return X == Y ; }\n";
1691 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1692 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1693 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1694 Out << "return X < Y ; }\n";
1695 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1696 Out << "return X > Y ; }\n";
1697 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1698 Out << "return X <= Y ; }\n";
1699 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1700 Out << "return X >= Y ; }\n";
1701 return false;
1702}
1703
1704
1705/// Output all floating point constants that cannot be printed accurately...
1706void CWriter::printFloatingPointConstants(Function &F) {
1707 // Scan the module for floating point constants. If any FP constant is used
1708 // in the function, we want to redirect it here so that we do not depend on
1709 // the precision of the printed form, unless the printed form preserves
1710 // precision.
1711 //
1712 static unsigned FPCounter = 0;
1713 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1714 I != E; ++I)
1715 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1716 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1717 !FPConstantMap.count(FPC)) {
1718 double Val = FPC->getValue();
1719
1720 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1721
1722 if (FPC->getType() == Type::DoubleTy) {
1723 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
1724 << " = 0x" << std::hex << DoubleToBits(Val) << std::dec
1725 << "ULL; /* " << Val << " */\n";
1726 } else if (FPC->getType() == Type::FloatTy) {
1727 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
1728 << " = 0x" << std::hex << FloatToBits(Val) << std::dec
1729 << "U; /* " << Val << " */\n";
1730 } else
1731 assert(0 && "Unknown float type!");
1732 }
1733
1734 Out << '\n';
1735}
1736
1737
1738/// printSymbolTable - Run through symbol table looking for type names. If a
1739/// type name is found, emit its declaration...
1740///
1741void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1742 Out << "/* Helper union for bitcasts */\n";
1743 Out << "typedef union {\n";
1744 Out << " unsigned int Int32;\n";
1745 Out << " unsigned long long Int64;\n";
1746 Out << " float Float;\n";
1747 Out << " double Double;\n";
1748 Out << "} llvmBitCastUnion;\n";
1749
1750 // We are only interested in the type plane of the symbol table.
1751 TypeSymbolTable::const_iterator I = TST.begin();
1752 TypeSymbolTable::const_iterator End = TST.end();
1753
1754 // If there are no type names, exit early.
1755 if (I == End) return;
1756
1757 // Print out forward declarations for structure types before anything else!
1758 Out << "/* Structure forward decls */\n";
1759 for (; I != End; ++I) {
1760 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1761 Out << Name << ";\n";
1762 TypeNames.insert(std::make_pair(I->second, Name));
1763 }
1764
1765 Out << '\n';
1766
1767 // Now we can print out typedefs. Above, we guaranteed that this can only be
1768 // for struct or opaque types.
1769 Out << "/* Typedefs */\n";
1770 for (I = TST.begin(); I != End; ++I) {
1771 std::string Name = "l_" + Mang->makeNameProper(I->first);
1772 Out << "typedef ";
1773 printType(Out, I->second, false, Name);
1774 Out << ";\n";
1775 }
1776
1777 Out << '\n';
1778
1779 // Keep track of which structures have been printed so far...
1780 std::set<const StructType *> StructPrinted;
1781
1782 // Loop over all structures then push them into the stack so they are
1783 // printed in the correct order.
1784 //
1785 Out << "/* Structure contents */\n";
1786 for (I = TST.begin(); I != End; ++I)
1787 if (const StructType *STy = dyn_cast<StructType>(I->second))
1788 // Only print out used types!
1789 printContainedStructs(STy, StructPrinted);
1790}
1791
1792// Push the struct onto the stack and recursively push all structs
1793// this one depends on.
1794//
1795// TODO: Make this work properly with vector types
1796//
1797void CWriter::printContainedStructs(const Type *Ty,
1798 std::set<const StructType*> &StructPrinted){
1799 // Don't walk through pointers.
1800 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1801
1802 // Print all contained types first.
1803 for (Type::subtype_iterator I = Ty->subtype_begin(),
1804 E = Ty->subtype_end(); I != E; ++I)
1805 printContainedStructs(*I, StructPrinted);
1806
1807 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1808 // Check to see if we have already printed this struct.
1809 if (StructPrinted.insert(STy).second) {
1810 // Print structure type out.
1811 std::string Name = TypeNames[STy];
1812 printType(Out, STy, false, Name, true);
1813 Out << ";\n\n";
1814 }
1815 }
1816}
1817
1818void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1819 /// isStructReturn - Should this function actually return a struct by-value?
1820 bool isStructReturn = F->getFunctionType()->isStructReturn();
1821
1822 if (F->hasInternalLinkage()) Out << "static ";
1823 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1824 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1825 switch (F->getCallingConv()) {
1826 case CallingConv::X86_StdCall:
1827 Out << "__stdcall ";
1828 break;
1829 case CallingConv::X86_FastCall:
1830 Out << "__fastcall ";
1831 break;
1832 }
1833
1834 // Loop over the arguments, printing them...
1835 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
1836 const ParamAttrsList *Attrs = FT->getParamAttrs();
1837
1838 std::stringstream FunctionInnards;
1839
1840 // Print out the name...
1841 FunctionInnards << GetValueName(F) << '(';
1842
1843 bool PrintedArg = false;
1844 if (!F->isDeclaration()) {
1845 if (!F->arg_empty()) {
1846 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1847
1848 // If this is a struct-return function, don't print the hidden
1849 // struct-return argument.
