blob: cc98eab378a40f7dcc8470d5c22f03a3d516d71b [file] [log] [blame]
Evan Chenga9c20912006-01-21 02:32:06 +00001//===-- ScheduleDAGSimple.cpp - Implement a trivial DAG scheduler ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by James M. Laskey and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a simple two pass scheduler. The first pass attempts to push
11// backward any lengthy instructions and critical paths. The second pass packs
12// instructions into semi-optimal time slots.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "sched"
17#include "llvm/CodeGen/ScheduleDAG.h"
18#include "llvm/CodeGen/SelectionDAG.h"
Owen Anderson07000c62006-05-12 06:33:49 +000019#include "llvm/Target/TargetData.h"
Evan Chenga9c20912006-01-21 02:32:06 +000020#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
Evan Chenga9c20912006-01-21 02:32:06 +000022#include "llvm/Support/Debug.h"
Chris Lattnerf8c68f62006-06-28 22:17:39 +000023#include "llvm/Support/Visibility.h"
Jeff Cohen2aa750a2006-01-24 04:43:17 +000024#include <algorithm>
Chris Lattnere76074a2006-03-10 07:35:21 +000025#include <iostream>
Evan Chenga9c20912006-01-21 02:32:06 +000026using namespace llvm;
27
28namespace {
Chris Lattnera34b6f82006-03-10 07:51:18 +000029class NodeInfo;
30typedef NodeInfo *NodeInfoPtr;
31typedef std::vector<NodeInfoPtr> NIVector;
32typedef std::vector<NodeInfoPtr>::iterator NIIterator;
33
34//===--------------------------------------------------------------------===//
35///
36/// Node group - This struct is used to manage flagged node groups.
37///
38class NodeGroup {
39public:
40 NodeGroup *Next;
41private:
42 NIVector Members; // Group member nodes
43 NodeInfo *Dominator; // Node with highest latency
44 unsigned Latency; // Total latency of the group
45 int Pending; // Number of visits pending before
46 // adding to order
47
48public:
49 // Ctor.
50 NodeGroup() : Next(NULL), Dominator(NULL), Pending(0) {}
51
52 // Accessors
53 inline void setDominator(NodeInfo *D) { Dominator = D; }
54 inline NodeInfo *getTop() { return Members.front(); }
55 inline NodeInfo *getBottom() { return Members.back(); }
56 inline NodeInfo *getDominator() { return Dominator; }
57 inline void setLatency(unsigned L) { Latency = L; }
58 inline unsigned getLatency() { return Latency; }
59 inline int getPending() const { return Pending; }
60 inline void setPending(int P) { Pending = P; }
61 inline int addPending(int I) { return Pending += I; }
62
63 // Pass thru
64 inline bool group_empty() { return Members.empty(); }
65 inline NIIterator group_begin() { return Members.begin(); }
66 inline NIIterator group_end() { return Members.end(); }
67 inline void group_push_back(const NodeInfoPtr &NI) {
68 Members.push_back(NI);
69 }
70 inline NIIterator group_insert(NIIterator Pos, const NodeInfoPtr &NI) {
71 return Members.insert(Pos, NI);
72 }
73 inline void group_insert(NIIterator Pos, NIIterator First,
74 NIIterator Last) {
75 Members.insert(Pos, First, Last);
76 }
77
78 static void Add(NodeInfo *D, NodeInfo *U);
79};
80
81//===--------------------------------------------------------------------===//
82///
83/// NodeInfo - This struct tracks information used to schedule the a node.
84///
85class NodeInfo {
86private:
87 int Pending; // Number of visits pending before
88 // adding to order
89public:
90 SDNode *Node; // DAG node
91 InstrStage *StageBegin; // First stage in itinerary
92 InstrStage *StageEnd; // Last+1 stage in itinerary
93 unsigned Latency; // Total cycles to complete instr
94 bool IsCall : 1; // Is function call
95 bool IsLoad : 1; // Is memory load
96 bool IsStore : 1; // Is memory store
97 unsigned Slot; // Node's time slot
98 NodeGroup *Group; // Grouping information
99#ifndef NDEBUG
100 unsigned Preorder; // Index before scheduling
101#endif
102
103 // Ctor.
104 NodeInfo(SDNode *N = NULL)
105 : Pending(0)
106 , Node(N)
107 , StageBegin(NULL)
108 , StageEnd(NULL)
109 , Latency(0)
110 , IsCall(false)
111 , Slot(0)
112 , Group(NULL)
113#ifndef NDEBUG
114 , Preorder(0)
115#endif
116 {}
117
118 // Accessors
119 inline bool isInGroup() const {
120 assert(!Group || !Group->group_empty() && "Group with no members");
121 return Group != NULL;
122 }
123 inline bool isGroupDominator() const {
124 return isInGroup() && Group->getDominator() == this;
125 }
126 inline int getPending() const {
127 return Group ? Group->getPending() : Pending;
128 }
129 inline void setPending(int P) {
130 if (Group) Group->setPending(P);
131 else Pending = P;
132 }
133 inline int addPending(int I) {
134 if (Group) return Group->addPending(I);
135 else return Pending += I;
136 }
137};
138
139//===--------------------------------------------------------------------===//
140///
141/// NodeGroupIterator - Iterates over all the nodes indicated by the node
142/// info. If the node is in a group then iterate over the members of the
143/// group, otherwise just the node info.
