blob: 72db4e436034860539adc58a39a33aa3dcc34441 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the common interface used by the various execution engine
11// subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/ModuleProvider.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/ExecutionEngine/ExecutionEngine.h"
22#include "llvm/ExecutionEngine/GenericValue.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/MutexGuard.h"
25#include "llvm/System/DynamicLibrary.h"
26#include "llvm/Target/TargetData.h"
27#include <math.h>
28using namespace llvm;
29
30STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
31STATISTIC(NumGlobals , "Number of global vars initialized");
32
33ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
34ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
35
Chris Lattner5c507602007-10-22 02:50:12 +000036ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037 LazyCompilationDisabled = false;
38 Modules.push_back(P);
39 assert(P && "ModuleProvider is null?");
40}
41
Chris Lattner5c507602007-10-22 02:50:12 +000042ExecutionEngine::ExecutionEngine(Module *M) : LazyFunctionCreator(0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000043 LazyCompilationDisabled = false;
44 assert(M && "Module is null?");
45 Modules.push_back(new ExistingModuleProvider(M));
46}
47
48ExecutionEngine::~ExecutionEngine() {
49 clearAllGlobalMappings();
50 for (unsigned i = 0, e = Modules.size(); i != e; ++i)
51 delete Modules[i];
52}
53
Devang Patel5d0d0d02007-10-15 19:56:32 +000054/// removeModuleProvider - Remove a ModuleProvider from the list of modules.
55/// Release module from ModuleProvider.
56Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P,
57 std::string *ErrInfo) {
58 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
59 E = Modules.end(); I != E; ++I) {
60 ModuleProvider *MP = *I;
61 if (MP == P) {
62 Modules.erase(I);
63 return MP->releaseModule(ErrInfo);
64 }
65 }
66 return NULL;
67}
68
Dan Gohmanf17a25c2007-07-18 16:29:46 +000069/// FindFunctionNamed - Search all of the active modules to find the one that
70/// defines FnName. This is very slow operation and shouldn't be used for
71/// general code.
72Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
73 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
74 if (Function *F = Modules[i]->getModule()->getFunction(FnName))
75 return F;
76 }
77 return 0;
78}
79
80
81/// addGlobalMapping - Tell the execution engine that the specified global is
82/// at the specified location. This is used internally as functions are JIT'd
83/// and as global variables are laid out in memory. It can and should also be
84/// used by clients of the EE that want to have an LLVM global overlay
85/// existing data in memory.
86void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
87 MutexGuard locked(lock);
88
89 void *&CurVal = state.getGlobalAddressMap(locked)[GV];
90 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
91 CurVal = Addr;
92
93 // If we are using the reverse mapping, add it too
94 if (!state.getGlobalAddressReverseMap(locked).empty()) {
95 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
96 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
97 V = GV;
98 }
99}
100
101/// clearAllGlobalMappings - Clear all global mappings and start over again
102/// use in dynamic compilation scenarios when you want to move globals
103void ExecutionEngine::clearAllGlobalMappings() {
104 MutexGuard locked(lock);
105
106 state.getGlobalAddressMap(locked).clear();
107 state.getGlobalAddressReverseMap(locked).clear();
108}
109
110/// updateGlobalMapping - Replace an existing mapping for GV with a new
111/// address. This updates both maps as required. If "Addr" is null, the
112/// entry for the global is removed from the mappings.
113void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
114 MutexGuard locked(lock);
115
116 // Deleting from the mapping?
117 if (Addr == 0) {
118 state.getGlobalAddressMap(locked).erase(GV);
119 if (!state.getGlobalAddressReverseMap(locked).empty())
120 state.getGlobalAddressReverseMap(locked).erase(Addr);
121 return;
122 }
123
124 void *&CurVal = state.getGlobalAddressMap(locked)[GV];
125 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
126 state.getGlobalAddressReverseMap(locked).erase(CurVal);
127 CurVal = Addr;
128
129 // If we are using the reverse mapping, add it too
130 if (!state.getGlobalAddressReverseMap(locked).empty()) {
131 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
132 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
133 V = GV;
134 }
135}
136
137/// getPointerToGlobalIfAvailable - This returns the address of the specified
138/// global value if it is has already been codegen'd, otherwise it returns null.