1850 if (isStructReturn) {
1851 assert(I != E && "Invalid struct return function!");
1852 ++I;
1853 }
1854
1855 std::string ArgName;
1856 unsigned Idx = 1;
1857 for (; I != E; ++I) {
1858 if (PrintedArg) FunctionInnards << ", ";
1859 if (I->hasName() || !Prototype)
1860 ArgName = GetValueName(I);
1861 else
1862 ArgName = "";
1863 printType(FunctionInnards, I->getType(),
1864 /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt),
1865 ArgName);
1866 PrintedArg = true;
1867 ++Idx;
1868 }
1869 }
1870 } else {
1871 // Loop over the arguments, printing them.
1872 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
1873
1874 // If this is a struct-return function, don't print the hidden
1875 // struct-return argument.
1876 if (isStructReturn) {
1877 assert(I != E && "Invalid struct return function!");
1878 ++I;
1879 }
1880
1881 unsigned Idx = 1;
1882 for (; I != E; ++I) {
1883 if (PrintedArg) FunctionInnards << ", ";
1884 printType(FunctionInnards, *I,
1885 /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt));
1886 PrintedArg = true;
1887 ++Idx;
1888 }
1889 }
1890
1891 // Finish printing arguments... if this is a vararg function, print the ...,
1892 // unless there are no known types, in which case, we just emit ().
1893 //
1894 if (FT->isVarArg() && PrintedArg) {
1895 if (PrintedArg) FunctionInnards << ", ";
1896 FunctionInnards << "..."; // Output varargs portion of signature!
1897 } else if (!FT->isVarArg() && !PrintedArg) {
1898 FunctionInnards << "void"; // ret() -> ret(void) in C.
1899 }
1900 FunctionInnards << ')';
1901
1902 // Get the return tpe for the function.
1903 const Type *RetTy;
1904 if (!isStructReturn)
1905 RetTy = F->getReturnType();
1906 else {
1907 // If this is a struct-return function, print the struct-return type.
1908 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
1909 }
1910
1911 // Print out the return type and the signature built above.
1912 printType(Out, RetTy,
1913 /*isSigned=*/ Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
1914 FunctionInnards.str());
1915}
1916
1917static inline bool isFPIntBitCast(const Instruction &I) {
1918 if (!isa<BitCastInst>(I))
1919 return false;
1920 const Type *SrcTy = I.getOperand(0)->getType();
1921 const Type *DstTy = I.getType();
1922 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
1923 (DstTy->isFloatingPoint() && SrcTy->isInteger());
1924}
1925
1926void CWriter::printFunction(Function &F) {
1927 /// isStructReturn - Should this function actually return a struct by-value?
1928 bool isStructReturn = F.getFunctionType()->isStructReturn();
1929
1930 printFunctionSignature(&F, false);
1931 Out << " {\n";
1932
1933 // If this is a struct return function, handle the result with magic.
1934 if (isStructReturn) {
1935 const Type *StructTy =
1936 cast<PointerType>(F.arg_begin()->getType())->getElementType();
1937 Out << " ";
1938 printType(Out, StructTy, false, "StructReturn");
1939 Out << "; /* Struct return temporary */\n";
1940
1941 Out << " ";
1942 printType(Out, F.arg_begin()->getType(), false,
1943 GetValueName(F.arg_begin()));
1944 Out << " = &StructReturn;\n";
1945 }
1946
1947 bool PrintedVar = false;
1948
1949 // print local variable information for the function
1950 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
1951 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
1952 Out << " ";
1953 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
1954 Out << "; /* Address-exposed local */\n";
1955 PrintedVar = true;
1956 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
1957 Out << " ";
1958 printType(Out, I->getType(), false, GetValueName(&*I));
1959 Out << ";\n";
1960
1961 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
1962 Out << " ";
1963 printType(Out, I->getType(), false,
1964 GetValueName(&*I)+"__PHI_TEMPORARY");
1965 Out << ";\n";
1966 }
1967 PrintedVar = true;
1968 }
1969 // We need a temporary for the BitCast to use so it can pluck a value out
1970 // of a union to do the BitCast. This is separate from the need for a
1971 // variable to hold the result of the BitCast.
1972 if (isFPIntBitCast(*I)) {
1973 Out << " llvmBitCastUnion " << GetValueName(&*I)
1974 << "__BITCAST_TEMPORARY;\n";
1975 PrintedVar = true;
1976 }
1977 }
1978
1979 if (PrintedVar)
1980 Out << '\n';
1981
1982 if (F.hasExternalLinkage() && F.getName() == "main")
1983 Out << " CODE_FOR_MAIN();\n";
1984
1985 // print the basic blocks
1986 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1987 if (Loop *L = LI->getLoopFor(BB)) {
1988 if (L->getHeader() == BB && L->getParentLoop() == 0)
1989 printLoop(L);
1990 } else {
1991 printBasicBlock(BB);
1992 }
1993 }
1994
1995 Out << "}\n\n";
1996}
1997
1998void CWriter::printLoop(Loop *L) {
1999 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2000 << "' to make GCC happy */\n";
2001 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2002 BasicBlock *BB = L->getBlocks()[i];
2003 Loop *BBLoop = LI->getLoopFor(BB);
2004 if (BBLoop == L)
2005 printBasicBlock(BB);
2006 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2007 printLoop(BBLoop);
2008 }
2009 Out << " } while (1); /* end of syntactic loop '"
2010 << L->getHeader()->getName() << "' */\n";
2011}
2012
2013void CWriter::printBasicBlock(BasicBlock *BB) {
2014
2015 // Don't print the label for the basic block if there are no uses, or if
2016 // the only terminator use is the predecessor basic block's terminator.
