blob: 76e7feed4bd3da593d58a1e99e1f0b7d08395696 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Anton Korobeynikovc6c98af2007-04-29 18:02:48 +000027 <li><a href="#aliasstructure">Aliases</a>
Reid Spencerca86e162006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000029 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000030 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000031 </ol>
32 </li>
Chris Lattner00950542001-06-06 20:29:01 +000033 <li><a href="#typesystem">Type System</a>
34 <ol>
Robert Bocchino7b81c752006-02-17 21:18:08 +000035 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000036 <ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000038 </ol>
39 </li>
Chris Lattner00950542001-06-06 20:29:01 +000040 <li><a href="#t_derived">Derived Types</a>
41 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000042 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000043 <li><a href="#t_function">Function Type</a></li>
44 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000045 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000046 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000047 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000048 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000049 </ol>
50 </li>
51 </ol>
52 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000053 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000054 <ol>
55 <li><a href="#simpleconstants">Simple Constants</a>
56 <li><a href="#aggregateconstants">Aggregate Constants</a>
57 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
58 <li><a href="#undefvalues">Undefined Values</a>
59 <li><a href="#constantexprs">Constant Expressions</a>
60 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000061 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000062 <li><a href="#othervalues">Other Values</a>
63 <ol>
64 <li><a href="#inlineasm">Inline Assembler Expressions</a>
65 </ol>
66 </li>
Chris Lattner00950542001-06-06 20:29:01 +000067 <li><a href="#instref">Instruction Reference</a>
68 <ol>
69 <li><a href="#terminators">Terminator Instructions</a>
70 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000071 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
72 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000073 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
74 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000075 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000076 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000077 </ol>
78 </li>
Chris Lattner00950542001-06-06 20:29:01 +000079 <li><a href="#binaryops">Binary Operations</a>
80 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
82 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
83 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000084 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
85 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
86 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000087 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
88 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
89 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000090 </ol>
91 </li>
Chris Lattner00950542001-06-06 20:29:01 +000092 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
93 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +000094 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
95 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
96 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000097 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000098 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000099 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000100 </ol>
101 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000102 <li><a href="#vectorops">Vector Operations</a>
103 <ol>
104 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
105 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
106 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000107 </ol>
108 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000109 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000110 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000111 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
112 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
113 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000114 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
115 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
116 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000117 </ol>
118 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000119 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000120 <ol>
121 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
122 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
123 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
124 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
125 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000126 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
127 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
128 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
129 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000130 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
131 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000132 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000133 </ol>
Chris Lattner00950542001-06-06 20:29:01 +0000134 <li><a href="#otherops">Other Operations</a>
135 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000136 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
137 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000138 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000139 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000140 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000141 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000142 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000143 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000144 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000145 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000146 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000147 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000148 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
149 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000150 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
151 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
152 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000153 </ol>
154 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000155 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
156 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000157 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
158 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
159 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000160 </ol>
161 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000162 <li><a href="#int_codegen">Code Generator Intrinsics</a>
163 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000164 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
165 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
166 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
167 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
168 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
169 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
170 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000171 </ol>
172 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000173 <li><a href="#int_libc">Standard C Library Intrinsics</a>
174 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000175 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
176 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
177 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
178 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
179 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000180 </ol>
181 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000182 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000183 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000184 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000185 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
186 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
187 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000188 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
189 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000190 </ol>
191 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000192 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000193 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Chandler Carruth2eb93b32007-07-20 19:34:37 +0000194 <li><a href="#int_atomics">Atomic Operations and Synchronization Intrinsics</a>
195 <ol>
196 <li><a href="#int_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_ls">'<tt>llvm.atomic.ls.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_lss">'<tt>llvm.atomic.lss.*</tt>' Intrinsic</a></li>
200 <li><a href="#int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a></li>
201 </ol>
202 </li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000203 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000204 <ol>
205 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000206 </ol>
207 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000208 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000209 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000210 <li><a href="#int_var_annotation">
211 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
212 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000213 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000214 </ol>
215 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000216</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000217
218<div class="doc_author">
219 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
220 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000221</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000222
Chris Lattner00950542001-06-06 20:29:01 +0000223<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000224<div class="doc_section"> <a name="abstract">Abstract </a></div>
225<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000226
Misha Brukman9d0919f2003-11-08 01:05:38 +0000227<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000228<p>This document is a reference manual for the LLVM assembly language.
229LLVM is an SSA based representation that provides type safety,
230low-level operations, flexibility, and the capability of representing
231'all' high-level languages cleanly. It is the common code
232representation used throughout all phases of the LLVM compilation
233strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000234</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000235
Chris Lattner00950542001-06-06 20:29:01 +0000236<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000237<div class="doc_section"> <a name="introduction">Introduction</a> </div>
238<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000239
Misha Brukman9d0919f2003-11-08 01:05:38 +0000240<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000241
Chris Lattner261efe92003-11-25 01:02:51 +0000242<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000243different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000244representation (suitable for fast loading by a Just-In-Time compiler),
245and as a human readable assembly language representation. This allows
246LLVM to provide a powerful intermediate representation for efficient
247compiler transformations and analysis, while providing a natural means
248to debug and visualize the transformations. The three different forms
249of LLVM are all equivalent. This document describes the human readable
250representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000251
John Criswellc1f786c2005-05-13 22:25:59 +0000252<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000253while being expressive, typed, and extensible at the same time. It
254aims to be a "universal IR" of sorts, by being at a low enough level
255that high-level ideas may be cleanly mapped to it (similar to how
256microprocessors are "universal IR's", allowing many source languages to
257be mapped to them). By providing type information, LLVM can be used as
258the target of optimizations: for example, through pointer analysis, it
259can be proven that a C automatic variable is never accessed outside of
260the current function... allowing it to be promoted to a simple SSA
261value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000262
Misha Brukman9d0919f2003-11-08 01:05:38 +0000263</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000264
Chris Lattner00950542001-06-06 20:29:01 +0000265<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000266<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000267
Misha Brukman9d0919f2003-11-08 01:05:38 +0000268<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000269
Chris Lattner261efe92003-11-25 01:02:51 +0000270<p>It is important to note that this document describes 'well formed'
271LLVM assembly language. There is a difference between what the parser
272accepts and what is considered 'well formed'. For example, the
273following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000274
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000275<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000276<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000277%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000278</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000279</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000280
Chris Lattner261efe92003-11-25 01:02:51 +0000281<p>...because the definition of <tt>%x</tt> does not dominate all of
282its uses. The LLVM infrastructure provides a verification pass that may
283be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000284automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000285the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000286by the verifier pass indicate bugs in transformation passes or input to
287the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000288</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000289
Reid Spencer20677642007-07-20 19:59:11 +0000290<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000291
Chris Lattner00950542001-06-06 20:29:01 +0000292<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000293<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000294<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000295
Misha Brukman9d0919f2003-11-08 01:05:38 +0000296<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000297
Reid Spencer2c452282007-08-07 14:34:28 +0000298 <p>LLVM identifiers come in two basic types: global and local. Global
299 identifiers (functions, global variables) begin with the @ character. Local
300 identifiers (register names, types) begin with the % character. Additionally,
301 there are three different formats for identifiers, for different purposes:
Chris Lattnerd7923912004-05-23 21:06:01 +0000302
Chris Lattner00950542001-06-06 20:29:01 +0000303<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000304 <li>Named values are represented as a string of characters with their prefix.
305 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
306 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000307 Identifiers which require other characters in their names can be surrounded
Reid Spencer2c452282007-08-07 14:34:28 +0000308 with quotes. In this way, anything except a <tt>&quot;</tt> character can
309 be used in a named value.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000310
Reid Spencer2c452282007-08-07 14:34:28 +0000311 <li>Unnamed values are represented as an unsigned numeric value with their
312 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000313
Reid Spencercc16dc32004-12-09 18:02:53 +0000314 <li>Constants, which are described in a <a href="#constants">section about
315 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000316</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000317
Reid Spencer2c452282007-08-07 14:34:28 +0000318<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000319don't need to worry about name clashes with reserved words, and the set of
320reserved words may be expanded in the future without penalty. Additionally,
321unnamed identifiers allow a compiler to quickly come up with a temporary
322variable without having to avoid symbol table conflicts.</p>
323
Chris Lattner261efe92003-11-25 01:02:51 +0000324<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000325languages. There are keywords for different opcodes
326('<tt><a href="#i_add">add</a></tt>',
327 '<tt><a href="#i_bitcast">bitcast</a></tt>',
328 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000329href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000330and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000331none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000332
333<p>Here is an example of LLVM code to multiply the integer variable
334'<tt>%X</tt>' by 8:</p>
335
Misha Brukman9d0919f2003-11-08 01:05:38 +0000336<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000337
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000338<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000339<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000340%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000341</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000342</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000343
Misha Brukman9d0919f2003-11-08 01:05:38 +0000344<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000345
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000346<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000347<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000348%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000349</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000350</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000351
Misha Brukman9d0919f2003-11-08 01:05:38 +0000352<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000353
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000354<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000355<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000356<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
357<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
358%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000359</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000360</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000361
Chris Lattner261efe92003-11-25 01:02:51 +0000362<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
363important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000364
Chris Lattner00950542001-06-06 20:29:01 +0000365<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000366
367 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
368 line.</li>
369
370 <li>Unnamed temporaries are created when the result of a computation is not
371 assigned to a named value.</li>
372
Misha Brukman9d0919f2003-11-08 01:05:38 +0000373 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000374
Misha Brukman9d0919f2003-11-08 01:05:38 +0000375</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000376
John Criswelle4c57cc2005-05-12 16:52:32 +0000377<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000378demonstrating instructions, we will follow an instruction with a comment that
379defines the type and name of value produced. Comments are shown in italic
380text.</p>
381
Misha Brukman9d0919f2003-11-08 01:05:38 +0000382</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000383
384<!-- *********************************************************************** -->
385<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
386<!-- *********************************************************************** -->
387
388<!-- ======================================================================= -->
389<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
390</div>
391
392<div class="doc_text">
393
394<p>LLVM programs are composed of "Module"s, each of which is a
395translation unit of the input programs. Each module consists of
396functions, global variables, and symbol table entries. Modules may be
397combined together with the LLVM linker, which merges function (and
398global variable) definitions, resolves forward declarations, and merges
399symbol table entries. Here is an example of the "hello world" module:</p>
400
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000401<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000402<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000403<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
404 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000405
406<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000407<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000408
409<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000410define i32 @main() { <i>; i32()* </i>
Reid Spencerca86e162006-12-31 07:07:53 +0000411 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000412 %cast210 = <a
Chris Lattner6c0955b2007-06-12 17:01:15 +0000413 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000414
415 <i>; Call puts function to write out the string to stdout...</i>
416 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000417 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000418 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000419 href="#i_ret">ret</a> i32 0<br>}<br>
420</pre>
421</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000422
423<p>This example is made up of a <a href="#globalvars">global variable</a>
424named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
425function, and a <a href="#functionstructure">function definition</a>
426for "<tt>main</tt>".</p>
427
Chris Lattnere5d947b2004-12-09 16:36:40 +0000428<p>In general, a module is made up of a list of global values,
429where both functions and global variables are global values. Global values are
430represented by a pointer to a memory location (in this case, a pointer to an
431array of char, and a pointer to a function), and have one of the following <a
432href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000433
Chris Lattnere5d947b2004-12-09 16:36:40 +0000434</div>
435
436<!-- ======================================================================= -->
437<div class="doc_subsection">
438 <a name="linkage">Linkage Types</a>
439</div>
440
441<div class="doc_text">
442
443<p>
444All Global Variables and Functions have one of the following types of linkage:
445</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000446
447<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000448
Chris Lattnerfa730212004-12-09 16:11:40 +0000449 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000450
451 <dd>Global values with internal linkage are only directly accessible by
452 objects in the current module. In particular, linking code into a module with
453 an internal global value may cause the internal to be renamed as necessary to
454 avoid collisions. Because the symbol is internal to the module, all
455 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000456 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000457 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000458
Chris Lattnerfa730212004-12-09 16:11:40 +0000459 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000460
Chris Lattner4887bd82007-01-14 06:51:48 +0000461 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
462 the same name when linkage occurs. This is typically used to implement
463 inline functions, templates, or other code which must be generated in each
464 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
465 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000466 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000467
Chris Lattnerfa730212004-12-09 16:11:40 +0000468 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000469
470 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
471 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
Chris Lattner4887bd82007-01-14 06:51:48 +0000472 used for globals that may be emitted in multiple translation units, but that
473 are not guaranteed to be emitted into every translation unit that uses them.
474 One example of this are common globals in C, such as "<tt>int X;</tt>" at
475 global scope.
Chris Lattnerfa730212004-12-09 16:11:40 +0000476 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000477
Chris Lattnerfa730212004-12-09 16:11:40 +0000478 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000479
480 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
481 pointer to array type. When two global variables with appending linkage are
482 linked together, the two global arrays are appended together. This is the
483 LLVM, typesafe, equivalent of having the system linker append together
484 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000485 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000486
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000487 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
488 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
489 until linked, if not linked, the symbol becomes null instead of being an
490 undefined reference.
491 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000492
Chris Lattnerfa730212004-12-09 16:11:40 +0000493 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000494
495 <dd>If none of the above identifiers are used, the global is externally
496 visible, meaning that it participates in linkage and can be used to resolve
497 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000498 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000499</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000500
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000501 <p>
502 The next two types of linkage are targeted for Microsoft Windows platform
503 only. They are designed to support importing (exporting) symbols from (to)
504 DLLs.
505 </p>
506
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000507 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000508 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
509
510 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
511 or variable via a global pointer to a pointer that is set up by the DLL
512 exporting the symbol. On Microsoft Windows targets, the pointer name is
513 formed by combining <code>_imp__</code> and the function or variable name.
514 </dd>
515
516 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
517
518 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
519 pointer to a pointer in a DLL, so that it can be referenced with the
520 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
521 name is formed by combining <code>_imp__</code> and the function or variable
522 name.
523 </dd>
524
Chris Lattnerfa730212004-12-09 16:11:40 +0000525</dl>
526
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000527<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000528variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
529variable and was linked with this one, one of the two would be renamed,
530preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
531external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000532outside of the current module.</p>
533<p>It is illegal for a function <i>declaration</i>
534to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000535or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000536<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
537linkages.
Chris Lattnerfa730212004-12-09 16:11:40 +0000538</div>
539
540<!-- ======================================================================= -->
541<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000542 <a name="callingconv">Calling Conventions</a>
543</div>
544
545<div class="doc_text">
546
547<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
548and <a href="#i_invoke">invokes</a> can all have an optional calling convention
549specified for the call. The calling convention of any pair of dynamic
550caller/callee must match, or the behavior of the program is undefined. The
551following calling conventions are supported by LLVM, and more may be added in
552the future:</p>
553
554<dl>
555 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
556
557 <dd>This calling convention (the default if no other calling convention is
558 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000559 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000560 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000561 </dd>
562
563 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
564
565 <dd>This calling convention attempts to make calls as fast as possible
566 (e.g. by passing things in registers). This calling convention allows the
567 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner8cdc5bc2005-05-06 23:08:23 +0000568 without having to conform to an externally specified ABI. Implementations of
569 this convention should allow arbitrary tail call optimization to be supported.
570 This calling convention does not support varargs and requires the prototype of
571 all callees to exactly match the prototype of the function definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000572 </dd>
573
574 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
575
576 <dd>This calling convention attempts to make code in the caller as efficient
577 as possible under the assumption that the call is not commonly executed. As
578 such, these calls often preserve all registers so that the call does not break
579 any live ranges in the caller side. This calling convention does not support
580 varargs and requires the prototype of all callees to exactly match the
581 prototype of the function definition.
582 </dd>
583
Chris Lattnercfe6b372005-05-07 01:46:40 +0000584 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000585
586 <dd>Any calling convention may be specified by number, allowing
587 target-specific calling conventions to be used. Target specific calling
588 conventions start at 64.
589 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000590</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000591
592<p>More calling conventions can be added/defined on an as-needed basis, to
593support pascal conventions or any other well-known target-independent
594convention.</p>
595
596</div>
597
598<!-- ======================================================================= -->
599<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000600 <a name="visibility">Visibility Styles</a>
601</div>
602
603<div class="doc_text">
604
605<p>
606All Global Variables and Functions have one of the following visibility styles:
607</p>
608
609<dl>
610 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
611
612 <dd>On ELF, default visibility means that the declaration is visible to other
613 modules and, in shared libraries, means that the declared entity may be
614 overridden. On Darwin, default visibility means that the declaration is
615 visible to other modules. Default visibility corresponds to "external
616 linkage" in the language.
617 </dd>
618
619 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
620
621 <dd>Two declarations of an object with hidden visibility refer to the same
622 object if they are in the same shared object. Usually, hidden visibility
623 indicates that the symbol will not be placed into the dynamic symbol table,
624 so no other module (executable or shared library) can reference it
625 directly.
626 </dd>
627
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000628 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
629
630 <dd>On ELF, protected visibility indicates that the symbol will be placed in
631 the dynamic symbol table, but that references within the defining module will
632 bind to the local symbol. That is, the symbol cannot be overridden by another
633 module.
634 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000635</dl>
636
637</div>
638
639<!-- ======================================================================= -->
640<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000641 <a name="globalvars">Global Variables</a>
642</div>
643
644<div class="doc_text">
645
Chris Lattner3689a342005-02-12 19:30:21 +0000646<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000647instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000648an explicit section to be placed in, and may have an optional explicit alignment
649specified. A variable may be defined as "thread_local", which means that it
650will not be shared by threads (each thread will have a separated copy of the
651variable). A variable may be defined as a global "constant," which indicates
652that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000653optimization, allowing the global data to be placed in the read-only section of
654an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000655cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000656
657<p>
658LLVM explicitly allows <em>declarations</em> of global variables to be marked
659constant, even if the final definition of the global is not. This capability
660can be used to enable slightly better optimization of the program, but requires
661the language definition to guarantee that optimizations based on the
662'constantness' are valid for the translation units that do not include the
663definition.
