Reid Spencer | fb0c0dc | 2006-05-29 00:57:22 +0000 | [diff] [blame^] | 1 | //===-- CppWriter.cpp - Printing LLVM IR as a C++ Source File -------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by the LLVM research group and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the writing of the LLVM IR as a set of C++ calls to the |
| 11 | // LLVM IR interface. The input module is assumed to be verified. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/CallingConv.h" |
| 16 | #include "llvm/Constants.h" |
| 17 | #include "llvm/DerivedTypes.h" |
| 18 | #include "llvm/InlineAsm.h" |
| 19 | #include "llvm/Instruction.h" |
| 20 | #include "llvm/Instructions.h" |
| 21 | #include "llvm/Module.h" |
| 22 | #include "llvm/SymbolTable.h" |
| 23 | #include "llvm/Support/CFG.h" |
| 24 | #include "llvm/ADT/StringExtras.h" |
| 25 | #include "llvm/ADT/STLExtras.h" |
| 26 | #include "llvm/Support/MathExtras.h" |
| 27 | #include <algorithm> |
| 28 | #include <iostream> |
| 29 | |
| 30 | using namespace llvm; |
| 31 | |
| 32 | namespace { |
| 33 | /// This class provides computation of slot numbers for LLVM Assembly writing. |
| 34 | /// @brief LLVM Assembly Writing Slot Computation. |
| 35 | class SlotMachine { |
| 36 | |
| 37 | /// @name Types |
| 38 | /// @{ |
| 39 | public: |
| 40 | |
| 41 | /// @brief A mapping of Values to slot numbers |
| 42 | typedef std::map<const Value*, unsigned> ValueMap; |
| 43 | typedef std::map<const Type*, unsigned> TypeMap; |
| 44 | |
| 45 | /// @brief A plane with next slot number and ValueMap |
| 46 | struct ValuePlane { |
| 47 | unsigned next_slot; ///< The next slot number to use |
| 48 | ValueMap map; ///< The map of Value* -> unsigned |
| 49 | ValuePlane() { next_slot = 0; } ///< Make sure we start at 0 |
| 50 | }; |
| 51 | |
| 52 | struct TypePlane { |
| 53 | unsigned next_slot; |
| 54 | TypeMap map; |
| 55 | TypePlane() { next_slot = 0; } |
| 56 | void clear() { map.clear(); next_slot = 0; } |
| 57 | }; |
| 58 | |
| 59 | /// @brief The map of planes by Type |
| 60 | typedef std::map<const Type*, ValuePlane> TypedPlanes; |
| 61 | |
| 62 | /// @} |
| 63 | /// @name Constructors |
| 64 | /// @{ |
| 65 | public: |
| 66 | /// @brief Construct from a module |
| 67 | SlotMachine(const Module *M ); |
| 68 | |
| 69 | /// @} |
| 70 | /// @name Accessors |
| 71 | /// @{ |
| 72 | public: |
| 73 | /// Return the slot number of the specified value in it's type |
| 74 | /// plane. Its an error to ask for something not in the SlotMachine. |
| 75 | /// Its an error to ask for a Type* |
| 76 | int getSlot(const Value *V); |
| 77 | int getSlot(const Type*Ty); |
| 78 | |
| 79 | /// Determine if a Value has a slot or not |
| 80 | bool hasSlot(const Value* V); |
| 81 | bool hasSlot(const Type* Ty); |
| 82 | |
| 83 | /// @} |
| 84 | /// @name Mutators |
| 85 | /// @{ |
| 86 | public: |
| 87 | /// If you'd like to deal with a function instead of just a module, use |
| 88 | /// this method to get its data into the SlotMachine. |
| 89 | void incorporateFunction(const Function *F) { |
| 90 | TheFunction = F; |
| 91 | FunctionProcessed = false; |
| 92 | } |
| 93 | |
| 94 | /// After calling incorporateFunction, use this method to remove the |
| 95 | /// most recently incorporated function from the SlotMachine. This |
| 96 | /// will reset the state of the machine back to just the module contents. |
| 97 | void purgeFunction(); |
| 98 | |
| 99 | /// @} |
| 100 | /// @name Implementation Details |
| 101 | /// @{ |
| 102 | private: |
| 103 | /// Values can be crammed into here at will. If they haven't |
| 104 | /// been inserted already, they get inserted, otherwise they are ignored. |
| 105 | /// Either way, the slot number for the Value* is returned. |
| 106 | unsigned createSlot(const Value *V); |
| 107 | unsigned createSlot(const Type* Ty); |
| 108 | |
| 109 | /// Insert a value into the value table. Return the slot number |
| 110 | /// that it now occupies. BadThings(TM) will happen if you insert a |
| 111 | /// Value that's already been inserted. |
| 112 | unsigned insertValue( const Value *V ); |
| 113 | unsigned insertValue( const Type* Ty); |
| 114 | |
| 115 | /// Add all of the module level global variables (and their initializers) |
| 116 | /// and function declarations, but not the contents of those functions. |
| 117 | void processModule(); |
| 118 | |
| 119 | /// Add all of the functions arguments, basic blocks, and instructions |
| 120 | void processFunction(); |
| 121 | |
| 122 | SlotMachine(const SlotMachine &); // DO NOT IMPLEMENT |
| 123 | void operator=(const SlotMachine &); // DO NOT IMPLEMENT |
| 124 | |
| 125 | /// @} |
| 126 | /// @name Data |
| 127 | /// @{ |
| 128 | public: |
| 129 | |
| 130 | /// @brief The module for which we are holding slot numbers |
| 131 | const Module* TheModule; |
| 132 | |
| 133 | /// @brief The function for which we are holding slot numbers |
| 134 | const Function* TheFunction; |
| 135 | bool FunctionProcessed; |
| 136 | |
| 137 | /// @brief The TypePlanes map for the module level data |
| 138 | TypedPlanes mMap; |
| 139 | TypePlane mTypes; |
| 140 | |
| 141 | /// @brief The TypePlanes map for the function level data |
| 142 | TypedPlanes fMap; |
| 143 | TypePlane fTypes; |
| 144 | |
| 145 | /// @} |
| 146 | |
| 147 | }; |
| 148 | |
| 149 | typedef std::vector<const Type*> TypeList; |
| 150 | typedef std::map<const Type*,std::string> TypeMap; |
| 151 | typedef std::map<const Value*,std::string> ValueMap; |
| 152 | |
| 153 | void WriteAsOperandInternal(std::ostream &Out, const Value *V, |
| 154 | bool PrintName, TypeMap &TypeTable, |
| 155 | SlotMachine *Machine); |
| 156 | |
| 157 | void WriteAsOperandInternal(std::ostream &Out, const Type *T, |
| 158 | bool PrintName, TypeMap& TypeTable, |
| 159 | SlotMachine *Machine); |
| 160 | |
| 161 | const Module *getModuleFromVal(const Value *V) { |
| 162 | if (const Argument *MA = dyn_cast<Argument>(V)) |
| 163 | return MA->getParent() ? MA->getParent()->getParent() : 0; |
| 164 | else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) |