2017 // We have to scan the use list because PHI nodes use basic blocks too but
2018 // do not require a label to be generated.
2019 //
2020 bool NeedsLabel = false;
2021 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2022 if (isGotoCodeNecessary(*PI, BB)) {
2023 NeedsLabel = true;
2024 break;
2025 }
2026
2027 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2028
2029 // Output all of the instructions in the basic block...
2030 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2031 ++II) {
2032 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2033 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2034 outputLValue(II);
2035 else
2036 Out << " ";
2037 visit(*II);
2038 Out << ";\n";
2039 }
2040 }
2041
2042 // Don't emit prefix or suffix for the terminator...
2043 visit(*BB->getTerminator());
2044}
2045
2046
2047// Specific Instruction type classes... note that all of the casts are
2048// necessary because we use the instruction classes as opaque types...
2049//
2050void CWriter::visitReturnInst(ReturnInst &I) {
2051 // If this is a struct return function, return the temporary struct.
2052 bool isStructReturn = I.getParent()->getParent()->
2053 getFunctionType()->isStructReturn();
2054
2055 if (isStructReturn) {
2056 Out << " return StructReturn;\n";
2057 return;
2058 }
2059
2060 // Don't output a void return if this is the last basic block in the function
2061 if (I.getNumOperands() == 0 &&
2062 &*--I.getParent()->getParent()->end() == I.getParent() &&
2063 !I.getParent()->size() == 1) {
2064 return;
2065 }
2066
2067 Out << " return";
2068 if (I.getNumOperands()) {
2069 Out << ' ';
2070 writeOperand(I.getOperand(0));
2071 }
2072 Out << ";\n";
2073}
2074
2075void CWriter::visitSwitchInst(SwitchInst &SI) {
2076
2077 Out << " switch (";
2078 writeOperand(SI.getOperand(0));
2079 Out << ") {\n default:\n";
2080 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2081 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2082 Out << ";\n";
2083 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2084 Out << " case ";
2085 writeOperand(SI.getOperand(i));
2086 Out << ":\n";
2087 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2088 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2089 printBranchToBlock(SI.getParent(), Succ, 2);
2090 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2091 Out << " break;\n";
2092 }
2093 Out << " }\n";
2094}
2095
2096void CWriter::visitUnreachableInst(UnreachableInst &I) {
2097 Out << " /*UNREACHABLE*/;\n";
2098}
2099
2100bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2101 /// FIXME: This should be reenabled, but loop reordering safe!!
2102 return true;
2103
2104 if (next(Function::iterator(From)) != Function::iterator(To))
2105 return true; // Not the direct successor, we need a goto.
2106
2107 //isa<SwitchInst>(From->getTerminator())
2108
2109 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2110 return true;
2111 return false;
2112}
2113
2114void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2115 BasicBlock *Successor,
2116 unsigned Indent) {
2117 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2118 PHINode *PN = cast<PHINode>(I);
2119 // Now we have to do the printing.
2120 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2121 if (!isa<UndefValue>(IV)) {
2122 Out << std::string(Indent, ' ');
2123 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2124 writeOperand(IV);
2125 Out << "; /* for PHI node */\n";
2126 }
2127 }
2128}
2129
2130void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2131 unsigned Indent) {
2132 if (isGotoCodeNecessary(CurBB, Succ)) {
2133 Out << std::string(Indent, ' ') << " goto ";
2134 writeOperand(Succ);
2135 Out << ";\n";
2136 }
2137}
2138
2139// Branch instruction printing - Avoid printing out a branch to a basic block
2140// that immediately succeeds the current one.
2141//
2142void CWriter::visitBranchInst(BranchInst &I) {
2143
2144 if (I.isConditional()) {
2145 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2146 Out << " if (";
2147 writeOperand(I.getCondition());
2148 Out << ") {\n";
2149
2150 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2151 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2152
2153 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2154 Out << " } else {\n";
2155 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2156 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2157 }
2158 } else {
2159 // First goto not necessary, assume second one is...
2160 Out << " if (!";
2161 writeOperand(I.getCondition());
2162 Out << ") {\n";
2163
2164 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2165 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2166 }
2167
2168 Out << " }\n";
2169 } else {
2170 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2171 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2172 }
2173 Out << "\n";
2174}
2175
2176// PHI nodes get copied into temporary values at the end of predecessor basic
2177// blocks. We now need to copy these temporary values into the REAL value for
2178// the PHI.
2179void CWriter::visitPHINode(PHINode &I) {
2180 writeOperand(&I);
2181 Out << "__PHI_TEMPORARY";
2182}
2183
2184
2185void CWriter::visitBinaryOperator(Instruction &I) {
2186 // binary instructions, shift instructions, setCond instructions.