664</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000665
666<p>As SSA values, global variables define pointer values that are in
667scope (i.e. they dominate) all basic blocks in the program. Global
668variables always define a pointer to their "content" type because they
669describe a region of memory, and all memory objects in LLVM are
670accessed through pointers.</p>
671
Chris Lattner88f6c462005-11-12 00:45:07 +0000672<p>LLVM allows an explicit section to be specified for globals. If the target
673supports it, it will emit globals to the section specified.</p>
674
Chris Lattner2cbdc452005-11-06 08:02:57 +0000675<p>An explicit alignment may be specified for a global. If not present, or if
676the alignment is set to zero, the alignment of the global is set by the target
677to whatever it feels convenient. If an explicit alignment is specified, the
678global is forced to have at least that much alignment. All alignments must be
679a power of 2.</p>
680
Chris Lattner68027ea2007-01-14 00:27:09 +0000681<p>For example, the following defines a global with an initializer, section,
682 and alignment:</p>
683
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000684<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000685<pre>
Chris Lattner3e63a9d2007-07-13 20:01:46 +0000686@G = constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000687</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000688</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000689
Chris Lattnerfa730212004-12-09 16:11:40 +0000690</div>
691
692
693<!-- ======================================================================= -->
694<div class="doc_subsection">
695 <a name="functionstructure">Functions</a>
696</div>
697
698<div class="doc_text">
699
Reid Spencerca86e162006-12-31 07:07:53 +0000700<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
701an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000702<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000703<a href="#callingconv">calling convention</a>, a return type, an optional
704<a href="#paramattrs">parameter attribute</a> for the return type, a function
705name, a (possibly empty) argument list (each with optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000706<a href="#paramattrs">parameter attributes</a>), an optional section, an
707optional alignment, an opening curly brace, a list of basic blocks, and a
708closing curly brace.
709
710LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
711optional <a href="#linkage">linkage type</a>, an optional
712<a href="#visibility">visibility style</a>, an optional
713<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000714<a href="#paramattrs">parameter attribute</a> for the return type, a function
715name, a possibly empty list of arguments, and an optional alignment.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000716
717<p>A function definition contains a list of basic blocks, forming the CFG for
718the function. Each basic block may optionally start with a label (giving the
719basic block a symbol table entry), contains a list of instructions, and ends
720with a <a href="#terminators">terminator</a> instruction (such as a branch or
721function return).</p>
722
Chris Lattner4a3c9012007-06-08 16:52:14 +0000723<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000724executed on entrance to the function, and it is not allowed to have predecessor
725basic blocks (i.e. there can not be any branches to the entry block of a
726function). Because the block can have no predecessors, it also cannot have any
727<a href="#i_phi">PHI nodes</a>.</p>
728
Chris Lattner88f6c462005-11-12 00:45:07 +0000729<p>LLVM allows an explicit section to be specified for functions. If the target
730supports it, it will emit functions to the section specified.</p>
731
Chris Lattner2cbdc452005-11-06 08:02:57 +0000732<p>An explicit alignment may be specified for a function. If not present, or if
733the alignment is set to zero, the alignment of the function is set by the target
734to whatever it feels convenient. If an explicit alignment is specified, the
735function is forced to have at least that much alignment. All alignments must be
736a power of 2.</p>
737
Chris Lattnerfa730212004-12-09 16:11:40 +0000738</div>
739
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000740
741<!-- ======================================================================= -->
742<div class="doc_subsection">
743 <a name="aliasstructure">Aliases</a>
744</div>
745<div class="doc_text">
746 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikova80e1182007-04-28 13:45:00 +0000747 function or global variable or bitcast of global value). Aliases may have an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000748 optional <a href="#linkage">linkage type</a>, and an
749 optional <a href="#visibility">visibility style</a>.</p>
750
751 <h5>Syntax:</h5>
752
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000753<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000754<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000755@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000756</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000757</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000758
759</div>
760
761
762
Chris Lattner4e9aba72006-01-23 23:23:47 +0000763<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000764<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
765<div class="doc_text">
766 <p>The return type and each parameter of a function type may have a set of
767 <i>parameter attributes</i> associated with them. Parameter attributes are
768 used to communicate additional information about the result or parameters of
769 a function. Parameter attributes are considered to be part of the function
770 type so two functions types that differ only by the parameter attributes
771 are different function types.</p>
772
Reid Spencer950e9f82007-01-15 18:27:39 +0000773 <p>Parameter attributes are simple keywords that follow the type specified. If
774 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000775 example:</p>
776
777<div class="doc_code">
778<pre>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000779%someFunc = i16 (i8 signext %someParam) zeroext
780%someFunc = i16 (i8 zeroext %someParam) zeroext
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000781</pre>
782</div>
783
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000784 <p>Note that the two function types above are unique because the parameter has
Reid Spencer9445e9a2007-07-19 23:13:04 +0000785 a different attribute (<tt>signext</tt> in the first one, <tt>zeroext</tt> in
786 the second). Also note that the attribute for the function result
787 (<tt>zeroext</tt>) comes immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000788
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000789 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000790 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000791 <dt><tt>zeroext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000792 <dd>This indicates that the parameter should be zero extended just before
793 a call to this function.</dd>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000794 <dt><tt>signext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000795 <dd>This indicates that the parameter should be sign extended just before
796 a call to this function.</dd>
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000797 <dt><tt>inreg</tt></dt>
798 <dd>This indicates that the parameter should be placed in register (if
Anton Korobeynikov66a8c8c2007-01-28 15:27:21 +0000799 possible) during assembling function call. Support for this attribute is
800 target-specific</dd>
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000801 <dt><tt>sret</tt></dt>
Anton Korobeynikov66a8c8c2007-01-28 15:27:21 +0000802 <dd>This indicates that the parameter specifies the address of a structure
Reid Spencer67606122007-03-22 02:02:11 +0000803 that is the return value of the function in the source program.</dd>
Zhou Shengfebca342007-06-05 05:28:26 +0000804 <dt><tt>noalias</tt></dt>
805 <dd>This indicates that the parameter not alias any other object or any
806 other "noalias" objects during the function call.
Reid Spencer2dc52012007-03-22 02:18:56 +0000807 <dt><tt>noreturn</tt></dt>
808 <dd>This function attribute indicates that the function never returns. This
809 indicates to LLVM that every call to this function should be treated as if
810 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
Reid Spencer67606122007-03-22 02:02:11 +0000811 <dt><tt>nounwind</tt></dt>
812 <dd>This function attribute indicates that the function type does not use
813 the unwind instruction and does not allow stack unwinding to propagate
814 through it.</dd>
Duncan Sands50f19f52007-07-27 19:57:41 +0000815 <dt><tt>nest</tt></dt>
816 <dd>This indicates that the parameter can be excised using the
817 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000818 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000819
Reid Spencerca86e162006-12-31 07:07:53 +0000820</div>
821
822<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000823<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000824 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000825</div>
826
827<div class="doc_text">
828<p>
829Modules may contain "module-level inline asm" blocks, which corresponds to the
830GCC "file scope inline asm" blocks. These blocks are internally concatenated by
831LLVM and treated as a single unit, but may be separated in the .ll file if
832desired. The syntax is very simple:
833</p>
834
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000835<div class="doc_code">
836<pre>
837module asm "inline asm code goes here"
838module asm "more can go here"
839</pre>
840</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000841
842<p>The strings can contain any character by escaping non-printable characters.
843 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
844 for the number.
845</p>
846
847<p>
848 The inline asm code is simply printed to the machine code .s file when
849 assembly code is generated.
850</p>
851</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000852
Reid Spencerde151942007-02-19 23:54:10 +0000853<!-- ======================================================================= -->
854<div class="doc_subsection">
855 <a name="datalayout">Data Layout</a>
856</div>
857
858<div class="doc_text">
859<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +0000860data is to be laid out in memory. The syntax for the data layout is simply:</p>
861<pre> target datalayout = "<i>layout specification</i>"</pre>
862<p>The <i>layout specification</i> consists of a list of specifications
863separated by the minus sign character ('-'). Each specification starts with a
864letter and may include other information after the letter to define some
865aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +0000866<dl>
867 <dt><tt>E</tt></dt>
868 <dd>Specifies that the target lays out data in big-endian form. That is, the
869 bits with the most significance have the lowest address location.</dd>
870 <dt><tt>e</tt></dt>
871 <dd>Specifies that hte target lays out data in little-endian form. That is,
872 the bits with the least significance have the lowest address location.</dd>
873 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
874 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
875 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
876 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
877 too.</dd>
878 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
879 <dd>This specifies the alignment for an integer type of a given bit
880 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
881 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
882 <dd>This specifies the alignment for a vector type of a given bit
883 <i>size</i>.</dd>
884 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
885 <dd>This specifies the alignment for a floating point type of a given bit
886 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
887 (double).</dd>
888 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
889 <dd>This specifies the alignment for an aggregate type of a given bit
890 <i>size</i>.</dd>
891</dl>
892<p>When constructing the data layout for a given target, LLVM starts with a
893default set of specifications which are then (possibly) overriden by the
894specifications in the <tt>datalayout</tt> keyword. The default specifications
895are given in this list:</p>
896<ul>
897 <li><tt>E</tt> - big endian</li>
898 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
899 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
900 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
901 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
902 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
903 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
904 alignment of 64-bits</li>
905 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
906 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
907 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
908 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
909 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
910</ul>
911<p>When llvm is determining the alignment for a given type, it uses the
912following rules:
913<ol>
914 <li>If the type sought is an exact match for one of the specifications, that
915 specification is used.</li>
916 <li>If no match is found, and the type sought is an integer type, then the
917 smallest integer type that is larger than the bitwidth of the sought type is
918 used. If none of the specifications are larger than the bitwidth then the the
919 largest integer type is used. For example, given the default specifications
920 above, the i7 type will use the alignment of i8 (next largest) while both
921 i65 and i256 will use the alignment of i64 (largest specified).</li>
922 <li>If no match is found, and the type sought is a vector type, then the
923 largest vector type that is smaller than the sought vector type will be used
924 as a fall back. This happens because <128 x double> can be implemented in
925 terms of 64 <2 x double>, for example.</li>
926</ol>
927</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000928
Chris Lattner00950542001-06-06 20:29:01 +0000929<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000930<div class="doc_section"> <a name="typesystem">Type System</a> </div>
931<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +0000932
Misha Brukman9d0919f2003-11-08 01:05:38 +0000933<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +0000934
Misha Brukman9d0919f2003-11-08 01:05:38 +0000935<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +0000936intermediate representation. Being typed enables a number of
937optimizations to be performed on the IR directly, without having to do
938extra analyses on the side before the transformation. A strong type
939system makes it easier to read the generated code and enables novel
940analyses and transformations that are not feasible to perform on normal
941three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000942
943</div>
944
Chris Lattner00950542001-06-06 20:29:01 +0000945<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +0000946<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000947<div class="doc_text">
John Criswell4457dc92004-04-09 16:48:45 +0000948<p>The primitive types are the fundamental building blocks of the LLVM
Chris Lattnerd4f6b172005-03-07 22:13:59 +0000949system. The current set of primitive types is as follows:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000950
Reid Spencerd3f876c2004-11-01 08:19:36 +0000951<table class="layout">
952 <tr class="layout">
953 <td class="left">
954 <table>
Chris Lattner261efe92003-11-25 01:02:51 +0000955 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000956 <tr><th>Type</th><th>Description</th></tr>
Duncan Sands8036ca42007-03-30 12:22:09 +0000957 <tr><td><tt><a name="t_void">void</a></tt></td><td>No value</td></tr>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000958 <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000959 </tbody>
960 </table>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000961 </td>
962 <td class="right">
963 <table>
Chris Lattner261efe92003-11-25 01:02:51 +0000964 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000965 <tr><th>Type</th><th>Description</th></tr>
Reid Spencer2b916312007-05-16 18:44:01 +0000966 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
Reid Spencerca86e162006-12-31 07:07:53 +0000967 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000968 </tbody>
969 </table>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000970 </td>
971 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000972</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000973</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000974
Chris Lattner00950542001-06-06 20:29:01 +0000975<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000976<div class="doc_subsubsection"> <a name="t_classifications">Type
977Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000978<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000979<p>These different primitive types fall into a few useful
980classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000981
982<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +0000983 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000984 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000985 <tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000986 <td><a name="t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +0000987 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +0000988 </tr>
989 <tr>
990 <td><a name="t_floating">floating point</a></td>
991 <td><tt>float, double</tt></td>
992 </tr>
993 <tr>
994 <td><a name="t_firstclass">first class</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +0000995 <td><tt>i1, ..., float, double, <br/>
Reid Spencer485bad12007-02-15 03:07:05 +0000996 <a href="#t_pointer">pointer</a>,<a href="#t_vector">vector</a></tt>
Reid Spencerca86e162006-12-31 07:07:53 +0000997 </td>
Chris Lattner261efe92003-11-25 01:02:51 +0000998 </tr>
999 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001000</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001001
Chris Lattner261efe92003-11-25 01:02:51 +00001002<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1003most important. Values of these types are the only ones which can be
1004produced by instructions, passed as arguments, or used as operands to
1005instructions. This means that all structures and arrays must be
1006manipulated either by pointer or by component.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001007</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001008
Chris Lattner00950542001-06-06 20:29:01 +00001009<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001010<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001011
Misha Brukman9d0919f2003-11-08 01:05:38 +00001012<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001013
Chris Lattner261efe92003-11-25 01:02:51 +00001014<p>The real power in LLVM comes from the derived types in the system.
1015This is what allows a programmer to represent arrays, functions,
1016pointers, and other useful types. Note that these derived types may be
1017recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001018
Misha Brukman9d0919f2003-11-08 01:05:38 +00001019</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001020
Chris Lattner00950542001-06-06 20:29:01 +00001021<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001022<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1023
1024<div class="doc_text">
1025
1026<h5>Overview:</h5>
1027<p>The integer type is a very simple derived type that simply specifies an
1028arbitrary bit width for the integer type desired. Any bit width from 1 bit to
10292^23-1 (about 8 million) can be specified.</p>
1030
1031<h5>Syntax:</h5>
1032
1033<pre>
1034 iN
1035</pre>
1036
1037<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1038value.</p>
1039
1040<h5>Examples:</h5>
1041<table class="layout">
1042 <tr class="layout">
1043 <td class="left">
1044 <tt>i1</tt><br/>
1045 <tt>i4</tt><br/>
1046 <tt>i8</tt><br/>
1047 <tt>i16</tt><br/>
1048 <tt>i32</tt><br/>
1049 <tt>i42</tt><br/>
1050 <tt>i64</tt><br/>
1051 <tt>i1942652</tt><br/>
1052 </td>
1053 <td class="left">
1054 A boolean integer of 1 bit<br/>
1055 A nibble sized integer of 4 bits.<br/>
1056 A byte sized integer of 8 bits.<br/>
1057 A half word sized integer of 16 bits.<br/>
1058 A word sized integer of 32 bits.<br/>
1059 An integer whose bit width is the answer. <br/>
1060 A double word sized integer of 64 bits.<br/>
1061 A really big integer of over 1 million bits.<br/>
1062 </td>
1063 </tr>
1064</table>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001065</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001066
1067<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001068<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001069
Misha Brukman9d0919f2003-11-08 01:05:38 +00001070<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001071
Chris Lattner00950542001-06-06 20:29:01 +00001072<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001073
Misha Brukman9d0919f2003-11-08 01:05:38 +00001074<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001075sequentially in memory. The array type requires a size (number of
1076elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001077
Chris Lattner7faa8832002-04-14 06:13:44 +00001078<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001079
1080<pre>
1081 [&lt;# elements&gt; x &lt;elementtype&gt;]
1082</pre>
1083
John Criswelle4c57cc2005-05-12 16:52:32 +00001084<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001085be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001086
Chris Lattner7faa8832002-04-14 06:13:44 +00001087<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001088<table class="layout">
1089 <tr class="layout">
1090 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001091 <tt>[40 x i32 ]</tt><br/>
1092 <tt>[41 x i32 ]</tt><br/>
Reid Spencera5173382007-01-04 16:43:23 +00001093 <tt>[40 x i8]</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001094 </td>
1095 <td class="left">
Reid Spencera5173382007-01-04 16:43:23 +00001096 Array of 40 32-bit integer values.<br/>
1097 Array of 41 32-bit integer values.<br/>
1098 Array of 40 8-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001099 </td>
1100 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001101</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001102<p>Here are some examples of multidimensional arrays:</p>
1103<table class="layout">
1104 <tr class="layout">
1105 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001106 <tt>[3 x [4 x i32]]</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001107 <tt>[12 x [10 x float]]</tt><br/>
Reid Spencera5173382007-01-04 16:43:23 +00001108 <tt>[2 x [3 x [4 x i16]]]</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001109 </td>
1110 <td class="left">
Reid Spencera5173382007-01-04 16:43:23 +00001111 3x4 array of 32-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001112 12x10 array of single precision floating point values.<br/>
Reid Spencera5173382007-01-04 16:43:23 +00001113 2x3x4 array of 16-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001114 </td>
1115 </tr>
1116</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001117
John Criswell0ec250c2005-10-24 16:17:18 +00001118<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1119length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001120LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1121As a special case, however, zero length arrays are recognized to be variable
1122length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001123type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001124
Misha Brukman9d0919f2003-11-08 01:05:38 +00001125</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001126
Chris Lattner00950542001-06-06 20:29:01 +00001127<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001128<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001129<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001130<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001131<p>The function type can be thought of as a function signature. It
1132consists of a return type and a list of formal parameter types.
John Criswell009900b2003-11-25 21:45:46 +00001133Function types are usually used to build virtual function tables
Chris Lattner261efe92003-11-25 01:02:51 +00001134(which are structures of pointers to functions), for indirect function
1135calls, and when defining a function.</p>
John Criswell009900b2003-11-25 21:45:46 +00001136<p>
1137The return type of a function type cannot be an aggregate type.
1138</p>
Chris Lattner00950542001-06-06 20:29:01 +00001139<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001140<pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
John Criswell0ec250c2005-10-24 16:17:18 +00001141<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001142specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001143which indicates that the function takes a variable number of arguments.
1144Variable argument functions can access their arguments with the <a
Chris Lattner261efe92003-11-25 01:02:51 +00001145 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001146<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001147<table class="layout">
1148 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001149 <td class="left"><tt>i32 (i32)</tt></td>
1150 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001151 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001152 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001153 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001154 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001155 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1156 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001157 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001158 <tt>float</tt>.
