blob: b5aeec61efd295051ec0fb53fd5638cfb7e65dda [file] [log] [blame]
Anshuman Dasguptadc81e5d2011-12-01 21:10:21 +00001//===- DFAPacketizerEmitter.cpp - Packetization DFA for a VLIW machine-----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This class parses the Schedule.td file and produces an API that can be used
11// to reason about whether an instruction can be added to a packet on a VLIW
12// architecture. The class internally generates a deterministic finite
13// automaton (DFA) that models all possible mappings of machine instructions
14// to functional units as instructions are added to a packet.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/MC/MCInstrDesc.h"
19#include "llvm/MC/MCInstrItineraries.h"
20#include "llvm/TableGen/Record.h"
21#include "CodeGenTarget.h"
22#include "DFAPacketizerEmitter.h"
23#include <list>
24
25using namespace llvm;
26
27//
28//
29// State represents the usage of machine resources if the packet contains
30// a set of instruction classes.
31//
32// Specifically, currentState is a set of bit-masks
33// The nth bit in a bit-mask indicates whether the nth resource is being used
34// by this state. The set of bit-masks in a state represent the different
35// possible outcomes of transitioning to this state.
36// For example: Consider a two resource architecture: Resource L and Resource M
37// with three instruction classes: L, M, and L_or_M
38// From the initial state (currentState = 0x00), if we add instruction class
39// L_or_M we will transition to a state with currentState = [0x01, 0x10]. This
40// represents the possible resource states that can result from adding a L_or_M
41// instruction
42//
43// Another way of thinking about this transition is we are mapping a NDFA with
44// two states [0x01] and [0x10] into a DFA with a single state [0x01, 0x10]
45//
46//
47namespace {
48class State {
49 public:
50 static int currentStateNum;
51 int stateNum;
52 bool isInitial;
53 std::set<unsigned> stateInfo;
54
55 State();
56 State(const State& S);
57
58 //
59 // canAddInsnClass - Returns true if an instruction of type InsnClass is a
60 // valid transition from this state i.e., can an instruction of type InsnClass
61 // be added to the packet represented by this state
62 //
63 // PossibleStates is the set of valid resource states that ensue from valid
64 // transitions
65 //
66 bool canAddInsnClass(unsigned InsnClass, std::set<unsigned>& PossibleStates);
67};
68} // End anonymous namespace
69
70
71namespace {
72struct Transition {
73 public:
74 static int currentTransitionNum;
75 int transitionNum;
76 State* from;
77 unsigned input;
78 State* to;
79
80 Transition(State* from_, unsigned input_, State* to_);
81};
82} // End anonymous namespace
83
84
85//
86// Comparators to keep set of states sorted
87//
88namespace {
89struct ltState {
90 bool operator()(const State* s1, const State* s2) const;
91};
92} // End anonymous namespace
93
94
95//
96// class DFA: deterministic finite automaton for processor resource tracking
97//
98namespace {
99class DFA {
100public:
101 DFA();
102
103 // Set of states. Need to keep this sorted to emit the transition table
104 std::set<State*, ltState> states;
105
106 // Map from a state to the list of transitions with that state as source
107 std::map<State*, SmallVector<Transition*, 16>, ltState> stateTransitions;
108 State* currentState;
109
110 // Highest valued Input seen
111 unsigned LargestInput;
112
113 //
114 // Modify the DFA
115 //
116 void initialize();
117 void addState(State*);
118 void addTransition(Transition*);
119
120 //
121 // getTransition - Return the state when a transition is made from
122 // State From with Input I. If a transition is not found, return NULL
123 //