139///
140void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
141 MutexGuard locked(lock);
142
143 std::map<const GlobalValue*, void*>::iterator I =
144 state.getGlobalAddressMap(locked).find(GV);
145 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
146}
147
148/// getGlobalValueAtAddress - Return the LLVM global value object that starts
149/// at the specified address.
150///
151const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
152 MutexGuard locked(lock);
153
154 // If we haven't computed the reverse mapping yet, do so first.
155 if (state.getGlobalAddressReverseMap(locked).empty()) {
156 for (std::map<const GlobalValue*, void *>::iterator
157 I = state.getGlobalAddressMap(locked).begin(),
158 E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
159 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
160 I->first));
161 }
162
163 std::map<void *, const GlobalValue*>::iterator I =
164 state.getGlobalAddressReverseMap(locked).find(Addr);
165 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
166}
167
168// CreateArgv - Turn a vector of strings into a nice argv style array of
169// pointers to null terminated strings.
170//
171static void *CreateArgv(ExecutionEngine *EE,
172 const std::vector<std::string> &InputArgv) {
173 unsigned PtrSize = EE->getTargetData()->getPointerSize();
174 char *Result = new char[(InputArgv.size()+1)*PtrSize];
175
176 DOUT << "ARGV = " << (void*)Result << "\n";
177 const Type *SBytePtr = PointerType::get(Type::Int8Ty);
178
179 for (unsigned i = 0; i != InputArgv.size(); ++i) {
180 unsigned Size = InputArgv[i].size()+1;
181 char *Dest = new char[Size];
182 DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n";
183
184 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
185 Dest[Size-1] = 0;
186
187 // Endian safe: Result[i] = (PointerTy)Dest;
188 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
189 SBytePtr);
190 }
191
192 // Null terminate it
193 EE->StoreValueToMemory(PTOGV(0),
194 (GenericValue*)(Result+InputArgv.size()*PtrSize),
195 SBytePtr);
196 return Result;
197}
198
199
200/// runStaticConstructorsDestructors - This method is used to execute all of
201/// the static constructors or destructors for a program, depending on the
202/// value of isDtors.
203void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
204 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
205
206 // Execute global ctors/dtors for each module in the program.
207 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
208 GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name);
209
210 // If this global has internal linkage, or if it has a use, then it must be
211 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
212 // this is the case, don't execute any of the global ctors, __main will do
213 // it.
214 if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue;
215
216 // Should be an array of '{ int, void ()* }' structs. The first value is
217 // the init priority, which we ignore.
218 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
219 if (!InitList) continue;
220 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
221 if (ConstantStruct *CS =
222 dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
223 if (CS->getNumOperands() != 2) break; // Not array of 2-element structs.
224
225 Constant *FP = CS->getOperand(1);
226 if (FP->isNullValue())
227 break; // Found a null terminator, exit.
228
229 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
230 if (CE->isCast())
231 FP = CE->getOperand(0);
232 if (Function *F = dyn_cast<Function>(FP)) {
233 // Execute the ctor/dtor function!
234 runFunction(F, std::vector<GenericValue>());
235 }
236 }
237 }
238}
239
240/// runFunctionAsMain - This is a helper function which wraps runFunction to
241/// handle the common task of starting up main with the specified argc, argv,
242/// and envp parameters.