1159 </td>
1160 </tr><tr class="layout">
1161 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1162 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001163 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001164 which returns an integer. This is the signature for <tt>printf</tt> in
1165 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001166 </td>
1167 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001168</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001169
Misha Brukman9d0919f2003-11-08 01:05:38 +00001170</div>
Chris Lattner00950542001-06-06 20:29:01 +00001171<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001172<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001173<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001174<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001175<p>The structure type is used to represent a collection of data members
1176together in memory. The packing of the field types is defined to match
1177the ABI of the underlying processor. The elements of a structure may
1178be any type that has a size.</p>
1179<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1180and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1181field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1182instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001183<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001184<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001185<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001186<table class="layout">
1187 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001188 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1189 <td class="left">A triple of three <tt>i32</tt> values</td>
1190 </tr><tr class="layout">
1191 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1192 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1193 second element is a <a href="#t_pointer">pointer</a> to a
1194 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1195 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001196 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001197</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001198</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001199
Chris Lattner00950542001-06-06 20:29:01 +00001200<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001201<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1202</div>
1203<div class="doc_text">
1204<h5>Overview:</h5>
1205<p>The packed structure type is used to represent a collection of data members
1206together in memory. There is no padding between fields. Further, the alignment
1207of a packed structure is 1 byte. The elements of a packed structure may
1208be any type that has a size.</p>
1209<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1210and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1211field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1212instruction.</p>
1213<h5>Syntax:</h5>
1214<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1215<h5>Examples:</h5>
1216<table class="layout">
1217 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001218 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1219 <td class="left">A triple of three <tt>i32</tt> values</td>
1220 </tr><tr class="layout">
1221 <td class="left"><tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}&nbsp;&gt;</tt></td>
1222 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1223 second element is a <a href="#t_pointer">pointer</a> to a
1224 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1225 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001226 </tr>
1227</table>
1228</div>
1229
1230<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001231<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001232<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001233<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001234<p>As in many languages, the pointer type represents a pointer or
1235reference to another object, which must live in memory.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001236<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001237<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001238<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001239<table class="layout">
1240 <tr class="layout">
1241 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001242 <tt>[4x i32]*</tt><br/>
1243 <tt>i32 (i32 *) *</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001244 </td>
1245 <td class="left">
1246 A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
Reid Spencerca86e162006-12-31 07:07:53 +00001247 four <tt>i32</tt> values<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001248 A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001249 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1250 <tt>i32</tt>.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001251 </td>
1252 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001253</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001254</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001255
Chris Lattnera58561b2004-08-12 19:12:28 +00001256<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001257<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001258<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001259
Chris Lattnera58561b2004-08-12 19:12:28 +00001260<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001261
Reid Spencer485bad12007-02-15 03:07:05 +00001262<p>A vector type is a simple derived type that represents a vector
1263of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001264are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001265A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001266elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001267of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001268considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001269
Chris Lattnera58561b2004-08-12 19:12:28 +00001270<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001271
1272<pre>
1273 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1274</pre>
1275
John Criswellc1f786c2005-05-13 22:25:59 +00001276<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001277be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001278
Chris Lattnera58561b2004-08-12 19:12:28 +00001279<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001280
Reid Spencerd3f876c2004-11-01 08:19:36 +00001281<table class="layout">
1282 <tr class="layout">
1283 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001284 <tt>&lt;4 x i32&gt;</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001285 <tt>&lt;8 x float&gt;</tt><br/>
Reid Spencera5173382007-01-04 16:43:23 +00001286 <tt>&lt;2 x i64&gt;</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001287 </td>
1288 <td class="left">
Reid Spencer485bad12007-02-15 03:07:05 +00001289 Vector of 4 32-bit integer values.<br/>
1290 Vector of 8 floating-point values.<br/>
1291 Vector of 2 64-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001292 </td>
1293 </tr>
1294</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001295</div>
1296
Chris Lattner69c11bb2005-04-25 17:34:15 +00001297<!-- _______________________________________________________________________ -->
1298<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1299<div class="doc_text">
1300
1301<h5>Overview:</h5>
1302
1303<p>Opaque types are used to represent unknown types in the system. This
1304corresponds (for example) to the C notion of a foward declared structure type.
1305In LLVM, opaque types can eventually be resolved to any type (not just a
1306structure type).</p>
1307
1308<h5>Syntax:</h5>
1309
1310<pre>
1311 opaque
1312</pre>
1313
1314<h5>Examples:</h5>
1315
1316<table class="layout">
1317 <tr class="layout">
1318 <td class="left">
1319 <tt>opaque</tt>
1320 </td>
1321 <td class="left">
1322 An opaque type.<br/>
1323 </td>
1324 </tr>
1325</table>
1326</div>
1327
1328
Chris Lattnerc3f59762004-12-09 17:30:23 +00001329<!-- *********************************************************************** -->
1330<div class="doc_section"> <a name="constants">Constants</a> </div>
1331<!-- *********************************************************************** -->
1332
1333<div class="doc_text">
1334
1335<p>LLVM has several different basic types of constants. This section describes
1336them all and their syntax.</p>
1337
1338</div>
1339
1340<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001341<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001342
1343<div class="doc_text">
1344
1345<dl>
1346 <dt><b>Boolean constants</b></dt>
1347
1348 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001349 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001350 </dd>
1351
1352 <dt><b>Integer constants</b></dt>
1353
Reid Spencercc16dc32004-12-09 18:02:53 +00001354 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001355 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001356 integer types.
1357 </dd>
1358
1359 <dt><b>Floating point constants</b></dt>
1360
1361 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1362 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnerc3f59762004-12-09 17:30:23 +00001363 notation (see below). Floating point constants must have a <a
1364 href="#t_floating">floating point</a> type. </dd>
1365
1366 <dt><b>Null pointer constants</b></dt>
1367
John Criswell9e2485c2004-12-10 15:51:16 +00001368 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001369 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1370
1371</dl>
1372
John Criswell9e2485c2004-12-10 15:51:16 +00001373<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001374of floating point constants. For example, the form '<tt>double
13750x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
13764.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001377(and the only time that they are generated by the disassembler) is when a
1378floating point constant must be emitted but it cannot be represented as a
1379decimal floating point number. For example, NaN's, infinities, and other
1380special values are represented in their IEEE hexadecimal format so that
1381assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001382
1383</div>
1384
1385<!-- ======================================================================= -->
1386<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1387</div>
1388
1389<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001390<p>Aggregate constants arise from aggregation of simple constants
1391and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001392
1393<dl>
1394 <dt><b>Structure constants</b></dt>
1395
1396 <dd>Structure constants are represented with notation similar to structure
1397 type definitions (a comma separated list of elements, surrounded by braces
Reid Spencerca86e162006-12-31 07:07:53 +00001398 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>",
Chris Lattner3e63a9d2007-07-13 20:01:46 +00001399 where "<tt>%G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001400 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001401 types of elements must match those specified by the type.
1402 </dd>
1403
1404 <dt><b>Array constants</b></dt>
1405
1406 <dd>Array constants are represented with notation similar to array type
1407 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001408 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001409 constants must have <a href="#t_array">array type</a>, and the number and
1410 types of elements must match those specified by the type.
1411 </dd>
1412
Reid Spencer485bad12007-02-15 03:07:05 +00001413 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001414
Reid Spencer485bad12007-02-15 03:07:05 +00001415 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001416 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001417 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001418 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001419 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001420 match those specified by the type.
1421 </dd>
1422
1423 <dt><b>Zero initialization</b></dt>
1424
1425 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1426 value to zero of <em>any</em> type, including scalar and aggregate types.
1427 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001428 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001429 initializers.
1430 </dd>
1431</dl>
1432
1433</div>
1434
1435<!-- ======================================================================= -->
1436<div class="doc_subsection">
1437 <a name="globalconstants">Global Variable and Function Addresses</a>
1438</div>
1439
1440<div class="doc_text">
1441
1442<p>The addresses of <a href="#globalvars">global variables</a> and <a
1443href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001444constants. These constants are explicitly referenced when the <a
1445href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001446href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1447file:</p>
1448
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001449<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001450<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001451@X = global i32 17
1452@Y = global i32 42
1453@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001454</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001455</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001456
1457</div>
1458
1459<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001460<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001461<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001462 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001463 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001464 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001465
Reid Spencer2dc45b82004-12-09 18:13:12 +00001466 <p>Undefined values indicate to the compiler that the program is well defined
1467 no matter what value is used, giving the compiler more freedom to optimize.
1468 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001469</div>
1470
1471<!-- ======================================================================= -->
1472<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1473</div>
1474
1475<div class="doc_text">
1476
1477<p>Constant expressions are used to allow expressions involving other constants
1478to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001479href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001480that does not have side effects (e.g. load and call are not supported). The
1481following is the syntax for constant expressions:</p>
1482
1483<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001484 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1485 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001486 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001487
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001488 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1489 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001490 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001491
1492 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1493 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001494 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001495
1496 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1497 <dd>Truncate a floating point constant to another floating point type. The
1498 size of CST must be larger than the size of TYPE. Both types must be
1499 floating point.</dd>
1500
1501 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1502 <dd>Floating point extend a constant to another type. The size of CST must be
1503 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1504
Reid Spencer1539a1c2007-07-31 14:40:14 +00001505 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001506 <dd>Convert a floating point constant to the corresponding unsigned integer
1507 constant. TYPE must be an integer type. CST must be floating point. If the
1508 value won't fit in the integer type, the results are undefined.</dd>
1509
Reid Spencerd4448792006-11-09 23:03:26 +00001510 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001511 <dd>Convert a floating point constant to the corresponding signed integer
1512 constant. TYPE must be an integer type. CST must be floating point. If the
1513 value won't fit in the integer type, the results are undefined.</dd>
1514
Reid Spencerd4448792006-11-09 23:03:26 +00001515 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001516 <dd>Convert an unsigned integer constant to the corresponding floating point
1517 constant. TYPE must be floating point. CST must be of integer type. If the
Jeff Cohencb757312007-04-22 14:56:37 +00001518 value won't fit in the floating point type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001519
Reid Spencerd4448792006-11-09 23:03:26 +00001520 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001521 <dd>Convert a signed integer constant to the corresponding floating point
1522 constant. TYPE must be floating point. CST must be of integer type. If the
Jeff Cohencb757312007-04-22 14:56:37 +00001523 value won't fit in the floating point type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001524
Reid Spencer5c0ef472006-11-11 23:08:07 +00001525 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1526 <dd>Convert a pointer typed constant to the corresponding integer constant
1527 TYPE must be an integer type. CST must be of pointer type. The CST value is
1528 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1529
1530 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1531 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1532 pointer type. CST must be of integer type. The CST value is zero extended,
1533 truncated, or unchanged to make it fit in a pointer size. This one is
1534 <i>really</i> dangerous!</dd>
1535
1536 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001537 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1538 identical (same number of bits). The conversion is done as if the CST value
1539 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001540 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001541 vector types to any other type, as long as they have the same bit width. For
Reid Spencer5c0ef472006-11-11 23:08:07 +00001542 pointers it is only valid to cast to another pointer type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001543 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001544
1545 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1546
1547 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1548 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1549 instruction, the index list may have zero or more indexes, which are required
1550 to make sense for the type of "CSTPTR".</dd>
1551
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001552 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1553
1554 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001555 constants.</dd>
1556
1557 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1558 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1559
1560 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1561 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001562
1563 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1564
1565 <dd>Perform the <a href="#i_extractelement">extractelement
1566 operation</a> on constants.
1567
Robert Bocchino05ccd702006-01-15 20:48:27 +00001568 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1569
1570 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001571 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001572
Chris Lattnerc1989542006-04-08 00:13:41 +00001573
1574 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1575
1576 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001577 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001578
Chris Lattnerc3f59762004-12-09 17:30:23 +00001579 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1580
Reid Spencer2dc45b82004-12-09 18:13:12 +00001581 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1582 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001583 binary</a> operations. The constraints on operands are the same as those for
1584 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001585 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001586</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001587</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001588
Chris Lattner00950542001-06-06 20:29:01 +00001589<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001590<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1591<!-- *********************************************************************** -->
1592
1593<!-- ======================================================================= -->
1594<div class="doc_subsection">
1595<a name="inlineasm">Inline Assembler Expressions</a>
1596</div>
1597
1598<div class="doc_text">
1599
1600<p>
1601LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1602Module-Level Inline Assembly</a>) through the use of a special value. This
1603value represents the inline assembler as a string (containing the instructions
1604to emit), a list of operand constraints (stored as a string), and a flag that
1605indicates whether or not the inline asm expression has side effects. An example
1606inline assembler expression is:
1607</p>
1608
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001609<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001610<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001611i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001612</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001613</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001614
1615<p>
1616Inline assembler expressions may <b>only</b> be used as the callee operand of
1617a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1618</p>
1619
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001620<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001621<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001622%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001623</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001624</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001625
1626<p>
1627Inline asms with side effects not visible in the constraint list must be marked
1628as having side effects. This is done through the use of the
1629'<tt>sideeffect</tt>' keyword, like so:
1630</p>
1631
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001632<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001633<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001634call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001635</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001636</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001637
1638<p>TODO: The format of the asm and constraints string still need to be
1639documented here. Constraints on what can be done (e.g. duplication, moving, etc
1640need to be documented).
1641</p>
1642
1643</div>
1644
1645<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001646<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1647<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001648
Misha Brukman9d0919f2003-11-08 01:05:38 +00001649<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001650
Chris Lattner261efe92003-11-25 01:02:51 +00001651<p>The LLVM instruction set consists of several different
1652classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001653instructions</a>, <a href="#binaryops">binary instructions</a>,
1654<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001655 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1656instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001657
Misha Brukman9d0919f2003-11-08 01:05:38 +00001658</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001659
Chris Lattner00950542001-06-06 20:29:01 +00001660<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001661<div class="doc_subsection"> <a name="terminators">Terminator
1662Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001663
Misha Brukman9d0919f2003-11-08 01:05:38 +00001664<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001665
Chris Lattner261efe92003-11-25 01:02:51 +00001666<p>As mentioned <a href="#functionstructure">previously</a>, every
1667basic block in a program ends with a "Terminator" instruction, which
1668indicates which block should be executed after the current block is
1669finished. These terminator instructions typically yield a '<tt>void</tt>'
1670value: they produce control flow, not values (the one exception being
1671the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001672<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001673 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1674instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001675the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1676 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1677 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001678
Misha Brukman9d0919f2003-11-08 01:05:38 +00001679</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001680
Chris Lattner00950542001-06-06 20:29:01 +00001681<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001682<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1683Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001684<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001685<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001686<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001687 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001688</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001689<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001690<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
John Criswellc1f786c2005-05-13 22:25:59 +00001691value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001692<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattner261efe92003-11-25 01:02:51 +00001693returns a value and then causes control flow, and one that just causes
1694control flow to occur.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001695<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001696<p>The '<tt>ret</tt>' instruction may return any '<a
1697 href="#t_firstclass">first class</a>' type. Notice that a function is
1698not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1699instruction inside of the function that returns a value that does not
1700match the return type of the function.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001701<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001702<p>When the '<tt>ret</tt>' instruction is executed, control flow
1703returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001704 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001705the instruction after the call. If the caller was an "<a
1706 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001707at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001708returns a value, that value shall set the call or invoke instruction's
1709return value.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001710<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001711<pre> ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001712 ret void <i>; Return from a void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001713</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001714</div>
Chris Lattner00950542001-06-06 20:29:01 +00001715<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001716<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001717<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001718<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001719<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001720</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001721<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001722<p>The '<tt>br</tt>' instruction is used to cause control flow to
1723transfer to a different basic block in the current function. There are
1724two forms of this instruction, corresponding to a conditional branch
1725and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001726<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001727<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00001728single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00001729unconditional form of the '<tt>br</tt>' instruction takes a single
1730'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001731<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001732<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001733argument is evaluated. If the value is <tt>true</tt>, control flows
1734to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1735control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001736<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001737<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00001738 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001739</div>
Chris Lattner00950542001-06-06 20:29:01 +00001740<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001741<div class="doc_subsubsection">
1742 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1743</div>
1744
Misha Brukman9d0919f2003-11-08 01:05:38 +00001745<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001746<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001747
1748<pre>
1749 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1750</pre>
1751
Chris Lattner00950542001-06-06 20:29:01 +00001752<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001753
1754<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1755several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00001756instruction, allowing a branch to occur to one of many possible
1757destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001758
1759
Chris Lattner00950542001-06-06 20:29:01 +00001760<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001761
1762<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1763comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1764an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1765table is not allowed to contain duplicate constant entries.</p>
1766
Chris Lattner00950542001-06-06 20:29:01 +00001767<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001768
Chris Lattner261efe92003-11-25 01:02:51 +00001769<p>The <tt>switch</tt> instruction specifies a table of values and
1770destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00001771table is searched for the given value. If the value is found, control flow is
1772transfered to the corresponding destination; otherwise, control flow is
1773transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001774
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001775<h5>Implementation:</h5>
1776
1777<p>Depending on properties of the target machine and the particular
1778<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00001779ways. For example, it could be generated as a series of chained conditional
1780branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001781
1782<h5>Example:</h5>
1783
1784<pre>
1785 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00001786 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerca86e162006-12-31 07:07:53 +00001787 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001788
1789 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001790 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001791
1792 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001793 switch i32 %val, label %otherwise [ i32 0, label %onzero
1794 i32 1, label %onone
1795 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00001796</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001797</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001798
Chris Lattner00950542001-06-06 20:29:01 +00001799<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001800<div class="doc_subsubsection">
1801 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1802</div>
1803
Misha Brukman9d0919f2003-11-08 01:05:38 +00001804<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001805
Chris Lattner00950542001-06-06 20:29:01 +00001806<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001807
1808<pre>
1809 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner76b8a332006-05-14 18:23:06 +00001810 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001811</pre>
1812
Chris Lattner6536cfe2002-05-06 22:08:29 +00001813<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001814
1815<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1816function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00001817'<tt>normal</tt>' label or the
1818'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001819"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1820"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00001821href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1822continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001823
Chris Lattner00950542001-06-06 20:29:01 +00001824<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001825
Misha Brukman9d0919f2003-11-08 01:05:38 +00001826<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001827
Chris Lattner00950542001-06-06 20:29:01 +00001828<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001829 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00001830 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001831 convention</a> the call should use. If none is specified, the call defaults
1832 to using C calling conventions.