144///
145class NodeGroupIterator {
146private:
147 NodeInfo *NI; // Node info
148 NIIterator NGI; // Node group iterator
149 NIIterator NGE; // Node group iterator end
150
151public:
152 // Ctor.
153 NodeGroupIterator(NodeInfo *N) : NI(N) {
154 // If the node is in a group then set up the group iterator. Otherwise
155 // the group iterators will trip first time out.
156 if (N->isInGroup()) {
157 // get Group
158 NodeGroup *Group = NI->Group;
159 NGI = Group->group_begin();
160 NGE = Group->group_end();
161 // Prevent this node from being used (will be in members list
162 NI = NULL;
163 }
164 }
165
166 /// next - Return the next node info, otherwise NULL.
167 ///
168 NodeInfo *next() {
169 // If members list
170 if (NGI != NGE) return *NGI++;
171 // Use node as the result (may be NULL)
172 NodeInfo *Result = NI;
173 // Only use once
174 NI = NULL;
175 // Return node or NULL
176 return Result;
177 }
178};
179//===--------------------------------------------------------------------===//
180
181
182//===--------------------------------------------------------------------===//
183///
184/// NodeGroupOpIterator - Iterates over all the operands of a node. If the
185/// node is a member of a group, this iterates over all the operands of all
186/// the members of the group.
187///
188class NodeGroupOpIterator {
189private:
190 NodeInfo *NI; // Node containing operands
191 NodeGroupIterator GI; // Node group iterator
192 SDNode::op_iterator OI; // Operand iterator
193 SDNode::op_iterator OE; // Operand iterator end
194
195 /// CheckNode - Test if node has more operands. If not get the next node
196 /// skipping over nodes that have no operands.
197 void CheckNode() {
198 // Only if operands are exhausted first
199 while (OI == OE) {
200 // Get next node info
201 NodeInfo *NI = GI.next();
202 // Exit if nodes are exhausted
203 if (!NI) return;
204 // Get node itself
205 SDNode *Node = NI->Node;
206 // Set up the operand iterators
207 OI = Node->op_begin();
208 OE = Node->op_end();
209 }
210 }
211
212public:
213 // Ctor.
214 NodeGroupOpIterator(NodeInfo *N)
215 : NI(N), GI(N), OI(SDNode::op_iterator()), OE(SDNode::op_iterator()) {}
216
217 /// isEnd - Returns true when not more operands are available.
218 ///
219 inline bool isEnd() { CheckNode(); return OI == OE; }
220
221 /// next - Returns the next available operand.
222 ///
223 inline SDOperand next() {
224 assert(OI != OE &&
225 "Not checking for end of NodeGroupOpIterator correctly");
226 return *OI++;
227 }
228};
229
230
Evan Chenga9c20912006-01-21 02:32:06 +0000231//===----------------------------------------------------------------------===//
232///
233/// BitsIterator - Provides iteration through individual bits in a bit vector.
234///
235template<class T>
236class BitsIterator {
237private:
238 T Bits; // Bits left to iterate through
239
240public:
241 /// Ctor.
242 BitsIterator(T Initial) : Bits(Initial) {}
243
244 /// Next - Returns the next bit set or zero if exhausted.
245 inline T Next() {
246 // Get the rightmost bit set
247 T Result = Bits & -Bits;
248 // Remove from rest
249 Bits &= ~Result;
250 // Return single bit or zero
251 return Result;
252 }
253};
254
255//===----------------------------------------------------------------------===//
256
257
258//===----------------------------------------------------------------------===//
259///
260/// ResourceTally - Manages the use of resources over time intervals. Each
261/// item (slot) in the tally vector represents the resources used at a given
262/// moment. A bit set to 1 indicates that a resource is in use, otherwise
263/// available. An assumption is made that the tally is large enough to schedule
264/// all current instructions (asserts otherwise.)
265///
266template<class T>
267class ResourceTally {
268private:
269 std::vector<T> Tally; // Resources used per slot
270 typedef typename std::vector<T>::iterator Iter;
271 // Tally iterator
272
273 /// SlotsAvailable - Returns true if all units are available.
274 ///
275 bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet,
276 unsigned &Resource) {
277 assert(N && "Must check availability with N != 0");
278 // Determine end of interval
279 Iter End = Begin + N;
280 assert(End <= Tally.end() && "Tally is not large enough for schedule");
281
282 // Iterate thru each resource
283 BitsIterator<T> Resources(ResourceSet & ~*Begin);
284 while (unsigned Res = Resources.Next()) {
285 // Check if resource is available for next N slots
286 Iter Interval = End;
287 do {
288 Interval--;
289 if (*Interval & Res) break;
290 } while (Interval != Begin);
291
292 // If available for N
293 if (Interval == Begin) {
294 // Success
295 Resource = Res;
296 return true;
297 }
298 }
299
300 // No luck
301 Resource = 0;
302 return false;
303 }
304
305 /// RetrySlot - Finds a good candidate slot to retry search.