| 165 | return BB->getParent() ? BB->getParent()->getParent() : 0; |
| 166 | else if (const Instruction *I = dyn_cast<Instruction>(V)) { |
| 167 | const Function *M = I->getParent() ? I->getParent()->getParent() : 0; |
| 168 | return M ? M->getParent() : 0; |
| 169 | } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) |
| 170 | return GV->getParent(); |
| 171 | return 0; |
| 172 | } |
| 173 | |
| 174 | // getLLVMName - Turn the specified string into an 'LLVM name', which is either |
| 175 | // prefixed with % (if the string only contains simple characters) or is |
| 176 | // surrounded with ""'s (if it has special chars in it). |
| 177 | std::string getLLVMName(const std::string &Name, |
| 178 | bool prefixName = true) { |
| 179 | assert(!Name.empty() && "Cannot get empty name!"); |
| 180 | |
| 181 | // First character cannot start with a number... |
| 182 | if (Name[0] >= '0' && Name[0] <= '9') |
| 183 | return "\"" + Name + "\""; |
| 184 | |
| 185 | // Scan to see if we have any characters that are not on the "white list" |
| 186 | for (unsigned i = 0, e = Name.size(); i != e; ++i) { |
| 187 | char C = Name[i]; |
| 188 | assert(C != '"' && "Illegal character in LLVM value name!"); |
| 189 | if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') && |
| 190 | C != '-' && C != '.' && C != '_') |
| 191 | return "\"" + Name + "\""; |
| 192 | } |
| 193 | |
| 194 | // If we get here, then the identifier is legal to use as a "VarID". |
| 195 | if (prefixName) |
| 196 | return "%"+Name; |
| 197 | else |
| 198 | return Name; |
| 199 | } |
| 200 | |
| 201 | |
| 202 | /// fillTypeNameTable - If the module has a symbol table, take all global types |
| 203 | /// and stuff their names into the TypeNames map. |
| 204 | /// |
| 205 | void fillTypeNameTable(const Module *M, TypeMap& TypeNames) { |
| 206 | if (!M) return; |
| 207 | const SymbolTable &ST = M->getSymbolTable(); |
| 208 | SymbolTable::type_const_iterator TI = ST.type_begin(); |
| 209 | for (; TI != ST.type_end(); ++TI ) { |
| 210 | // As a heuristic, don't insert pointer to primitive types, because |
| 211 | // they are used too often to have a single useful name. |
| 212 | // |
| 213 | const Type *Ty = cast<Type>(TI->second); |
| 214 | if (!isa<PointerType>(Ty) || |
| 215 | !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() || |
| 216 | isa<OpaqueType>(cast<PointerType>(Ty)->getElementType())) |
| 217 | TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first))); |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | void calcTypeName(const Type *Ty, |
| 222 | std::vector<const Type *> &TypeStack, |
| 223 | TypeMap& TypeNames, |
| 224 | std::string & Result){ |
| 225 | if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) { |
| 226 | Result += Ty->getDescription(); // Base case |
| 227 | return; |
| 228 | } |
| 229 | |
| 230 | // Check to see if the type is named. |
| 231 | TypeMap::iterator I = TypeNames.find(Ty); |
| 232 | if (I != TypeNames.end()) { |
| 233 | Result += I->second; |
| 234 | return; |
| 235 | } |
| 236 | |
| 237 | if (isa<OpaqueType>(Ty)) { |
| 238 | Result += "opaque"; |
| 239 | return; |
| 240 | } |
| 241 | |
| 242 | // Check to see if the Type is already on the stack... |
| 243 | unsigned Slot = 0, CurSize = TypeStack.size(); |
| 244 | while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type |
| 245 | |
| 246 | // This is another base case for the recursion. In this case, we know |
| 247 | // that we have looped back to a type that we have previously visited. |
| 248 | // Generate the appropriate upreference to handle this. |
| 249 | if (Slot < CurSize) { |
| 250 | Result += "\\" + utostr(CurSize-Slot); // Here's the upreference |
| 251 | return; |
| 252 | } |
| 253 | |
| 254 | TypeStack.push_back(Ty); // Recursive case: Add us to the stack.. |
| 255 | |
| 256 | switch (Ty->getTypeID()) { |
| 257 | case Type::FunctionTyID: { |
| 258 | const FunctionType *FTy = cast<FunctionType>(Ty); |
| 259 | calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result); |
| 260 | Result += " ("; |
| 261 | for (FunctionType::param_iterator I = FTy->param_begin(), |
| 262 | E = FTy->param_end(); I != E; ++I) { |
| 263 | if (I != FTy->param_begin()) |
| 264 | Result += ", "; |
| 265 | calcTypeName(*I, TypeStack, TypeNames, Result); |
| 266 | } |
| 267 | if (FTy->isVarArg()) { |
| 268 | if (FTy->getNumParams()) Result += ", "; |
| 269 | Result += "..."; |
| 270 | } |
| 271 | Result += ")"; |
| 272 | break; |
| 273 | } |
| 274 | case Type::StructTyID: { |
| 275 | const StructType *STy = cast<StructType>(Ty); |
| 276 | Result += "{ "; |
| 277 | for (StructType::element_iterator I = STy->element_begin(), |
| 278 | E = STy->element_end(); I != E; ++I) { |
| 279 | if (I != STy->element_begin()) |
| 280 | Result += ", "; |
| 281 | calcTypeName(*I, TypeStack, TypeNames, Result); |
| 282 | } |
| 283 | Result += " }"; |
| 284 | break; |
| 285 | } |
| 286 | case Type::PointerTyID: |
| 287 | calcTypeName(cast<PointerType>(Ty)->getElementType(), |
| 288 | TypeStack, TypeNames, Result); |
| 289 | Result += "*"; |
| 290 | break; |
| 291 | case Type::ArrayTyID: { |
| 292 | const ArrayType *ATy = cast<ArrayType>(Ty); |
| 293 | Result += "[" + utostr(ATy->getNumElements()) + " x "; |
| 294 | calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result); |
| 295 | Result += "]"; |
| 296 | break; |
| 297 | } |
| 298 | case Type::PackedTyID: { |
| 299 | const PackedType *PTy = cast<PackedType>(Ty); |
| 300 | Result += "<" + utostr(PTy->getNumElements()) + " x "; |
| 301 | calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result); |
| 302 | Result += ">"; |
| 303 | break; |
| 304 | } |
| 305 | case Type::OpaqueTyID: |
| 306 | Result += "opaque"; |
| 307 | break; |
| 308 | default: |
| 309 | Result += "<unrecognized-type>"; |
| 310 | } |
| 311 | |
| 312 | TypeStack.pop_back(); // Remove self from stack... |
| 313 | return; |
| 314 | } |
| 315 | |
| 316 | |
| 317 | /// printTypeInt - The internal guts of printing out a type that has a |
| 318 | /// potentially named portion. |
| 319 | /// |