1833 </li>
1834 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1835 function value being invoked. In most cases, this is a direct function
1836 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1837 an arbitrary pointer to function value.
1838 </li>
1839
1840 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1841 function to be invoked. </li>
1842
1843 <li>'<tt>function args</tt>': argument list whose types match the function
1844 signature argument types. If the function signature indicates the function
1845 accepts a variable number of arguments, the extra arguments can be
1846 specified. </li>
1847
1848 <li>'<tt>normal label</tt>': the label reached when the called function
1849 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1850
1851 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1852 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1853
Chris Lattner00950542001-06-06 20:29:01 +00001854</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001855
Chris Lattner00950542001-06-06 20:29:01 +00001856<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001857
Misha Brukman9d0919f2003-11-08 01:05:38 +00001858<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001859href="#i_call">call</a></tt>' instruction in most regards. The primary
1860difference is that it establishes an association with a label, which is used by
1861the runtime library to unwind the stack.</p>
1862
1863<p>This instruction is used in languages with destructors to ensure that proper
1864cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1865exception. Additionally, this is important for implementation of
1866'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1867
Chris Lattner00950542001-06-06 20:29:01 +00001868<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001869<pre>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001870 %retval = invoke i32 %Test(i32 15) to label %Continue
1871 unwind label %TestCleanup <i>; {i32}:retval set</i>
1872 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1873 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00001874</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001875</div>
Chris Lattner35eca582004-10-16 18:04:13 +00001876
1877
Chris Lattner27f71f22003-09-03 00:41:47 +00001878<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00001879
Chris Lattner261efe92003-11-25 01:02:51 +00001880<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1881Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00001882
Misha Brukman9d0919f2003-11-08 01:05:38 +00001883<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00001884
Chris Lattner27f71f22003-09-03 00:41:47 +00001885<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001886<pre>
1887 unwind
1888</pre>
1889
Chris Lattner27f71f22003-09-03 00:41:47 +00001890<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001891
1892<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1893at the first callee in the dynamic call stack which used an <a
1894href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1895primarily used to implement exception handling.</p>
1896
Chris Lattner27f71f22003-09-03 00:41:47 +00001897<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001898
1899<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1900immediately halt. The dynamic call stack is then searched for the first <a
1901href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1902execution continues at the "exceptional" destination block specified by the
1903<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1904dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001905</div>
Chris Lattner35eca582004-10-16 18:04:13 +00001906
1907<!-- _______________________________________________________________________ -->
1908
1909<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1910Instruction</a> </div>
1911
1912<div class="doc_text">
1913
1914<h5>Syntax:</h5>
1915<pre>
1916 unreachable
1917</pre>
1918
1919<h5>Overview:</h5>
1920
1921<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
1922instruction is used to inform the optimizer that a particular portion of the
1923code is not reachable. This can be used to indicate that the code after a
1924no-return function cannot be reached, and other facts.</p>
1925
1926<h5>Semantics:</h5>
1927
1928<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1929</div>
1930
1931
1932
Chris Lattner00950542001-06-06 20:29:01 +00001933<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001934<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001935<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00001936<p>Binary operators are used to do most of the computation in a
1937program. They require two operands, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00001938produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00001939multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattnera58561b2004-08-12 19:12:28 +00001940The result value of a binary operator is not
Chris Lattner261efe92003-11-25 01:02:51 +00001941necessarily the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001942<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001943</div>
Chris Lattner00950542001-06-06 20:29:01 +00001944<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001945<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1946Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001947<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001948<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001949<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001950</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001951<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001952<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001953<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001954<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
Chris Lattnera58561b2004-08-12 19:12:28 +00001955 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
Reid Spencer485bad12007-02-15 03:07:05 +00001956 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00001957Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001958<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001959<p>The value produced is the integer or floating point sum of the two
1960operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001961<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001962<pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001963</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001964</div>
Chris Lattner00950542001-06-06 20:29:01 +00001965<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001966<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1967Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001968<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001969<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001970<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001971</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001972<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001973<p>The '<tt>sub</tt>' instruction returns the difference of its two
1974operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001975<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1976instruction present in most other intermediate representations.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001977<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001978<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00001979 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00001980values.
Reid Spencer485bad12007-02-15 03:07:05 +00001981This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00001982Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001983<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001984<p>The value produced is the integer or floating point difference of
1985the two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001986<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00001987<pre>
1988 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001989 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001990</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001991</div>
Chris Lattner00950542001-06-06 20:29:01 +00001992<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001993<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
1994Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001995<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001996<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001997<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001998</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001999<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002000<p>The '<tt>mul</tt>' instruction returns the product of its two
2001operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002002<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002003<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00002004 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00002005values.
Reid Spencer485bad12007-02-15 03:07:05 +00002006This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00002007Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002008<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002009<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002010two operands.</p>
Reid Spencera5173382007-01-04 16:43:23 +00002011<p>Because the operands are the same width, the result of an integer
2012multiplication is the same whether the operands should be deemed unsigned or
2013signed.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002014<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002015<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002016</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002017</div>
Chris Lattner00950542001-06-06 20:29:01 +00002018<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002019<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2020</a></div>
2021<div class="doc_text">
2022<h5>Syntax:</h5>
2023<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2024</pre>
2025<h5>Overview:</h5>
2026<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2027operands.</p>
2028<h5>Arguments:</h5>
2029<p>The two arguments to the '<tt>udiv</tt>' instruction must be
2030<a href="#t_integer">integer</a> values. Both arguments must have identical
Reid Spencer485bad12007-02-15 03:07:05 +00002031types. This instruction can also take <a href="#t_vector">vector</a> versions
Reid Spencer1628cec2006-10-26 06:15:43 +00002032of the values in which case the elements must be integers.</p>
2033<h5>Semantics:</h5>
2034<p>The value produced is the unsigned integer quotient of the two operands. This
2035instruction always performs an unsigned division operation, regardless of
2036whether the arguments are unsigned or not.</p>
2037<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002038<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002039</pre>
2040</div>
2041<!-- _______________________________________________________________________ -->
2042<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2043</a> </div>
2044<div class="doc_text">
2045<h5>Syntax:</h5>
2046<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2047</pre>
2048<h5>Overview:</h5>
2049<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2050operands.</p>
2051<h5>Arguments:</h5>
2052<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2053<a href="#t_integer">integer</a> values. Both arguments must have identical
Reid Spencer485bad12007-02-15 03:07:05 +00002054types. This instruction can also take <a href="#t_vector">vector</a> versions
Reid Spencer1628cec2006-10-26 06:15:43 +00002055of the values in which case the elements must be integers.</p>
2056<h5>Semantics:</h5>
2057<p>The value produced is the signed integer quotient of the two operands. This
2058instruction always performs a signed division operation, regardless of whether
2059the arguments are signed or not.</p>
2060<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002061<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002062</pre>
2063</div>
2064<!-- _______________________________________________________________________ -->
2065<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002066Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002067<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002068<h5>Syntax:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002069<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002070</pre>
2071<h5>Overview:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002072<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002073operands.</p>
2074<h5>Arguments:</h5>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002075<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Reid Spencer1628cec2006-10-26 06:15:43 +00002076<a href="#t_floating">floating point</a> values. Both arguments must have
Reid Spencer485bad12007-02-15 03:07:05 +00002077identical types. This instruction can also take <a href="#t_vector">vector</a>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002078versions of floating point values.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002079<h5>Semantics:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002080<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002081<h5>Example:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002082<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002083</pre>
2084</div>
2085<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002086<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2087</div>
2088<div class="doc_text">
2089<h5>Syntax:</h5>
2090<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2091</pre>
2092<h5>Overview:</h5>
2093<p>The '<tt>urem</tt>' instruction returns the remainder from the
2094unsigned division of its two arguments.</p>
2095<h5>Arguments:</h5>
2096<p>The two arguments to the '<tt>urem</tt>' instruction must be
2097<a href="#t_integer">integer</a> values. Both arguments must have identical
2098types.</p>
2099<h5>Semantics:</h5>
2100<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2101This instruction always performs an unsigned division to get the remainder,
2102regardless of whether the arguments are unsigned or not.</p>
2103<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002104<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002105</pre>
2106
2107</div>
2108<!-- _______________________________________________________________________ -->
2109<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002110Instruction</a> </div>
2111<div class="doc_text">
2112<h5>Syntax:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002113<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002114</pre>
2115<h5>Overview:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002116<p>The '<tt>srem</tt>' instruction returns the remainder from the
2117signed division of its two operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002118<h5>Arguments:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002119<p>The two arguments to the '<tt>srem</tt>' instruction must be
2120<a href="#t_integer">integer</a> values. Both arguments must have identical
2121types.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002122<h5>Semantics:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002123<p>This instruction returns the <i>remainder</i> of a division (where the result
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002124has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2125operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2126a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002127 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002128Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002129please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002130Wikipedia: modulo operation</a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002131<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002132<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002133</pre>
2134
2135</div>
2136<!-- _______________________________________________________________________ -->
2137<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2138Instruction</a> </div>
2139<div class="doc_text">
2140<h5>Syntax:</h5>
2141<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2142</pre>
2143<h5>Overview:</h5>
2144<p>The '<tt>frem</tt>' instruction returns the remainder from the
2145division of its two operands.</p>
2146<h5>Arguments:</h5>
2147<p>The two arguments to the '<tt>frem</tt>' instruction must be
2148<a href="#t_floating">floating point</a> values. Both arguments must have
2149identical types.</p>
2150<h5>Semantics:</h5>
2151<p>This instruction returns the <i>remainder</i> of a division.</p>
2152<h5>Example:</h5>
2153<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002154</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002155</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002156
Reid Spencer8e11bf82007-02-02 13:57:07 +00002157<!-- ======================================================================= -->
2158<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2159Operations</a> </div>
2160<div class="doc_text">
2161<p>Bitwise binary operators are used to do various forms of
2162bit-twiddling in a program. They are generally very efficient
2163instructions and can commonly be strength reduced from other
2164instructions. They require two operands, execute an operation on them,
2165and produce a single value. The resulting value of the bitwise binary
2166operators is always the same type as its first operand.</p>
2167</div>
2168
Reid Spencer569f2fa2007-01-31 21:39:12 +00002169<!-- _______________________________________________________________________ -->
2170<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2171Instruction</a> </div>
2172<div class="doc_text">
2173<h5>Syntax:</h5>
2174<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2175</pre>
2176<h5>Overview:</h5>
2177<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2178the left a specified number of bits.</p>
2179<h5>Arguments:</h5>
2180<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2181 href="#t_integer">integer</a> type.</p>
2182<h5>Semantics:</h5>
2183<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
2184<h5>Example:</h5><pre>
2185 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2186 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2187 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
2188</pre>
2189</div>
2190<!-- _______________________________________________________________________ -->
2191<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2192Instruction</a> </div>
2193<div class="doc_text">
2194<h5>Syntax:</h5>
2195<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2196</pre>
2197
2198<h5>Overview:</h5>
2199<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002200operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002201
2202<h5>Arguments:</h5>
2203<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
2204<a href="#t_integer">integer</a> type.</p>
2205
2206<h5>Semantics:</h5>
2207<p>This instruction always performs a logical shift right operation. The most
2208significant bits of the result will be filled with zero bits after the
2209shift.</p>
2210
2211<h5>Example:</h5>
2212<pre>
2213 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2214 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2215 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2216 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
2217</pre>
2218</div>
2219
Reid Spencer8e11bf82007-02-02 13:57:07 +00002220<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002221<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2222Instruction</a> </div>
2223<div class="doc_text">
2224
2225<h5>Syntax:</h5>
2226<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2227</pre>
2228
2229<h5>Overview:</h5>
2230<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002231operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002232
2233<h5>Arguments:</h5>
2234<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
2235<a href="#t_integer">integer</a> type.</p>
2236
2237<h5>Semantics:</h5>
2238<p>This instruction always performs an arithmetic shift right operation,
2239The most significant bits of the result will be filled with the sign bit
2240of <tt>var1</tt>.</p>
2241
2242<h5>Example:</h5>
2243<pre>
2244 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2245 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2246 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2247 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
2248</pre>
2249</div>
2250
Chris Lattner00950542001-06-06 20:29:01 +00002251<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002252<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2253Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002254<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002255<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002256<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002257</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002258<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002259<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2260its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002261<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002262<p>The two arguments to the '<tt>and</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002263 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002264identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002265<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002266<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002267<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002268<div style="align: center">
Misha Brukman9d0919f2003-11-08 01:05:38 +00002269<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002270 <tbody>
2271 <tr>
2272 <td>In0</td>
2273 <td>In1</td>
2274 <td>Out</td>
2275 </tr>
2276 <tr>
2277 <td>0</td>
2278 <td>0</td>
2279 <td>0</td>
2280 </tr>
2281 <tr>
2282 <td>0</td>
2283 <td>1</td>
2284 <td>0</td>
2285 </tr>
2286 <tr>
2287 <td>1</td>
2288 <td>0</td>
2289 <td>0</td>
2290 </tr>
2291 <tr>
2292 <td>1</td>
2293 <td>1</td>
2294 <td>1</td>
2295 </tr>
2296 </tbody>
2297</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002298</div>
Chris Lattner00950542001-06-06 20:29:01 +00002299<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002300<pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
2301 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2302 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002303</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002304</div>
Chris Lattner00950542001-06-06 20:29:01 +00002305<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002306<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002307<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002308<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002309<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002310</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002311<h5>Overview:</h5>
2312<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2313or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002314<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002315<p>The two arguments to the '<tt>or</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002316 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002317identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002318<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002319<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002320<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002321<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002322<table border="1" cellspacing="0" cellpadding="4">
2323 <tbody>
2324 <tr>
2325 <td>In0</td>
2326 <td>In1</td>
2327 <td>Out</td>
2328 </tr>
2329 <tr>
2330 <td>0</td>
2331 <td>0</td>
2332 <td>0</td>
2333 </tr>
2334 <tr>
2335 <td>0</td>
2336 <td>1</td>
2337 <td>1</td>
2338 </tr>
2339 <tr>
2340 <td>1</td>
2341 <td>0</td>
2342 <td>1</td>
2343 </tr>
2344 <tr>
2345 <td>1</td>
2346 <td>1</td>
2347 <td>1</td>
2348 </tr>
2349 </tbody>
2350</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002351</div>
Chris Lattner00950542001-06-06 20:29:01 +00002352<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002353<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2354 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2355 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002356</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002357</div>
Chris Lattner00950542001-06-06 20:29:01 +00002358<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002359<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2360Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002361<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002362<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002363<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002364</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002365<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002366<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2367or of its two operands. The <tt>xor</tt> is used to implement the
2368"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002369<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002370<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002371 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002372identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002373<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002374<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002375<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002376<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002377<table border="1" cellspacing="0" cellpadding="4">
2378 <tbody>
2379 <tr>
2380 <td>In0</td>
2381 <td>In1</td>
2382 <td>Out</td>
2383 </tr>
2384 <tr>
2385 <td>0</td>
2386 <td>0</td>
2387 <td>0</td>
2388 </tr>
2389 <tr>
2390 <td>0</td>
2391 <td>1</td>
2392 <td>1</td>
2393 </tr>
2394 <tr>
2395 <td>1</td>
2396 <td>0</td>
2397 <td>1</td>
2398 </tr>
2399 <tr>
2400 <td>1</td>
2401 <td>1</td>
2402 <td>0</td>
2403 </tr>
2404 </tbody>
2405</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002406</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002407<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002408<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002409<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2410 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2411 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2412 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002413</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002414</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002415
Chris Lattner00950542001-06-06 20:29:01 +00002416<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002417<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002418 <a name="vectorops">Vector Operations</a>
2419</div>
2420
2421<div class="doc_text">
2422
2423<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002424target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002425vector-specific operations needed to process vectors effectively. While LLVM
2426does directly support these vector operations, many sophisticated algorithms
2427will want to use target-specific intrinsics to take full advantage of a specific
2428target.</p>
2429
2430</div>
2431
2432<!-- _______________________________________________________________________ -->
2433<div class="doc_subsubsection">
2434 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2435</div>
2436
2437<div class="doc_text">
2438
2439<h5>Syntax:</h5>
2440
2441<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002442 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002443</pre>
2444
2445<h5>Overview:</h5>
2446
2447<p>
2448The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002449element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002450</p>
2451
2452
2453<h5>Arguments:</h5>
2454
2455<p>
2456The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002457value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002458an index indicating the position from which to extract the element.
2459The index may be a variable.</p>
2460
2461<h5>Semantics:</h5>
2462
2463<p>
2464The result is a scalar of the same type as the element type of
2465<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2466<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2467results are undefined.
2468</p>
2469
2470<h5>Example:</h5>
2471
2472<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002473 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002474</pre>
2475</div>
2476
2477
2478<!-- _______________________________________________________________________ -->
2479<div class="doc_subsubsection">
2480 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2481</div>
2482
2483<div class="doc_text">
2484
2485<h5>Syntax:</h5>
2486
2487<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002488 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002489</pre>
2490
2491<h5>Overview:</h5>
2492
2493<p>
2494The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002495element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002496</p>
2497
2498
2499<h5>Arguments:</h5>
2500
2501<p>
2502The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002503value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002504scalar value whose type must equal the element type of the first
2505operand. The third operand is an index indicating the position at
2506which to insert the value. The index may be a variable.</p>
2507
2508<h5>Semantics:</h5>
2509
2510<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002511The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002512element values are those of <tt>val</tt> except at position
2513<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2514exceeds the length of <tt>val</tt>, the results are undefined.
2515</p>
2516
2517<h5>Example:</h5>
2518
2519<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002520 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002521</pre>
2522</div>
2523
2524<!-- _______________________________________________________________________ -->
2525<div class="doc_subsubsection">
2526 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2527</div>
2528
2529<div class="doc_text">
2530
2531<h5>Syntax:</h5>
2532
2533<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002534 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002535</pre>
2536
2537<h5>Overview:</h5>
2538
2539<p>
2540The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2541from two input vectors, returning a vector of the same type.
2542</p>
2543
2544<h5>Arguments:</h5>
2545
2546<p>
2547The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2548with types that match each other and types that match the result of the
2549instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerca86e162006-12-31 07:07:53 +00002550of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattner3df241e2006-04-08 23:07:04 +00002551</p>
2552
2553<p>
2554The shuffle mask operand is required to be a constant vector with either
2555constant integer or undef values.