306 Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) {
307 assert(N && "Must check availability with N != 0");
308 // Determine end of interval
309 Iter End = Begin + N;
310 assert(End <= Tally.end() && "Tally is not large enough for schedule");
311
312 while (Begin != End--) {
313 // Clear units in use
314 ResourceSet &= ~*End;
315 // If no units left then we should go no further
316 if (!ResourceSet) return End + 1;
317 }
318 // Made it all the way through
319 return Begin;
320 }
321
322 /// FindAndReserveStages - Return true if the stages can be completed. If
323 /// so mark as busy.
324 bool FindAndReserveStages(Iter Begin,
325 InstrStage *Stage, InstrStage *StageEnd) {
326 // If at last stage then we're done
327 if (Stage == StageEnd) return true;
328 // Get number of cycles for current stage
329 unsigned N = Stage->Cycles;
330 // Check to see if N slots are available, if not fail
331 unsigned Resource;
332 if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false;
333 // Check to see if remaining stages are available, if not fail
334 if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false;
335 // Reserve resource
336 Reserve(Begin, N, Resource);
337 // Success
338 return true;
339 }
340
341 /// Reserve - Mark busy (set) the specified N slots.
342 void Reserve(Iter Begin, unsigned N, unsigned Resource) {
343 // Determine end of interval
344 Iter End = Begin + N;
345 assert(End <= Tally.end() && "Tally is not large enough for schedule");
346
347 // Set resource bit in each slot
348 for (; Begin < End; Begin++)
349 *Begin |= Resource;
350 }
351
352 /// FindSlots - Starting from Begin, locate consecutive slots where all stages
353 /// can be completed. Returns the address of first slot.
354 Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) {
355 // Track position
356 Iter Cursor = Begin;
357
358 // Try all possible slots forward
359 while (true) {
360 // Try at cursor, if successful return position.
361 if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor;
362 // Locate a better position
363 Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units);
364 }
365 }
366
367public:
368 /// Initialize - Resize and zero the tally to the specified number of time
369 /// slots.
370 inline void Initialize(unsigned N) {
371 Tally.assign(N, 0); // Initialize tally to all zeros.
372 }
373
374 // FindAndReserve - Locate an ideal slot for the specified stages and mark
375 // as busy.
376 unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin,
377 InstrStage *StageEnd) {
378 // Where to begin
379 Iter Begin = Tally.begin() + Slot;
380 // Find a free slot
381 Iter Where = FindSlots(Begin, StageBegin, StageEnd);
382 // Distance is slot number
383 unsigned Final = Where - Tally.begin();
384 return Final;
385 }
386
387};
388
389//===----------------------------------------------------------------------===//
390///
391/// ScheduleDAGSimple - Simple two pass scheduler.
392///
Chris Lattnerf8c68f62006-06-28 22:17:39 +0000393class VISIBILITY_HIDDEN ScheduleDAGSimple : public ScheduleDAG {
Evan Chenga9c20912006-01-21 02:32:06 +0000394private:
Chris Lattner20a49212006-03-10 07:49:12 +0000395 bool NoSched; // Just do a BFS schedule, nothing fancy
396 bool NoItins; // Don't use itineraries?
Evan Chenga9c20912006-01-21 02:32:06 +0000397 ResourceTally<unsigned> Tally; // Resource usage tally
398 unsigned NSlots; // Total latency
399 static const unsigned NotFound = ~0U; // Search marker
Chris Lattner2f5806c2006-03-10 07:42:02 +0000400
401 unsigned NodeCount; // Number of nodes in DAG
402 std::map<SDNode *, NodeInfo *> Map; // Map nodes to info
403 bool HasGroups; // True if there are any groups
404 NodeInfo *Info; // Info for nodes being scheduled
405 NIVector Ordering; // Emit ordering of nodes
406 NodeGroup *HeadNG, *TailNG; // Keep track of allocated NodeGroups
Evan Chenga9c20912006-01-21 02:32:06 +0000407
408public:
409
410 // Ctor.
Chris Lattner20a49212006-03-10 07:49:12 +0000411 ScheduleDAGSimple(bool noSched, bool noItins, SelectionDAG &dag,
Evan Cheng4ef10862006-01-23 07:01:07 +0000412 MachineBasicBlock *bb, const TargetMachine &tm)
Chris Lattner20a49212006-03-10 07:49:12 +0000413 : ScheduleDAG(dag, bb, tm), NoSched(noSched), NoItins(noItins), NSlots(0),
Chris Lattner2f5806c2006-03-10 07:42:02 +0000414 NodeCount(0), HasGroups(false), Info(NULL), HeadNG(NULL), TailNG(NULL) {
Evan Chenga9c20912006-01-21 02:32:06 +0000415 assert(&TII && "Target doesn't provide instr info?");
416 assert(&MRI && "Target doesn't provide register info?");
417 }
418
Chris Lattner2f5806c2006-03-10 07:42:02 +0000419 virtual ~ScheduleDAGSimple() {
420 if (Info)
421 delete[] Info;
422
423 NodeGroup *NG = HeadNG;
424 while (NG) {
425 NodeGroup *NextSU = NG->Next;
426 delete NG;
427 NG = NextSU;
428 }
429 }
Evan Chenga9c20912006-01-21 02:32:06 +0000430
Evan Cheng41484292006-01-23 08:25:34 +0000431 void Schedule();
432
Chris Lattner2f5806c2006-03-10 07:42:02 +0000433 /// getNI - Returns the node info for the specified node.