243int ExecutionEngine::runFunctionAsMain(Function *Fn,
244 const std::vector<std::string> &argv,
245 const char * const * envp) {
246 std::vector<GenericValue> GVArgs;
247 GenericValue GVArgc;
248 GVArgc.IntVal = APInt(32, argv.size());
249
250 // Check main() type
251 unsigned NumArgs = Fn->getFunctionType()->getNumParams();
252 const FunctionType *FTy = Fn->getFunctionType();
253 const Type* PPInt8Ty = PointerType::get(PointerType::get(Type::Int8Ty));
254 switch (NumArgs) {
255 case 3:
256 if (FTy->getParamType(2) != PPInt8Ty) {
257 cerr << "Invalid type for third argument of main() supplied\n";
258 abort();
259 }
260 // FALLS THROUGH
261 case 2:
262 if (FTy->getParamType(1) != PPInt8Ty) {
263 cerr << "Invalid type for second argument of main() supplied\n";
264 abort();
265 }
266 // FALLS THROUGH
267 case 1:
268 if (FTy->getParamType(0) != Type::Int32Ty) {
269 cerr << "Invalid type for first argument of main() supplied\n";
270 abort();
271 }
272 // FALLS THROUGH
273 case 0:
274 if (FTy->getReturnType() != Type::Int32Ty &&
275 FTy->getReturnType() != Type::VoidTy) {
276 cerr << "Invalid return type of main() supplied\n";
277 abort();
278 }
279 break;
280 default:
281 cerr << "Invalid number of arguments of main() supplied\n";
282 abort();
283 }
284
285 if (NumArgs) {
286 GVArgs.push_back(GVArgc); // Arg #0 = argc.
287 if (NumArgs > 1) {
288 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
289 assert(((char **)GVTOP(GVArgs[1]))[0] &&
290 "argv[0] was null after CreateArgv");
291 if (NumArgs > 2) {
292 std::vector<std::string> EnvVars;
293 for (unsigned i = 0; envp[i]; ++i)
294 EnvVars.push_back(envp[i]);
295 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
296 }
297 }
298 }
299 return runFunction(Fn, GVArgs).IntVal.getZExtValue();
300}
301
302/// If possible, create a JIT, unless the caller specifically requests an
303/// Interpreter or there's an error. If even an Interpreter cannot be created,
304/// NULL is returned.
305///
306ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
307 bool ForceInterpreter,
308 std::string *ErrorStr) {
309 ExecutionEngine *EE = 0;
310
311 // Unless the interpreter was explicitly selected, try making a JIT.
312 if (!ForceInterpreter && JITCtor)
313 EE = JITCtor(MP, ErrorStr);
314
315 // If we can't make a JIT, make an interpreter instead.
316 if (EE == 0 && InterpCtor)
317 EE = InterpCtor(MP, ErrorStr);
318
319 if (EE) {
320 // Make sure we can resolve symbols in the program as well. The zero arg
321 // to the function tells DynamicLibrary to load the program, not a library.
Chris Lattner7501f102007-10-21 22:58:11 +0000322 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) {
323 delete EE;
324 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000325 }
326 }
327
328 return EE;
329}
330
Chris Lattner466b3ef2007-10-21 22:57:11 +0000331ExecutionEngine *ExecutionEngine::create(Module *M) {
332 return create(new ExistingModuleProvider(M));
333}
334
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000335/// getPointerToGlobal - This returns the address of the specified global
336/// value. This may involve code generation if it's a function.
337///
338void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
339 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
340 return getPointerToFunction(F);
341
342 MutexGuard locked(lock);
343 void *p = state.getGlobalAddressMap(locked)[GV];
344 if (p)
345 return p;
346
347 // Global variable might have been added since interpreter started.
348 if (GlobalVariable *GVar =
349 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
350 EmitGlobalVariable(GVar);
351 else
352 assert(0 && "Global hasn't had an address allocated yet!");
353 return state.getGlobalAddressMap(locked)[GV];
354}
355
356/// This function converts a Constant* into a GenericValue. The interesting
357/// part is if C is a ConstantExpr.
Reid Spencer10ffdf12007-08-11 15:57:56 +0000358/// @brief Get a GenericValue for a Constant*
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000359GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
360 // If its undefined, return the garbage.