2556</p>
2557
2558<h5>Semantics:</h5>
2559
2560<p>
2561The elements of the two input vectors are numbered from left to right across
2562both of the vectors. The shuffle mask operand specifies, for each element of
2563the result vector, which element of the two input registers the result element
2564gets. The element selector may be undef (meaning "don't care") and the second
2565operand may be undef if performing a shuffle from only one vector.
2566</p>
2567
2568<h5>Example:</h5>
2569
2570<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002571 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002572 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002573 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2574 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattner3df241e2006-04-08 23:07:04 +00002575</pre>
2576</div>
2577
Tanya Lattner09474292006-04-14 19:24:33 +00002578
Chris Lattner3df241e2006-04-08 23:07:04 +00002579<!-- ======================================================================= -->
2580<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00002581 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002582</div>
2583
Misha Brukman9d0919f2003-11-08 01:05:38 +00002584<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002585
Chris Lattner261efe92003-11-25 01:02:51 +00002586<p>A key design point of an SSA-based representation is how it
2587represents memory. In LLVM, no memory locations are in SSA form, which
2588makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00002589allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002590
Misha Brukman9d0919f2003-11-08 01:05:38 +00002591</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002592
Chris Lattner00950542001-06-06 20:29:01 +00002593<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002594<div class="doc_subsubsection">
2595 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2596</div>
2597
Misha Brukman9d0919f2003-11-08 01:05:38 +00002598<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002599
Chris Lattner00950542001-06-06 20:29:01 +00002600<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002601
2602<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002603 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002604</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002605
Chris Lattner00950542001-06-06 20:29:01 +00002606<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002607
Chris Lattner261efe92003-11-25 01:02:51 +00002608<p>The '<tt>malloc</tt>' instruction allocates memory from the system
2609heap and returns a pointer to it.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002610
Chris Lattner00950542001-06-06 20:29:01 +00002611<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002612
2613<p>The '<tt>malloc</tt>' instruction allocates
2614<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00002615bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00002616appropriate type to the program. If "NumElements" is specified, it is the
2617number of elements allocated. If an alignment is specified, the value result
2618of the allocation is guaranteed to be aligned to at least that boundary. If
2619not specified, or if zero, the target can choose to align the allocation on any
2620convenient boundary.</p>
2621
Misha Brukman9d0919f2003-11-08 01:05:38 +00002622<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002623
Chris Lattner00950542001-06-06 20:29:01 +00002624<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002625
Chris Lattner261efe92003-11-25 01:02:51 +00002626<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2627a pointer is returned.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002628
Chris Lattner2cbdc452005-11-06 08:02:57 +00002629<h5>Example:</h5>
2630
2631<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002632 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002633
Bill Wendlingaac388b2007-05-29 09:42:13 +00002634 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2635 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2636 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2637 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2638 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00002639</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002640</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002641
Chris Lattner00950542001-06-06 20:29:01 +00002642<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002643<div class="doc_subsubsection">
2644 <a name="i_free">'<tt>free</tt>' Instruction</a>
2645</div>
2646
Misha Brukman9d0919f2003-11-08 01:05:38 +00002647<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002648
Chris Lattner00950542001-06-06 20:29:01 +00002649<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002650
2651<pre>
2652 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00002653</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002654
Chris Lattner00950542001-06-06 20:29:01 +00002655<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002656
Chris Lattner261efe92003-11-25 01:02:51 +00002657<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00002658memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002659
Chris Lattner00950542001-06-06 20:29:01 +00002660<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002661
Chris Lattner261efe92003-11-25 01:02:51 +00002662<p>'<tt>value</tt>' shall be a pointer value that points to a value
2663that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2664instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002665
Chris Lattner00950542001-06-06 20:29:01 +00002666<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002667
John Criswell9e2485c2004-12-10 15:51:16 +00002668<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner261efe92003-11-25 01:02:51 +00002669after this instruction executes.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002670
Chris Lattner00950542001-06-06 20:29:01 +00002671<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002672
2673<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002674 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2675 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00002676</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002677</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002678
Chris Lattner00950542001-06-06 20:29:01 +00002679<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002680<div class="doc_subsubsection">
2681 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2682</div>
2683
Misha Brukman9d0919f2003-11-08 01:05:38 +00002684<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002685
Chris Lattner00950542001-06-06 20:29:01 +00002686<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002687
2688<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002689 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002690</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002691
Chris Lattner00950542001-06-06 20:29:01 +00002692<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002693
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002694<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
2695currently executing function, to be automatically released when this function
Chris Lattner261efe92003-11-25 01:02:51 +00002696returns to its caller.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002697
Chris Lattner00950542001-06-06 20:29:01 +00002698<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002699
John Criswell9e2485c2004-12-10 15:51:16 +00002700<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00002701bytes of memory on the runtime stack, returning a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00002702appropriate type to the program. If "NumElements" is specified, it is the
2703number of elements allocated. If an alignment is specified, the value result
2704of the allocation is guaranteed to be aligned to at least that boundary. If
2705not specified, or if zero, the target can choose to align the allocation on any
2706convenient boundary.</p>
2707
Misha Brukman9d0919f2003-11-08 01:05:38 +00002708<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002709
Chris Lattner00950542001-06-06 20:29:01 +00002710<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002711
John Criswellc1f786c2005-05-13 22:25:59 +00002712<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00002713memory is automatically released when the function returns. The '<tt>alloca</tt>'
2714instruction is commonly used to represent automatic variables that must
2715have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00002716 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002717instructions), the memory is reclaimed.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002718
Chris Lattner00950542001-06-06 20:29:01 +00002719<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002720
2721<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002722 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002723 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2724 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002725 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00002726</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002727</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002728
Chris Lattner00950542001-06-06 20:29:01 +00002729<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002730<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2731Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002732<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00002733<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00002734<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002735<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002736<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002737<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002738<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00002739address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00002740 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00002741marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00002742the number or order of execution of this <tt>load</tt> with other
2743volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2744instructions. </p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002745<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002746<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002747<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002748<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002749 <a
Reid Spencerca86e162006-12-31 07:07:53 +00002750 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2751 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002752</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002753</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002754<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002755<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2756Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00002757<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00002758<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00002759<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2760 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002761</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002762<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002763<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002764<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002765<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002766to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002767operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00002768operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00002769optimizer is not allowed to modify the number or order of execution of
2770this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2771 href="#i_store">store</a></tt> instructions.</p>
2772<h5>Semantics:</h5>
2773<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2774at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002775<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002776<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002777 <a
Reid Spencerca86e162006-12-31 07:07:53 +00002778 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2779 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002780</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00002781</div>
2782
Chris Lattner2b7d3202002-05-06 03:03:22 +00002783<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002784<div class="doc_subsubsection">
2785 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2786</div>
2787
Misha Brukman9d0919f2003-11-08 01:05:38 +00002788<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00002789<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002790<pre>
2791 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2792</pre>
2793
Chris Lattner7faa8832002-04-14 06:13:44 +00002794<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002795
2796<p>
2797The '<tt>getelementptr</tt>' instruction is used to get the address of a
2798subelement of an aggregate data structure.</p>
2799
Chris Lattner7faa8832002-04-14 06:13:44 +00002800<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002801
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002802<p>This instruction takes a list of integer operands that indicate what
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002803elements of the aggregate object to index to. The actual types of the arguments
2804provided depend on the type of the first pointer argument. The
2805'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswellfc6b8952005-05-16 16:17:45 +00002806levels of a structure or to a specific index in an array. When indexing into a
Reid Spencerca86e162006-12-31 07:07:53 +00002807structure, only <tt>i32</tt> integer constants are allowed. When indexing
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002808into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2809be sign extended to 64-bit values.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002810
Chris Lattner261efe92003-11-25 01:02:51 +00002811<p>For example, let's consider a C code fragment and how it gets
2812compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002813
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002814<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002815<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002816struct RT {
2817 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00002818 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002819 char C;
2820};
2821struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00002822 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002823 double Y;
2824 struct RT Z;
2825};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002826
Chris Lattnercabc8462007-05-29 15:43:56 +00002827int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002828 return &amp;s[1].Z.B[5][13];
2829}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002830</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002831</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002832
Misha Brukman9d0919f2003-11-08 01:05:38 +00002833<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002834
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002835<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002836<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002837%RT = type { i8 , [10 x [20 x i32]], i8 }
2838%ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002839
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002840define i32* %foo(%ST* %s) {
2841entry:
2842 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2843 ret i32* %reg
2844}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002845</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002846</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002847
Chris Lattner7faa8832002-04-14 06:13:44 +00002848<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002849
2850<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswellc1f786c2005-05-13 22:25:59 +00002851on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002852and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
Reid Spencer42ddd842006-12-03 16:53:48 +00002853<a href="#t_integer">integer</a> type but the value will always be sign extended
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002854to 64-bits. <a href="#t_struct">Structure</a> types require <tt>i32</tt>
Reid Spencer42ddd842006-12-03 16:53:48 +00002855<b>constants</b>.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002856
Misha Brukman9d0919f2003-11-08 01:05:38 +00002857<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00002858type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002859}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00002860the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2861i8 }</tt>' type, another structure. The third index indexes into the second
2862element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002863array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00002864'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
2865to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002866
Chris Lattner261efe92003-11-25 01:02:51 +00002867<p>Note that it is perfectly legal to index partially through a
2868structure, returning a pointer to an inner element. Because of this,
2869the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002870
2871<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002872 define i32* %foo(%ST* %s) {
2873 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002874 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
2875 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002876 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
2877 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
2878 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002879 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00002880</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00002881
2882<p>Note that it is undefined to access an array out of bounds: array and
2883pointer indexes must always be within the defined bounds of the array type.
2884The one exception for this rules is zero length arrays. These arrays are
2885defined to be accessible as variable length arrays, which requires access
2886beyond the zero'th element.</p>
2887
Chris Lattner884a9702006-08-15 00:45:58 +00002888<p>The getelementptr instruction is often confusing. For some more insight
2889into how it works, see <a href="GetElementPtr.html">the getelementptr
2890FAQ</a>.</p>
2891
Chris Lattner7faa8832002-04-14 06:13:44 +00002892<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00002893
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002894<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002895 <i>; yields [12 x i8]*:aptr</i>
2896 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002897</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002898</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00002899
Chris Lattner00950542001-06-06 20:29:01 +00002900<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00002901<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002902</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002903<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00002904<p>The instructions in this category are the conversion instructions (casting)
2905which all take a single operand and a type. They perform various bit conversions
2906on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002907</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00002908
Chris Lattner6536cfe2002-05-06 22:08:29 +00002909<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00002910<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002911 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2912</div>
2913<div class="doc_text">
2914
2915<h5>Syntax:</h5>
2916<pre>
2917 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2918</pre>
2919
2920<h5>Overview:</h5>
2921<p>
2922The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2923</p>
2924
2925<h5>Arguments:</h5>
2926<p>
2927The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
2928be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00002929and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00002930type. The bit size of <tt>value</tt> must be larger than the bit size of
2931<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002932
2933<h5>Semantics:</h5>
2934<p>
2935The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00002936and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
2937larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
2938It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002939
2940<h5>Example:</h5>
2941<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002942 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002943 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
2944 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002945</pre>
2946</div>
2947
2948<!-- _______________________________________________________________________ -->
2949<div class="doc_subsubsection">
2950 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2951</div>
2952<div class="doc_text">
2953
2954<h5>Syntax:</h5>
2955<pre>
2956 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2957</pre>
2958
2959<h5>Overview:</h5>
2960<p>The '<tt>zext</tt>' instruction zero extends its operand to type
2961<tt>ty2</tt>.</p>
2962
2963
2964<h5>Arguments:</h5>
2965<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00002966<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2967also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00002968<tt>value</tt> must be smaller than the bit size of the destination type,
2969<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002970
2971<h5>Semantics:</h5>
2972<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00002973bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002974
Reid Spencerb5929522007-01-12 15:46:11 +00002975<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002976
2977<h5>Example:</h5>
2978<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002979 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002980 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002981</pre>
2982</div>
2983
2984<!-- _______________________________________________________________________ -->
2985<div class="doc_subsubsection">
2986 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
2987</div>
2988<div class="doc_text">
2989
2990<h5>Syntax:</h5>
2991<pre>
2992 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2993</pre>
2994
2995<h5>Overview:</h5>
2996<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
2997
2998<h5>Arguments:</h5>
2999<p>
3000The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003001<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3002also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003003<tt>value</tt> must be smaller than the bit size of the destination type,
3004<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003005
3006<h5>Semantics:</h5>
3007<p>
3008The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3009bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003010the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003011
Reid Spencerc78f3372007-01-12 03:35:51 +00003012<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003013
3014<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003015<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003016 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003017 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003018</pre>
3019</div>
3020
3021<!-- _______________________________________________________________________ -->
3022<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003023 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3024</div>
3025
3026<div class="doc_text">
3027
3028<h5>Syntax:</h5>
3029
3030<pre>
3031 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3032</pre>
3033
3034<h5>Overview:</h5>
3035<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3036<tt>ty2</tt>.</p>
3037
3038
3039<h5>Arguments:</h5>
3040<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3041 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3042cast it to. The size of <tt>value</tt> must be larger than the size of
3043<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3044<i>no-op cast</i>.</p>
3045
3046<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003047<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3048<a href="#t_floating">floating point</a> type to a smaller
3049<a href="#t_floating">floating point</a> type. If the value cannot fit within
3050the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003051
3052<h5>Example:</h5>
3053<pre>
3054 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3055 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3056</pre>
3057</div>
3058
3059<!-- _______________________________________________________________________ -->
3060<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003061 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3062</div>
3063<div class="doc_text">
3064
3065<h5>Syntax:</h5>
3066<pre>
3067 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3068</pre>
3069
3070<h5>Overview:</h5>
3071<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3072floating point value.</p>
3073
3074<h5>Arguments:</h5>
3075<p>The '<tt>fpext</tt>' instruction takes a
3076<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003077and a <a href="#t_floating">floating point</a> type to cast it to. The source
3078type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003079
3080<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003081<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003082<a href="#t_floating">floating point</a> type to a larger
3083<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003084used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003085<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003086
3087<h5>Example:</h5>
3088<pre>
3089 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3090 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3091</pre>
3092</div>
3093
3094<!-- _______________________________________________________________________ -->
3095<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003096 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003097</div>
3098<div class="doc_text">
3099
3100<h5>Syntax:</h5>
3101<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003102 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003103</pre>
3104
3105<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003106<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003107unsigned integer equivalent of type <tt>ty2</tt>.
3108</p>
3109
3110<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003111<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003112<a href="#t_floating">floating point</a> value, and a type to cast it to, which
Chris Lattner3b19d652007-01-15 01:54:13 +00003113must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003114
3115<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003116<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003117<a href="#t_floating">floating point</a> operand into the nearest (rounding
3118towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3119the results are undefined.</p>
3120
Reid Spencerc78f3372007-01-12 03:35:51 +00003121<p>When converting to i1, the conversion is done as a comparison against
3122zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3123If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003124
3125<h5>Example:</h5>
3126<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003127 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
3128 %Y = fptoui float 1.0E+300 to i1 <i>; yields i1:true</i>
3129 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003130</pre>
3131</div>
3132
3133<!-- _______________________________________________________________________ -->
3134<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003135 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003136</div>
3137<div class="doc_text">
3138
3139<h5>Syntax:</h5>
3140<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003141 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003142</pre>
3143
3144<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003145<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003146<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003147</p>
3148
3149
Chris Lattner6536cfe2002-05-06 22:08:29 +00003150<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003151<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003152<a href="#t_floating">floating point</a> value, and a type to cast it to, which
Chris Lattner3b19d652007-01-15 01:54:13 +00003153must also be an <a href="#t_integer">integer</a> type.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003154
Chris Lattner6536cfe2002-05-06 22:08:29 +00003155<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003156<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003157<a href="#t_floating">floating point</a> operand into the nearest (rounding
3158towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3159the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003160
Reid Spencerc78f3372007-01-12 03:35:51 +00003161<p>When converting to i1, the conversion is done as a comparison against
3162zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3163If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003164
Chris Lattner33ba0d92001-07-09 00:26:23 +00003165<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003166<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003167 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
3168 %Y = fptosi float 1.0E-247 to i1 <i>; yields i1:true</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003169 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003170</pre>
3171</div>
3172
3173<!-- _______________________________________________________________________ -->
3174<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003175 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003176</div>
3177<div class="doc_text">
3178
3179<h5>Syntax:</h5>
3180<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003181 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003182</pre>
3183
3184<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003185<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003186integer and converts that value to the <tt>ty2</tt> type.</p>
3187
3188
3189<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003190<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
Chris Lattner3b19d652007-01-15 01:54:13 +00003191<a href="#t_integer">integer</a> value, and a type to cast it to, which must
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003192be a <a href="#t_floating">floating point</a> type.</p>
3193
3194<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003195<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003196integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003197the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003198
3199
3200<h5>Example:</h5>
3201<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003202 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003203 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003204</pre>
3205</div>
3206
3207<!-- _______________________________________________________________________ -->
3208<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003209 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003210</div>
3211<div class="doc_text">
3212
3213<h5>Syntax:</h5>
3214<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003215 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003216</pre>
3217
3218<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003219<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003220integer and converts that value to the <tt>ty2</tt> type.</p>
3221
3222<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003223<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
Chris Lattner3b19d652007-01-15 01:54:13 +00003224<a href="#t_integer">integer</a> value, and a type to cast it to, which must be
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003225a <a href="#t_floating">floating point</a> type.</p>
3226
3227<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003228<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003229integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003230the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003231
3232<h5>Example:</h5>
3233<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003234 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003235 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003236</pre>
3237</div>
3238
3239<!-- _______________________________________________________________________ -->
3240<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003241 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3242</div>
3243<div class="doc_text">
3244
3245<h5>Syntax:</h5>
3246<pre>
3247 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3248</pre>
3249
3250<h5>Overview:</h5>
3251<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3252the integer type <tt>ty2</tt>.</p>
3253
3254<h5>Arguments:</h5>
3255<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003256must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Reid Spencer72679252006-11-11 21:00:47 +00003257<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3258
3259<h5>Semantics:</h5>
3260<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3261<tt>ty2</tt> by interpreting the pointer value as an integer and either
3262truncating or zero extending that value to the size of the integer type. If
3263<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3264<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003265are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3266change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003267
3268<h5>Example:</h5>
3269<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003270 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3271 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003272</pre>
3273</div>
3274
3275<!-- _______________________________________________________________________ -->
3276<div class="doc_subsubsection">
3277 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3278</div>
3279<div class="doc_text">
3280
3281<h5>Syntax:</h5>
3282<pre>
3283 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3284</pre>
3285
3286<h5>Overview:</h5>
3287<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3288a pointer type, <tt>ty2</tt>.</p>
3289
3290<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003291<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003292value to cast, and a type to cast it to, which must be a
Anton Korobeynikov7f705592007-01-12 19:20:47 +00003293<a href="#t_pointer">pointer</a> type.