434 ///
435 NodeInfo *getNI(SDNode *Node) { return Map[Node]; }
436
Evan Chenga9c20912006-01-21 02:32:06 +0000437private:
Evan Chenga9c20912006-01-21 02:32:06 +0000438 static bool isDefiner(NodeInfo *A, NodeInfo *B);
Evan Chenga9c20912006-01-21 02:32:06 +0000439 void IncludeNode(NodeInfo *NI);
440 void VisitAll();
Evan Chenga9c20912006-01-21 02:32:06 +0000441 void GatherSchedulingInfo();
442 void FakeGroupDominators();
Evan Chenga9c20912006-01-21 02:32:06 +0000443 bool isStrongDependency(NodeInfo *A, NodeInfo *B);
444 bool isWeakDependency(NodeInfo *A, NodeInfo *B);
445 void ScheduleBackward();
446 void ScheduleForward();
Chris Lattnere76074a2006-03-10 07:35:21 +0000447
448 void AddToGroup(NodeInfo *D, NodeInfo *U);
449 /// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
450 ///
451 void PrepareNodeInfo();
452
453 /// IdentifyGroups - Put flagged nodes into groups.
454 ///
455 void IdentifyGroups();
456
457 /// print - Print ordering to specified output stream.
458 ///
459 void print(std::ostream &O) const;
460
461 void dump(const char *tag) const;
462
463 virtual void dump() const;
464
465 /// EmitAll - Emit all nodes in schedule sorted order.
466 ///
467 void EmitAll();
468
469 /// printNI - Print node info.
470 ///
471 void printNI(std::ostream &O, NodeInfo *NI) const;
472
473 /// printChanges - Hilight changes in order caused by scheduling.
474 ///
475 void printChanges(unsigned Index) const;
Evan Chenga9c20912006-01-21 02:32:06 +0000476};
477
Evan Chenga9c20912006-01-21 02:32:06 +0000478//===----------------------------------------------------------------------===//
479/// Special case itineraries.
480///
481enum {
482 CallLatency = 40, // To push calls back in time
483
484 RSInteger = 0xC0000000, // Two integer units
485 RSFloat = 0x30000000, // Two float units
486 RSLoadStore = 0x0C000000, // Two load store units
487 RSBranch = 0x02000000 // One branch unit
488};
489static InstrStage CallStage = { CallLatency, RSBranch };
490static InstrStage LoadStage = { 5, RSLoadStore };
491static InstrStage StoreStage = { 2, RSLoadStore };
492static InstrStage IntStage = { 2, RSInteger };
493static InstrStage FloatStage = { 3, RSFloat };
494//===----------------------------------------------------------------------===//
495
Evan Chenga9c20912006-01-21 02:32:06 +0000496} // namespace
497
498//===----------------------------------------------------------------------===//
499
Chris Lattnere76074a2006-03-10 07:35:21 +0000500/// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
501///
502void ScheduleDAGSimple::PrepareNodeInfo() {
503 // Allocate node information
504 Info = new NodeInfo[NodeCount];
505
506 unsigned i = 0;
507 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
508 E = DAG.allnodes_end(); I != E; ++I, ++i) {
509 // Fast reference to node schedule info
510 NodeInfo* NI = &Info[i];
511 // Set up map
512 Map[I] = NI;
513 // Set node
514 NI->Node = I;
515 // Set pending visit count
516 NI->setPending(I->use_size());
517 }
518}
519
520/// IdentifyGroups - Put flagged nodes into groups.
521///
522void ScheduleDAGSimple::IdentifyGroups() {
523 for (unsigned i = 0, N = NodeCount; i < N; i++) {
524 NodeInfo* NI = &Info[i];
525 SDNode *Node = NI->Node;
526
527 // For each operand (in reverse to only look at flags)
528 for (unsigned N = Node->getNumOperands(); 0 < N--;) {
529 // Get operand
530 SDOperand Op = Node->getOperand(N);
531 // No more flags to walk
532 if (Op.getValueType() != MVT::Flag) break;
533 // Add to node group
534 AddToGroup(getNI(Op.Val), NI);
535 // Let everyone else know
536 HasGroups = true;
537 }
538 }
539}
540
541/// CountInternalUses - Returns the number of edges between the two nodes.
542///
543static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U) {
544 unsigned N = 0;
545 for (unsigned M = U->Node->getNumOperands(); 0 < M--;) {
546 SDOperand Op = U->Node->getOperand(M);
547 if (Op.Val == D->Node) N++;
548 }
549
550 return N;
551}
552
553//===----------------------------------------------------------------------===//
554/// Add - Adds a definer and user pair to a node group.