124 State* getTransition(State*, unsigned);
125
126 //
127 // isValidTransition: Predicate that checks if there is a valid transition
128 // from state From on input InsnClass
129 //
130 bool isValidTransition(State* From, unsigned InsnClass);
131
132 //
133 // writeTable: Print out a table representing the DFA
134 //
135 void writeTableAndAPI(raw_ostream &OS, const std::string& ClassName);
136};
137} // End anonymous namespace
138
139
140//
141// Constructors for State, Transition, and DFA
142//
143State::State() :
144 stateNum(currentStateNum++), isInitial(false) {}
145
146
147State::State(const State& S) :
148 stateNum(currentStateNum++), isInitial(S.isInitial),
149 stateInfo(S.stateInfo) {}
150
151
152Transition::Transition(State* from_, unsigned input_, State* to_) :
153 transitionNum(currentTransitionNum++), from(from_), input(input_),
154 to(to_) {}
155
156
157DFA::DFA() :
158 LargestInput(0) {}
159
160
161bool ltState::operator()(const State* s1, const State* s2) const {
162 return (s1->stateNum < s2->stateNum);
163}
164
165
166//
167// canAddInsnClass - Returns true if an instruction of type InsnClass is a
168// valid transition from this state i.e., can an instruction of type InsnClass
169// be added to the packet represented by this state
170//
171// PossibleStates is the set of valid resource states that ensue from valid
172// transitions
173//
174bool State::canAddInsnClass(unsigned InsnClass,
175 std::set<unsigned>& PossibleStates) {
176 //
177 // Iterate over all resource states in currentState
178 //
179 bool AddedState = false;
180
181 for (std::set<unsigned>::iterator SI = stateInfo.begin();
182 SI != stateInfo.end(); ++SI) {
183 unsigned thisState = *SI;
184
185 //
186 // Iterate over all possible resources used in InsnClass
187 // For ex: for InsnClass = 0x11, all resources = {0x01, 0x10}
188 //
189
190 DenseSet<unsigned> VisitedResourceStates;
191 for (unsigned int j = 0; j < sizeof(InsnClass) * 8; ++j) {
192 if ((0x1 << j) & InsnClass) {
193 //
194 // For each possible resource used in InsnClass, generate the
195 // resource state if that resource was used
196 //
197 unsigned ResultingResourceState = thisState | (0x1 << j);
198 //
199 // Check if the resulting resource state can be accommodated in this
200 // packet
201 // We compute ResultingResourceState OR thisState
202 // If the result of the OR is different than thisState, it implies
203 // that there is at least one resource that can be used to schedule
204 // InsnClass in the current packet
205 // Insert ResultingResourceState into PossibleStates only if we haven't
206 // processed ResultingResourceState before
207 //
208 if ((ResultingResourceState != thisState) &&
209 (VisitedResourceStates.count(ResultingResourceState) == 0)) {
210 VisitedResourceStates.insert(ResultingResourceState);
211 PossibleStates.insert(ResultingResourceState);
212 AddedState = true;
213 }
214 }
215 }
216 }
217
218 return AddedState;
219}
220
221
222void DFA::initialize() {
223 currentState->isInitial = true;
224}
225
226
227void DFA::addState(State* S) {
228 assert(!states.count(S) && "State already exists");
229 states.insert(S);
230}
231
232
233void DFA::addTransition(Transition* T) {
234 // Update LargestInput
235 if (T->input > LargestInput)
236 LargestInput = T->input;
237
238 // Add the new transition
239 stateTransitions[T->from].push_back(T);
240}
241
242
243//
244// getTransition - Return the state when a transition is made from
245// State From with Input I. If a transition is not found, return NULL
246//
247State* DFA::getTransition(State* From, unsigned I) {
248 // Do we have a transition from state From?
249 if (!stateTransitions.count(From))
250 return NULL;
251
252 // Do we have a transition from state From with Input I?