| 320 | std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,TypeMap&TypeNames){ |
| 321 | // Primitive types always print out their description, regardless of whether |
| 322 | // they have been named or not. |
| 323 | // |
| 324 | if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) |
| 325 | return Out << Ty->getDescription(); |
| 326 | |
| 327 | // Check to see if the type is named. |
| 328 | TypeMap::iterator I = TypeNames.find(Ty); |
| 329 | if (I != TypeNames.end()) return Out << I->second; |
| 330 | |
| 331 | // Otherwise we have a type that has not been named but is a derived type. |
| 332 | // Carefully recurse the type hierarchy to print out any contained symbolic |
| 333 | // names. |
| 334 | // |
| 335 | std::vector<const Type *> TypeStack; |
| 336 | std::string TypeName; |
| 337 | calcTypeName(Ty, TypeStack, TypeNames, TypeName); |
| 338 | TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use |
| 339 | return (Out << TypeName); |
| 340 | } |
| 341 | |
| 342 | |
| 343 | /// WriteTypeSymbolic - This attempts to write the specified type as a symbolic |
| 344 | /// type, iff there is an entry in the modules symbol table for the specified |
| 345 | /// type or one of it's component types. This is slower than a simple x << Type |
| 346 | /// |
| 347 | std::ostream &WriteTypeSymbolic(std::ostream &Out, const Type *Ty, |
| 348 | const Module *M) { |
| 349 | Out << ' '; |
| 350 | |
| 351 | // If they want us to print out a type, attempt to make it symbolic if there |
| 352 | // is a symbol table in the module... |
| 353 | if (M) { |
| 354 | TypeMap TypeNames; |
| 355 | fillTypeNameTable(M, TypeNames); |
| 356 | |
| 357 | return printTypeInt(Out, Ty, TypeNames); |
| 358 | } else { |
| 359 | return Out << Ty->getDescription(); |
| 360 | } |
| 361 | } |
| 362 | |
| 363 | // PrintEscapedString - Print each character of the specified string, escaping |
| 364 | // it if it is not printable or if it is an escape char. |
| 365 | void PrintEscapedString(const std::string &Str, std::ostream &Out) { |
| 366 | for (unsigned i = 0, e = Str.size(); i != e; ++i) { |
| 367 | unsigned char C = Str[i]; |
| 368 | if (isprint(C) && C != '"' && C != '\\') { |
| 369 | Out << C; |
| 370 | } else { |
| 371 | Out << '\\' |
| 372 | << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')) |
| 373 | << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); |
| 374 | } |
| 375 | } |
| 376 | } |
| 377 | |
| 378 | /// @brief Internal constant writer. |
| 379 | void WriteConstantInternal(std::ostream &Out, const Constant *CV, |
| 380 | bool PrintName, |
| 381 | TypeMap& TypeTable, |
| 382 | SlotMachine *Machine) { |
| 383 | const int IndentSize = 4; |
| 384 | static std::string Indent = "\n"; |
| 385 | if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) { |
| 386 | Out << (CB == ConstantBool::True ? "true" : "false"); |
| 387 | } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) { |
| 388 | Out << CI->getValue(); |
| 389 | } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) { |
| 390 | Out << CI->getValue(); |
| 391 | } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { |
| 392 | // We would like to output the FP constant value in exponential notation, |
| 393 | // but we cannot do this if doing so will lose precision. Check here to |
| 394 | // make sure that we only output it in exponential format if we can parse |
| 395 | // the value back and get the same value. |
| 396 | // |
| 397 | std::string StrVal = ftostr(CFP->getValue()); |
| 398 | |
| 399 | // Check to make sure that the stringized number is not some string like |
| 400 | // "Inf" or NaN, that atof will accept, but the lexer will not. Check that |
| 401 | // the string matches the "[-+]?[0-9]" regex. |
| 402 | // |
| 403 | if ((StrVal[0] >= '0' && StrVal[0] <= '9') || |
| 404 | ((StrVal[0] == '-' || StrVal[0] == '+') && |
| 405 | (StrVal[1] >= '0' && StrVal[1] <= '9'))) |
| 406 | // Reparse stringized version! |
| 407 | if (atof(StrVal.c_str()) == CFP->getValue()) { |
| 408 | Out << StrVal; |
| 409 | return; |
| 410 | } |
| 411 | |
| 412 | // Otherwise we could not reparse it to exactly the same value, so we must |
| 413 | // output the string in hexadecimal format! |
| 414 | assert(sizeof(double) == sizeof(uint64_t) && |
| 415 | "assuming that double is 64 bits!"); |
| 416 | Out << "0x" << utohexstr(DoubleToBits(CFP->getValue())); |
| 417 | |
| 418 | } else if (isa<ConstantAggregateZero>(CV)) { |
| 419 | Out << "zeroinitializer"; |
| 420 | } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { |
| 421 | // As a special case, print the array as a string if it is an array of |
| 422 | // ubytes or an array of sbytes with positive values. |
| 423 | // |
| 424 | const Type *ETy = CA->getType()->getElementType(); |
| 425 | if (CA->isString()) { |
| 426 | Out << "c\""; |
| 427 | PrintEscapedString(CA->getAsString(), Out); |
| 428 | Out << "\""; |
| 429 | |
| 430 | } else { // Cannot output in string format... |
| 431 | Out << '['; |
| 432 | if (CA->getNumOperands()) { |
| 433 | Out << ' '; |
| 434 | printTypeInt(Out, ETy, TypeTable); |
| 435 | WriteAsOperandInternal(Out, CA->getOperand(0), |
| 436 | PrintName, TypeTable, Machine); |
| 437 | for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { |
| 438 | Out << ", "; |
| 439 | printTypeInt(Out, ETy, TypeTable); |
| 440 | WriteAsOperandInternal(Out, CA->getOperand(i), PrintName, |
| 441 | TypeTable, Machine); |
| 442 | } |
| 443 | } |
| 444 | Out << " ]"; |
| 445 | } |
| 446 | } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { |
| 447 | Out << '{'; |
| 448 | unsigned N = CS->getNumOperands(); |
| 449 | if (N) { |
| 450 | if (N > 2) { |
| 451 | Indent += std::string(IndentSize, ' '); |
| 452 | Out << Indent; |
| 453 | } else { |
| 454 | Out << ' '; |
| 455 | } |
| 456 | printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable); |
| 457 | |
| 458 | WriteAsOperandInternal(Out, CS->getOperand(0), |
| 459 | PrintName, TypeTable, Machine); |
| 460 | |
| 461 | for (unsigned i = 1; i < N; i++) { |
| 462 | Out << ", "; |
| 463 | if (N > 2) Out << Indent; |