555///
556void ScheduleDAGSimple::AddToGroup(NodeInfo *D, NodeInfo *U) {
557 // Get current groups
558 NodeGroup *DGroup = D->Group;
559 NodeGroup *UGroup = U->Group;
560 // If both are members of groups
561 if (DGroup && UGroup) {
562 // There may have been another edge connecting
563 if (DGroup == UGroup) return;
564 // Add the pending users count
565 DGroup->addPending(UGroup->getPending());
566 // For each member of the users group
567 NodeGroupIterator UNGI(U);
568 while (NodeInfo *UNI = UNGI.next() ) {
569 // Change the group
570 UNI->Group = DGroup;
571 // For each member of the definers group
572 NodeGroupIterator DNGI(D);
573 while (NodeInfo *DNI = DNGI.next() ) {
574 // Remove internal edges
575 DGroup->addPending(-CountInternalUses(DNI, UNI));
576 }
577 }
578 // Merge the two lists
579 DGroup->group_insert(DGroup->group_end(),
580 UGroup->group_begin(), UGroup->group_end());
581 } else if (DGroup) {
582 // Make user member of definers group
583 U->Group = DGroup;
584 // Add users uses to definers group pending
585 DGroup->addPending(U->Node->use_size());
586 // For each member of the definers group
587 NodeGroupIterator DNGI(D);
588 while (NodeInfo *DNI = DNGI.next() ) {
589 // Remove internal edges
590 DGroup->addPending(-CountInternalUses(DNI, U));
591 }
592 DGroup->group_push_back(U);
593 } else if (UGroup) {
594 // Make definer member of users group
595 D->Group = UGroup;
596 // Add definers uses to users group pending
597 UGroup->addPending(D->Node->use_size());
598 // For each member of the users group
599 NodeGroupIterator UNGI(U);
600 while (NodeInfo *UNI = UNGI.next() ) {
601 // Remove internal edges
602 UGroup->addPending(-CountInternalUses(D, UNI));
603 }
604 UGroup->group_insert(UGroup->group_begin(), D);
605 } else {
606 D->Group = U->Group = DGroup = new NodeGroup();
607 DGroup->addPending(D->Node->use_size() + U->Node->use_size() -
608 CountInternalUses(D, U));
609 DGroup->group_push_back(D);
610 DGroup->group_push_back(U);
611
612 if (HeadNG == NULL)
613 HeadNG = DGroup;
614 if (TailNG != NULL)
615 TailNG->Next = DGroup;
616 TailNG = DGroup;
617 }
618}
619
620
621/// print - Print ordering to specified output stream.
622///
623void ScheduleDAGSimple::print(std::ostream &O) const {
624#ifndef NDEBUG
625 O << "Ordering\n";
626 for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
627 NodeInfo *NI = Ordering[i];
628 printNI(O, NI);
629 O << "\n";
630 if (NI->isGroupDominator()) {
631 NodeGroup *Group = NI->Group;
632 for (NIIterator NII = Group->group_begin(), E = Group->group_end();
633 NII != E; NII++) {
634 O << " ";
635 printNI(O, *NII);
636 O << "\n";
637 }
638 }
639 }
640#endif
641}
642
643void ScheduleDAGSimple::dump(const char *tag) const {
644 std::cerr << tag; dump();
645}
646
647void ScheduleDAGSimple::dump() const {
648 print(std::cerr);
649}
650
651
652/// EmitAll - Emit all nodes in schedule sorted order.
653///
654void ScheduleDAGSimple::EmitAll() {
655 std::map<SDNode*, unsigned> VRBaseMap;
656
657 // For each node in the ordering
658 for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
659 // Get the scheduling info
660 NodeInfo *NI = Ordering[i];
661 if (NI->isInGroup()) {
662 NodeGroupIterator NGI(Ordering[i]);
663 while (NodeInfo *NI = NGI.next()) EmitNode(NI->Node, VRBaseMap);
664 } else {
665 EmitNode(NI->Node, VRBaseMap);
666 }
667 }
668}
669
670/// isFlagDefiner - Returns true if the node defines a flag result.
671static bool isFlagDefiner(SDNode *A) {
672 unsigned N = A->getNumValues();
673 return N && A->getValueType(N - 1) == MVT::Flag;
674}
675
676/// isFlagUser - Returns true if the node uses a flag result.
677///
678static bool isFlagUser(SDNode *A) {
679 unsigned N = A->getNumOperands();
680 return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
681}
682
683/// printNI - Print node info.
684///
685void ScheduleDAGSimple::printNI(std::ostream &O, NodeInfo *NI) const {
686#ifndef NDEBUG
687 SDNode *Node = NI->Node;
688 O << " "
689 << std::hex << Node << std::dec
690 << ", Lat=" << NI->Latency
691 << ", Slot=" << NI->Slot
692 << ", ARITY=(" << Node->getNumOperands() << ","
693 << Node->getNumValues() << ")"
694 << " " << Node->getOperationName(&DAG);
695 if (isFlagDefiner(Node)) O << "<#";
696 if (isFlagUser(Node)) O << ">#";
697#endif
698}
699
700/// printChanges - Hilight changes in order caused by scheduling.