Reid Spencer72679252006-11-11 21:00:47 +00003294
3295<h5>Semantics:</h5>
3296<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3297<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3298the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3299size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3300the size of a pointer then a zero extension is done. If they are the same size,
3301nothing is done (<i>no-op cast</i>).</p>
3302
3303<h5>Example:</h5>
3304<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003305 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3306 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3307 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003308</pre>
3309</div>
3310
3311<!-- _______________________________________________________________________ -->
3312<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003313 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003314</div>
3315<div class="doc_text">
3316
3317<h5>Syntax:</h5>
3318<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003319 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003320</pre>
3321
3322<h5>Overview:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003323<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003324<tt>ty2</tt> without changing any bits.</p>
3325
3326<h5>Arguments:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003327<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003328a first class value, and a type to cast it to, which must also be a <a
3329 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003330and the destination type, <tt>ty2</tt>, must be identical. If the source
3331type is a pointer, the destination type must also be a pointer.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003332
3333<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003334<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003335<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3336this conversion. The conversion is done as if the <tt>value</tt> had been
3337stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3338converted to other pointer types with this instruction. To convert pointers to
3339other types, use the <a href="#i_inttoptr">inttoptr</a> or
3340<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003341
3342<h5>Example:</h5>
3343<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003344 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003345 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3346 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003347</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003348</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003349
Reid Spencer2fd21e62006-11-08 01:18:52 +00003350<!-- ======================================================================= -->
3351<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3352<div class="doc_text">
3353<p>The instructions in this category are the "miscellaneous"
3354instructions, which defy better classification.</p>
3355</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003356
3357<!-- _______________________________________________________________________ -->
3358<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3359</div>
3360<div class="doc_text">
3361<h5>Syntax:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003362<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003363</pre>
3364<h5>Overview:</h5>
3365<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3366of its two integer operands.</p>
3367<h5>Arguments:</h5>
3368<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003369the condition code indicating the kind of comparison to perform. It is not
3370a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003371<ol>
3372 <li><tt>eq</tt>: equal</li>
3373 <li><tt>ne</tt>: not equal </li>
3374 <li><tt>ugt</tt>: unsigned greater than</li>
3375 <li><tt>uge</tt>: unsigned greater or equal</li>
3376 <li><tt>ult</tt>: unsigned less than</li>
3377 <li><tt>ule</tt>: unsigned less or equal</li>
3378 <li><tt>sgt</tt>: signed greater than</li>
3379 <li><tt>sge</tt>: signed greater or equal</li>
3380 <li><tt>slt</tt>: signed less than</li>
3381 <li><tt>sle</tt>: signed less or equal</li>
3382</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003383<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Reid Spencer350f8aa2007-01-04 05:19:58 +00003384<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003385<h5>Semantics:</h5>
3386<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3387the condition code given as <tt>cond</tt>. The comparison performed always
Reid Spencerc78f3372007-01-12 03:35:51 +00003388yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003389<ol>
3390 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3391 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3392 </li>
3393 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3394 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3395 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3396 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3397 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3398 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3399 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3400 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3401 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3402 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3403 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3404 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3405 <li><tt>sge</tt>: interprets the operands as signed values and yields
3406 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3407 <li><tt>slt</tt>: interprets the operands as signed values and yields
3408 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3409 <li><tt>sle</tt>: interprets the operands as signed values and yields
3410 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003411</ol>
3412<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00003413values are compared as if they were integers.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003414
3415<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003416<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3417 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3418 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3419 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3420 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3421 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003422</pre>
3423</div>
3424
3425<!-- _______________________________________________________________________ -->
3426<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3427</div>
3428<div class="doc_text">
3429<h5>Syntax:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003430<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003431</pre>
3432<h5>Overview:</h5>
3433<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3434of its floating point operands.</p>
3435<h5>Arguments:</h5>
3436<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003437the condition code indicating the kind of comparison to perform. It is not
3438a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003439<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00003440 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003441 <li><tt>oeq</tt>: ordered and equal</li>
3442 <li><tt>ogt</tt>: ordered and greater than </li>
3443 <li><tt>oge</tt>: ordered and greater than or equal</li>
3444 <li><tt>olt</tt>: ordered and less than </li>
3445 <li><tt>ole</tt>: ordered and less than or equal</li>
3446 <li><tt>one</tt>: ordered and not equal</li>
3447 <li><tt>ord</tt>: ordered (no nans)</li>
3448 <li><tt>ueq</tt>: unordered or equal</li>
3449 <li><tt>ugt</tt>: unordered or greater than </li>
3450 <li><tt>uge</tt>: unordered or greater than or equal</li>
3451 <li><tt>ult</tt>: unordered or less than </li>
3452 <li><tt>ule</tt>: unordered or less than or equal</li>
3453 <li><tt>une</tt>: unordered or not equal</li>
3454 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003455 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003456</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003457<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00003458<i>unordered</i> means that either operand may be a QNAN.</p>
Reid Spencer350f8aa2007-01-04 05:19:58 +00003459<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3460<a href="#t_floating">floating point</a> typed. They must have identical
3461types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003462<h5>Semantics:</h5>
3463<p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3464the condition code given as <tt>cond</tt>. The comparison performed always
Reid Spencerc78f3372007-01-12 03:35:51 +00003465yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003466<ol>
3467 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003468 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003469 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003470 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003471 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003472 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003473 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003474 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003475 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003476 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003477 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003478 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003479 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003480 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3481 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003482 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003483 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003484 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003485 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003486 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003487 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003488 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003489 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003490 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003491 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003492 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003493 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003494 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3495</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003496
3497<h5>Example:</h5>
3498<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3499 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3500 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3501 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3502</pre>
3503</div>
3504
Reid Spencer2fd21e62006-11-08 01:18:52 +00003505<!-- _______________________________________________________________________ -->
3506<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3507Instruction</a> </div>
3508<div class="doc_text">
3509<h5>Syntax:</h5>
3510<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3511<h5>Overview:</h5>
3512<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3513the SSA graph representing the function.</p>
3514<h5>Arguments:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003515<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00003516field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3517as arguments, with one pair for each predecessor basic block of the
3518current block. Only values of <a href="#t_firstclass">first class</a>
3519type may be used as the value arguments to the PHI node. Only labels
3520may be used as the label arguments.</p>
3521<p>There must be no non-phi instructions between the start of a basic
3522block and the PHI instructions: i.e. PHI instructions must be first in
3523a basic block.</p>
3524<h5>Semantics:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003525<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3526specified by the pair corresponding to the predecessor basic block that executed
3527just prior to the current block.</p>
Reid Spencer2fd21e62006-11-08 01:18:52 +00003528<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003529<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00003530</div>
3531
Chris Lattnercc37aae2004-03-12 05:50:16 +00003532<!-- _______________________________________________________________________ -->
3533<div class="doc_subsubsection">
3534 <a name="i_select">'<tt>select</tt>' Instruction</a>
3535</div>
3536
3537<div class="doc_text">
3538
3539<h5>Syntax:</h5>
3540
3541<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003542 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003543</pre>
3544
3545<h5>Overview:</h5>
3546
3547<p>
3548The '<tt>select</tt>' instruction is used to choose one value based on a
3549condition, without branching.
3550</p>
3551
3552
3553<h5>Arguments:</h5>
3554
3555<p>
3556The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3557</p>
3558
3559<h5>Semantics:</h5>
3560
3561<p>
3562If the boolean condition evaluates to true, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00003563value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003564</p>
3565
3566<h5>Example:</h5>
3567
3568<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003569 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003570</pre>
3571</div>
3572
Robert Bocchino05ccd702006-01-15 20:48:27 +00003573
3574<!-- _______________________________________________________________________ -->
3575<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00003576 <a name="i_call">'<tt>call</tt>' Instruction</a>
3577</div>
3578
Misha Brukman9d0919f2003-11-08 01:05:38 +00003579<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00003580
Chris Lattner00950542001-06-06 20:29:01 +00003581<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003582<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00003583 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner2bff5242005-05-06 05:47:36 +00003584</pre>
3585
Chris Lattner00950542001-06-06 20:29:01 +00003586<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003587
Misha Brukman9d0919f2003-11-08 01:05:38 +00003588<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003589
Chris Lattner00950542001-06-06 20:29:01 +00003590<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003591
Misha Brukman9d0919f2003-11-08 01:05:38 +00003592<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003593
Chris Lattner6536cfe2002-05-06 22:08:29 +00003594<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00003595 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003596 <p>The optional "tail" marker indicates whether the callee function accesses
3597 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00003598 function call is eligible for tail call optimization. Note that calls may
3599 be marked "tail" even if they do not occur before a <a
3600 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner261efe92003-11-25 01:02:51 +00003601 </li>
3602 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00003603 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003604 convention</a> the call should use. If none is specified, the call defaults
3605 to using C calling conventions.
3606 </li>
3607 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00003608 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
3609 the type of the return value. Functions that return no value are marked
3610 <tt><a href="#t_void">void</a></tt>.</p>
3611 </li>
3612 <li>
3613 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
3614 value being invoked. The argument types must match the types implied by
3615 this signature. This type can be omitted if the function is not varargs
3616 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003617 </li>
3618 <li>
3619 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3620 be invoked. In most cases, this is a direct function invocation, but
3621 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00003622 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003623 </li>
3624 <li>
3625 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00003626 function signature argument types. All arguments must be of
3627 <a href="#t_firstclass">first class</a> type. If the function signature
3628 indicates the function accepts a variable number of arguments, the extra
3629 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003630 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00003631</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00003632
Chris Lattner00950542001-06-06 20:29:01 +00003633<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003634
Chris Lattner261efe92003-11-25 01:02:51 +00003635<p>The '<tt>call</tt>' instruction is used to cause control flow to
3636transfer to a specified function, with its incoming arguments bound to
3637the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3638instruction in the called function, control flow continues with the
3639instruction after the function call, and the return value of the
3640function is bound to the result argument. This is a simpler case of
3641the <a href="#i_invoke">invoke</a> instruction.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003642
Chris Lattner00950542001-06-06 20:29:01 +00003643<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003644
3645<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00003646 %retval = call i32 @test(i32 %argc)
3647 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42);
3648 %X = tail call i32 @foo()
3649 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()
3650 %Z = call void %foo(i8 97 signext)
Chris Lattner2bff5242005-05-06 05:47:36 +00003651</pre>
3652
Misha Brukman9d0919f2003-11-08 01:05:38 +00003653</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003654
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003655<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00003656<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00003657 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003658</div>
3659
Misha Brukman9d0919f2003-11-08 01:05:38 +00003660<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00003661
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003662<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003663
3664<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003665 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00003666</pre>
3667
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003668<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003669
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003670<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00003671the "variable argument" area of a function call. It is used to implement the
3672<tt>va_arg</tt> macro in C.</p>
3673
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003674<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003675
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003676<p>This instruction takes a <tt>va_list*</tt> value and the type of
3677the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00003678increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003679actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003680
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003681<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003682
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003683<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3684type from the specified <tt>va_list</tt> and causes the
3685<tt>va_list</tt> to point to the next argument. For more information,
3686see the variable argument handling <a href="#int_varargs">Intrinsic
3687Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003688
3689<p>It is legal for this instruction to be called in a function which does not
3690take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003691function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003692
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003693<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00003694href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00003695argument.</p>
3696
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003697<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003698
3699<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3700
Misha Brukman9d0919f2003-11-08 01:05:38 +00003701</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003702
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003703<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00003704<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3705<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003706
Misha Brukman9d0919f2003-11-08 01:05:38 +00003707<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00003708
3709<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00003710well known names and semantics and are required to follow certain restrictions.
3711Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00003712language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00003713adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00003714
John Criswellfc6b8952005-05-16 16:17:45 +00003715<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00003716prefix is reserved in LLVM for intrinsic names; thus, function names may not
3717begin with this prefix. Intrinsic functions must always be external functions:
3718you cannot define the body of intrinsic functions. Intrinsic functions may
3719only be used in call or invoke instructions: it is illegal to take the address
3720of an intrinsic function. Additionally, because intrinsic functions are part
3721of the LLVM language, it is required if any are added that they be documented
3722here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00003723
Chandler Carruth69940402007-08-04 01:51:18 +00003724<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
3725a family of functions that perform the same operation but on different data
3726types. Because LLVM can represent over 8 million different integer types,
3727overloading is used commonly to allow an intrinsic function to operate on any
3728integer type. One or more of the argument types or the result type can be
3729overloaded to accept any integer type. Argument types may also be defined as
3730exactly matching a previous argument's type or the result type. This allows an
3731intrinsic function which accepts multiple arguments, but needs all of them to
3732be of the same type, to only be overloaded with respect to a single argument or
3733the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00003734
Chandler Carruth69940402007-08-04 01:51:18 +00003735<p>Overloaded intrinsics will have the names of its overloaded argument types
3736encoded into its function name, each preceded by a period. Only those types
3737which are overloaded result in a name suffix. Arguments whose type is matched
3738against another type do not. For example, the <tt>llvm.ctpop</tt> function can
3739take an integer of any width and returns an integer of exactly the same integer
3740width. This leads to a family of functions such as
3741<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
3742Only one type, the return type, is overloaded, and only one type suffix is
3743required. Because the argument's type is matched against the return type, it
3744does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00003745
3746<p>To learn how to add an intrinsic function, please see the
3747<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00003748</p>
3749
Misha Brukman9d0919f2003-11-08 01:05:38 +00003750</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003751
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003752<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003753<div class="doc_subsection">
3754 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3755</div>
3756
Misha Brukman9d0919f2003-11-08 01:05:38 +00003757<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00003758
Misha Brukman9d0919f2003-11-08 01:05:38 +00003759<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00003760 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00003761intrinsic functions. These functions are related to the similarly
3762named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003763
Chris Lattner261efe92003-11-25 01:02:51 +00003764<p>All of these functions operate on arguments that use a
3765target-specific value type "<tt>va_list</tt>". The LLVM assembly
3766language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00003767transformations should be prepared to handle these functions regardless of
3768the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003769
Chris Lattner374ab302006-05-15 17:26:46 +00003770<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00003771instruction and the variable argument handling intrinsic functions are
3772used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003773
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003774<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00003775<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003776define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00003777 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00003778 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00003779 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003780 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003781
3782 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00003783 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00003784
3785 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00003786 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00003787 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00003788 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003789 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003790
3791 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003792 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00003793 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00003794}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003795
3796declare void @llvm.va_start(i8*)
3797declare void @llvm.va_copy(i8*, i8*)
3798declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003799</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003800</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003801
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003802</div>
3803
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003804<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003805<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003806 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00003807</div>
3808
3809
Misha Brukman9d0919f2003-11-08 01:05:38 +00003810<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003811<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003812<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003813<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003814<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3815<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3816href="#i_va_arg">va_arg</a></tt>.</p>
3817
3818<h5>Arguments:</h5>
3819
3820<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3821
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003822<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003823
3824<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3825macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00003826<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003827<tt>va_arg</tt> will produce the first variable argument passed to the function.
3828Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00003829last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003830
Misha Brukman9d0919f2003-11-08 01:05:38 +00003831</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003832
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003833<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003834<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003835 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00003836</div>
3837
Misha Brukman9d0919f2003-11-08 01:05:38 +00003838<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003839<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003840<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003841<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003842
Jeff Cohenb627eab2007-04-29 01:07:00 +00003843<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00003844which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003845or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003846
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003847<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003848
Jeff Cohenb627eab2007-04-29 01:07:00 +00003849<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003850
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003851<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003852
Misha Brukman9d0919f2003-11-08 01:05:38 +00003853<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003854macro available in C. In a target-dependent way, it destroys the
3855<tt>va_list</tt> element to which the argument points. Calls to <a
3856href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
3857<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
3858<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003859
Misha Brukman9d0919f2003-11-08 01:05:38 +00003860</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003861
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003862<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003863<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003864 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00003865</div>
3866
Misha Brukman9d0919f2003-11-08 01:05:38 +00003867<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00003868
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003869<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003870
3871<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003872 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00003873</pre>
3874
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003875<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003876
Jeff Cohenb627eab2007-04-29 01:07:00 +00003877<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
3878from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003879
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003880<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003881
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003882<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00003883The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003884
Chris Lattnerd7923912004-05-23 21:06:01 +00003885
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003886<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003887
Jeff Cohenb627eab2007-04-29 01:07:00 +00003888<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
3889macro available in C. In a target-dependent way, it copies the source
3890<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
3891intrinsic is necessary because the <tt><a href="#int_va_start">
3892llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
3893example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003894
Misha Brukman9d0919f2003-11-08 01:05:38 +00003895</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003896
Chris Lattner33aec9e2004-02-12 17:01:32 +00003897<!-- ======================================================================= -->
3898<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00003899 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3900</div>
3901
3902<div class="doc_text">
3903
3904<p>
3905LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3906Collection</a> requires the implementation and generation of these intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00003907These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00003908stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00003909href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00003910Front-ends for type-safe garbage collected languages should generate these
3911intrinsics to make use of the LLVM garbage collectors. For more details, see <a
3912href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3913</p>
3914</div>
3915
3916<!-- _______________________________________________________________________ -->
3917<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003918 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00003919</div>
3920
3921<div class="doc_text">
3922
3923<h5>Syntax:</h5>
3924
3925<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003926 declare void @llvm.gcroot(&lt;ty&gt;** %ptrloc, &lt;ty2&gt;* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00003927</pre>
3928
3929<h5>Overview:</h5>
3930
John Criswell9e2485c2004-12-10 15:51:16 +00003931<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00003932the code generator, and allows some metadata to be associated with it.</p>
3933
3934<h5>Arguments:</h5>
3935
3936<p>The first argument specifies the address of a stack object that contains the
3937root pointer. The second pointer (which must be either a constant or a global
3938value address) contains the meta-data to be associated with the root.</p>
3939
3940<h5>Semantics:</h5>
3941
3942<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3943location. At compile-time, the code generator generates information to allow
3944the runtime to find the pointer at GC safe points.