2187 assert(!isa<PointerType>(I.getType()));
2188
2189 // We must cast the results of binary operations which might be promoted.
2190 bool needsCast = false;
2191 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2192 || (I.getType() == Type::FloatTy)) {
2193 needsCast = true;
2194 Out << "((";
2195 printType(Out, I.getType(), false);
2196 Out << ")(";
2197 }
2198
2199 // If this is a negation operation, print it out as such. For FP, we don't
2200 // want to print "-0.0 - X".
2201 if (BinaryOperator::isNeg(&I)) {
2202 Out << "-(";
2203 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2204 Out << ")";
2205 } else if (I.getOpcode() == Instruction::FRem) {
2206 // Output a call to fmod/fmodf instead of emitting a%b
2207 if (I.getType() == Type::FloatTy)
2208 Out << "fmodf(";
2209 else
2210 Out << "fmod(";
2211 writeOperand(I.getOperand(0));
2212 Out << ", ";
2213 writeOperand(I.getOperand(1));
2214 Out << ")";
2215 } else {
2216
2217 // Write out the cast of the instruction's value back to the proper type
2218 // if necessary.
2219 bool NeedsClosingParens = writeInstructionCast(I);
2220
2221 // Certain instructions require the operand to be forced to a specific type
2222 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2223 // below for operand 1
2224 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2225
2226 switch (I.getOpcode()) {
2227 case Instruction::Add: Out << " + "; break;
2228 case Instruction::Sub: Out << " - "; break;
2229 case Instruction::Mul: Out << " * "; break;
2230 case Instruction::URem:
2231 case Instruction::SRem:
2232 case Instruction::FRem: Out << " % "; break;
2233 case Instruction::UDiv:
2234 case Instruction::SDiv:
2235 case Instruction::FDiv: Out << " / "; break;
2236 case Instruction::And: Out << " & "; break;
2237 case Instruction::Or: Out << " | "; break;
2238 case Instruction::Xor: Out << " ^ "; break;
2239 case Instruction::Shl : Out << " << "; break;
2240 case Instruction::LShr:
2241 case Instruction::AShr: Out << " >> "; break;
2242 default: cerr << "Invalid operator type!" << I; abort();
2243 }
2244
2245 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2246 if (NeedsClosingParens)
2247 Out << "))";
2248 }
2249
2250 if (needsCast) {
2251 Out << "))";
2252 }
2253}
2254
2255void CWriter::visitICmpInst(ICmpInst &I) {
2256 // We must cast the results of icmp which might be promoted.
2257 bool needsCast = false;
2258
2259 // Write out the cast of the instruction's value back to the proper type
2260 // if necessary.
2261 bool NeedsClosingParens = writeInstructionCast(I);
2262
2263 // Certain icmp predicate require the operand to be forced to a specific type
2264 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2265 // below for operand 1
2266 writeOperandWithCast(I.getOperand(0), I.getPredicate());
2267
2268 switch (I.getPredicate()) {
2269 case ICmpInst::ICMP_EQ: Out << " == "; break;
2270 case ICmpInst::ICMP_NE: Out << " != "; break;
2271 case ICmpInst::ICMP_ULE:
2272 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2273 case ICmpInst::ICMP_UGE:
2274 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2275 case ICmpInst::ICMP_ULT:
2276 case ICmpInst::ICMP_SLT: Out << " < "; break;
2277 case ICmpInst::ICMP_UGT:
2278 case ICmpInst::ICMP_SGT: Out << " > "; break;
2279 default: cerr << "Invalid icmp predicate!" << I; abort();
2280 }
2281
2282 writeOperandWithCast(I.getOperand(1), I.getPredicate());
2283 if (NeedsClosingParens)
2284 Out << "))";
2285
2286 if (needsCast) {
2287 Out << "))";
2288 }
2289}
2290
2291void CWriter::visitFCmpInst(FCmpInst &I) {
2292 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2293 Out << "0";
2294 return;
2295 }
2296 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2297 Out << "1";
2298 return;
2299 }
2300
2301 const char* op = 0;
2302 switch (I.getPredicate()) {
2303 default: assert(0 && "Illegal FCmp predicate");
2304 case FCmpInst::FCMP_ORD: op = "ord"; break;
2305 case FCmpInst::FCMP_UNO: op = "uno"; break;
2306 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2307 case FCmpInst::FCMP_UNE: op = "une"; break;
2308 case FCmpInst::FCMP_ULT: op = "ult"; break;
2309 case FCmpInst::FCMP_ULE: op = "ule"; break;
2310 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2311 case FCmpInst::FCMP_UGE: op = "uge"; break;
2312 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2313 case FCmpInst::FCMP_ONE: op = "one"; break;
2314 case FCmpInst::FCMP_OLT: op = "olt"; break;
2315 case FCmpInst::FCMP_OLE: op = "ole"; break;
2316 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2317 case FCmpInst::FCMP_OGE: op = "oge"; break;
2318 }
2319
2320 Out << "llvm_fcmp_" << op << "(";
2321 // Write the first operand
2322 writeOperand(I.getOperand(0));
2323 Out << ", ";
2324 // Write the second operand