701///
702void ScheduleDAGSimple::printChanges(unsigned Index) const {
703#ifndef NDEBUG
704 // Get the ordered node count
705 unsigned N = Ordering.size();
706 // Determine if any changes
707 unsigned i = 0;
708 for (; i < N; i++) {
709 NodeInfo *NI = Ordering[i];
710 if (NI->Preorder != i) break;
711 }
712
713 if (i < N) {
714 std::cerr << Index << ". New Ordering\n";
715
716 for (i = 0; i < N; i++) {
717 NodeInfo *NI = Ordering[i];
718 std::cerr << " " << NI->Preorder << ". ";
719 printNI(std::cerr, NI);
720 std::cerr << "\n";
721 if (NI->isGroupDominator()) {
722 NodeGroup *Group = NI->Group;
723 for (NIIterator NII = Group->group_begin(), E = Group->group_end();
724 NII != E; NII++) {
725 std::cerr << " ";
726 printNI(std::cerr, *NII);
727 std::cerr << "\n";
728 }
729 }
730 }
731 } else {
732 std::cerr << Index << ". No Changes\n";
733 }
734#endif
735}
Evan Chenga9c20912006-01-21 02:32:06 +0000736
737//===----------------------------------------------------------------------===//
Evan Chenga9c20912006-01-21 02:32:06 +0000738/// isDefiner - Return true if node A is a definer for B.
739///
740bool ScheduleDAGSimple::isDefiner(NodeInfo *A, NodeInfo *B) {
741 // While there are A nodes
742 NodeGroupIterator NII(A);
743 while (NodeInfo *NI = NII.next()) {
744 // Extract node
745 SDNode *Node = NI->Node;
746 // While there operands in nodes of B
747 NodeGroupOpIterator NGOI(B);
748 while (!NGOI.isEnd()) {
749 SDOperand Op = NGOI.next();
750 // If node from A defines a node in B
751 if (Node == Op.Val) return true;
752 }
753 }
754 return false;
755}
756
Evan Chenga9c20912006-01-21 02:32:06 +0000757/// IncludeNode - Add node to NodeInfo vector.
758///
759void ScheduleDAGSimple::IncludeNode(NodeInfo *NI) {
760 // Get node
761 SDNode *Node = NI->Node;
762 // Ignore entry node
763 if (Node->getOpcode() == ISD::EntryToken) return;
764 // Check current count for node
765 int Count = NI->getPending();
766 // If the node is already in list
767 if (Count < 0) return;
768 // Decrement count to indicate a visit
769 Count--;
770 // If count has gone to zero then add node to list
771 if (!Count) {
772 // Add node
773 if (NI->isInGroup()) {
774 Ordering.push_back(NI->Group->getDominator());
775 } else {
776 Ordering.push_back(NI);
777 }
778 // indicate node has been added
779 Count--;
780 }
781 // Mark as visited with new count
782 NI->setPending(Count);
783}
784
Evan Chenga9c20912006-01-21 02:32:06 +0000785/// GatherSchedulingInfo - Get latency and resource information about each node.
786///
787void ScheduleDAGSimple::GatherSchedulingInfo() {
788 // Get instruction itineraries for the target
Chris Lattnere70f6712006-03-09 07:13:00 +0000789 const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
Evan Chenga9c20912006-01-21 02:32:06 +0000790
791 // For each node
792 for (unsigned i = 0, N = NodeCount; i < N; i++) {
793 // Get node info
794 NodeInfo* NI = &Info[i];
795 SDNode *Node = NI->Node;
796
797 // If there are itineraries and it is a machine instruction
Chris Lattner20a49212006-03-10 07:49:12 +0000798 if (InstrItins.isEmpty() || NoItins) {
Evan Chenga9c20912006-01-21 02:32:06 +0000799 // If machine opcode
800 if (Node->isTargetOpcode()) {
801 // Get return type to guess which processing unit
802 MVT::ValueType VT = Node->getValueType(0);
803 // Get machine opcode
804 MachineOpCode TOpc = Node->getTargetOpcode();
805 NI->IsCall = TII->isCall(TOpc);
806 NI->IsLoad = TII->isLoad(TOpc);
807 NI->IsStore = TII->isStore(TOpc);
808
809 if (TII->isLoad(TOpc)) NI->StageBegin = &LoadStage;
810 else if (TII->isStore(TOpc)) NI->StageBegin = &StoreStage;
811 else if (MVT::isInteger(VT)) NI->StageBegin = &IntStage;
812 else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage;
813 if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1;
814 }
815 } else if (Node->isTargetOpcode()) {
816 // get machine opcode
817 MachineOpCode TOpc = Node->getTargetOpcode();
818 // Check to see if it is a call
819 NI->IsCall = TII->isCall(TOpc);
820 // Get itinerary stages for instruction
821 unsigned II = TII->getSchedClass(TOpc);
822 NI->StageBegin = InstrItins.begin(II);
823 NI->StageEnd = InstrItins.end(II);
824 }
825
826 // One slot for the instruction itself
827 NI->Latency = 1;
828
829 // Add long latency for a call to push it back in time
830 if (NI->IsCall) NI->Latency += CallLatency;
831
832 // Sum up all the latencies
833 for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd;
834 Stage != E; Stage++) {
835 NI->Latency += Stage->Cycles;
836 }
837
838 // Sum up all the latencies for max tally size
839 NSlots += NI->Latency;
840 }
841
842 // Unify metrics if in a group
843 if (HasGroups) {
844 for (unsigned i = 0, N = NodeCount; i < N; i++) {
845 NodeInfo* NI = &Info[i];
846
847 if (NI->isInGroup()) {
848 NodeGroup *Group = NI->Group;
849
850 if (!Group->getDominator()) {
851 NIIterator NGI = Group->group_begin(), NGE = Group->group_end();
852 NodeInfo *Dominator = *NGI;
853 unsigned Latency = 0;
854
855 for (NGI++; NGI != NGE; NGI++) {
856 NodeInfo* NGNI = *NGI;
857 Latency += NGNI->Latency;
858 if (Dominator->Latency < NGNI->Latency) Dominator = NGNI;
859 }
860
861 Dominator->Latency = Latency;
862 Group->setDominator(Dominator);
863 }
864 }
865 }
866 }
867}
868
Evan Cheng4ef10862006-01-23 07:01:07 +0000869/// VisitAll - Visit each node breadth-wise to produce an initial ordering.
