blob: 086dca8640e843f63ad299d1d72b0acb7c6dd966 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "llvm/Bitcode/BitstreamWriter.h"
16#include "llvm/Bitcode/LLVMBitCodes.h"
17#include "ValueEnumerator.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/InlineAsm.h"
21#include "llvm/Instructions.h"
22#include "llvm/Module.h"
23#include "llvm/ParameterAttributes.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/ValueSymbolTable.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29/// These are manifest constants used by the bitcode writer. They do not need to
30/// be kept in sync with the reader, but need to be consistent within this file.
31enum {
32 CurVersion = 0,
33
34 // VALUE_SYMTAB_BLOCK abbrev id's.
35 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
36 VST_ENTRY_7_ABBREV,
37 VST_ENTRY_6_ABBREV,
38 VST_BBENTRY_6_ABBREV,
39
40 // CONSTANTS_BLOCK abbrev id's.
41 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42 CONSTANTS_INTEGER_ABBREV,
43 CONSTANTS_CE_CAST_Abbrev,
44 CONSTANTS_NULL_Abbrev,
45
46 // FUNCTION_BLOCK abbrev id's.
47 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48 FUNCTION_INST_BINOP_ABBREV,
49 FUNCTION_INST_CAST_ABBREV,
50 FUNCTION_INST_RET_VOID_ABBREV,
51 FUNCTION_INST_RET_VAL_ABBREV,
52 FUNCTION_INST_UNREACHABLE_ABBREV
53};
54
55
56static unsigned GetEncodedCastOpcode(unsigned Opcode) {
57 switch (Opcode) {
58 default: assert(0 && "Unknown cast instruction!");
59 case Instruction::Trunc : return bitc::CAST_TRUNC;
60 case Instruction::ZExt : return bitc::CAST_ZEXT;
61 case Instruction::SExt : return bitc::CAST_SEXT;
62 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
63 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
64 case Instruction::UIToFP : return bitc::CAST_UITOFP;
65 case Instruction::SIToFP : return bitc::CAST_SITOFP;
66 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
67 case Instruction::FPExt : return bitc::CAST_FPEXT;
68 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
69 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
70 case Instruction::BitCast : return bitc::CAST_BITCAST;
71 }
72}
73
74static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
75 switch (Opcode) {
76 default: assert(0 && "Unknown binary instruction!");
77 case Instruction::Add: return bitc::BINOP_ADD;
78 case Instruction::Sub: return bitc::BINOP_SUB;
79 case Instruction::Mul: return bitc::BINOP_MUL;
80 case Instruction::UDiv: return bitc::BINOP_UDIV;
81 case Instruction::FDiv:
82 case Instruction::SDiv: return bitc::BINOP_SDIV;
83 case Instruction::URem: return bitc::BINOP_UREM;
84 case Instruction::FRem:
85 case Instruction::SRem: return bitc::BINOP_SREM;
86 case Instruction::Shl: return bitc::BINOP_SHL;
87 case Instruction::LShr: return bitc::BINOP_LSHR;
88 case Instruction::AShr: return bitc::BINOP_ASHR;
89 case Instruction::And: return bitc::BINOP_AND;
90 case Instruction::Or: return bitc::BINOP_OR;
91 case Instruction::Xor: return bitc::BINOP_XOR;
92 }
93}
94
95
96
97static void WriteStringRecord(unsigned Code, const std::string &Str,
98 unsigned AbbrevToUse, BitstreamWriter &Stream) {
99 SmallVector<unsigned, 64> Vals;
100
101 // Code: [strchar x N]
102 for (unsigned i = 0, e = Str.size(); i != e; ++i)
103 Vals.push_back(Str[i]);
104
105 // Emit the finished record.
106 Stream.EmitRecord(Code, Vals, AbbrevToUse);
107}
108
109// Emit information about parameter attributes.
110static void WriteParamAttrTable(const ValueEnumerator &VE,
111 BitstreamWriter &Stream) {
112 const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs();
113 if (Attrs.empty()) return;
114
115 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
116
117 SmallVector<uint64_t, 64> Record;
118 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
119 const ParamAttrsList *A = Attrs[i];
120 for (unsigned op = 0, e = A->size(); op != e; ++op) {
121 Record.push_back(A->getParamIndex(op));
122 Record.push_back(A->getParamAttrsAtIndex(op));
123 }
124
125 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
126 Record.clear();
127 }
128
129 Stream.ExitBlock();
130}
131
132/// WriteTypeTable - Write out the type table for a module.
133static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
134 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
135
136 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
137 SmallVector<uint64_t, 64> TypeVals;
138
139 // Abbrev for TYPE_CODE_POINTER.
140 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
141 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
143 Log2_32_Ceil(VE.getTypes().size()+1)));
144 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
145
146 // Abbrev for TYPE_CODE_FUNCTION.
147 Abbv = new BitCodeAbbrev();
148 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
151 Log2_32_Ceil(VE.getParamAttrs().size()+1)));
152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
154 Log2_32_Ceil(VE.getTypes().size()+1)));
155 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
156
157 // Abbrev for TYPE_CODE_STRUCT.