361 if (isa<UndefValue>(C))
362 return GenericValue();
363
364 // If the value is a ConstantExpr
365 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
366 Constant *Op0 = CE->getOperand(0);
367 switch (CE->getOpcode()) {
368 case Instruction::GetElementPtr: {
369 // Compute the index
370 GenericValue Result = getConstantValue(Op0);
371 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
372 uint64_t Offset =
373 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
374
375 char* tmp = (char*) Result.PointerVal;
376 Result = PTOGV(tmp + Offset);
377 return Result;
378 }
379 case Instruction::Trunc: {
380 GenericValue GV = getConstantValue(Op0);
381 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
382 GV.IntVal = GV.IntVal.trunc(BitWidth);
383 return GV;
384 }
385 case Instruction::ZExt: {
386 GenericValue GV = getConstantValue(Op0);
387 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
388 GV.IntVal = GV.IntVal.zext(BitWidth);
389 return GV;
390 }
391 case Instruction::SExt: {
392 GenericValue GV = getConstantValue(Op0);
393 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
394 GV.IntVal = GV.IntVal.sext(BitWidth);
395 return GV;
396 }
397 case Instruction::FPTrunc: {
Dale Johannesenc560da62007-09-17 18:44:13 +0000398 // FIXME long double
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000399 GenericValue GV = getConstantValue(Op0);
400 GV.FloatVal = float(GV.DoubleVal);
401 return GV;
402 }
403 case Instruction::FPExt:{
Dale Johannesenc560da62007-09-17 18:44:13 +0000404 // FIXME long double
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405 GenericValue GV = getConstantValue(Op0);
406 GV.DoubleVal = double(GV.FloatVal);
407 return GV;
408 }
409 case Instruction::UIToFP: {
410 GenericValue GV = getConstantValue(Op0);
411 if (CE->getType() == Type::FloatTy)
412 GV.FloatVal = float(GV.IntVal.roundToDouble());
Dale Johannesenc560da62007-09-17 18:44:13 +0000413 else if (CE->getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000414 GV.DoubleVal = GV.IntVal.roundToDouble();
Dale Johannesena6f79742007-09-21 22:09:37 +0000415 else if (CE->getType() == Type::X86_FP80Ty) {
Dale Johannesenc560da62007-09-17 18:44:13 +0000416 const uint64_t zero[] = {0, 0};
417 APFloat apf = APFloat(APInt(80, 2, zero));
Neil Booth4bdd45a2007-10-07 11:45:55 +0000418 (void)apf.convertFromZeroExtendedInteger(GV.IntVal.getRawData(),
Dale Johannesena6f79742007-09-21 22:09:37 +0000419 GV.IntVal.getBitWidth(), false,
Dale Johannesen87fa68f2007-09-30 18:19:03 +0000420 APFloat::rmNearestTiesToEven);
Dale Johannesenc560da62007-09-17 18:44:13 +0000421 GV.IntVal = apf.convertToAPInt();
422 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000423 return GV;
424 }
425 case Instruction::SIToFP: {
426 GenericValue GV = getConstantValue(Op0);
427 if (CE->getType() == Type::FloatTy)
428 GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
Dale Johannesenc560da62007-09-17 18:44:13 +0000429 else if (CE->getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000430 GV.DoubleVal = GV.IntVal.signedRoundToDouble();
Dale Johannesenc560da62007-09-17 18:44:13 +0000431 else if (CE->getType() == Type::X86_FP80Ty) {
432 const uint64_t zero[] = { 0, 0};
433 APFloat apf = APFloat(APInt(80, 2, zero));
Neil Booth4bdd45a2007-10-07 11:45:55 +0000434 (void)apf.convertFromZeroExtendedInteger(GV.IntVal.getRawData(),
Dale Johannesena6f79742007-09-21 22:09:37 +0000435 GV.IntVal.getBitWidth(), true,
Dale Johannesen87fa68f2007-09-30 18:19:03 +0000436 APFloat::rmNearestTiesToEven);
Dale Johannesenc560da62007-09-17 18:44:13 +0000437 GV.IntVal = apf.convertToAPInt();
438 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000439 return GV;
440 }
441 case Instruction::FPToUI: // double->APInt conversion handles sign
442 case Instruction::FPToSI: {
443 GenericValue GV = getConstantValue(Op0);
444 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
445 if (Op0->getType() == Type::FloatTy)
446 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
Dale Johannesenc560da62007-09-17 18:44:13 +0000447 else if (Op0->getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000448 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
Dale Johannesenc560da62007-09-17 18:44:13 +0000449 else if (Op0->getType() == Type::X86_FP80Ty) {
450 APFloat apf = APFloat(GV.IntVal);
451 uint64_t v;