2325 writeOperand(I.getOperand(1));
2326 Out << ")";
2327}
2328
2329static const char * getFloatBitCastField(const Type *Ty) {
2330 switch (Ty->getTypeID()) {
2331 default: assert(0 && "Invalid Type");
2332 case Type::FloatTyID: return "Float";
2333 case Type::DoubleTyID: return "Double";
2334 case Type::IntegerTyID: {
2335 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2336 if (NumBits <= 32)
2337 return "Int32";
2338 else
2339 return "Int64";
2340 }
2341 }
2342}
2343
2344void CWriter::visitCastInst(CastInst &I) {
2345 const Type *DstTy = I.getType();
2346 const Type *SrcTy = I.getOperand(0)->getType();
2347 Out << '(';
2348 if (isFPIntBitCast(I)) {
2349 // These int<->float and long<->double casts need to be handled specially
2350 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2351 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2352 writeOperand(I.getOperand(0));
2353 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2354 << getFloatBitCastField(I.getType());
2355 } else {
2356 printCast(I.getOpcode(), SrcTy, DstTy);
2357 if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
2358 // Make sure we really get a sext from bool by subtracing the bool from 0
2359 Out << "0-";
2360 }
2361 writeOperand(I.getOperand(0));
2362 if (DstTy == Type::Int1Ty &&
2363 (I.getOpcode() == Instruction::Trunc ||
2364 I.getOpcode() == Instruction::FPToUI ||
2365 I.getOpcode() == Instruction::FPToSI ||
2366 I.getOpcode() == Instruction::PtrToInt)) {
2367 // Make sure we really get a trunc to bool by anding the operand with 1
2368 Out << "&1u";
2369 }
2370 }
2371 Out << ')';
2372}
2373
2374void CWriter::visitSelectInst(SelectInst &I) {
2375 Out << "((";
2376 writeOperand(I.getCondition());
2377 Out << ") ? (";
2378 writeOperand(I.getTrueValue());
2379 Out << ") : (";
2380 writeOperand(I.getFalseValue());
2381 Out << "))";
2382}
2383
2384
2385void CWriter::lowerIntrinsics(Function &F) {
2386 // This is used to keep track of intrinsics that get generated to a lowered
2387 // function. We must generate the prototypes before the function body which
2388 // will only be expanded on first use (by the loop below).
2389 std::vector<Function*> prototypesToGen;
2390
2391 // Examine all the instructions in this function to find the intrinsics that
2392 // need to be lowered.
2393 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2394 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2395 if (CallInst *CI = dyn_cast<CallInst>(I++))
2396 if (Function *F = CI->getCalledFunction())
2397 switch (F->getIntrinsicID()) {
2398 case Intrinsic::not_intrinsic:
2399 case Intrinsic::vastart:
2400 case Intrinsic::vacopy:
2401 case Intrinsic::vaend:
2402 case Intrinsic::returnaddress:
2403 case Intrinsic::frameaddress:
2404 case Intrinsic::setjmp:
2405 case Intrinsic::longjmp:
2406 case Intrinsic::prefetch:
2407 case Intrinsic::dbg_stoppoint:
2408 case Intrinsic::powi_f32:
2409 case Intrinsic::powi_f64:
2410 // We directly implement these intrinsics
2411 break;
2412 default:
2413 // If this is an intrinsic that directly corresponds to a GCC
2414 // builtin, we handle it.
2415 const char *BuiltinName = "";
2416#define GET_GCC_BUILTIN_NAME
2417#include "llvm/Intrinsics.gen"
2418#undef GET_GCC_BUILTIN_NAME
2419 // If we handle it, don't lower it.
2420 if (BuiltinName[0]) break;
2421
2422 // All other intrinsic calls we must lower.
2423 Instruction *Before = 0;
2424 if (CI != &BB->front())
2425 Before = prior(BasicBlock::iterator(CI));
2426
2427 IL->LowerIntrinsicCall(CI);
2428 if (Before) { // Move iterator to instruction after call
2429 I = Before; ++I;
2430 } else {
2431 I = BB->begin();
2432 }
2433 // If the intrinsic got lowered to another call, and that call has
2434 // a definition then we need to make sure its prototype is emitted
2435 // before any calls to it.
2436 if (CallInst *Call = dyn_cast<CallInst>(I))
2437 if (Function *NewF = Call->getCalledFunction())
2438 if (!NewF->isDeclaration())
2439 prototypesToGen.push_back(NewF);
2440
2441 break;
2442 }
2443
2444 // We may have collected some prototypes to emit in the loop above.
2445 // Emit them now, before the function that uses them is emitted. But,
2446 // be careful not to emit them twice.
2447 std::vector<Function*>::iterator I = prototypesToGen.begin();
2448 std::vector<Function*>::iterator E = prototypesToGen.end();
2449 for ( ; I != E; ++I) {
2450 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2451 Out << '\n';
2452 printFunctionSignature(*I, true);
2453 Out << ";\n";
2454 }
2455 }
2456}
2457
2458
2459void CWriter::visitCallInst(CallInst &I) {
2460 //check if we have inline asm
2461 if (isInlineAsm(I)) {
2462 visitInlineAsm(I);
2463 return;
2464 }
2465
2466 bool WroteCallee = false;
2467
2468 // Handle intrinsic function calls first...