158 Abbv = new BitCodeAbbrev();
159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
163 Log2_32_Ceil(VE.getTypes().size()+1)));
164 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
165
166 // Abbrev for TYPE_CODE_ARRAY.
167 Abbv = new BitCodeAbbrev();
168 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
171 Log2_32_Ceil(VE.getTypes().size()+1)));
172 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
173
174 // Emit an entry count so the reader can reserve space.
175 TypeVals.push_back(TypeList.size());
176 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
177 TypeVals.clear();
178
179 // Loop over all of the types, emitting each in turn.
180 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
181 const Type *T = TypeList[i].first;
182 int AbbrevToUse = 0;
183 unsigned Code = 0;
184
185 switch (T->getTypeID()) {
186 default: assert(0 && "Unknown type!");
187 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
188 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
189 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
190 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
191 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
192 case Type::IntegerTyID:
193 // INTEGER: [width]
194 Code = bitc::TYPE_CODE_INTEGER;
195 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
196 break;
197 case Type::PointerTyID:
198 // POINTER: [pointee type]
199 Code = bitc::TYPE_CODE_POINTER;
200 TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType()));
201 AbbrevToUse = PtrAbbrev;
202 break;
203
204 case Type::FunctionTyID: {
205 const FunctionType *FT = cast<FunctionType>(T);
206 // FUNCTION: [isvararg, attrid, retty, paramty x N]
207 Code = bitc::TYPE_CODE_FUNCTION;
208 TypeVals.push_back(FT->isVarArg());
209 TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs()));
210 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
211 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
212 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
213 AbbrevToUse = FunctionAbbrev;
214 break;
215 }
216 case Type::StructTyID: {
217 const StructType *ST = cast<StructType>(T);
218 // STRUCT: [ispacked, eltty x N]
219 Code = bitc::TYPE_CODE_STRUCT;
220 TypeVals.push_back(ST->isPacked());
221 // Output all of the element types.
222 for (StructType::element_iterator I = ST->element_begin(),
223 E = ST->element_end(); I != E; ++I)
224 TypeVals.push_back(VE.getTypeID(*I));
225 AbbrevToUse = StructAbbrev;
226 break;
227 }
228 case Type::ArrayTyID: {
229 const ArrayType *AT = cast<ArrayType>(T);
230 // ARRAY: [numelts, eltty]
231 Code = bitc::TYPE_CODE_ARRAY;
232 TypeVals.push_back(AT->getNumElements());
233 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
234 AbbrevToUse = ArrayAbbrev;
235 break;
236 }
237 case Type::VectorTyID: {
238 const VectorType *VT = cast<VectorType>(T);
239 // VECTOR [numelts, eltty]
240 Code = bitc::TYPE_CODE_VECTOR;
241 TypeVals.push_back(VT->getNumElements());
242 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
243 break;
244 }
245 }
246
247 // Emit the finished record.
248 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
249 TypeVals.clear();
250 }
251
252 Stream.ExitBlock();
253}
254
255static unsigned getEncodedLinkage(const GlobalValue *GV) {
256 switch (GV->getLinkage()) {
257 default: assert(0 && "Invalid linkage!");
258 case GlobalValue::GhostLinkage: // Map ghost linkage onto external.
259 case GlobalValue::ExternalLinkage: return 0;
260 case GlobalValue::WeakLinkage: return 1;
261 case GlobalValue::AppendingLinkage: return 2;
262 case GlobalValue::InternalLinkage: return 3;
263 case GlobalValue::LinkOnceLinkage: return 4;
264 case GlobalValue::DLLImportLinkage: return 5;
265 case GlobalValue::DLLExportLinkage: return 6;
266 case GlobalValue::ExternalWeakLinkage: return 7;
267 }
268}
269
270static unsigned getEncodedVisibility(const GlobalValue *GV) {
271 switch (GV->getVisibility()) {
272 default: assert(0 && "Invalid visibility!");
273 case GlobalValue::DefaultVisibility: return 0;
274 case GlobalValue::HiddenVisibility: return 1;
275 case GlobalValue::ProtectedVisibility: return 2;
276 }
277}
278
279// Emit top-level description of module, including target triple, inline asm,
280// descriptors for global variables, and function prototype info.
281static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
282 BitstreamWriter &Stream) {
283 // Emit the list of dependent libraries for the Module.
284 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
285 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
286
287 // Emit various pieces of data attached to a module.
288 if (!M->getTargetTriple().empty())
289 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
290 0/*TODO*/, Stream);
291 if (!M->getDataLayout().empty())
292 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
293 0/*TODO*/, Stream);
294 if (!M->getModuleInlineAsm().empty())
295 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
296 0/*TODO*/, Stream);
297
298 // Emit information about sections, computing how many there are. Also
299 // compute the maximum alignment value.