| 464 | printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable); |
| 465 | |
| 466 | WriteAsOperandInternal(Out, CS->getOperand(i), |
| 467 | PrintName, TypeTable, Machine); |
| 468 | } |
| 469 | if (N > 2) Indent.resize(Indent.size() - IndentSize); |
| 470 | } |
| 471 | |
| 472 | Out << " }"; |
| 473 | } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) { |
| 474 | const Type *ETy = CP->getType()->getElementType(); |
| 475 | assert(CP->getNumOperands() > 0 && |
| 476 | "Number of operands for a PackedConst must be > 0"); |
| 477 | Out << '<'; |
| 478 | Out << ' '; |
| 479 | printTypeInt(Out, ETy, TypeTable); |
| 480 | WriteAsOperandInternal(Out, CP->getOperand(0), |
| 481 | PrintName, TypeTable, Machine); |
| 482 | for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { |
| 483 | Out << ", "; |
| 484 | printTypeInt(Out, ETy, TypeTable); |
| 485 | WriteAsOperandInternal(Out, CP->getOperand(i), PrintName, |
| 486 | TypeTable, Machine); |
| 487 | } |
| 488 | Out << " >"; |
| 489 | } else if (isa<ConstantPointerNull>(CV)) { |
| 490 | Out << "null"; |
| 491 | |
| 492 | } else if (isa<UndefValue>(CV)) { |
| 493 | Out << "undef"; |
| 494 | |
| 495 | } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { |
| 496 | Out << CE->getOpcodeName() << " ("; |
| 497 | |
| 498 | for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { |
| 499 | printTypeInt(Out, (*OI)->getType(), TypeTable); |
| 500 | WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine); |
| 501 | if (OI+1 != CE->op_end()) |
| 502 | Out << ", "; |
| 503 | } |
| 504 | |
| 505 | if (CE->getOpcode() == Instruction::Cast) { |
| 506 | Out << " to "; |
| 507 | printTypeInt(Out, CE->getType(), TypeTable); |
| 508 | } |
| 509 | Out << ')'; |
| 510 | |
| 511 | } else { |
| 512 | Out << "<placeholder or erroneous Constant>"; |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | |
| 517 | /// WriteAsOperand - Write the name of the specified value out to the specified |
| 518 | /// ostream. This can be useful when you just want to print int %reg126, not |
| 519 | /// the whole instruction that generated it. |
| 520 | /// |
| 521 | void WriteAsOperandInternal(std::ostream &Out, const Value *V, |
| 522 | bool PrintName, TypeMap& TypeTable, |
| 523 | SlotMachine *Machine) { |
| 524 | Out << ' '; |
| 525 | if ((PrintName || isa<GlobalValue>(V)) && V->hasName()) |
| 526 | Out << getLLVMName(V->getName()); |
| 527 | else { |
| 528 | const Constant *CV = dyn_cast<Constant>(V); |
| 529 | if (CV && !isa<GlobalValue>(CV)) { |
| 530 | WriteConstantInternal(Out, CV, PrintName, TypeTable, Machine); |
| 531 | } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { |
| 532 | Out << "asm "; |
| 533 | if (IA->hasSideEffects()) |
| 534 | Out << "sideeffect "; |
| 535 | Out << '"'; |
| 536 | PrintEscapedString(IA->getAsmString(), Out); |
| 537 | Out << "\", \""; |
| 538 | PrintEscapedString(IA->getConstraintString(), Out); |
| 539 | Out << '"'; |
| 540 | } else { |
| 541 | int Slot = Machine->getSlot(V); |
| 542 | if (Slot != -1) |
| 543 | Out << '%' << Slot; |
| 544 | else |
| 545 | Out << "<badref>"; |
| 546 | } |
| 547 | } |
| 548 | } |
| 549 | |
| 550 | /// WriteAsOperand - Write the name of the specified value out to the specified |
| 551 | /// ostream. This can be useful when you just want to print int %reg126, not |
| 552 | /// the whole instruction that generated it. |
| 553 | /// |
| 554 | std::ostream &WriteAsOperand(std::ostream &Out, const Value *V, |
| 555 | bool PrintType, bool PrintName, |
| 556 | const Module *Context) { |
| 557 | TypeMap TypeNames; |
| 558 | if (Context == 0) Context = getModuleFromVal(V); |
| 559 | |
| 560 | if (Context) |
| 561 | fillTypeNameTable(Context, TypeNames); |
| 562 | |
| 563 | if (PrintType) |
| 564 | printTypeInt(Out, V->getType(), TypeNames); |
| 565 | |
| 566 | WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0); |
| 567 | return Out; |
| 568 | } |
| 569 | |
| 570 | /// WriteAsOperandInternal - Write the name of the specified value out to |
| 571 | /// the specified ostream. This can be useful when you just want to print |
| 572 | /// int %reg126, not the whole instruction that generated it. |
| 573 | /// |
| 574 | void WriteAsOperandInternal(std::ostream &Out, const Type *T, |
| 575 | bool PrintName, TypeMap& TypeTable, |
| 576 | SlotMachine *Machine) { |
| 577 | Out << ' '; |
| 578 | int Slot = Machine->getSlot(T); |
| 579 | if (Slot != -1) |
| 580 | Out << '%' << Slot; |
| 581 | else |
| 582 | Out << "<badref>"; |
| 583 | } |
| 584 | |
| 585 | /// WriteAsOperand - Write the name of the specified value out to the specified |
| 586 | /// ostream. This can be useful when you just want to print int %reg126, not |
| 587 | /// the whole instruction that generated it. |
| 588 | /// |
| 589 | std::ostream &WriteAsOperand(std::ostream &Out, const Type *Ty, |
| 590 | bool PrintType, bool PrintName, |
| 591 | const Module *Context) { |
| 592 | TypeMap TypeNames; |
| 593 | assert(Context != 0 && "Can't write types as operand without module context"); |
| 594 | |
| 595 | fillTypeNameTable(Context, TypeNames); |
| 596 | |
| 597 | // if (PrintType) |
| 598 | // printTypeInt(Out, V->getType(), TypeNames); |
| 599 | |
| 600 | printTypeInt(Out, Ty, TypeNames); |
| 601 | |
| 602 | WriteAsOperandInternal(Out, Ty, PrintName, TypeNames, 0); |
| 603 | return Out; |
| 604 | } |
| 605 | |
| 606 | class CppWriter { |
| 607 | std::ostream &Out; |
| 608 | SlotMachine &Machine; |
| 609 | const Module *TheModule; |
| 610 | unsigned long uniqueNum; |
| 611 | TypeMap TypeNames; |
| 612 | ValueMap ValueNames; |
| 613 | TypeMap UnresolvedTypes; |
| 614 | TypeList TypeStack; |
| 615 | |
| 616 | public: |
| 617 | inline CppWriter(std::ostream &o, SlotMachine &Mac, const Module *M) |
| 618 | : Out(o), Machine(Mac), TheModule(M), uniqueNum(0), TypeNames(), |
| 619 | ValueNames(), UnresolvedTypes(), TypeStack() { } |
| 620 | |
| 621 | inline void write(const Module *M) { printModule(M); } |
| 622 | inline void write(const GlobalVariable *G) { printGlobal(G); } |
| 623 | inline void write(const Function *F) { printFunction(F); } |