2469 if (Function *F = I.getCalledFunction())
2470 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
2471 switch (ID) {
2472 default: {
2473 // If this is an intrinsic that directly corresponds to a GCC
2474 // builtin, we emit it here.
2475 const char *BuiltinName = "";
2476#define GET_GCC_BUILTIN_NAME
2477#include "llvm/Intrinsics.gen"
2478#undef GET_GCC_BUILTIN_NAME
2479 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2480
2481 Out << BuiltinName;
2482 WroteCallee = true;
2483 break;
2484 }
2485 case Intrinsic::vastart:
2486 Out << "0; ";
2487
2488 Out << "va_start(*(va_list*)";
2489 writeOperand(I.getOperand(1));
2490 Out << ", ";
2491 // Output the last argument to the enclosing function...
2492 if (I.getParent()->getParent()->arg_empty()) {
2493 cerr << "The C backend does not currently support zero "
2494 << "argument varargs functions, such as '"
2495 << I.getParent()->getParent()->getName() << "'!\n";
2496 abort();
2497 }
2498 writeOperand(--I.getParent()->getParent()->arg_end());
2499 Out << ')';
2500 return;
2501 case Intrinsic::vaend:
2502 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2503 Out << "0; va_end(*(va_list*)";
2504 writeOperand(I.getOperand(1));
2505 Out << ')';
2506 } else {
2507 Out << "va_end(*(va_list*)0)";
2508 }
2509 return;
2510 case Intrinsic::vacopy:
2511 Out << "0; ";
2512 Out << "va_copy(*(va_list*)";
2513 writeOperand(I.getOperand(1));
2514 Out << ", *(va_list*)";
2515 writeOperand(I.getOperand(2));
2516 Out << ')';
2517 return;
2518 case Intrinsic::returnaddress:
2519 Out << "__builtin_return_address(";
2520 writeOperand(I.getOperand(1));
2521 Out << ')';
2522 return;
2523 case Intrinsic::frameaddress:
2524 Out << "__builtin_frame_address(";
2525 writeOperand(I.getOperand(1));
2526 Out << ')';
2527 return;
2528 case Intrinsic::powi_f32:
2529 case Intrinsic::powi_f64:
2530 Out << "__builtin_powi(";
2531 writeOperand(I.getOperand(1));
2532 Out << ", ";
2533 writeOperand(I.getOperand(2));
2534 Out << ')';
2535 return;
2536 case Intrinsic::setjmp:
2537 Out << "setjmp(*(jmp_buf*)";
2538 writeOperand(I.getOperand(1));
2539 Out << ')';
2540 return;
2541 case Intrinsic::longjmp:
2542 Out << "longjmp(*(jmp_buf*)";
2543 writeOperand(I.getOperand(1));
2544 Out << ", ";
2545 writeOperand(I.getOperand(2));
2546 Out << ')';
2547 return;
2548 case Intrinsic::prefetch:
2549 Out << "LLVM_PREFETCH((const void *)";
2550 writeOperand(I.getOperand(1));
2551 Out << ", ";
2552 writeOperand(I.getOperand(2));
2553 Out << ", ";
2554 writeOperand(I.getOperand(3));
2555 Out << ")";
2556 return;
2557 case Intrinsic::dbg_stoppoint: {
2558 // If we use writeOperand directly we get a "u" suffix which is rejected
2559 // by gcc.
2560 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2561
2562 Out << "\n#line "
2563 << SPI.getLine()
2564 << " \"" << SPI.getDirectory()
2565 << SPI.getFileName() << "\"\n";
2566 return;
2567 }
2568 }
2569 }
2570
2571 Value *Callee = I.getCalledValue();
2572
2573 const PointerType *PTy = cast<PointerType>(Callee->getType());
2574 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2575
2576 // If this is a call to a struct-return function, assign to the first
2577 // parameter instead of passing it to the call.
2578 bool isStructRet = FTy->isStructReturn();
2579 if (isStructRet) {
2580 Out << "*(";
2581 writeOperand(I.getOperand(1));
2582 Out << ") = ";
2583 }
2584
2585 if (I.isTailCall()) Out << " /*tail*/ ";
2586
2587 if (!WroteCallee) {
2588 // If this is an indirect call to a struct return function, we need to cast
2589 // the pointer.
2590 bool NeedsCast = isStructRet && !isa<Function>(Callee);
2591
2592 // GCC is a real PITA. It does not permit codegening casts of functions to
2593 // function pointers if they are in a call (it generates a trap instruction
2594 // instead!). We work around this by inserting a cast to void* in between
2595 // the function and the function pointer cast. Unfortunately, we can't just
2596 // form the constant expression here, because the folder will immediately
2597 // nuke it.
2598 //
2599 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2600 // that void* and function pointers have the same size. :( To deal with this
2601 // in the common case, we handle casts where the number of arguments passed
2602 // match exactly.
2603 //
2604 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2605 if (CE->isCast())
2606 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2607 NeedsCast = true;
2608 Callee = RF;
2609 }
2610
2611 if (NeedsCast) {
2612 // Ok, just cast the pointer type.