300 std::map<std::string, unsigned> SectionMap;
301 unsigned MaxAlignment = 0;
302 unsigned MaxGlobalType = 0;
303 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
304 GV != E; ++GV) {
305 MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
306 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
307
308 if (!GV->hasSection()) continue;
309 // Give section names unique ID's.
310 unsigned &Entry = SectionMap[GV->getSection()];
311 if (Entry != 0) continue;
312 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
313 0/*TODO*/, Stream);
314 Entry = SectionMap.size();
315 }
316 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
317 MaxAlignment = std::max(MaxAlignment, F->getAlignment());
318 if (!F->hasSection()) continue;
319 // Give section names unique ID's.
320 unsigned &Entry = SectionMap[F->getSection()];
321 if (Entry != 0) continue;
322 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
323 0/*TODO*/, Stream);
324 Entry = SectionMap.size();
325 }
326
327 // Emit abbrev for globals, now that we know # sections and max alignment.
328 unsigned SimpleGVarAbbrev = 0;
329 if (!M->global_empty()) {
330 // Add an abbrev for common globals with no visibility or thread localness.
331 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
332 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
334 Log2_32_Ceil(MaxGlobalType+1)));
335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage.
338 if (MaxAlignment == 0) // Alignment.
339 Abbv->Add(BitCodeAbbrevOp(0));
340 else {
341 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
343 Log2_32_Ceil(MaxEncAlignment+1)));
344 }
345 if (SectionMap.empty()) // Section.
346 Abbv->Add(BitCodeAbbrevOp(0));
347 else
348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
349 Log2_32_Ceil(SectionMap.size()+1)));
350 // Don't bother emitting vis + thread local.
351 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
352 }
353
354 // Emit the global variable information.
355 SmallVector<unsigned, 64> Vals;
356 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
357 GV != E; ++GV) {
358 unsigned AbbrevToUse = 0;
359
360 // GLOBALVAR: [type, isconst, initid,
361 // linkage, alignment, section, visibility, threadlocal]
362 Vals.push_back(VE.getTypeID(GV->getType()));
363 Vals.push_back(GV->isConstant());
364 Vals.push_back(GV->isDeclaration() ? 0 :
365 (VE.getValueID(GV->getInitializer()) + 1));
366 Vals.push_back(getEncodedLinkage(GV));
367 Vals.push_back(Log2_32(GV->getAlignment())+1);
368 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
369 if (GV->isThreadLocal() ||
370 GV->getVisibility() != GlobalValue::DefaultVisibility) {
371 Vals.push_back(getEncodedVisibility(GV));
372 Vals.push_back(GV->isThreadLocal());
373 } else {
374 AbbrevToUse = SimpleGVarAbbrev;
375 }
376
377 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
378 Vals.clear();
379 }
380
381 // Emit the function proto information.
382 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
383 // FUNCTION: [type, callingconv, isproto, linkage, alignment, section,
384 // visibility]
385 Vals.push_back(VE.getTypeID(F->getType()));
386 Vals.push_back(F->getCallingConv());
387 Vals.push_back(F->isDeclaration());
388 Vals.push_back(getEncodedLinkage(F));
389
390 // Note: we emit the param attr ID number for the function type of this
391 // function. In the future, we intend for attrs to be properties of
392 // functions, instead of on the type. This is to support this future work.
393 Vals.push_back(VE.getParamAttrID(F->getFunctionType()->getParamAttrs()));
394
395 Vals.push_back(Log2_32(F->getAlignment())+1);
396 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
397 Vals.push_back(getEncodedVisibility(F));
398
399 unsigned AbbrevToUse = 0;
400 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
401 Vals.clear();
402 }
403
404
405 // Emit the alias information.
406 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
407 AI != E; ++AI) {
408 Vals.push_back(VE.getTypeID(AI->getType()));
409 Vals.push_back(VE.getValueID(AI->getAliasee()));
410 Vals.push_back(getEncodedLinkage(AI));
411 unsigned AbbrevToUse = 0;
412 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
413 Vals.clear();
414 }
415}
416
417
418static void WriteConstants(unsigned FirstVal, unsigned LastVal,
419 const ValueEnumerator &VE,
420 BitstreamWriter &Stream, bool isGlobal) {
421 if (FirstVal == LastVal) return;
422
423 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
424
425 unsigned AggregateAbbrev = 0;
426 unsigned String8Abbrev = 0;
427 unsigned CString7Abbrev = 0;
428 unsigned CString6Abbrev = 0;
429 // If this is a constant pool for the module, emit module-specific abbrevs.
430 if (isGlobal) {
431 // Abbrev for CST_CODE_AGGREGATE.
432 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
433 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
436 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
437
438 // Abbrev for CST_CODE_STRING.
439 Abbv = new BitCodeAbbrev();
440 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
443 String8Abbrev = Stream.EmitAbbrev(Abbv);
444 // Abbrev for CST_CODE_CSTRING.
445 Abbv = new BitCodeAbbrev();
446 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
449 CString7Abbrev = Stream.EmitAbbrev(Abbv);
450 // Abbrev for CST_CODE_CSTRING.