452 (void)apf.convertToInteger(&v, BitWidth,
453 CE->getOpcode()==Instruction::FPToSI,
454 APFloat::rmTowardZero);
455 GV.IntVal = v; // endian?
456 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000457 return GV;
458 }
459 case Instruction::PtrToInt: {
460 GenericValue GV = getConstantValue(Op0);
461 uint32_t PtrWidth = TD->getPointerSizeInBits();
462 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
463 return GV;
464 }
465 case Instruction::IntToPtr: {
466 GenericValue GV = getConstantValue(Op0);
467 uint32_t PtrWidth = TD->getPointerSizeInBits();
468 if (PtrWidth != GV.IntVal.getBitWidth())
469 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
470 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
471 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
472 return GV;
473 }
474 case Instruction::BitCast: {
475 GenericValue GV = getConstantValue(Op0);
476 const Type* DestTy = CE->getType();
477 switch (Op0->getType()->getTypeID()) {
478 default: assert(0 && "Invalid bitcast operand");
479 case Type::IntegerTyID:
480 assert(DestTy->isFloatingPoint() && "invalid bitcast");
481 if (DestTy == Type::FloatTy)
482 GV.FloatVal = GV.IntVal.bitsToFloat();
483 else if (DestTy == Type::DoubleTy)
484 GV.DoubleVal = GV.IntVal.bitsToDouble();
485 break;
486 case Type::FloatTyID:
487 assert(DestTy == Type::Int32Ty && "Invalid bitcast");
488 GV.IntVal.floatToBits(GV.FloatVal);
489 break;
490 case Type::DoubleTyID:
491 assert(DestTy == Type::Int64Ty && "Invalid bitcast");
492 GV.IntVal.doubleToBits(GV.DoubleVal);
493 break;
494 case Type::PointerTyID:
495 assert(isa<PointerType>(DestTy) && "Invalid bitcast");
496 break; // getConstantValue(Op0) above already converted it
497 }
498 return GV;
499 }
500 case Instruction::Add:
501 case Instruction::Sub:
502 case Instruction::Mul:
503 case Instruction::UDiv:
504 case Instruction::SDiv:
505 case Instruction::URem:
506 case Instruction::SRem:
507 case Instruction::And:
508 case Instruction::Or:
509 case Instruction::Xor: {
510 GenericValue LHS = getConstantValue(Op0);
511 GenericValue RHS = getConstantValue(CE->getOperand(1));
512 GenericValue GV;
513 switch (CE->getOperand(0)->getType()->getTypeID()) {
514 default: assert(0 && "Bad add type!"); abort();
515 case Type::IntegerTyID:
516 switch (CE->getOpcode()) {
517 default: assert(0 && "Invalid integer opcode");
518 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
519 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
520 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
521 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
522 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
523 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
524 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
525 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
526 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
527 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
528 }
529 break;
530 case Type::FloatTyID:
531 switch (CE->getOpcode()) {
532 default: assert(0 && "Invalid float opcode"); abort();
533 case Instruction::Add:
534 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
535 case Instruction::Sub:
536 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
537 case Instruction::Mul:
538 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
539 case Instruction::FDiv:
540 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
541 case Instruction::FRem:
542 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
543 }
544 break;
545 case Type::DoubleTyID:
546 switch (CE->getOpcode()) {
547 default: assert(0 && "Invalid double opcode"); abort();
548 case Instruction::Add:
549 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
550 case Instruction::Sub:
551 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
552 case Instruction::Mul:
553 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
554 case Instruction::FDiv:
555 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