| 624 | inline void write(const BasicBlock *BB) { printBasicBlock(BB); } |
| 625 | inline void write(const Instruction *I) { printInstruction(*I); } |
| 626 | inline void write(const Constant *CPV) { printConstant(CPV); } |
| 627 | inline void write(const Type *Ty) { printType(Ty); } |
| 628 | |
| 629 | void writeOperand(const Value *Op, bool PrintType, bool PrintName = true); |
| 630 | |
| 631 | const Module* getModule() { return TheModule; } |
| 632 | |
| 633 | private: |
| 634 | void printModule(const Module *M); |
| 635 | void printTypes(const Module* M); |
| 636 | void printConstants(const Module* M); |
| 637 | void printConstant(const Constant *CPV); |
| 638 | void printGlobal(const GlobalVariable *GV); |
| 639 | void printFunction(const Function *F); |
| 640 | void printArgument(const Argument *FA); |
| 641 | void printBasicBlock(const BasicBlock *BB); |
| 642 | void printInstruction(const Instruction &I); |
| 643 | void printSymbolTable(const SymbolTable &ST); |
| 644 | void printLinkageType(GlobalValue::LinkageTypes LT); |
| 645 | void printCallingConv(unsigned cc); |
| 646 | |
| 647 | |
| 648 | // printType - Go to extreme measures to attempt to print out a short, |
| 649 | // symbolic version of a type name. |
| 650 | // |
| 651 | std::ostream &printType(const Type *Ty) { |
| 652 | return printTypeInt(Out, Ty, TypeNames); |
| 653 | } |
| 654 | |
| 655 | // printTypeAtLeastOneLevel - Print out one level of the possibly complex type |
| 656 | // without considering any symbolic types that we may have equal to it. |
| 657 | // |
| 658 | std::ostream &printTypeAtLeastOneLevel(const Type *Ty); |
| 659 | |
| 660 | // printInfoComment - Print a little comment after the instruction indicating |
| 661 | // which slot it occupies. |
| 662 | void printInfoComment(const Value &V); |
| 663 | |
| 664 | std::string getCppName(const Type* val); |
| 665 | std::string getCppName(const Value* val); |
| 666 | inline void printCppName(const Value* val); |
| 667 | inline void printCppName(const Type* val); |
| 668 | bool isOnStack(const Type*) const; |
| 669 | inline void printTypeDef(const Type* Ty); |
| 670 | bool printTypeDefInternal(const Type* Ty); |
| 671 | }; |
| 672 | |
| 673 | std::string |
| 674 | CppWriter::getCppName(const Value* val) { |
| 675 | std::string name; |
| 676 | ValueMap::iterator I = ValueNames.find(val); |
| 677 | if (I != ValueNames.end()) { |
| 678 | name = I->second; |
| 679 | } else { |
| 680 | const char* prefix; |
| 681 | switch (val->getType()->getTypeID()) { |
| 682 | case Type::VoidTyID: prefix = "void_"; break; |
| 683 | case Type::BoolTyID: prefix = "bool_"; break; |
| 684 | case Type::UByteTyID: prefix = "ubyte_"; break; |
| 685 | case Type::SByteTyID: prefix = "sbyte_"; break; |
| 686 | case Type::UShortTyID: prefix = "ushort_"; break; |
| 687 | case Type::ShortTyID: prefix = "short_"; break; |
| 688 | case Type::UIntTyID: prefix = "uint_"; break; |
| 689 | case Type::IntTyID: prefix = "int_"; break; |
| 690 | case Type::ULongTyID: prefix = "ulong_"; break; |
| 691 | case Type::LongTyID: prefix = "long_"; break; |
| 692 | case Type::FloatTyID: prefix = "float_"; break; |
| 693 | case Type::DoubleTyID: prefix = "double_"; break; |
| 694 | case Type::LabelTyID: prefix = "label_"; break; |
| 695 | case Type::FunctionTyID: prefix = "func_"; break; |
| 696 | case Type::StructTyID: prefix = "struct_"; break; |
| 697 | case Type::ArrayTyID: prefix = "array_"; break; |
| 698 | case Type::PointerTyID: prefix = "ptr_"; break; |
| 699 | case Type::PackedTyID: prefix = "packed_"; break; |
| 700 | default: prefix = "other_"; break; |
| 701 | } |
| 702 | name = ValueNames[val] = std::string(prefix) + |
| 703 | (val->hasName() ? val->getName() : utostr(uniqueNum++)); |
| 704 | } |
| 705 | return name; |
| 706 | } |
| 707 | |
| 708 | void |
| 709 | CppWriter::printCppName(const Value* val) { |
| 710 | PrintEscapedString(getCppName(val),Out); |
| 711 | } |
| 712 | |
| 713 | void |
| 714 | CppWriter::printCppName(const Type* Ty) |
| 715 | { |
| 716 | PrintEscapedString(getCppName(Ty),Out); |
| 717 | } |
| 718 | |
| 719 | // Gets the C++ name for a type. Returns true if we already saw the type, |
| 720 | // false otherwise. |
| 721 | // |
| 722 | inline const std::string* |
| 723 | findTypeName(const SymbolTable& ST, const Type* Ty) |
| 724 | { |
| 725 | SymbolTable::type_const_iterator TI = ST.type_begin(); |
| 726 | SymbolTable::type_const_iterator TE = ST.type_end(); |
| 727 | for (;TI != TE; ++TI) |
| 728 | if (TI->second == Ty) |
| 729 | return &(TI->first); |
| 730 | return 0; |
| 731 | } |
| 732 | |
| 733 | std::string |
| 734 | CppWriter::getCppName(const Type* Ty) |
| 735 | { |
| 736 | // First, handle the primitive types .. easy |
| 737 | if (Ty->isPrimitiveType()) { |
| 738 | switch (Ty->getTypeID()) { |
| 739 | case Type::VoidTyID: return "Type::VoidTy"; |
| 740 | case Type::BoolTyID: return "Type::BoolTy"; |
| 741 | case Type::UByteTyID: return "Type::UByteTy"; |
| 742 | case Type::SByteTyID: return "Type::SByteTy"; |
| 743 | case Type::UShortTyID: return "Type::UShortTy"; |
| 744 | case Type::ShortTyID: return "Type::ShortTy"; |
| 745 | case Type::UIntTyID: return "Type::UIntTy"; |
| 746 | case Type::IntTyID: return "Type::IntTy"; |
| 747 | case Type::ULongTyID: return "Type::ULongTy"; |
| 748 | case Type::LongTyID: return "Type::LongTy"; |
| 749 | case Type::FloatTyID: return "Type::FloatTy"; |
| 750 | case Type::DoubleTyID: return "Type::DoubleTy"; |
| 751 | case Type::LabelTyID: return "Type::LabelTy"; |
| 752 | default: |
| 753 | assert(!"Can't get here"); |
| 754 | break; |
| 755 | } |
| 756 | return "Type::VoidTy"; // shouldn't be returned, but make it sensible |
| 757 | } |
| 758 | |
| 759 | // Now, see if we've seen the type before and return that |
| 760 | TypeMap::iterator I = TypeNames.find(Ty); |
| 761 | if (I != TypeNames.end()) |
| 762 | return I->second; |
| 763 | |
| 764 | // Okay, let's build a new name for this type. Start with a prefix |
| 765 | const char* prefix = 0; |
| 766 | switch (Ty->getTypeID()) { |