451 Abbv = new BitCodeAbbrev();
452 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
455 CString6Abbrev = Stream.EmitAbbrev(Abbv);
456 }
457
458 SmallVector<uint64_t, 64> Record;
459
460 const ValueEnumerator::ValueList &Vals = VE.getValues();
461 const Type *LastTy = 0;
462 for (unsigned i = FirstVal; i != LastVal; ++i) {
463 const Value *V = Vals[i].first;
464 // If we need to switch types, do so now.
465 if (V->getType() != LastTy) {
466 LastTy = V->getType();
467 Record.push_back(VE.getTypeID(LastTy));
468 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
469 CONSTANTS_SETTYPE_ABBREV);
470 Record.clear();
471 }
472
473 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
474 Record.push_back(unsigned(IA->hasSideEffects()));
475
476 // Add the asm string.
477 const std::string &AsmStr = IA->getAsmString();
478 Record.push_back(AsmStr.size());
479 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
480 Record.push_back(AsmStr[i]);
481
482 // Add the constraint string.
483 const std::string &ConstraintStr = IA->getConstraintString();
484 Record.push_back(ConstraintStr.size());
485 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
486 Record.push_back(ConstraintStr[i]);
487 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
488 Record.clear();
489 continue;
490 }
491 const Constant *C = cast<Constant>(V);
492 unsigned Code = -1U;
493 unsigned AbbrevToUse = 0;
494 if (C->isNullValue()) {
495 Code = bitc::CST_CODE_NULL;
496 } else if (isa<UndefValue>(C)) {
497 Code = bitc::CST_CODE_UNDEF;
498 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
499 if (IV->getBitWidth() <= 64) {
500 int64_t V = IV->getSExtValue();
501 if (V >= 0)
502 Record.push_back(V << 1);
503 else
504 Record.push_back((-V << 1) | 1);
505 Code = bitc::CST_CODE_INTEGER;
506 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
507 } else { // Wide integers, > 64 bits in size.
508 // We have an arbitrary precision integer value to write whose
509 // bit width is > 64. However, in canonical unsigned integer
510 // format it is likely that the high bits are going to be zero.
511 // So, we only write the number of active words.
512 unsigned NWords = IV->getValue().getActiveWords();
513 const uint64_t *RawWords = IV->getValue().getRawData();
514 for (unsigned i = 0; i != NWords; ++i) {
515 int64_t V = RawWords[i];
516 if (V >= 0)
517 Record.push_back(V << 1);
518 else
519 Record.push_back((-V << 1) | 1);
520 }
521 Code = bitc::CST_CODE_WIDE_INTEGER;
522 }
523 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
524 Code = bitc::CST_CODE_FLOAT;
525 if (CFP->getType() == Type::FloatTy) {
526 Record.push_back(FloatToBits((float)CFP->getValue()));
527 } else {
528 assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!");
529 Record.push_back(DoubleToBits((double)CFP->getValue()));
530 }
531 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
532 // Emit constant strings specially.
533 unsigned NumOps = C->getNumOperands();
534 // If this is a null-terminated string, use the denser CSTRING encoding.
535 if (C->getOperand(NumOps-1)->isNullValue()) {
536 Code = bitc::CST_CODE_CSTRING;
537 --NumOps; // Don't encode the null, which isn't allowed by char6.
538 } else {
539 Code = bitc::CST_CODE_STRING;
540 AbbrevToUse = String8Abbrev;
541 }
542 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
543 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
544 for (unsigned i = 0; i != NumOps; ++i) {
545 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
546 Record.push_back(V);
547 isCStr7 &= (V & 128) == 0;
548 if (isCStrChar6)
549 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
550 }
551
552 if (isCStrChar6)
553 AbbrevToUse = CString6Abbrev;
554 else if (isCStr7)
555 AbbrevToUse = CString7Abbrev;
556 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
557 isa<ConstantVector>(V)) {
558 Code = bitc::CST_CODE_AGGREGATE;
559 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
560 Record.push_back(VE.getValueID(C->getOperand(i)));
561 AbbrevToUse = AggregateAbbrev;
562 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
563 switch (CE->getOpcode()) {
564 default:
565 if (Instruction::isCast(CE->getOpcode())) {
566 Code = bitc::CST_CODE_CE_CAST;
567 Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
568 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
569 Record.push_back(VE.getValueID(C->getOperand(0)));
570 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
571 } else {
572 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
573 Code = bitc::CST_CODE_CE_BINOP;
574 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
575 Record.push_back(VE.getValueID(C->getOperand(0)));
576 Record.push_back(VE.getValueID(C->getOperand(1)));
577 }
578 break;
579 case Instruction::GetElementPtr:
580 Code = bitc::CST_CODE_CE_GEP;
581 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
582 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
583 Record.push_back(VE.getValueID(C->getOperand(i)));
584 }
585 break;
586 case Instruction::Select:
587 Code = bitc::CST_CODE_CE_SELECT;
588 Record.push_back(VE.getValueID(C->getOperand(0)));
589 Record.push_back(VE.getValueID(C->getOperand(1)));
590 Record.push_back(VE.getValueID(C->getOperand(2)));
591 break;
592 case Instruction::ExtractElement:
593 Code = bitc::CST_CODE_CE_EXTRACTELT;
594 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
595 Record.push_back(VE.getValueID(C->getOperand(0)));
596 Record.push_back(VE.getValueID(C->getOperand(1)));
597 break;
598 case Instruction::InsertElement:
599 Code = bitc::CST_CODE_CE_INSERTELT;
600 Record.push_back(VE.getValueID(C->getOperand(0)));
601 Record.push_back(VE.getValueID(C->getOperand(1)));
602 Record.push_back(VE.getValueID(C->getOperand(2)));