2613 Out << "((";
2614 if (!isStructRet)
2615 printType(Out, I.getCalledValue()->getType());
2616 else
2617 printStructReturnPointerFunctionType(Out,
2618 cast<PointerType>(I.getCalledValue()->getType()));
2619 Out << ")(void*)";
2620 }
2621 writeOperand(Callee);
2622 if (NeedsCast) Out << ')';
2623 }
2624
2625 Out << '(';
2626
2627 unsigned NumDeclaredParams = FTy->getNumParams();
2628
2629 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2630 unsigned ArgNo = 0;
2631 if (isStructRet) { // Skip struct return argument.
2632 ++AI;
2633 ++ArgNo;
2634 }
2635
2636 const ParamAttrsList *Attrs = FTy->getParamAttrs();
2637 bool PrintedArg = false;
2638 unsigned Idx = 1;
2639 for (; AI != AE; ++AI, ++ArgNo, ++Idx) {
2640 if (PrintedArg) Out << ", ";
2641 if (ArgNo < NumDeclaredParams &&
2642 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2643 Out << '(';
2644 printType(Out, FTy->getParamType(ArgNo),
2645 /*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt));
2646 Out << ')';
2647 }
2648 writeOperand(*AI);
2649 PrintedArg = true;
2650 }
2651 Out << ')';
2652}
2653
2654
2655//This converts the llvm constraint string to something gcc is expecting.
2656//TODO: work out platform independent constraints and factor those out
2657// of the per target tables
2658// handle multiple constraint codes
2659std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2660
2661 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2662
2663 const char** table = 0;
2664
2665 //Grab the translation table from TargetAsmInfo if it exists
2666 if (!TAsm) {
2667 std::string E;
2668 const TargetMachineRegistry::Entry* Match =
2669 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2670 if (Match) {
2671 //Per platform Target Machines don't exist, so create it
2672 // this must be done only once
2673 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2674 TAsm = TM->getTargetAsmInfo();
2675 }
2676 }
2677 if (TAsm)
2678 table = TAsm->getAsmCBE();
2679
2680 //Search the translation table if it exists
2681 for (int i = 0; table && table[i]; i += 2)
2682 if (c.Codes[0] == table[i])
2683 return table[i+1];
2684
2685 //default is identity
2686 return c.Codes[0];
2687}
2688
2689//TODO: import logic from AsmPrinter.cpp
2690static std::string gccifyAsm(std::string asmstr) {
2691 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2692 if (asmstr[i] == '\n')
2693 asmstr.replace(i, 1, "\\n");
2694 else if (asmstr[i] == '\t')
2695 asmstr.replace(i, 1, "\\t");
2696 else if (asmstr[i] == '$') {
2697 if (asmstr[i + 1] == '{') {
2698 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2699 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2700 std::string n = "%" +
2701 asmstr.substr(a + 1, b - a - 1) +
2702 asmstr.substr(i + 2, a - i - 2);
2703 asmstr.replace(i, b - i + 1, n);
2704 i += n.size() - 1;
2705 } else
2706 asmstr.replace(i, 1, "%");
2707 }
2708 else if (asmstr[i] == '%')//grr
2709 { asmstr.replace(i, 1, "%%"); ++i;}
2710
2711 return asmstr;
2712}
2713
2714//TODO: assumptions about what consume arguments from the call are likely wrong
2715// handle communitivity
2716void CWriter::visitInlineAsm(CallInst &CI) {
2717 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2718 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
2719 std::vector<std::pair<std::string, Value*> > Input;
2720 std::vector<std::pair<std::string, Value*> > Output;
2721 std::string Clobber;
2722 int count = CI.getType() == Type::VoidTy ? 1 : 0;
2723 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
2724 E = Constraints.end(); I != E; ++I) {
2725 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
2726 std::string c =
2727 InterpretASMConstraint(*I);
2728 switch(I->Type) {
2729 default:
2730 assert(0 && "Unknown asm constraint");
2731 break;
2732 case InlineAsm::isInput: {
2733 if (c.size()) {
2734 Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
2735 ++count; //consume arg
2736 }
2737 break;
2738 }
2739 case InlineAsm::isOutput: {
2740 if (c.size()) {
2741 Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
2742 count ? CI.getOperand(count) : &CI));
2743 ++count; //consume arg
2744 }
2745 break;
2746 }
2747 case InlineAsm::isClobber: {
2748 if (c.size())
2749 Clobber += ",\"" + c + "\"";
2750 break;
2751 }
2752 }
2753 }
2754
2755 //fix up the asm string for gcc
2756 std::string asmstr = gccifyAsm(as->getAsmString());
2757
2758 Out << "__asm__ volatile (\"" << asmstr << "\"\n";
2759 Out << " :";
2760 for (std::vector<std::pair<std::string, Value*> >::iterator I = Output.begin(),
2761 E = Output.end(); I != E; ++I) {
2762 Out << "\"" << I->first << "\"(";
2763 writeOperandRaw(I->second);
2764 Out << ")";
2765 if (I + 1 != E)
2766 Out << ",";
2767 }
2768 Out << "\n :";