253 for (SmallVector<Transition*, 16>::iterator VI =
254 stateTransitions[From].begin();
255 VI != stateTransitions[From].end(); ++VI)
256 if ((*VI)->input == I)
257 return (*VI)->to;
258
259 return NULL;
260}
261
262
263bool DFA::isValidTransition(State* From, unsigned InsnClass) {
264 return (getTransition(From, InsnClass) != NULL);
265}
266
267
268int State::currentStateNum = 0;
269int Transition::currentTransitionNum = 0;
270
271DFAGen::DFAGen(RecordKeeper& R):
272 TargetName(CodeGenTarget(R).getName()),
273 allInsnClasses(), Records(R) {}
274
275
276//
277// writeTableAndAPI - Print out a table representing the DFA and the
278// associated API to create a DFA packetizer
279//
280// Format:
281// DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid
282// transitions
283// DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable for
284// the ith state
285//
286//
287void DFA::writeTableAndAPI(raw_ostream &OS, const std::string& TargetName) {
288 std::set<State*, ltState>::iterator SI = states.begin();
289 // This table provides a map to the beginning of the transitions for State s
290 // in DFAStateInputTable i.e.,
291 std::vector<int> StateEntry(states.size());
292
293 OS << "namespace llvm {\n\n";
294 OS << "const int " << TargetName << "DFAStateInputTable[][2] = {\n";
295
296 // Tracks the total valid transitions encountered so far. It is used
297 // to construct the StateEntry table
298 int ValidTransitions = 0;
299 for (unsigned i = 0; i < states.size(); ++i, ++SI) {
300 StateEntry[i] = ValidTransitions;
301 for (unsigned j = 0; j <= LargestInput; ++j) {
302 assert (((*SI)->stateNum == (int) i) && "Mismatch in state numbers");
303 if (!isValidTransition(*SI, j))
304 continue;
305
306 OS << "{" << j << ", "
307 << getTransition(*SI, j)->stateNum
308 << "}, ";
309 ++ValidTransitions;
310 }
311
312 /* If there are no valid transitions from this stage, we need a sentinel
313 transition */
314 if (ValidTransitions == StateEntry[i])
315 OS << "{-1, -1},";
316
317 OS << "\n";
318 }
319 OS << "};\n\n";
320 OS << "const unsigned int " << TargetName << "DFAStateEntryTable[] = {\n";
321
322 // Multiply i by 2 since each entry in DFAStateInputTable is a set of
323 // two numbers
324 for (unsigned i = 0; i < states.size(); ++i)
325 OS << StateEntry[i] << ", ";
326
327 OS << "\n};\n";
328 OS << "} // namespace\n";
329
330
331 //
332 // Emit DFA Packetizer tables if the target is a VLIW machine
333 //
334 std::string SubTargetClassName = TargetName + "GenSubtargetInfo";
335 OS << "\n" << "#include \"llvm/CodeGen/DFAPacketizer.h\"\n";
336 OS << "namespace llvm {\n";
337 OS << "DFAPacketizer* " << SubTargetClassName << "::"
338 << "createDFAPacketizer(const InstrItineraryData *IID) const {\n"
339 << " return new DFAPacketizer(IID, " << TargetName
340 << "DFAStateInputTable, " << TargetName << "DFAStateEntryTable);\n}\n\n";
341 OS << "} // End llvm namespace \n";
342}
343
344
345//
346// collectAllInsnClasses - Populate allInsnClasses which is a set of units
347// used in each stage.
348//
349void DFAGen::collectAllInsnClasses(const std::string &Name,
350 Record *ItinData,
351 unsigned &NStages,
352 raw_ostream &OS) {
353 // Collect processor itineraries
354 std::vector<Record*> ProcItinList =
355 Records.getAllDerivedDefinitions("ProcessorItineraries");
356
357 // If just no itinerary then don't bother
358 if (ProcItinList.size() < 2)
359 return;
360 std::map<std::string, unsigned> NameToBitsMap;
361
362 // Parse functional units for all the itineraries.