603 break;
604 case Instruction::ShuffleVector:
605 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
606 Record.push_back(VE.getValueID(C->getOperand(0)));
607 Record.push_back(VE.getValueID(C->getOperand(1)));
608 Record.push_back(VE.getValueID(C->getOperand(2)));
609 break;
610 case Instruction::ICmp:
611 case Instruction::FCmp:
612 Code = bitc::CST_CODE_CE_CMP;
613 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
614 Record.push_back(VE.getValueID(C->getOperand(0)));
615 Record.push_back(VE.getValueID(C->getOperand(1)));
616 Record.push_back(CE->getPredicate());
617 break;
618 }
619 } else {
620 assert(0 && "Unknown constant!");
621 }
622 Stream.EmitRecord(Code, Record, AbbrevToUse);
623 Record.clear();
624 }
625
626 Stream.ExitBlock();
627}
628
629static void WriteModuleConstants(const ValueEnumerator &VE,
630 BitstreamWriter &Stream) {
631 const ValueEnumerator::ValueList &Vals = VE.getValues();
632
633 // Find the first constant to emit, which is the first non-globalvalue value.
634 // We know globalvalues have been emitted by WriteModuleInfo.
635 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
636 if (!isa<GlobalValue>(Vals[i].first)) {
637 WriteConstants(i, Vals.size(), VE, Stream, true);
638 return;
639 }
640 }
641}
642
643/// PushValueAndType - The file has to encode both the value and type id for
644/// many values, because we need to know what type to create for forward
645/// references. However, most operands are not forward references, so this type
646/// field is not needed.
647///
648/// This function adds V's value ID to Vals. If the value ID is higher than the
649/// instruction ID, then it is a forward reference, and it also includes the
650/// type ID.
651static bool PushValueAndType(Value *V, unsigned InstID,
652 SmallVector<unsigned, 64> &Vals,
653 ValueEnumerator &VE) {
654 unsigned ValID = VE.getValueID(V);
655 Vals.push_back(ValID);
656 if (ValID >= InstID) {
657 Vals.push_back(VE.getTypeID(V->getType()));
658 return true;
659 }
660 return false;
661}
662
663/// WriteInstruction - Emit an instruction to the specified stream.
664static void WriteInstruction(const Instruction &I, unsigned InstID,
665 ValueEnumerator &VE, BitstreamWriter &Stream,
666 SmallVector<unsigned, 64> &Vals) {
667 unsigned Code = 0;
668 unsigned AbbrevToUse = 0;
669 switch (I.getOpcode()) {
670 default:
671 if (Instruction::isCast(I.getOpcode())) {
672 Code = bitc::FUNC_CODE_INST_CAST;
673 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
674 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
675 Vals.push_back(VE.getTypeID(I.getType()));
676 Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
677 } else {
678 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
679 Code = bitc::FUNC_CODE_INST_BINOP;
680 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
681 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
682 Vals.push_back(VE.getValueID(I.getOperand(1)));
683 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
684 }
685 break;
686
687 case Instruction::GetElementPtr:
688 Code = bitc::FUNC_CODE_INST_GEP;
689 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
690 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
691 break;
692 case Instruction::Select:
693 Code = bitc::FUNC_CODE_INST_SELECT;
694 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
695 Vals.push_back(VE.getValueID(I.getOperand(2)));
696 Vals.push_back(VE.getValueID(I.getOperand(0)));
697 break;
698 case Instruction::ExtractElement:
699 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
700 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
701 Vals.push_back(VE.getValueID(I.getOperand(1)));
702 break;
703 case Instruction::InsertElement:
704 Code = bitc::FUNC_CODE_INST_INSERTELT;
705 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
706 Vals.push_back(VE.getValueID(I.getOperand(1)));
707 Vals.push_back(VE.getValueID(I.getOperand(2)));
708 break;
709 case Instruction::ShuffleVector:
710 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
711 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
712 Vals.push_back(VE.getValueID(I.getOperand(1)));
713 Vals.push_back(VE.getValueID(I.getOperand(2)));
714 break;
715 case Instruction::ICmp:
716 case Instruction::FCmp:
717 Code = bitc::FUNC_CODE_INST_CMP;
718 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
719 Vals.push_back(VE.getValueID(I.getOperand(1)));
720 Vals.push_back(cast<CmpInst>(I).getPredicate());
721 break;
722
723 case Instruction::Ret:
724 Code = bitc::FUNC_CODE_INST_RET;
725 if (!I.getNumOperands())
726 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
727 else if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
728 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
729 break;
730 case Instruction::Br:
731 Code = bitc::FUNC_CODE_INST_BR;
732 Vals.push_back(VE.getValueID(I.getOperand(0)));
733 if (cast<BranchInst>(I).isConditional()) {
734 Vals.push_back(VE.getValueID(I.getOperand(1)));
735 Vals.push_back(VE.getValueID(I.getOperand(2)));
736 }
737 break;
738 case Instruction::Switch:
739 Code = bitc::FUNC_CODE_INST_SWITCH;
740 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
741 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
742 Vals.push_back(VE.getValueID(I.getOperand(i)));
743 break;
744 case Instruction::Invoke: {
745 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
746 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
747 Code = bitc::FUNC_CODE_INST_INVOKE;
748
749 // Note: we emit the param attr ID number for the function type of this
750 // function. In the future, we intend for attrs to be properties of
751 // functions, instead of on the type. This is to support this future work.