556 case Instruction::FRem:
557 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
558 }
559 break;
Dale Johannesenc560da62007-09-17 18:44:13 +0000560 case Type::X86_FP80TyID:
561 case Type::PPC_FP128TyID:
562 case Type::FP128TyID: {
563 APFloat apfLHS = APFloat(LHS.IntVal);
564 switch (CE->getOpcode()) {
565 default: assert(0 && "Invalid long double opcode"); abort();
566 case Instruction::Add:
567 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
568 GV.IntVal = apfLHS.convertToAPInt();
569 break;
570 case Instruction::Sub:
571 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
572 GV.IntVal = apfLHS.convertToAPInt();
573 break;
574 case Instruction::Mul:
575 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
576 GV.IntVal = apfLHS.convertToAPInt();
577 break;
578 case Instruction::FDiv:
579 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
580 GV.IntVal = apfLHS.convertToAPInt();
581 break;
582 case Instruction::FRem:
583 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
584 GV.IntVal = apfLHS.convertToAPInt();
585 break;
586 }
587 }
588 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000589 }
590 return GV;
591 }
592 default:
593 break;
594 }
595 cerr << "ConstantExpr not handled: " << *CE << "\n";
596 abort();
597 }
598
599 GenericValue Result;
600 switch (C->getType()->getTypeID()) {
601 case Type::FloatTyID:
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000602 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000603 break;
604 case Type::DoubleTyID:
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000605 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000606 break;
Dale Johannesenc560da62007-09-17 18:44:13 +0000607 case Type::X86_FP80TyID:
608 case Type::FP128TyID:
609 case Type::PPC_FP128TyID:
610 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().convertToAPInt();
611 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000612 case Type::IntegerTyID:
613 Result.IntVal = cast<ConstantInt>(C)->getValue();
614 break;
615 case Type::PointerTyID:
616 if (isa<ConstantPointerNull>(C))
617 Result.PointerVal = 0;
618 else if (const Function *F = dyn_cast<Function>(C))
619 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
620 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
621 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
622 else
623 assert(0 && "Unknown constant pointer type!");
624 break;
625 default:
626 cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n";
627 abort();
628 }
629 return Result;
630}
631
632/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
633/// is the address of the memory at which to store Val, cast to GenericValue *.
634/// It is not a pointer to a GenericValue containing the address at which to
635/// store Val.
636///
637void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
638 const Type *Ty) {
639 switch (Ty->getTypeID()) {
640 case Type::IntegerTyID: {
641 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
642 GenericValue TmpVal = Val;
643 if (BitWidth <= 8)
644 *((uint8_t*)Ptr) = uint8_t(Val.IntVal.getZExtValue());
645 else if (BitWidth <= 16) {
646 *((uint16_t*)Ptr) = uint16_t(Val.IntVal.getZExtValue());
647 } else if (BitWidth <= 32) {
648 *((uint32_t*)Ptr) = uint32_t(Val.IntVal.getZExtValue());
649 } else if (BitWidth <= 64) {
650 *((uint64_t*)Ptr) = uint64_t(Val.IntVal.getZExtValue());
651 } else {
652 uint64_t *Dest = (uint64_t*)Ptr;
653 const uint64_t *Src = Val.IntVal.getRawData();
654 for (uint32_t i = 0; i < Val.IntVal.getNumWords(); ++i)
655 Dest[i] = Src[i];
656 }
657 break;
658 }
659 case Type::FloatTyID:
660 *((float*)Ptr) = Val.FloatVal;
661 break;
662 case Type::DoubleTyID:
663 *((double*)Ptr) = Val.DoubleVal;
664 break;
Dale Johannesenc560da62007-09-17 18:44:13 +0000665 case Type::X86_FP80TyID: {
666 uint16_t *Dest = (uint16_t*)Ptr;
667 const uint16_t *Src = (uint16_t*)Val.IntVal.getRawData();
668 // This is endian dependent, but it will only work on x86 anyway.