363 for (unsigned i = 0, N = ProcItinList.size(); i < N; ++i) {
364 Record *Proc = ProcItinList[i];
365 std::vector<Record*> FUs = Proc->getValueAsListOfDefs("FU");
366
367 // Convert macros to bits for each stage
368 for (unsigned i = 0, N = FUs.size(); i < N; ++i)
369 NameToBitsMap[FUs[i]->getName()] = (unsigned) (1U << i);
370 }
371
372 const std::vector<Record*> &StageList =
373 ItinData->getValueAsListOfDefs("Stages");
374
375 // The number of stages
376 NStages = StageList.size();
377
378 // For each unit
379 unsigned UnitBitValue = 0;
380
381 // Compute the bitwise or of each unit used in this stage
382 for (unsigned i = 0; i < NStages; ++i) {
383 const Record *Stage = StageList[i];
384
385 // Get unit list
386 const std::vector<Record*> &UnitList =
387 Stage->getValueAsListOfDefs("Units");
388
389 for (unsigned j = 0, M = UnitList.size(); j < M; ++j) {
390 // Conduct bitwise or
391 std::string UnitName = UnitList[j]->getName();
392 assert(NameToBitsMap.count(UnitName));
393 UnitBitValue |= NameToBitsMap[UnitName];
394 }
395
396 if (UnitBitValue != 0)
397 allInsnClasses.insert(UnitBitValue);
398 }
399}
400
401
402//
403// Run the worklist algorithm to generate the DFA
404//
405void DFAGen::run(raw_ostream &OS) {
406 EmitSourceFileHeader("Target DFA Packetizer Tables", OS);
407
408 // Collect processor iteraries
409 std::vector<Record*> ProcItinList =
410 Records.getAllDerivedDefinitions("ProcessorItineraries");
411
412 //
413 // Collect the instruction classes
414 //
415 for (unsigned i = 0, N = ProcItinList.size(); i < N; i++) {
416 Record *Proc = ProcItinList[i];
417
418 // Get processor itinerary name
419 const std::string &Name = Proc->getName();
420
421 // Skip default
422 if (Name == "NoItineraries")
423 continue;
424
425 // Sanity check for at least one instruction itinerary class
426 unsigned NItinClasses =
427 Records.getAllDerivedDefinitions("InstrItinClass").size();
428 if (NItinClasses == 0)
429 return;
430
431 // Get itinerary data list
432 std::vector<Record*> ItinDataList = Proc->getValueAsListOfDefs("IID");
433
434 // Collect instruction classes for all itinerary data
435 for (unsigned j = 0, M = ItinDataList.size(); j < M; j++) {
436 Record *ItinData = ItinDataList[j];
437 unsigned NStages;
438 collectAllInsnClasses(Name, ItinData, NStages, OS);
439 }
440 }
441
442
443 //
444 // Run a worklist algorithm to generate the DFA
445 //
446 DFA D;
447 State* Initial = new State;
448 Initial->isInitial = true;
449 Initial->stateInfo.insert(0x0);
450 D.addState(Initial);
451 SmallVector<State*, 32> WorkList;
452 std::map<std::set<unsigned>, State*> Visited;
453
454 WorkList.push_back(Initial);
455
456 //
457 // Worklist algorithm to create a DFA for processor resource tracking
458 // C = {set of InsnClasses}
459 // Begin with initial node in worklist. Initial node does not have
460 // any consumed resources,
461 // ResourceState = 0x0
462 // Visited = {}
463 // While worklist != empty
464 // S = first element of worklist
465 // For every instruction class C
466 // if we can accommodate C in S:
467 // S' = state with resource states = {S Union C}
468 // Add a new transition: S x C -> S'
469 // If S' is not in Visited:
470 // Add S' to worklist
471 // Add S' to Visited
472 //
473 while (!WorkList.empty()) {
474 State* current = WorkList.pop_back_val();
475 for (DenseSet<unsigned>::iterator CI = allInsnClasses.begin(),
476 CE = allInsnClasses.end(); CI != CE; ++CI) {
477 unsigned InsnClass = *CI;
478
479 std::set<unsigned> NewStateResources;
480 //
481 // If we haven't already created a transition for this input
482 // and the state can accommodate this InsnClass, create a transition
483 //
484 if (!D.getTransition(current, InsnClass) &&
485 current->canAddInsnClass(InsnClass, NewStateResources)) {
486 State* NewState = NULL;
487
488 //
489 // If we have seen this state before, then do not create a new state
490 //
491 //
492 std::map<std::set<unsigned>, State*>::iterator VI;
493 if ((VI = Visited.find(NewStateResources)) != Visited.end())
494 NewState = VI->second;
495 else {
496 NewState = new State;
497 NewState->stateInfo = NewStateResources;
498 D.addState(NewState);
499 Visited[NewStateResources] = NewState;
500 WorkList.push_back(NewState);
501 }
502
503 Transition* NewTransition = new Transition(current, InsnClass,
504 NewState);
505 D.addTransition(NewTransition);
506 }
507 }
508 }
509
510 // Print out the table
511 D.writeTableAndAPI(OS, TargetName);
512}