3945</p>
3946
3947</div>
3948
3949
3950<!-- _______________________________________________________________________ -->
3951<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003952 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00003953</div>
3954
3955<div class="doc_text">
3956
3957<h5>Syntax:</h5>
3958
3959<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003960 declare i8 * @llvm.gcread(i8 * %ObjPtr, i8 ** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00003961</pre>
3962
3963<h5>Overview:</h5>
3964
3965<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3966locations, allowing garbage collector implementations that require read
3967barriers.</p>
3968
3969<h5>Arguments:</h5>
3970
Chris Lattner80626e92006-03-14 20:02:51 +00003971<p>The second argument is the address to read from, which should be an address
3972allocated from the garbage collector. The first object is a pointer to the
3973start of the referenced object, if needed by the language runtime (otherwise
3974null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003975
3976<h5>Semantics:</h5>
3977
3978<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3979instruction, but may be replaced with substantially more complex code by the
3980garbage collector runtime, as needed.</p>
3981
3982</div>
3983
3984
3985<!-- _______________________________________________________________________ -->
3986<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003987 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00003988</div>
3989
3990<div class="doc_text">
3991
3992<h5>Syntax:</h5>
3993
3994<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003995 declare void @llvm.gcwrite(i8 * %P1, i8 * %Obj, i8 ** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00003996</pre>
3997
3998<h5>Overview:</h5>
3999
4000<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4001locations, allowing garbage collector implementations that require write
4002barriers (such as generational or reference counting collectors).</p>
4003
4004<h5>Arguments:</h5>
4005
Chris Lattner80626e92006-03-14 20:02:51 +00004006<p>The first argument is the reference to store, the second is the start of the
4007object to store it to, and the third is the address of the field of Obj to
4008store to. If the runtime does not require a pointer to the object, Obj may be
4009null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004010
4011<h5>Semantics:</h5>
4012
4013<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4014instruction, but may be replaced with substantially more complex code by the
4015garbage collector runtime, as needed.</p>
4016
4017</div>
4018
4019
4020
4021<!-- ======================================================================= -->
4022<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004023 <a name="int_codegen">Code Generator Intrinsics</a>
4024</div>
4025
4026<div class="doc_text">
4027<p>
4028These intrinsics are provided by LLVM to expose special features that may only
4029be implemented with code generator support.
4030</p>
4031
4032</div>
4033
4034<!-- _______________________________________________________________________ -->
4035<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004036 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004037</div>
4038
4039<div class="doc_text">
4040
4041<h5>Syntax:</h5>
4042<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004043 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004044</pre>
4045
4046<h5>Overview:</h5>
4047
4048<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004049The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4050target-specific value indicating the return address of the current function
4051or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004052</p>
4053
4054<h5>Arguments:</h5>
4055
4056<p>
4057The argument to this intrinsic indicates which function to return the address
4058for. Zero indicates the calling function, one indicates its caller, etc. The
4059argument is <b>required</b> to be a constant integer value.
4060</p>
4061
4062<h5>Semantics:</h5>
4063
4064<p>
4065The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4066the return address of the specified call frame, or zero if it cannot be
4067identified. The value returned by this intrinsic is likely to be incorrect or 0
4068for arguments other than zero, so it should only be used for debugging purposes.
4069</p>
4070
4071<p>
4072Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004073aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004074source-language caller.
4075</p>
4076</div>
4077
4078
4079<!-- _______________________________________________________________________ -->
4080<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004081 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004082</div>
4083
4084<div class="doc_text">
4085
4086<h5>Syntax:</h5>
4087<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004088 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004089</pre>
4090
4091<h5>Overview:</h5>
4092
4093<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004094The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4095target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004096</p>
4097
4098<h5>Arguments:</h5>
4099
4100<p>
4101The argument to this intrinsic indicates which function to return the frame
4102pointer for. Zero indicates the calling function, one indicates its caller,
4103etc. The argument is <b>required</b> to be a constant integer value.
4104</p>
4105
4106<h5>Semantics:</h5>
4107
4108<p>
4109The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4110the frame address of the specified call frame, or zero if it cannot be
4111identified. The value returned by this intrinsic is likely to be incorrect or 0
4112for arguments other than zero, so it should only be used for debugging purposes.
4113</p>
4114
4115<p>
4116Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004117aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004118source-language caller.
4119</p>
4120</div>
4121
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004122<!-- _______________________________________________________________________ -->
4123<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004124 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004125</div>
4126
4127<div class="doc_text">
4128
4129<h5>Syntax:</h5>
4130<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004131 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004132</pre>
4133
4134<h5>Overview:</h5>
4135
4136<p>
4137The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00004138the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00004139<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4140features like scoped automatic variable sized arrays in C99.
4141</p>
4142
4143<h5>Semantics:</h5>
4144
4145<p>
4146This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004147href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004148<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4149<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4150state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4151practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4152that were allocated after the <tt>llvm.stacksave</tt> was executed.
4153</p>
4154
4155</div>
4156
4157<!-- _______________________________________________________________________ -->
4158<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004159 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004160</div>
4161
4162<div class="doc_text">
4163
4164<h5>Syntax:</h5>
4165<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004166 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004167</pre>
4168
4169<h5>Overview:</h5>
4170
4171<p>
4172The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4173the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004174href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00004175useful for implementing language features like scoped automatic variable sized
4176arrays in C99.
4177</p>
4178
4179<h5>Semantics:</h5>
4180
4181<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00004182See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00004183</p>
4184
4185</div>
4186
4187
4188<!-- _______________________________________________________________________ -->
4189<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004190 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004191</div>
4192
4193<div class="doc_text">
4194
4195<h5>Syntax:</h5>
4196<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004197 declare void @llvm.prefetch(i8 * &lt;address&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004198 i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004199</pre>
4200
4201<h5>Overview:</h5>
4202
4203
4204<p>
4205The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004206a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4207no
4208effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004209characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004210</p>
4211
4212<h5>Arguments:</h5>
4213
4214<p>
4215<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4216determining if the fetch should be for a read (0) or write (1), and
4217<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004218locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004219<tt>locality</tt> arguments must be constant integers.
4220</p>
4221
4222<h5>Semantics:</h5>
4223
4224<p>
4225This intrinsic does not modify the behavior of the program. In particular,
4226prefetches cannot trap and do not produce a value. On targets that support this
4227intrinsic, the prefetch can provide hints to the processor cache for better
4228performance.
4229</p>
4230
4231</div>
4232
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004233<!-- _______________________________________________________________________ -->
4234<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004235 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004236</div>
4237
4238<div class="doc_text">
4239
4240<h5>Syntax:</h5>
4241<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004242 declare void @llvm.pcmarker( i32 &lt;id&gt; )
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004243</pre>
4244
4245<h5>Overview:</h5>
4246
4247
4248<p>
John Criswellfc6b8952005-05-16 16:17:45 +00004249The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4250(PC) in a region of
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004251code to simulators and other tools. The method is target specific, but it is
4252expected that the marker will use exported symbols to transmit the PC of the marker.
Jeff Cohen25d4f7e2005-11-11 02:15:27 +00004253The marker makes no guarantees that it will remain with any specific instruction
Chris Lattnerd07c3f42005-11-15 06:07:55 +00004254after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00004255optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00004256correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004257</p>
4258
4259<h5>Arguments:</h5>
4260
4261<p>
4262<tt>id</tt> is a numerical id identifying the marker.
4263</p>
4264
4265<h5>Semantics:</h5>
4266
4267<p>
4268This intrinsic does not modify the behavior of the program. Backends that do not
4269support this intrinisic may ignore it.
4270</p>
4271
4272</div>
4273
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004274<!-- _______________________________________________________________________ -->
4275<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004276 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004277</div>
4278
4279<div class="doc_text">
4280
4281<h5>Syntax:</h5>
4282<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004283 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004284</pre>
4285
4286<h5>Overview:</h5>
4287
4288
4289<p>
4290The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4291counter register (or similar low latency, high accuracy clocks) on those targets
4292that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4293As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4294should only be used for small timings.
4295</p>
4296
4297<h5>Semantics:</h5>
4298
4299<p>
4300When directly supported, reading the cycle counter should not modify any memory.
4301Implementations are allowed to either return a application specific value or a
4302system wide value. On backends without support, this is lowered to a constant 0.
4303</p>
4304
4305</div>
4306
Chris Lattner10610642004-02-14 04:08:35 +00004307<!-- ======================================================================= -->
4308<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004309 <a name="int_libc">Standard C Library Intrinsics</a>
4310</div>
4311
4312<div class="doc_text">
4313<p>
Chris Lattner10610642004-02-14 04:08:35 +00004314LLVM provides intrinsics for a few important standard C library functions.
4315These intrinsics allow source-language front-ends to pass information about the
4316alignment of the pointer arguments to the code generator, providing opportunity
4317for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004318</p>
4319
4320</div>
4321
4322<!-- _______________________________________________________________________ -->
4323<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004324 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004325</div>
4326
4327<div class="doc_text">
4328
4329<h5>Syntax:</h5>
4330<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004331 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004332 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004333 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004334 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004335</pre>
4336
4337<h5>Overview:</h5>
4338
4339<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004340The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004341location to the destination location.
4342</p>
4343
4344<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004345Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4346intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004347</p>
4348
4349<h5>Arguments:</h5>
4350
4351<p>
4352The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004353the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00004354specifying the number of bytes to copy, and the fourth argument is the alignment
4355of the source and destination locations.
4356</p>
4357
Chris Lattner3301ced2004-02-12 21:18:15 +00004358<p>
4359If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004360the caller guarantees that both the source and destination pointers are aligned
4361to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004362</p>
4363
Chris Lattner33aec9e2004-02-12 17:01:32 +00004364<h5>Semantics:</h5>
4365
4366<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004367The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004368location to the destination location, which are not allowed to overlap. It
4369copies "len" bytes of memory over. If the argument is known to be aligned to
4370some boundary, this can be specified as the fourth argument, otherwise it should
4371be set to 0 or 1.
4372</p>
4373</div>
4374
4375
Chris Lattner0eb51b42004-02-12 18:10:10 +00004376<!-- _______________________________________________________________________ -->
4377<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004378 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00004379</div>
4380
4381<div class="doc_text">
4382
4383<h5>Syntax:</h5>
4384<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004385 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004386 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004387 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004388 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00004389</pre>
4390
4391<h5>Overview:</h5>
4392
4393<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004394The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4395location to the destination location. It is similar to the
4396'<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00004397</p>
4398
4399<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004400Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4401intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00004402</p>
4403
4404<h5>Arguments:</h5>
4405
4406<p>
4407The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004408the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00004409specifying the number of bytes to copy, and the fourth argument is the alignment
4410of the source and destination locations.
4411</p>
4412
Chris Lattner3301ced2004-02-12 21:18:15 +00004413<p>
4414If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004415the caller guarantees that the source and destination pointers are aligned to
4416that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004417</p>
4418
Chris Lattner0eb51b42004-02-12 18:10:10 +00004419<h5>Semantics:</h5>
4420
4421<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004422The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00004423location to the destination location, which may overlap. It
4424copies "len" bytes of memory over. If the argument is known to be aligned to
4425some boundary, this can be specified as the fourth argument, otherwise it should
4426be set to 0 or 1.
4427</p>
4428</div>
4429
Chris Lattner8ff75902004-01-06 05:31:32 +00004430
Chris Lattner10610642004-02-14 04:08:35 +00004431<!-- _______________________________________________________________________ -->
4432<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004433 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00004434</div>
4435
4436<div class="doc_text">
4437
4438<h5>Syntax:</h5>
4439<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004440 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004441 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004442 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004443 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004444</pre>
4445
4446<h5>Overview:</h5>
4447
4448<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004449The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00004450byte value.
4451</p>
4452
4453<p>
4454Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4455does not return a value, and takes an extra alignment argument.
4456</p>
4457
4458<h5>Arguments:</h5>
4459
4460<p>
4461The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00004462byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00004463argument specifying the number of bytes to fill, and the fourth argument is the
4464known alignment of destination location.
4465</p>
4466
4467<p>
4468If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004469the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00004470</p>
4471
4472<h5>Semantics:</h5>
4473
4474<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004475The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4476the
Chris Lattner10610642004-02-14 04:08:35 +00004477destination location. If the argument is known to be aligned to some boundary,
4478this can be specified as the fourth argument, otherwise it should be set to 0 or
44791.
4480</p>
4481</div>
4482
4483
Chris Lattner32006282004-06-11 02:28:03 +00004484<!-- _______________________________________________________________________ -->
4485<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004486 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00004487</div>
4488
4489<div class="doc_text">
4490
4491<h5>Syntax:</h5>
4492<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004493 declare float @llvm.sqrt.f32(float %Val)
4494 declare double @llvm.sqrt.f64(double %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00004495</pre>
4496
4497<h5>Overview:</h5>
4498
4499<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004500The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Chris Lattnera4d74142005-07-21 01:29:16 +00004501returning the same value as the libm '<tt>sqrt</tt>' function would. Unlike
4502<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4503negative numbers (which allows for better optimization).
4504</p>
4505
4506<h5>Arguments:</h5>
4507
4508<p>
4509The argument and return value are floating point numbers of the same type.
4510</p>
4511
4512<h5>Semantics:</h5>
4513
4514<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00004515This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00004516floating point number.
4517</p>
4518</div>
4519
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004520<!-- _______________________________________________________________________ -->
4521<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004522 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004523</div>
4524
4525<div class="doc_text">
4526
4527<h5>Syntax:</h5>
4528<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004529 declare float @llvm.powi.f32(float %Val, i32 %power)
4530 declare double @llvm.powi.f64(double %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004531</pre>
4532
4533<h5>Overview:</h5>
4534
4535<p>
4536The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4537specified (positive or negative) power. The order of evaluation of
4538multiplications is not defined.
4539</p>
4540
4541<h5>Arguments:</h5>
4542
4543<p>
4544The second argument is an integer power, and the first is a value to raise to
4545that power.
4546</p>
4547
4548<h5>Semantics:</h5>
4549
4550<p>
4551This function returns the first value raised to the second power with an
4552unspecified sequence of rounding operations.</p>
4553</div>
4554
4555
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004556<!-- ======================================================================= -->
4557<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00004558 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004559</div>
4560
4561<div class="doc_text">
4562<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00004563LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004564These allow efficient code generation for some algorithms.
4565</p>
4566
4567</div>
4568
4569<!-- _______________________________________________________________________ -->
4570<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004571 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00004572</div>
4573
4574<div class="doc_text">
4575
4576<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00004577<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carruth69940402007-08-04 01:51:18 +00004578type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Nate Begeman7e36c472006-01-13 23:26:38 +00004579<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00004580 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
4581 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
4582 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00004583</pre>
4584
4585<h5>Overview:</h5>
4586
4587<p>
Reid Spencer338ea092007-04-02 02:25:19 +00004588The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00004589values with an even number of bytes (positive multiple of 16 bits). These are
4590useful for performing operations on data that is not in the target's native
4591byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00004592</p>
4593
4594<h5>Semantics:</h5>
4595
4596<p>
Chandler Carruth69940402007-08-04 01:51:18 +00004597The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00004598and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4599intrinsic returns an i32 value that has the four bytes of the input i32
4600swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00004601i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
4602<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00004603additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00004604</p>
4605
4606</div>
4607
4608<!-- _______________________________________________________________________ -->
4609<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00004610 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004611</div>
4612
4613<div class="doc_text">
4614
4615<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00004616<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4617width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004618<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00004619 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
4620 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004621 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00004622 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
4623 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004624</pre>
4625
4626<h5>Overview:</h5>
4627
4628<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00004629The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4630value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004631</p>
4632
4633<h5>Arguments:</h5>
4634
4635<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00004636The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004637integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004638</p>
4639
4640<h5>Semantics:</h5>
4641
4642<p>
4643The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4644</p>
4645</div>
4646
4647<!-- _______________________________________________________________________ -->
4648<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00004649 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004650</div>
4651
4652<div class="doc_text">
4653
4654<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00004655<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
4656integer bit width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004657<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00004658 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
4659 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004660 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00004661 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
4662 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004663</pre>
4664
4665<h5>Overview:</h5>
4666
4667<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004668The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4669leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004670</p>
4671
4672<h5>Arguments:</h5>
4673
4674<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00004675The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004676integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004677</p>
4678
4679<h5>Semantics:</h5>
4680
4681<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00004682The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4683in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00004684of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004685</p>
4686</div>
Chris Lattner32006282004-06-11 02:28:03 +00004687
4688
Chris Lattnereff29ab2005-05-15 19:39:26 +00004689
4690<!-- _______________________________________________________________________ -->
4691<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00004692 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00004693</div>
4694
4695<div class="doc_text">
4696
4697<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00004698<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
4699integer bit width. Not all targets support all bit widths however.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004700<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00004701 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
4702 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004703 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00004704 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
4705 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00004706</pre>
4707
4708<h5>Overview:</h5>
4709
4710<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004711The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4712trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004713</p>
4714
4715<h5>Arguments:</h5>
4716
4717<p>
4718The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004719integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004720</p>
4721
4722<h5>Semantics:</h5>
4723
4724<p>
4725The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4726in a variable. If the src == 0 then the result is the size in bits of the type
4727of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4728</p>
4729</div>
4730
Reid Spencer497d93e2007-04-01 08:27:01 +00004731<!-- _______________________________________________________________________ -->
4732<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00004733 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00004734</div>
4735
4736<div class="doc_text">
4737
4738<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00004739<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Reid Spencera13ba7d2007-04-01 19:00:37 +00004740on any integer bit width.