669 Dest[0] = Src[4];
670 Dest[1] = Src[0];
671 Dest[2] = Src[1];
672 Dest[3] = Src[2];
673 Dest[4] = Src[3];
674 break;
675 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000676 case Type::PointerTyID:
677 *((PointerTy*)Ptr) = Val.PointerVal;
678 break;
679 default:
680 cerr << "Cannot store value of type " << *Ty << "!\n";
681 }
682}
683
684/// FIXME: document
685///
686void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
687 GenericValue *Ptr,
688 const Type *Ty) {
689 switch (Ty->getTypeID()) {
690 case Type::IntegerTyID: {
691 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
692 if (BitWidth <= 8)
693 Result.IntVal = APInt(BitWidth, *((uint8_t*)Ptr));
694 else if (BitWidth <= 16) {
695 Result.IntVal = APInt(BitWidth, *((uint16_t*)Ptr));
696 } else if (BitWidth <= 32) {
697 Result.IntVal = APInt(BitWidth, *((uint32_t*)Ptr));
698 } else if (BitWidth <= 64) {
699 Result.IntVal = APInt(BitWidth, *((uint64_t*)Ptr));
700 } else
701 Result.IntVal = APInt(BitWidth, (BitWidth+63)/64, (uint64_t*)Ptr);
702 break;
703 }
704 case Type::FloatTyID:
705 Result.FloatVal = *((float*)Ptr);
706 break;
707 case Type::DoubleTyID:
708 Result.DoubleVal = *((double*)Ptr);
709 break;
710 case Type::PointerTyID:
711 Result.PointerVal = *((PointerTy*)Ptr);
712 break;
Dale Johannesenc560da62007-09-17 18:44:13 +0000713 case Type::X86_FP80TyID: {
714 // This is endian dependent, but it will only work on x86 anyway.
715 uint16_t x[8], *p = (uint16_t*)Ptr;
716 x[0] = p[1];
717 x[1] = p[2];
718 x[2] = p[3];
719 x[3] = p[4];
720 x[4] = p[0];
721 Result.IntVal = APInt(80, 2, x);
722 break;
723 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000724 default:
725 cerr << "Cannot load value of type " << *Ty << "!\n";
726 abort();
727 }
728}
729
730// InitializeMemory - Recursive function to apply a Constant value into the
731// specified memory location...
732//
733void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
734 if (isa<UndefValue>(Init)) {
735 return;
736 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
737 unsigned ElementSize =
Duncan Sandsf99fdc62007-11-01 20:53:16 +0000738 getTargetData()->getABITypeSize(CP->getType()->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000739 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
740 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
741 return;
742 } else if (Init->getType()->isFirstClassType()) {
743 GenericValue Val = getConstantValue(Init);
744 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
745 return;
746 } else if (isa<ConstantAggregateZero>(Init)) {
Duncan Sandsf99fdc62007-11-01 20:53:16 +0000747 memset(Addr, 0, (size_t)getTargetData()->getABITypeSize(Init->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000748 return;
749 }
750
751 switch (Init->getType()->getTypeID()) {
752 case Type::ArrayTyID: {
753 const ConstantArray *CPA = cast<ConstantArray>(Init);
754 unsigned ElementSize =
Duncan Sandsf99fdc62007-11-01 20:53:16 +0000755 getTargetData()->getABITypeSize(CPA->getType()->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000756 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
757 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
758 return;
759 }
760
761 case Type::StructTyID: {
762 const ConstantStruct *CPS = cast<ConstantStruct>(Init);
763 const StructLayout *SL =
764 getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
765 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
766 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
767 return;
768 }
769
770 default:
771 cerr << "Bad Type: " << *Init->getType() << "\n";
772 assert(0 && "Unknown constant type to initialize memory with!");
773 }
774}
775
776/// EmitGlobals - Emit all of the global variables to memory, storing their
777/// addresses into GlobalAddress. This must make sure to copy the contents of
778/// their initializers into the memory.
779///
780void ExecutionEngine::emitGlobals() {
781 const TargetData *TD = getTargetData();
782
783 // Loop over all of the global variables in the program, allocating the memory
784 // to hold them. If there is more than one module, do a prepass over globals
785 // to figure out how the different modules should link together.