752 Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs()));
753
754 Vals.push_back(cast<InvokeInst>(I).getCallingConv());
755 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest
756 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest
757 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
758
759 // Emit value #'s for the fixed parameters.
760 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
761 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param.
762
763 // Emit type/value pairs for varargs params.
764 if (FTy->isVarArg()) {
765 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
766 i != e; ++i)
767 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
768 }
769 break;
770 }
771 case Instruction::Unwind:
772 Code = bitc::FUNC_CODE_INST_UNWIND;
773 break;
774 case Instruction::Unreachable:
775 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
776 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
777 break;
778
779 case Instruction::PHI:
780 Code = bitc::FUNC_CODE_INST_PHI;
781 Vals.push_back(VE.getTypeID(I.getType()));
782 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
783 Vals.push_back(VE.getValueID(I.getOperand(i)));
784 break;
785
786 case Instruction::Malloc:
787 Code = bitc::FUNC_CODE_INST_MALLOC;
788 Vals.push_back(VE.getTypeID(I.getType()));
789 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
790 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
791 break;
792
793 case Instruction::Free:
794 Code = bitc::FUNC_CODE_INST_FREE;
795 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
796 break;
797
798 case Instruction::Alloca:
799 Code = bitc::FUNC_CODE_INST_ALLOCA;
800 Vals.push_back(VE.getTypeID(I.getType()));
801 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
802 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
803 break;
804
805 case Instruction::Load:
806 Code = bitc::FUNC_CODE_INST_LOAD;
807 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
808 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
809
810 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
811 Vals.push_back(cast<LoadInst>(I).isVolatile());
812 break;
813 case Instruction::Store:
814 Code = bitc::FUNC_CODE_INST_STORE;
815 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // val.
816 Vals.push_back(VE.getValueID(I.getOperand(1))); // ptr.
817 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
818 Vals.push_back(cast<StoreInst>(I).isVolatile());
819 break;
820 case Instruction::Call: {
821 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
822 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
823
824 Code = bitc::FUNC_CODE_INST_CALL;
825
826 // Note: we emit the param attr ID number for the function type of this
827 // function. In the future, we intend for attrs to be properties of
828 // functions, instead of on the type. This is to support this future work.
829 Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs()));
830
831 Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) |
832 unsigned(cast<CallInst>(I).isTailCall()));
833 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // Callee
834
835 // Emit value #'s for the fixed parameters.
836 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
837 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param.
838
839 // Emit type/value pairs for varargs params.
840 if (FTy->isVarArg()) {
841 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
842 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
843 i != e; ++i)
844 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs
845 }
846 break;
847 }
848 case Instruction::VAArg:
849 Code = bitc::FUNC_CODE_INST_VAARG;
850 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
851 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
852 Vals.push_back(VE.getTypeID(I.getType())); // restype.
853 break;
854 }
855
856 Stream.EmitRecord(Code, Vals, AbbrevToUse);
857 Vals.clear();
858}
859
860// Emit names for globals/functions etc.
861static void WriteValueSymbolTable(const ValueSymbolTable &VST,
862 const ValueEnumerator &VE,
863 BitstreamWriter &Stream) {
864 if (VST.empty()) return;
865 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
866
867 // FIXME: Set up the abbrev, we know how many values there are!
868 // FIXME: We know if the type names can use 7-bit ascii.
869 SmallVector<unsigned, 64> NameVals;
870
871 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
872 SI != SE; ++SI) {
873
874 const ValueName &Name = *SI;
875
876 // Figure out the encoding to use for the name.
877 bool is7Bit = true;
878 bool isChar6 = true;
879 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
880 C != E; ++C) {
881 if (isChar6)
882 isChar6 = BitCodeAbbrevOp::isChar6(*C);
883 if ((unsigned char)*C & 128) {
884 is7Bit = false;
885 break; // don't bother scanning the rest.