2769 for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
2770 E = Input.end(); I != E; ++I) {
2771 Out << "\"" << I->first << "\"(";
2772 writeOperandRaw(I->second);
2773 Out << ")";
2774 if (I + 1 != E)
2775 Out << ",";
2776 }
2777 if (Clobber.size())
2778 Out << "\n :" << Clobber.substr(1);
2779 Out << ")";
2780}
2781
2782void CWriter::visitMallocInst(MallocInst &I) {
2783 assert(0 && "lowerallocations pass didn't work!");
2784}
2785
2786void CWriter::visitAllocaInst(AllocaInst &I) {
2787 Out << '(';
2788 printType(Out, I.getType());
2789 Out << ") alloca(sizeof(";
2790 printType(Out, I.getType()->getElementType());
2791 Out << ')';
2792 if (I.isArrayAllocation()) {
2793 Out << " * " ;
2794 writeOperand(I.getOperand(0));
2795 }
2796 Out << ')';
2797}
2798
2799void CWriter::visitFreeInst(FreeInst &I) {
2800 assert(0 && "lowerallocations pass didn't work!");
2801}
2802
2803void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I,
2804 gep_type_iterator E) {
2805 bool HasImplicitAddress = false;
2806 // If accessing a global value with no indexing, avoid *(&GV) syndrome
2807 if (isa<GlobalValue>(Ptr)) {
2808 HasImplicitAddress = true;
2809 } else if (isDirectAlloca(Ptr)) {
2810 HasImplicitAddress = true;
2811 }
2812
2813 if (I == E) {
2814 if (!HasImplicitAddress)
2815 Out << '*'; // Implicit zero first argument: '*x' is equivalent to 'x[0]'
2816
2817 writeOperandInternal(Ptr);
2818 return;
2819 }
2820
2821 const Constant *CI = dyn_cast<Constant>(I.getOperand());
2822 if (HasImplicitAddress && (!CI || !CI->isNullValue()))
2823 Out << "(&";
2824
2825 writeOperandInternal(Ptr);
2826
2827 if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
2828 Out << ')';
2829 HasImplicitAddress = false; // HIA is only true if we haven't addressed yet
2830 }
2831
2832 assert(!HasImplicitAddress || (CI && CI->isNullValue()) &&
2833 "Can only have implicit address with direct accessing");
2834
2835 if (HasImplicitAddress) {
2836 ++I;
2837 } else if (CI && CI->isNullValue()) {
2838 gep_type_iterator TmpI = I; ++TmpI;
2839
2840 // Print out the -> operator if possible...
2841 if (TmpI != E && isa<StructType>(*TmpI)) {
2842 Out << (HasImplicitAddress ? "." : "->");
2843 Out << "field" << cast<ConstantInt>(TmpI.getOperand())->getZExtValue();
2844 I = ++TmpI;
2845 }
2846 }
2847
2848 for (; I != E; ++I)
2849 if (isa<StructType>(*I)) {
2850 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
2851 } else {
2852 Out << '[';
2853 writeOperand(I.getOperand());
2854 Out << ']';
2855 }
2856}
2857
2858void CWriter::visitLoadInst(LoadInst &I) {
2859 Out << '*';
2860 if (I.isVolatile()) {
2861 Out << "((";
2862 printType(Out, I.getType(), false, "volatile*");
2863 Out << ")";
2864 }
2865
2866 writeOperand(I.getOperand(0));
2867
2868 if (I.isVolatile())
2869 Out << ')';
2870}
2871
2872void CWriter::visitStoreInst(StoreInst &I) {
2873 Out << '*';
2874 if (I.isVolatile()) {
2875 Out << "((";
2876 printType(Out, I.getOperand(0)->getType(), false, " volatile*");
2877 Out << ")";
2878 }
2879 writeOperand(I.getPointerOperand());
2880 if (I.isVolatile()) Out << ')';
2881 Out << " = ";
2882 Value *Operand = I.getOperand(0);
2883 Constant *BitMask = 0;
2884 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
2885 if (!ITy->isPowerOf2ByteWidth())
2886 // We have a bit width that doesn't match an even power-of-2 byte
2887 // size. Consequently we must & the value with the type's bit mask
2888 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
2889 if (BitMask)
2890 Out << "((";
2891 writeOperand(Operand);
2892 if (BitMask) {
2893 Out << ") & ";
2894 printConstant(BitMask);
2895 Out << ")";
2896 }
2897}
2898
2899void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
2900 Out << '&';
2901 printIndexingExpression(I.getPointerOperand(), gep_type_begin(I),
2902 gep_type_end(I));
2903}
2904
2905void CWriter::visitVAArgInst(VAArgInst &I) {
2906 Out << "va_arg(*(va_list*)";
2907 writeOperand(I.getOperand(0));
2908 Out << ", ";
2909 printType(Out, I.getType());
2910 Out << ");\n ";
2911}
2912
2913//===----------------------------------------------------------------------===//
2914// External Interface declaration
2915//===----------------------------------------------------------------------===//
2916
2917bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
2918 std::ostream &o,
2919 CodeGenFileType FileType,
2920 bool Fast) {
2921 if (FileType != TargetMachine::AssemblyFile) return true;
2922
2923 PM.add(createLowerGCPass());
2924 PM.add(createLowerAllocationsPass(true));
2925 PM.add(createLowerInvokePass());
2926 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
2927 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
2928 PM.add(new CWriter(o));
2929 return false;
2930}