| 767 | case Type::FunctionTyID: prefix = "FuncTy_"; break; |
| 768 | case Type::StructTyID: prefix = "StructTy_"; break; |
| 769 | case Type::ArrayTyID: prefix = "ArrayTy_"; break; |
| 770 | case Type::PointerTyID: prefix = "PointerTy_"; break; |
| 771 | case Type::OpaqueTyID: prefix = "OpaqueTy_"; break; |
| 772 | case Type::PackedTyID: prefix = "PackedTy_"; break; |
| 773 | default: prefix = "OtherTy_"; break; // prevent breakage |
| 774 | } |
| 775 | |
| 776 | // See if the type has a name in the symboltable and build accordingly |
| 777 | const std::string* tName = findTypeName(TheModule->getSymbolTable(), Ty); |
| 778 | std::string name; |
| 779 | if (tName) |
| 780 | name = std::string(prefix) + *tName; |
| 781 | else |
| 782 | name = std::string(prefix) + utostr(uniqueNum++); |
| 783 | |
| 784 | // Save the name |
| 785 | return TypeNames[Ty] = name; |
| 786 | } |
| 787 | |
| 788 | /// printTypeAtLeastOneLevel - Print out one level of the possibly complex type |
| 789 | /// without considering any symbolic types that we may have equal to it. |
| 790 | /// |
| 791 | std::ostream &CppWriter::printTypeAtLeastOneLevel(const Type *Ty) { |
| 792 | if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) { |
| 793 | printType(FTy->getReturnType()) << " ("; |
| 794 | for (FunctionType::param_iterator I = FTy->param_begin(), |
| 795 | E = FTy->param_end(); I != E; ++I) { |
| 796 | if (I != FTy->param_begin()) |
| 797 | Out << ", "; |
| 798 | printType(*I); |
| 799 | } |
| 800 | if (FTy->isVarArg()) { |
| 801 | if (FTy->getNumParams()) Out << ", "; |
| 802 | Out << "..."; |
| 803 | } |
| 804 | Out << ')'; |
| 805 | } else if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| 806 | Out << "{ "; |
| 807 | for (StructType::element_iterator I = STy->element_begin(), |
| 808 | E = STy->element_end(); I != E; ++I) { |
| 809 | if (I != STy->element_begin()) |
| 810 | Out << ", "; |
| 811 | printType(*I); |
| 812 | } |
| 813 | Out << " }"; |
| 814 | } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) { |
| 815 | printType(PTy->getElementType()) << '*'; |
| 816 | } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| 817 | Out << '[' << ATy->getNumElements() << " x "; |
| 818 | printType(ATy->getElementType()) << ']'; |
| 819 | } else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) { |
| 820 | Out << '<' << PTy->getNumElements() << " x "; |
| 821 | printType(PTy->getElementType()) << '>'; |
| 822 | } |
| 823 | else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) { |
| 824 | Out << "opaque"; |
| 825 | } else { |
| 826 | if (!Ty->isPrimitiveType()) |
| 827 | Out << "<unknown derived type>"; |
| 828 | printType(Ty); |
| 829 | } |
| 830 | return Out; |
| 831 | } |
| 832 | |
| 833 | |
| 834 | void CppWriter::writeOperand(const Value *Operand, bool PrintType, |
| 835 | bool PrintName) { |
| 836 | if (Operand != 0) { |
| 837 | if (PrintType) { Out << ' '; printType(Operand->getType()); } |
| 838 | WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Machine); |
| 839 | } else { |
| 840 | Out << "<null operand!>"; |
| 841 | } |
| 842 | } |
| 843 | |
| 844 | |
| 845 | void CppWriter::printModule(const Module *M) { |
| 846 | Out << "\n// Module Construction\n"; |
| 847 | Out << "Module* mod = new Module(\""; |
| 848 | PrintEscapedString(M->getModuleIdentifier(),Out); |
| 849 | Out << "\");\n"; |
| 850 | Out << "mod->setEndianness("; |
| 851 | switch (M->getEndianness()) { |
| 852 | case Module::LittleEndian: Out << "Module::LittleEndian);\n"; break; |
| 853 | case Module::BigEndian: Out << "Module::BigEndian);\n"; break; |
| 854 | case Module::AnyEndianness:Out << "Module::AnyEndianness);\n"; break; |
| 855 | } |
| 856 | Out << "mod->setPointerSize("; |
| 857 | switch (M->getPointerSize()) { |
| 858 | case Module::Pointer32: Out << "Module::Pointer32);\n"; break; |
| 859 | case Module::Pointer64: Out << "Module::Pointer64);\n"; break; |
| 860 | case Module::AnyPointerSize: Out << "Module::AnyPointerSize);\n"; break; |
| 861 | } |
| 862 | if (!M->getTargetTriple().empty()) |
| 863 | Out << "mod->setTargetTriple(\"" << M->getTargetTriple() << "\");\n"; |
| 864 | |
| 865 | if (!M->getModuleInlineAsm().empty()) { |
| 866 | Out << "mod->setModuleInlineAsm(\""; |
| 867 | PrintEscapedString(M->getModuleInlineAsm(),Out); |
| 868 | Out << "\");\n"; |
| 869 | } |
| 870 | |
| 871 | // Loop over the dependent libraries and emit them. |
| 872 | Module::lib_iterator LI = M->lib_begin(); |
| 873 | Module::lib_iterator LE = M->lib_end(); |
| 874 | while (LI != LE) { |
| 875 | Out << "mod->addLibrary(\"" << *LI << "\");\n"; |
| 876 | ++LI; |
| 877 | } |
| 878 | |
| 879 | // Print out all the type definitions |
| 880 | Out << "\n// Type Definitions\n"; |
| 881 | printTypes(M); |
| 882 | |
| 883 | // Print out all the constants declarations |
| 884 | Out << "\n// Constants Construction\n"; |
| 885 | printConstants(M); |
| 886 | |
| 887 | // Process the global variables |
| 888 | Out << "\n// Global Variable Construction\n"; |
| 889 | for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); |
| 890 | I != E; ++I) { |
| 891 | printGlobal(I); |
| 892 | } |
| 893 | |
| 894 | // Output all of the functions. |
| 895 | Out << "\n// Function Construction\n"; |
| 896 | for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) |
| 897 | printFunction(I); |
| 898 | } |
| 899 | |
| 900 | void |
| 901 | CppWriter::printCallingConv(unsigned cc){ |
| 902 | // Print the calling convention. |
| 903 | switch (cc) { |
| 904 | default: |
| 905 | case CallingConv::C: Out << "CallingConv::C"; break; |
| 906 | case CallingConv::CSRet: Out << "CallingConv::CSRet"; break; |
| 907 | case CallingConv::Fast: Out << "CallingConv::Fast"; break; |
| 908 | case CallingConv::Cold: Out << "CallingConv::Cold"; break; |
| 909 | case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break; |
| 910 | } |
| 911 | } |
| 912 | |
| 913 | void |
| 914 | CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) { |
| 915 | switch (LT) { |
| 916 | case GlobalValue::InternalLinkage: |
| 917 | Out << "GlobalValue::InternalLinkage"; break; |