886 }
887 }
888
889 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
890
891 // VST_ENTRY: [valueid, namechar x N]
892 // VST_BBENTRY: [bbid, namechar x N]
893 unsigned Code;
894 if (isa<BasicBlock>(SI->getValue())) {
895 Code = bitc::VST_CODE_BBENTRY;
896 if (isChar6)
897 AbbrevToUse = VST_BBENTRY_6_ABBREV;
898 } else {
899 Code = bitc::VST_CODE_ENTRY;
900 if (isChar6)
901 AbbrevToUse = VST_ENTRY_6_ABBREV;
902 else if (is7Bit)
903 AbbrevToUse = VST_ENTRY_7_ABBREV;
904 }
905
906 NameVals.push_back(VE.getValueID(SI->getValue()));
907 for (const char *P = Name.getKeyData(),
908 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
909 NameVals.push_back((unsigned char)*P);
910
911 // Emit the finished record.
912 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
913 NameVals.clear();
914 }
915 Stream.ExitBlock();
916}
917
918/// WriteFunction - Emit a function body to the module stream.
919static void WriteFunction(const Function &F, ValueEnumerator &VE,
920 BitstreamWriter &Stream) {
921 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
922 VE.incorporateFunction(F);
923
924 SmallVector<unsigned, 64> Vals;
925
926 // Emit the number of basic blocks, so the reader can create them ahead of
927 // time.
928 Vals.push_back(VE.getBasicBlocks().size());
929 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
930 Vals.clear();
931
932 // If there are function-local constants, emit them now.
933 unsigned CstStart, CstEnd;
934 VE.getFunctionConstantRange(CstStart, CstEnd);
935 WriteConstants(CstStart, CstEnd, VE, Stream, false);
936
937 // Keep a running idea of what the instruction ID is.
938 unsigned InstID = CstEnd;
939
940 // Finally, emit all the instructions, in order.
941 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
942 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
943 I != E; ++I) {
944 WriteInstruction(*I, InstID, VE, Stream, Vals);
945 if (I->getType() != Type::VoidTy)
946 ++InstID;
947 }
948
949 // Emit names for all the instructions etc.
950 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
951
952 VE.purgeFunction();
953 Stream.ExitBlock();
954}
955
956/// WriteTypeSymbolTable - Emit a block for the specified type symtab.
957static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
958 const ValueEnumerator &VE,
959 BitstreamWriter &Stream) {
960 if (TST.empty()) return;
961
962 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
963
964 // 7-bit fixed width VST_CODE_ENTRY strings.
965 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
966 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
968 Log2_32_Ceil(VE.getTypes().size()+1)));
969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
971 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
972
973 SmallVector<unsigned, 64> NameVals;
974
975 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
976 TI != TE; ++TI) {
977 // TST_ENTRY: [typeid, namechar x N]
978 NameVals.push_back(VE.getTypeID(TI->second));
979
980 const std::string &Str = TI->first;
981 bool is7Bit = true;
982 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
983 NameVals.push_back((unsigned char)Str[i]);
984 if (Str[i] & 128)
985 is7Bit = false;
986 }
987
988 // Emit the finished record.
989 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
990 NameVals.clear();
991 }
992
993 Stream.ExitBlock();
994}
995
996// Emit blockinfo, which defines the standard abbreviations etc.
997static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
998 // We only want to emit block info records for blocks that have multiple
999 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
1000 // blocks can defined their abbrevs inline.
1001 Stream.EnterBlockInfoBlock(2);
1002
1003 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1004 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1009 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1010 Abbv) != VST_ENTRY_8_ABBREV)
1011 assert(0 && "Unexpected abbrev ordering!");
1012 }
1013
1014 { // 7-bit fixed width VST_ENTRY strings.
1015 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1016 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1020 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1021 Abbv) != VST_ENTRY_7_ABBREV)
1022 assert(0 && "Unexpected abbrev ordering!");
1023 }
1024 { // 6-bit char6 VST_ENTRY strings.
1025 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1026 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1029 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1030 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1031 Abbv) != VST_ENTRY_6_ABBREV)
1032 assert(0 && "Unexpected abbrev ordering!");
1033 }
1034 { // 6-bit char6 VST_BBENTRY strings.
1035 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1036 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1040 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1041 Abbv) != VST_BBENTRY_6_ABBREV)
1042 assert(0 && "Unexpected abbrev ordering!");
1043 }
1044
1045
1046
1047 { // SETTYPE abbrev for CONSTANTS_BLOCK.
1048 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1049 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1051 Log2_32_Ceil(VE.getTypes().size()+1)));
1052 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1053 Abbv) != CONSTANTS_SETTYPE_ABBREV)
1054 assert(0 && "Unexpected abbrev ordering!");
1055 }
1056
1057 { // INTEGER abbrev for CONSTANTS_BLOCK.