870/// Note that the ordering in the Nodes vector is reversed.
871void ScheduleDAGSimple::VisitAll() {
872 // Add first element to list
873 NodeInfo *NI = getNI(DAG.getRoot().Val);
874 if (NI->isInGroup()) {
875 Ordering.push_back(NI->Group->getDominator());
876 } else {
877 Ordering.push_back(NI);
878 }
879
880 // Iterate through all nodes that have been added
881 for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies
882 // Visit all operands
883 NodeGroupOpIterator NGI(Ordering[i]);
884 while (!NGI.isEnd()) {
885 // Get next operand
886 SDOperand Op = NGI.next();
887 // Get node
888 SDNode *Node = Op.Val;
889 // Ignore passive nodes
890 if (isPassiveNode(Node)) continue;
891 // Check out node
892 IncludeNode(getNI(Node));
893 }
894 }
895
896 // Add entry node last (IncludeNode filters entry nodes)
897 if (DAG.getEntryNode().Val != DAG.getRoot().Val)
898 Ordering.push_back(getNI(DAG.getEntryNode().Val));
899
900 // Reverse the order
901 std::reverse(Ordering.begin(), Ordering.end());
902}
903
Evan Chenga9c20912006-01-21 02:32:06 +0000904/// FakeGroupDominators - Set dominators for non-scheduling.
905///
906void ScheduleDAGSimple::FakeGroupDominators() {
907 for (unsigned i = 0, N = NodeCount; i < N; i++) {
908 NodeInfo* NI = &Info[i];
909
910 if (NI->isInGroup()) {
911 NodeGroup *Group = NI->Group;
912
913 if (!Group->getDominator()) {
914 Group->setDominator(NI);
915 }
916 }
917 }
918}
919
Evan Chenga9c20912006-01-21 02:32:06 +0000920/// isStrongDependency - Return true if node A has results used by node B.
921/// I.E., B must wait for latency of A.
922bool ScheduleDAGSimple::isStrongDependency(NodeInfo *A, NodeInfo *B) {
923 // If A defines for B then it's a strong dependency or
924 // if a load follows a store (may be dependent but why take a chance.)
925 return isDefiner(A, B) || (A->IsStore && B->IsLoad);
926}
927
928/// isWeakDependency Return true if node A produces a result that will
929/// conflict with operands of B. It is assumed that we have called
930/// isStrongDependency prior.
931bool ScheduleDAGSimple::isWeakDependency(NodeInfo *A, NodeInfo *B) {
932 // TODO check for conflicting real registers and aliases
933#if 0 // FIXME - Since we are in SSA form and not checking register aliasing
934 return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
935#else
936 return A->Node->getOpcode() == ISD::EntryToken;
937#endif
938}
939
940/// ScheduleBackward - Schedule instructions so that any long latency
941/// instructions and the critical path get pushed back in time. Time is run in
942/// reverse to allow code reuse of the Tally and eliminate the overhead of
943/// biasing every slot indices against NSlots.
944void ScheduleDAGSimple::ScheduleBackward() {
945 // Size and clear the resource tally
946 Tally.Initialize(NSlots);
947 // Get number of nodes to schedule
948 unsigned N = Ordering.size();
949
950 // For each node being scheduled
951 for (unsigned i = N; 0 < i--;) {
952 NodeInfo *NI = Ordering[i];
953 // Track insertion
954 unsigned Slot = NotFound;
955
956 // Compare against those previously scheduled nodes
957 unsigned j = i + 1;
958 for (; j < N; j++) {
959 // Get following instruction
960 NodeInfo *Other = Ordering[j];
961
962 // Check dependency against previously inserted nodes
963 if (isStrongDependency(NI, Other)) {
964 Slot = Other->Slot + Other->Latency;
965 break;
966 } else if (isWeakDependency(NI, Other)) {
967 Slot = Other->Slot;
968 break;
969 }
970 }
971
972 // If independent of others (or first entry)
973 if (Slot == NotFound) Slot = 0;
974
975#if 0 // FIXME - measure later
976 // Find a slot where the needed resources are available
977 if (NI->StageBegin != NI->StageEnd)
978 Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
979#endif
980
981 // Set node slot
982 NI->Slot = Slot;
983
984 // Insert sort based on slot
985 j = i + 1;
986 for (; j < N; j++) {
987 // Get following instruction
988 NodeInfo *Other = Ordering[j];
989 // Should we look further (remember slots are in reverse time)
990 if (Slot >= Other->Slot) break;
991 // Shuffle other into ordering
992 Ordering[j - 1] = Other;
993 }
994 // Insert node in proper slot
995 if (j != i + 1) Ordering[j - 1] = NI;
996 }
997}
998
999/// ScheduleForward - Schedule instructions to maximize packing.