| 918 | case GlobalValue::LinkOnceLinkage: |
| 919 | Out << "GlobalValue::LinkOnceLinkage "; break; |
| 920 | case GlobalValue::WeakLinkage: |
| 921 | Out << "GlobalValue::WeakLinkage"; break; |
| 922 | case GlobalValue::AppendingLinkage: |
| 923 | Out << "GlobalValue::AppendingLinkage"; break; |
| 924 | case GlobalValue::ExternalLinkage: |
| 925 | Out << "GlobalValue::ExternalLinkage"; break; |
| 926 | case GlobalValue::GhostLinkage: |
| 927 | Out << "GlobalValue::GhostLinkage"; break; |
| 928 | } |
| 929 | } |
| 930 | void CppWriter::printGlobal(const GlobalVariable *GV) { |
| 931 | Out << "\n"; |
| 932 | Out << "GlobalVariable* "; |
| 933 | printCppName(GV); |
| 934 | Out << " = new GlobalVariable(\n"; |
| 935 | Out << " /*Type=*/"; |
| 936 | printCppName(GV->getType()->getElementType()); |
| 937 | Out << ",\n"; |
| 938 | Out << " /*isConstant=*/" << (GV->isConstant()?"true":"false") |
| 939 | << ",\n /*Linkage=*/"; |
| 940 | printLinkageType(GV->getLinkage()); |
| 941 | Out << ",\n /*Initializer=*/"; |
| 942 | if (GV->hasInitializer()) { |
| 943 | printCppName(GV->getInitializer()); |
| 944 | } else { |
| 945 | Out << "0"; |
| 946 | } |
| 947 | Out << ",\n /*Name=*/\""; |
| 948 | PrintEscapedString(GV->getName(),Out); |
| 949 | Out << "\",\n mod);\n"; |
| 950 | |
| 951 | if (GV->hasSection()) { |
| 952 | printCppName(GV); |
| 953 | Out << "->setSection(\""; |
| 954 | PrintEscapedString(GV->getSection(),Out); |
| 955 | Out << "\");\n"; |
| 956 | } |
| 957 | if (GV->getAlignment()) { |
| 958 | printCppName(GV); |
| 959 | Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");\n"; |
| 960 | }; |
| 961 | } |
| 962 | |
| 963 | bool |
| 964 | CppWriter::isOnStack(const Type* Ty) const { |
| 965 | TypeList::const_iterator TI = |
| 966 | std::find(TypeStack.begin(),TypeStack.end(),Ty); |
| 967 | return TI != TypeStack.end(); |
| 968 | } |
| 969 | |
| 970 | // Prints a type definition. Returns true if it could not resolve all the types |
| 971 | // in the definition but had to use a forward reference. |
| 972 | void |
| 973 | CppWriter::printTypeDef(const Type* Ty) { |
| 974 | assert(TypeStack.empty()); |
| 975 | TypeStack.clear(); |
| 976 | printTypeDefInternal(Ty); |
| 977 | assert(TypeStack.empty()); |
| 978 | // early resolve as many unresolved types as possible. Search the unresolved |
| 979 | // types map for the type we just printed. Now that its definition is complete |
| 980 | // we can resolve any preview references to it. This prevents a cascade of |
| 981 | // unresolved types. |
| 982 | TypeMap::iterator I = UnresolvedTypes.find(Ty); |
| 983 | if (I != UnresolvedTypes.end()) { |
| 984 | Out << "cast<OpaqueType>(" << I->second |
| 985 | << "_fwd.get())->refineAbstractTypeTo(" << I->second << ");\n"; |
| 986 | Out << I->second << " = cast<"; |
| 987 | switch (Ty->getTypeID()) { |
| 988 | case Type::FunctionTyID: Out << "FunctionType"; break; |
| 989 | case Type::ArrayTyID: Out << "ArrayType"; break; |
| 990 | case Type::StructTyID: Out << "StructType"; break; |
| 991 | case Type::PackedTyID: Out << "PackedType"; break; |
| 992 | case Type::PointerTyID: Out << "PointerType"; break; |
| 993 | case Type::OpaqueTyID: Out << "OpaqueType"; break; |
| 994 | default: Out << "NoSuchDerivedType"; break; |
| 995 | } |
| 996 | Out << ">(" << I->second << "_fwd.get());\n"; |
| 997 | UnresolvedTypes.erase(I); |
| 998 | } |
| 999 | Out << "\n"; |
| 1000 | } |
| 1001 | |
| 1002 | bool |
| 1003 | CppWriter::printTypeDefInternal(const Type* Ty) { |
| 1004 | // We don't print definitions for primitive types |
| 1005 | if (Ty->isPrimitiveType()) |
| 1006 | return false; |
| 1007 | |
| 1008 | // Determine if the name is in the name list before we modify that list. |
| 1009 | TypeMap::const_iterator TNI = TypeNames.find(Ty); |
| 1010 | |
| 1011 | // Everything below needs the name for the type so get it now |
| 1012 | std::string typeName(getCppName(Ty)); |
| 1013 | |
| 1014 | // Search the type stack for recursion. If we find it, then generate this |
| 1015 | // as an OpaqueType, but make sure not to do this multiple times because |
| 1016 | // the type could appear in multiple places on the stack. Once the opaque |
| 1017 | // definition is issues, it must not be re-issued. Consequently we have to |
| 1018 | // check the UnresolvedTypes list as well. |
| 1019 | if (isOnStack(Ty)) { |
| 1020 | TypeMap::const_iterator I = UnresolvedTypes.find(Ty); |
| 1021 | if (I == UnresolvedTypes.end()) { |
| 1022 | Out << "PATypeHolder " << typeName << "_fwd = OpaqueType::get();\n"; |
| 1023 | UnresolvedTypes[Ty] = typeName; |
| 1024 | return true; |
| 1025 | } |
| 1026 | } |
| 1027 | |
| 1028 | // Avoid printing things we have already printed. Since TNI was obtained |
| 1029 | // before the name was inserted with getCppName and because we know the name |
| 1030 | // is not on the stack (currently being defined), we can surmise here that if |
| 1031 | // we got the name we've also already emitted its definition. |
| 1032 | if (TNI != TypeNames.end()) |
| 1033 | return false; |
| 1034 | |
| 1035 | // We're going to print a derived type which, by definition, contains other |
| 1036 | // types. So, push this one we're printing onto the type stack to assist with |
| 1037 | // recursive definitions. |
| 1038 | TypeStack.push_back(Ty); // push on type stack |
| 1039 | bool didRecurse = false; |
| 1040 | |
| 1041 | // Print the type definition |
| 1042 | switch (Ty->getTypeID()) { |
| 1043 | case Type::FunctionTyID: { |
| 1044 | const FunctionType* FT = cast<FunctionType>(Ty); |
| 1045 | Out << "std::vector<const Type*>" << typeName << "_args;\n"; |
| 1046 | FunctionType::param_iterator PI = FT->param_begin(); |
| 1047 | FunctionType::param_iterator PE = FT->param_end(); |
| 1048 | for (; PI != PE; ++PI) { |
| 1049 | const Type* argTy = static_cast<const Type*>(*PI); |
| 1050 | bool isForward = printTypeDefInternal(argTy); |
| 1051 | std::string argName(getCppName(argTy)); |
| 1052 | Out << typeName << "_args.push_back(" << argName; |
| 1053 | if (isForward) |
| 1054 | Out << "_fwd"; |