1058 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1059 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1061 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1062 Abbv) != CONSTANTS_INTEGER_ABBREV)
1063 assert(0 && "Unexpected abbrev ordering!");
1064 }
1065
1066 { // CE_CAST abbrev for CONSTANTS_BLOCK.
1067 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1068 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
1070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
1071 Log2_32_Ceil(VE.getTypes().size()+1)));
1072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
1073
1074 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1075 Abbv) != CONSTANTS_CE_CAST_Abbrev)
1076 assert(0 && "Unexpected abbrev ordering!");
1077 }
1078 { // NULL abbrev for CONSTANTS_BLOCK.
1079 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1080 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1081 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1082 Abbv) != CONSTANTS_NULL_Abbrev)
1083 assert(0 && "Unexpected abbrev ordering!");
1084 }
1085
1086 // FIXME: This should only use space for first class types!
1087
1088 { // INST_LOAD abbrev for FUNCTION_BLOCK.
1089 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1090 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1094 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1095 Abbv) != FUNCTION_INST_LOAD_ABBREV)
1096 assert(0 && "Unexpected abbrev ordering!");
1097 }
1098 { // INST_BINOP abbrev for FUNCTION_BLOCK.
1099 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1100 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1104 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1105 Abbv) != FUNCTION_INST_BINOP_ABBREV)
1106 assert(0 && "Unexpected abbrev ordering!");
1107 }
1108 { // INST_CAST abbrev for FUNCTION_BLOCK.
1109 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1110 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
1112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
1113 Log2_32_Ceil(VE.getTypes().size()+1)));
1114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1115 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1116 Abbv) != FUNCTION_INST_CAST_ABBREV)
1117 assert(0 && "Unexpected abbrev ordering!");
1118 }
1119
1120 { // INST_RET abbrev for FUNCTION_BLOCK.
1121 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1122 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1123 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1124 Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1125 assert(0 && "Unexpected abbrev ordering!");
1126 }
1127 { // INST_RET abbrev for FUNCTION_BLOCK.
1128 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1129 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1131 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1132 Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1133 assert(0 && "Unexpected abbrev ordering!");
1134 }
1135 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1136 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1137 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1138 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1139 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1140 assert(0 && "Unexpected abbrev ordering!");
1141 }
1142
1143 Stream.ExitBlock();
1144}
1145
1146
1147/// WriteModule - Emit the specified module to the bitstream.
1148static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1149 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1150
1151 // Emit the version number if it is non-zero.
1152 if (CurVersion) {
1153 SmallVector<unsigned, 1> Vals;
1154 Vals.push_back(CurVersion);
1155 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1156 }
1157
1158 // Analyze the module, enumerating globals, functions, etc.
1159 ValueEnumerator VE(M);
1160
1161 // Emit blockinfo, which defines the standard abbreviations etc.
1162 WriteBlockInfo(VE, Stream);
1163
1164 // Emit information about parameter attributes.
1165 WriteParamAttrTable(VE, Stream);
1166
1167 // Emit information describing all of the types in the module.
1168 WriteTypeTable(VE, Stream);
1169
1170 // Emit top-level description of module, including target triple, inline asm,
1171 // descriptors for global variables, and function prototype info.
1172 WriteModuleInfo(M, VE, Stream);
1173
1174 // Emit constants.
1175 WriteModuleConstants(VE, Stream);
1176
1177 // If we have any aggregate values in the value table, purge them - these can
1178 // only be used to initialize global variables. Doing so makes the value
1179 // namespace smaller for code in functions.
1180 int NumNonAggregates = VE.PurgeAggregateValues();
1181 if (NumNonAggregates != -1) {
1182 SmallVector<unsigned, 1> Vals;
1183 Vals.push_back(NumNonAggregates);
1184 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1185 }
1186
1187 // Emit function bodies.
1188 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1189 if (!I->isDeclaration())
1190 WriteFunction(*I, VE, Stream);
1191
1192 // Emit the type symbol table information.
1193 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1194
1195 // Emit names for globals/functions etc.
1196 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1197
1198 Stream.ExitBlock();
1199}
1200
1201
1202/// WriteBitcodeToFile - Write the specified module to the specified output
1203/// stream.
1204void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1205 std::vector<unsigned char> Buffer;
1206 BitstreamWriter Stream(Buffer);
1207
1208 Buffer.reserve(256*1024);
1209
1210 // Emit the file header.
1211 Stream.Emit((unsigned)'B', 8);
1212 Stream.Emit((unsigned)'C', 8);
1213 Stream.Emit(0x0, 4);
1214 Stream.Emit(0xC, 4);
1215 Stream.Emit(0xE, 4);
1216 Stream.Emit(0xD, 4);
1217
1218 // Emit the module.
1219 WriteModule(M, Stream);
1220
1221 // Write the generated bitstream to "Out".
1222 Out.write((char*)&Buffer.front(), Buffer.size());
1223
1224 // Make sure it hits disk now.
1225 Out.flush();
1226}