1000///
1001void ScheduleDAGSimple::ScheduleForward() {
1002 // Size and clear the resource tally
1003 Tally.Initialize(NSlots);
1004 // Get number of nodes to schedule
1005 unsigned N = Ordering.size();
1006
1007 // For each node being scheduled
1008 for (unsigned i = 0; i < N; i++) {
1009 NodeInfo *NI = Ordering[i];
1010 // Track insertion
1011 unsigned Slot = NotFound;
1012
1013 // Compare against those previously scheduled nodes
1014 unsigned j = i;
1015 for (; 0 < j--;) {
1016 // Get following instruction
1017 NodeInfo *Other = Ordering[j];
1018
1019 // Check dependency against previously inserted nodes
1020 if (isStrongDependency(Other, NI)) {
1021 Slot = Other->Slot + Other->Latency;
1022 break;
1023 } else if (Other->IsCall || isWeakDependency(Other, NI)) {
1024 Slot = Other->Slot;
1025 break;
1026 }
1027 }
1028
1029 // If independent of others (or first entry)
1030 if (Slot == NotFound) Slot = 0;
1031
1032 // Find a slot where the needed resources are available
1033 if (NI->StageBegin != NI->StageEnd)
1034 Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
1035
1036 // Set node slot
1037 NI->Slot = Slot;
1038
1039 // Insert sort based on slot
1040 j = i;
1041 for (; 0 < j--;) {
1042 // Get prior instruction
1043 NodeInfo *Other = Ordering[j];
1044 // Should we look further
1045 if (Slot >= Other->Slot) break;
1046 // Shuffle other into ordering
1047 Ordering[j + 1] = Other;
1048 }
1049 // Insert node in proper slot
1050 if (j != i) Ordering[j + 1] = NI;
1051 }
1052}
1053
Evan Chenga9c20912006-01-21 02:32:06 +00001054/// Schedule - Order nodes according to selected style.
1055///
1056void ScheduleDAGSimple::Schedule() {
Chris Lattner2f5806c2006-03-10 07:42:02 +00001057 // Number the nodes
1058 NodeCount = std::distance(DAG.allnodes_begin(), DAG.allnodes_end());
1059
Chris Lattnerbe24e592006-03-10 06:34:51 +00001060 // Set up minimum info for scheduling
1061 PrepareNodeInfo();
1062 // Construct node groups for flagged nodes
1063 IdentifyGroups();
1064
Evan Chenga9c20912006-01-21 02:32:06 +00001065 // Test to see if scheduling should occur
Chris Lattner20a49212006-03-10 07:49:12 +00001066 bool ShouldSchedule = NodeCount > 3 && !NoSched;
Evan Chenga9c20912006-01-21 02:32:06 +00001067 // Don't waste time if is only entry and return
1068 if (ShouldSchedule) {
1069 // Get latency and resource requirements
1070 GatherSchedulingInfo();
1071 } else if (HasGroups) {
1072 // Make sure all the groups have dominators
1073 FakeGroupDominators();
1074 }
1075
1076 // Breadth first walk of DAG
1077 VisitAll();
1078
1079#ifndef NDEBUG
1080 static unsigned Count = 0;
1081 Count++;
1082 for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
1083 NodeInfo *NI = Ordering[i];
1084 NI->Preorder = i;
1085 }
1086#endif
1087
1088 // Don't waste time if is only entry and return
1089 if (ShouldSchedule) {
1090 // Push back long instructions and critical path
1091 ScheduleBackward();
1092
1093 // Pack instructions to maximize resource utilization
1094 ScheduleForward();
1095 }
1096
1097 DEBUG(printChanges(Count));
1098
1099 // Emit in scheduled order
1100 EmitAll();
1101}
1102
Evan Chenga9c20912006-01-21 02:32:06 +00001103
1104/// createSimpleDAGScheduler - This creates a simple two pass instruction
1105/// scheduler.
Chris Lattner20a49212006-03-10 07:49:12 +00001106llvm::ScheduleDAG* llvm::createSimpleDAGScheduler(bool NoItins,
Evan Cheng4ef10862006-01-23 07:01:07 +00001107 SelectionDAG &DAG,
Evan Chenga9c20912006-01-21 02:32:06 +00001108 MachineBasicBlock *BB) {
Chris Lattner20a49212006-03-10 07:49:12 +00001109 return new ScheduleDAGSimple(false, NoItins, DAG, BB, DAG.getTarget());
1110}
1111
1112llvm::ScheduleDAG* llvm::createBFS_DAGScheduler(SelectionDAG &DAG,
1113 MachineBasicBlock *BB) {
1114 return new ScheduleDAGSimple(true, false, DAG, BB, DAG.getTarget());
Evan Chenga9c20912006-01-21 02:32:06 +00001115}