786 //
787 std::map<std::pair<std::string, const Type*>,
788 const GlobalValue*> LinkedGlobalsMap;
789
790 if (Modules.size() != 1) {
791 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
792 Module &M = *Modules[m]->getModule();
793 for (Module::const_global_iterator I = M.global_begin(),
794 E = M.global_end(); I != E; ++I) {
795 const GlobalValue *GV = I;
796 if (GV->hasInternalLinkage() || GV->isDeclaration() ||
797 GV->hasAppendingLinkage() || !GV->hasName())
798 continue;// Ignore external globals and globals with internal linkage.
799
800 const GlobalValue *&GVEntry =
801 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
802
803 // If this is the first time we've seen this global, it is the canonical
804 // version.
805 if (!GVEntry) {
806 GVEntry = GV;
807 continue;
808 }
809
810 // If the existing global is strong, never replace it.
811 if (GVEntry->hasExternalLinkage() ||
812 GVEntry->hasDLLImportLinkage() ||
813 GVEntry->hasDLLExportLinkage())
814 continue;
815
816 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
817 // symbol.
818 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
819 GVEntry = GV;
820 }
821 }
822 }
823
824 std::vector<const GlobalValue*> NonCanonicalGlobals;
825 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
826 Module &M = *Modules[m]->getModule();
827 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
828 I != E; ++I) {
829 // In the multi-module case, see what this global maps to.
830 if (!LinkedGlobalsMap.empty()) {
831 if (const GlobalValue *GVEntry =
832 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
833 // If something else is the canonical global, ignore this one.
834 if (GVEntry != &*I) {
835 NonCanonicalGlobals.push_back(I);
836 continue;
837 }
838 }
839 }
840
841 if (!I->isDeclaration()) {
842 // Get the type of the global.
843 const Type *Ty = I->getType()->getElementType();
844
845 // Allocate some memory for it!
Duncan Sandsf99fdc62007-11-01 20:53:16 +0000846 unsigned Size = TD->getABITypeSize(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000847 addGlobalMapping(I, new char[Size]);
848 } else {
849 // External variable reference. Try to use the dynamic loader to
850 // get a pointer to it.
851 if (void *SymAddr =
852 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str()))
853 addGlobalMapping(I, SymAddr);
854 else {
855 cerr << "Could not resolve external global address: "
856 << I->getName() << "\n";
857 abort();
858 }
859 }
860 }
861
862 // If there are multiple modules, map the non-canonical globals to their
863 // canonical location.
864 if (!NonCanonicalGlobals.empty()) {
865 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
866 const GlobalValue *GV = NonCanonicalGlobals[i];
867 const GlobalValue *CGV =
868 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
869 void *Ptr = getPointerToGlobalIfAvailable(CGV);
870 assert(Ptr && "Canonical global wasn't codegen'd!");
871 addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV));
872 }
873 }
874
875 // Now that all of the globals are set up in memory, loop through them all
876 // and initialize their contents.
877 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
878 I != E; ++I) {
879 if (!I->isDeclaration()) {
880 if (!LinkedGlobalsMap.empty()) {
881 if (const GlobalValue *GVEntry =
882 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
883 if (GVEntry != &*I) // Not the canonical variable.
884 continue;
885 }
886 EmitGlobalVariable(I);
887 }
888 }
889 }
890}
891
892// EmitGlobalVariable - This method emits the specified global variable to the
893// address specified in GlobalAddresses, or allocates new memory if it's not
894// already in the map.
895void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
896 void *GA = getPointerToGlobalIfAvailable(GV);
897 DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n";
898
899 const Type *ElTy = GV->getType()->getElementType();
Duncan Sandsf99fdc62007-11-01 20:53:16 +0000900 size_t GVSize = (size_t)getTargetData()->getABITypeSize(ElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000901 if (GA == 0) {
902 // If it's not already specified, allocate memory for the global.
903 GA = new char[GVSize];
904 addGlobalMapping(GV, GA);
905 }
906
907 InitializeMemory(GV->getInitializer(), GA);
908 NumInitBytes += (unsigned)GVSize;
909 ++NumGlobals;
910}