4741<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00004742 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
4743 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00004744</pre>
4745
4746<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00004747<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00004748range of bits from an integer value and returns them in the same bit width as
4749the original value.</p>
4750
4751<h5>Arguments:</h5>
4752<p>The first argument, <tt>%val</tt> and the result may be integer types of
4753any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00004754arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00004755
4756<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00004757<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00004758of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
4759<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
4760operates in forward mode.</p>
4761<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
4762right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00004763only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
4764<ol>
4765 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
4766 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
4767 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
4768 to determine the number of bits to retain.</li>
4769 <li>A mask of the retained bits is created by shifting a -1 value.</li>
4770 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
4771</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00004772<p>In reverse mode, a similar computation is made except that the bits are
4773returned in the reverse order. So, for example, if <tt>X</tt> has the value
4774<tt>i16 0x0ACF (101011001111)</tt> and we apply
4775<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
4776<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00004777</div>
4778
Reid Spencerf86037f2007-04-11 23:23:49 +00004779<div class="doc_subsubsection">
4780 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
4781</div>
4782
4783<div class="doc_text">
4784
4785<h5>Syntax:</h5>
4786<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
4787on any integer bit width.
4788<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00004789 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
4790 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00004791</pre>
4792
4793<h5>Overview:</h5>
4794<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
4795of bits in an integer value with another integer value. It returns the integer
4796with the replaced bits.</p>
4797
4798<h5>Arguments:</h5>
4799<p>The first argument, <tt>%val</tt> and the result may be integer types of
4800any bit width but they must have the same bit width. <tt>%val</tt> is the value
4801whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
4802integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
4803type since they specify only a bit index.</p>
4804
4805<h5>Semantics:</h5>
4806<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
4807of operation: forwards and reverse. If <tt>%lo</tt> is greater than
4808<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
4809operates in forward mode.</p>
4810<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
4811truncating it down to the size of the replacement area or zero extending it
4812up to that size.</p>
4813<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
4814are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
4815in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
4816to the <tt>%hi</tt>th bit.
Reid Spencerc6749c42007-05-14 16:50:20 +00004817<p>In reverse mode, a similar computation is made except that the bits are
4818reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
4819<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
Reid Spencerf86037f2007-04-11 23:23:49 +00004820<h5>Examples:</h5>
4821<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00004822 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00004823 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
4824 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
4825 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00004826 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00004827</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00004828</div>
4829
Chris Lattner8ff75902004-01-06 05:31:32 +00004830<!-- ======================================================================= -->
4831<div class="doc_subsection">
4832 <a name="int_debugger">Debugger Intrinsics</a>
4833</div>
4834
4835<div class="doc_text">
4836<p>
4837The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4838are described in the <a
4839href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4840Debugging</a> document.
4841</p>
4842</div>
4843
4844
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00004845<!-- ======================================================================= -->
4846<div class="doc_subsection">
4847 <a name="int_eh">Exception Handling Intrinsics</a>
4848</div>
4849
4850<div class="doc_text">
4851<p> The LLVM exception handling intrinsics (which all start with
4852<tt>llvm.eh.</tt> prefix), are described in the <a
4853href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
4854Handling</a> document. </p>
4855</div>
4856
Tanya Lattner6d806e92007-06-15 20:50:54 +00004857<!-- ======================================================================= -->
4858<div class="doc_subsection">
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004859 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
4860</div>
4861
4862<div class="doc_text">
4863<p>
4864 These intrinsic functions expand the "universal IR" of LLVM to represent
4865 hardware constructs for atomic operations and memory synchronization. This
4866 provides an interface to the hardware, not an interface to the programmer. It
4867 is aimed at a low enough level to allow any programming models or APIs which
4868 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
Chandler Carruth6813c152007-07-20 20:14:52 +00004869 hardware behavior. Just as hardware provides a "universal IR" for source
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004870 languages, it also provides a starting point for developing a "universal"
4871 atomic operation and synchronization IR.
4872</p>
4873<p>
4874 These do <em>not</em> form an API such as high-level threading libraries,
4875 software transaction memory systems, atomic primitives, and intrinsic
Reid Spencer20677642007-07-20 19:59:11 +00004876 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004877 application libraries. The hardware interface provided by LLVM should allow
4878 a clean implementation of all of these APIs and parallel programming models.
4879 No one model or paradigm should be selected above others unless the hardware
4880 itself ubiquitously does so.
4881</p>
4882</div>
4883
4884<!-- _______________________________________________________________________ -->
4885<div class="doc_subsubsection">
4886 <a name="int_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a>
4887</div>
4888<div class="doc_text">
4889<h5>Syntax:</h5>
4890<p>
4891 This is an overloaded intrinsic. You can use <tt>llvm.atomic.lcs</tt> on any
Reid Spencer20677642007-07-20 19:59:11 +00004892 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004893<pre>
4894declare i8 @llvm.atomic.lcs.i8.i8p.i8.i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
4895declare i16 @llvm.atomic.lcs.i16.i16p.i16.i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
4896declare i32 @llvm.atomic.lcs.i32.i32p.i32.i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
4897declare i64 @llvm.atomic.lcs.i64.i64p.i64.i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
4898</pre>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004899<h5>Overview:</h5>
4900<p>
Chandler Carruth6813c152007-07-20 20:14:52 +00004901 This loads a value in memory and compares it to a given value. If they are
4902 equal, it stores a new value into the memory.
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004903</p>
4904<h5>Arguments:</h5>
4905<p>
4906 The <tt>llvm.atomic.lcs</tt> intrinsic takes three arguments. The result as
4907 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
4908 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
4909 this integer type. While any bit width integer may be used, targets may only
4910 lower representations they support in hardware.
4911</p>
4912<h5>Semantics:</h5>
4913<p>
4914 This entire intrinsic must be executed atomically. It first loads the value
Chandler Carruth6813c152007-07-20 20:14:52 +00004915 in memory pointed to by <tt>ptr</tt> and compares it with the value
4916 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
4917 loaded value is yielded in all cases. This provides the equivalent of an
4918 atomic compare-and-swap operation within the SSA framework.
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004919</p>
4920<h5>Examples:</h5>
4921<pre>
4922%ptr = malloc i32
4923 store i32 4, %ptr
4924
4925%val1 = add i32 4, 4
4926%result1 = call i32 @llvm.atomic.lcs( i32* %ptr, i32 4, %val1 )
4927 <i>; yields {i32}:result1 = 4</i>
4928%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
4929%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
4930
4931%val2 = add i32 1, 1
4932%result2 = call i32 @llvm.atomic.lcs( i32* %ptr, i32 5, %val2 )
4933 <i>; yields {i32}:result2 = 8</i>
4934%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
4935%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
4936</pre>
4937</div>
4938
4939<!-- _______________________________________________________________________ -->
4940<div class="doc_subsubsection">
4941 <a name="int_ls">'<tt>llvm.atomic.ls.*</tt>' Intrinsic</a>
4942</div>
4943<div class="doc_text">
4944<h5>Syntax:</h5>
4945<p>
4946 This is an overloaded intrinsic. You can use <tt>llvm.atomic.ls</tt> on any
Reid Spencer20677642007-07-20 19:59:11 +00004947 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004948<pre>
4949declare i8 @llvm.atomic.ls.i8.i8p.i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
4950declare i16 @llvm.atomic.ls.i16.i16p.i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
4951declare i32 @llvm.atomic.ls.i32.i32p.i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
4952declare i64 @llvm.atomic.ls.i64.i64p.i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
4953</pre>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004954<h5>Overview:</h5>
4955<p>
Chandler Carruth6813c152007-07-20 20:14:52 +00004956 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
4957 the value from memory. It then stores the value in <tt>val</tt> in the memory
4958 at <tt>ptr</tt>.
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004959</p>
4960<h5>Arguments:</h5>
4961<p>
4962 The <tt>llvm.atomic.ls</tt> intrinsic takes two arguments. Both the
4963 <tt>val</tt> argument and the result must be integers of the same bit width.
4964 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
4965 integer type. The targets may only lower integer representations they
4966 support.
4967</p>
4968<h5>Semantics:</h5>
4969<p>
4970 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
4971 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
4972 equivalent of an atomic swap operation within the SSA framework.
4973</p>
4974<h5>Examples:</h5>
4975<pre>
4976%ptr = malloc i32
4977 store i32 4, %ptr
4978
4979%val1 = add i32 4, 4
4980%result1 = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val1 )
4981 <i>; yields {i32}:result1 = 4</i>
4982%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
4983%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
4984
4985%val2 = add i32 1, 1
4986%result2 = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val2 )
4987 <i>; yields {i32}:result2 = 8</i>
4988%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
4989%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
4990</pre>
4991 </div>
4992
4993<!-- _______________________________________________________________________ -->
4994<div class="doc_subsubsection">
4995 <a name="int_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a>
4996</div>
4997<div class="doc_text">
4998<h5>Syntax:</h5>
4999<p>
5000 This is an overloaded intrinsic. You can use <tt>llvm.atomic.las</tt> on any
Reid Spencer20677642007-07-20 19:59:11 +00005001 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005002<pre>
5003declare i8 @llvm.atomic.las.i8.i8p.i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5004declare i16 @llvm.atomic.las.i16.i16p.i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5005declare i32 @llvm.atomic.las.i32.i32p.i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5006declare i64 @llvm.atomic.las.i64.i64p.i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
5007</pre>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005008<h5>Overview:</h5>
5009<p>
Chandler Carruth6813c152007-07-20 20:14:52 +00005010 This intrinsic adds <tt>delta</tt> to the value stored in memory at
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005011 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
5012</p>
5013<h5>Arguments:</h5>
5014<p>
5015 The intrinsic takes two arguments, the first a pointer to an integer value
5016 and the second an integer value. The result is also an integer value. These
5017 integer types can have any bit width, but they must all have the same bit
5018 width. The targets may only lower integer representations they support.
5019</p>
5020<h5>Semantics:</h5>
5021<p>
5022 This intrinsic does a series of operations atomically. It first loads the
5023 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
5024 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
5025</p>
5026<h5>Examples:</h5>
5027<pre>
5028%ptr = malloc i32
5029 store i32 4, %ptr
5030%result1 = call i32 @llvm.atomic.las( i32* %ptr, i32 4 )
5031 <i>; yields {i32}:result1 = 4</i>
5032%result2 = call i32 @llvm.atomic.las( i32* %ptr, i32 2 )
5033 <i>; yields {i32}:result2 = 8</i>
5034%result3 = call i32 @llvm.atomic.las( i32* %ptr, i32 5 )
5035 <i>; yields {i32}:result3 = 10</i>
5036%memval = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
5037</pre>
5038</div>
5039
5040<!-- _______________________________________________________________________ -->
5041<div class="doc_subsubsection">
5042 <a name="int_lss">'<tt>llvm.atomic.lss.*</tt>' Intrinsic</a>
5043</div>
5044<div class="doc_text">
5045<h5>Syntax:</h5>
5046<p>
5047 This is an overloaded intrinsic. You can use <tt>llvm.atomic.lss</tt> on any
Reid Spencer20677642007-07-20 19:59:11 +00005048 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005049<pre>
5050declare i8 @llvm.atomic.lss.i8.i8.i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5051declare i16 @llvm.atomic.lss.i16.i16.i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5052declare i32 @llvm.atomic.lss.i32.i32.i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5053declare i64 @llvm.atomic.lss.i64.i64.i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
5054</pre>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005055<h5>Overview:</h5>
5056<p>
Chandler Carruth6813c152007-07-20 20:14:52 +00005057 This intrinsic subtracts <tt>delta</tt> from the value stored in memory at
5058 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005059</p>
5060<h5>Arguments:</h5>
5061<p>
5062 The intrinsic takes two arguments, the first a pointer to an integer value
5063 and the second an integer value. The result is also an integer value. These
5064 integer types can have any bit width, but they must all have the same bit
5065 width. The targets may only lower integer representations they support.
5066</p>
5067<h5>Semantics:</h5>
5068<p>
5069 This intrinsic does a series of operations atomically. It first loads the
5070 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>,
5071 stores the result to <tt>ptr</tt>. It yields the original value stored
5072 at <tt>ptr</tt>.
5073</p>
5074<h5>Examples:</h5>
5075<pre>
5076%ptr = malloc i32
5077 store i32 32, %ptr
5078%result1 = call i32 @llvm.atomic.lss( i32* %ptr, i32 4 )
5079 <i>; yields {i32}:result1 = 32</i>
5080%result2 = call i32 @llvm.atomic.lss( i32* %ptr, i32 2 )
5081 <i>; yields {i32}:result2 = 28</i>
5082%result3 = call i32 @llvm.atomic.lss( i32* %ptr, i32 5 )
5083 <i>; yields {i32}:result3 = 26</i>
5084%memval = load i32* %ptr <i>; yields {i32}:memval1 = 21</i>
5085</pre>
5086</div>
5087
5088<!-- _______________________________________________________________________ -->
5089<div class="doc_subsubsection">
5090 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5091</div>
5092<div class="doc_text">
5093<h5>Syntax:</h5>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005094<pre>
5095declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt; )
5096</pre>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005097<h5>Overview:</h5>
5098<p>
5099 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5100 specific pairs of memory access types.
5101</p>
5102<h5>Arguments:</h5>
5103<p>
5104 The <tt>llvm.memory.barrier</tt> intrinsic requires four boolean arguments.
5105 Each argument enables a specific barrier as listed below.
Reid Spencer1cff4082007-07-20 20:03:33 +00005106</p>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005107 <ul>
5108 <li><tt>ll</tt>: load-load barrier</li>
5109 <li><tt>ls</tt>: load-store barrier</li>
5110 <li><tt>sl</tt>: store-load barrier</li>
5111 <li><tt>ss</tt>: store-store barrier</li>
5112 </ul>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005113<h5>Semantics:</h5>
5114<p>
5115 This intrinsic causes the system to enforce some ordering constraints upon
5116 the loads and stores of the program. This barrier does not indicate
5117 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5118 which they occur. For any of the specified pairs of load and store operations
5119 (f.ex. load-load, or store-load), all of the first operations preceding the
5120 barrier will complete before any of the second operations succeeding the
5121 barrier begin. Specifically the semantics for each pairing is as follows:
Reid Spencer1cff4082007-07-20 20:03:33 +00005122</p>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005123 <ul>
5124 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5125 after the barrier begins.</li>
5126 <li><tt>ls</tt>: All loads before the barrier must complete before any
5127 store after the barrier begins.</li>
5128 <li><tt>ss</tt>: All stores before the barrier must complete before any
5129 store after the barrier begins.</li>
5130 <li><tt>sl</tt>: All stores before the barrier must complete before any
5131 load after the barrier begins.</li>
5132 </ul>
Reid Spencer1cff4082007-07-20 20:03:33 +00005133<p>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005134 These semantics are applied with a logical "and" behavior when more than one
5135 is enabled in a single memory barrier intrinsic.
5136</p>
5137<h5>Example:</h5>
5138<pre>
5139%ptr = malloc i32
5140 store i32 4, %ptr
5141
5142%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5143 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5144 <i>; guarantee the above finishes</i>
5145 store i32 8, %ptr <i>; before this begins</i>
5146</pre>
5147</div>
5148
5149<!-- ======================================================================= -->
5150<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00005151 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00005152</div>
5153
5154<div class="doc_text">
5155<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005156 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00005157 the <tt>nest</tt> attribute, from a function. The result is a callable
5158 function pointer lacking the nest parameter - the caller does not need
5159 to provide a value for it. Instead, the value to use is stored in
5160 advance in a "trampoline", a block of memory usually allocated
5161 on the stack, which also contains code to splice the nest value into the
5162 argument list. This is used to implement the GCC nested function address
5163 extension.
5164</p>
5165<p>
5166 For example, if the function is
5167 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
5168 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:
5169<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005170 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5171 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5172 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5173 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00005174</pre>
5175 The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent to
5176 <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.
5177</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005178</div>
5179
5180<!-- _______________________________________________________________________ -->
5181<div class="doc_subsubsection">
5182 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5183</div>
5184<div class="doc_text">
5185<h5>Syntax:</h5>
5186<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005187declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00005188</pre>
5189<h5>Overview:</h5>
5190<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005191 This fills the memory pointed to by <tt>tramp</tt> with code
5192 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00005193</p>
5194<h5>Arguments:</h5>
5195<p>
5196 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5197 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5198 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005199 intrinsic. Note that the size and the alignment are target-specific - LLVM
5200 currently provides no portable way of determining them, so a front-end that
5201 generates this intrinsic needs to have some target-specific knowledge.
5202 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005203</p>
5204<h5>Semantics:</h5>
5205<p>
5206 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00005207 dependent code, turning it into a function. A pointer to this function is
5208 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00005209 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005210 before being called. The new function's signature is the same as that of
5211 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5212 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5213 of pointer type. Calling the new function is equivalent to calling
5214 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5215 missing <tt>nest</tt> argument. If, after calling
5216 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5217 modified, then the effect of any later call to the returned function pointer is
5218 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00005219</p>
5220</div>
5221
5222<!-- ======================================================================= -->
5223<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00005224 <a name="int_general">General Intrinsics</a>
5225</div>
5226
5227<div class="doc_text">
5228<p> This class of intrinsics is designed to be generic and has
5229no specific purpose. </p>
5230</div>
5231
5232<!-- _______________________________________________________________________ -->
5233<div class="doc_subsubsection">
5234 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
5235</div>
5236
5237<div class="doc_text">
5238
5239<h5>Syntax:</h5>
5240<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00005241 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00005242</pre>
5243
5244<h5>Overview:</h5>
5245
5246<p>
5247The '<tt>llvm.var.annotation</tt>' intrinsic
5248</p>
5249
5250<h5>Arguments:</h5>
5251
5252<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00005253The first argument is a pointer to a value, the second is a pointer to a
5254global string, the third is a pointer to a global string which is the source
5255file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00005256</p>
5257
5258<h5>Semantics:</h5>
5259
5260<p>
5261This intrinsic allows annotation of local variables with arbitrary strings.
5262This can be useful for special purpose optimizations that want to look for these
5263 annotations. These have no other defined use, they are ignored by code
5264 generation and optimization.
5265</div>
5266
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005267
Chris Lattner00950542001-06-06 20:29:01 +00005268<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00005269<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00005270<address>
5271 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
5272 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
5273 <a href="http://validator.w3.org/check/referer"><img
5274 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
5275
5276 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00005277 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00005278 Last modified: $Date$
5279</address>
Misha Brukman9d0919f2003-11-08 01:05:38 +00005280</body>
5281</html>