| 1055 | Out << ");\n"; |
| 1056 | } |
| 1057 | bool isForward = printTypeDefInternal(FT->getReturnType()); |
| 1058 | std::string retTypeName(getCppName(FT->getReturnType())); |
| 1059 | Out << "FunctionType* " << typeName << " = FunctionType::get(\n" |
| 1060 | << " /*Result=*/" << retTypeName; |
| 1061 | if (isForward) |
| 1062 | Out << "_fwd"; |
| 1063 | Out << ",\n /*Params=*/" << typeName << "_args,\n /*isVarArg=*/" |
| 1064 | << (FT->isVarArg() ? "true" : "false") << ");\n"; |
| 1065 | break; |
| 1066 | } |
| 1067 | case Type::StructTyID: { |
| 1068 | const StructType* ST = cast<StructType>(Ty); |
| 1069 | Out << "std::vector<const Type*>" << typeName << "_fields;\n"; |
| 1070 | StructType::element_iterator EI = ST->element_begin(); |
| 1071 | StructType::element_iterator EE = ST->element_end(); |
| 1072 | for (; EI != EE; ++EI) { |
| 1073 | const Type* fieldTy = static_cast<const Type*>(*EI); |
| 1074 | bool isForward = printTypeDefInternal(fieldTy); |
| 1075 | std::string fieldName(getCppName(fieldTy)); |
| 1076 | Out << typeName << "_fields.push_back(" << fieldName; |
| 1077 | if (isForward) |
| 1078 | Out << "_fwd"; |
| 1079 | Out << ");\n"; |
| 1080 | } |
| 1081 | Out << "StructType* " << typeName << " = StructType::get(" |
| 1082 | << typeName << "_fields);\n"; |
| 1083 | break; |
| 1084 | } |
| 1085 | case Type::ArrayTyID: { |
| 1086 | const ArrayType* AT = cast<ArrayType>(Ty); |
| 1087 | const Type* ET = AT->getElementType(); |
| 1088 | bool isForward = printTypeDefInternal(ET); |
| 1089 | std::string elemName(getCppName(ET)); |
| 1090 | Out << "ArrayType* " << typeName << " = ArrayType::get(" |
| 1091 | << elemName << (isForward ? "_fwd" : "") |
| 1092 | << ", " << utostr(AT->getNumElements()) << ");\n"; |
| 1093 | break; |
| 1094 | } |
| 1095 | case Type::PointerTyID: { |
| 1096 | const PointerType* PT = cast<PointerType>(Ty); |
| 1097 | const Type* ET = PT->getElementType(); |
| 1098 | bool isForward = printTypeDefInternal(ET); |
| 1099 | std::string elemName(getCppName(ET)); |
| 1100 | Out << "PointerType* " << typeName << " = PointerType::get(" |
| 1101 | << elemName << (isForward ? "_fwd" : "") << ");\n"; |
| 1102 | break; |
| 1103 | } |
| 1104 | case Type::PackedTyID: { |
| 1105 | const PackedType* PT = cast<PackedType>(Ty); |
| 1106 | const Type* ET = PT->getElementType(); |
| 1107 | bool isForward = printTypeDefInternal(ET); |
| 1108 | std::string elemName(getCppName(ET)); |
| 1109 | Out << "PackedType* " << typeName << " = PackedType::get(" |
| 1110 | << elemName << (isForward ? "_fwd" : "") |
| 1111 | << ", " << utostr(PT->getNumElements()) << ");\n"; |
| 1112 | break; |
| 1113 | } |
| 1114 | case Type::OpaqueTyID: { |
| 1115 | const OpaqueType* OT = cast<OpaqueType>(Ty); |
| 1116 | Out << "OpaqueType* " << typeName << " = OpaqueType::get();\n"; |
| 1117 | break; |
| 1118 | } |
| 1119 | default: |
| 1120 | assert(!"Invalid TypeID"); |
| 1121 | } |
| 1122 | |
| 1123 | // Pop us off the type stack |
| 1124 | TypeStack.pop_back(); |
| 1125 | |
| 1126 | // We weren't a recursive type |
| 1127 | return false; |
| 1128 | } |
| 1129 | |
| 1130 | void |
| 1131 | CppWriter::printTypes(const Module* M) { |
| 1132 | // Add all of the global variables to the value table... |
| 1133 | for (Module::const_global_iterator I = TheModule->global_begin(), |
| 1134 | E = TheModule->global_end(); I != E; ++I) { |
| 1135 | if (I->hasInitializer()) |
| 1136 | printTypeDef(I->getInitializer()->getType()); |
| 1137 | printTypeDef(I->getType()); |
| 1138 | } |
| 1139 | |
| 1140 | // Add all the functions to the table |
| 1141 | for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end(); |
| 1142 | FI != FE; ++FI) { |
| 1143 | printTypeDef(FI->getReturnType()); |
| 1144 | printTypeDef(FI->getFunctionType()); |
| 1145 | // Add all the function arguments |
| 1146 | for(Function::const_arg_iterator AI = FI->arg_begin(), |
| 1147 | AE = FI->arg_end(); AI != AE; ++AI) { |
| 1148 | printTypeDef(AI->getType()); |
| 1149 | } |
| 1150 | |
| 1151 | // Add all of the basic blocks and instructions |
| 1152 | for (Function::const_iterator BB = FI->begin(), |
| 1153 | E = FI->end(); BB != E; ++BB) { |
| 1154 | printTypeDef(BB->getType()); |
| 1155 | for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; |
| 1156 | ++I) { |
| 1157 | printTypeDef(I->getType()); |
| 1158 | } |
| 1159 | } |
| 1160 | } |
| 1161 | } |
| 1162 | |
| 1163 | void |
| 1164 | CppWriter::printConstants(const Module* M) { |
| 1165 | const SymbolTable& ST = M->getSymbolTable(); |
| 1166 | |
| 1167 | // Print the constants, in type plane order. |
| 1168 | for (SymbolTable::plane_const_iterator PI = ST.plane_begin(); |
| 1169 | PI != ST.plane_end(); ++PI ) { |
| 1170 | SymbolTable::value_const_iterator VI = ST.value_begin(PI->first); |
| 1171 | SymbolTable::value_const_iterator VE = ST.value_end(PI->first); |
| 1172 | |
| 1173 | for (; VI != VE; ++VI) { |
| 1174 | const Value* V = VI->second; |
| 1175 | const Constant *CPV = dyn_cast<Constant>(V) ; |
| 1176 | if (CPV && !isa<GlobalValue>(V)) { |
| 1177 | printConstant(CPV); |
| 1178 | } |
| 1179 | } |
| 1180 | } |
| 1181 | |
| 1182 | // Add all of the global variables to the value table... |
| 1183 | for (Module::const_global_iterator I = TheModule->global_begin(), |
| 1184 | E = TheModule->global_end(); I != E; ++I) |
| 1185 | if (I->hasInitializer()) |
| 1186 | printConstant(I->getInitializer()); |
| 1187 | } |
| 1188 | |
| 1189 | // printSymbolTable - Run through symbol table looking for constants |
| 1190 | // and types. Emit their declarations. |
| 1191 | void CppWriter::printSymbolTable(const SymbolTable &ST) { |
| 1192 | |
| 1193 | // Print the types. |
| 1194 | for (SymbolTable::type_const_iterator TI = ST.type_begin(); |
| 1195 | TI != ST.type_end(); ++TI ) { |
| 1196 | Out << "\t" << getLLVMName(TI->first) << " = type "; |
| 1197 | |
| 1198 | // Make sure we print out at least one level of the type structure, so |
| 1199 | // that we do not get %FILE = type %FILE |
| 1200 | // |
| 1201 | printTypeAtLeastOneLevel(TI->second) << "\n"; |
| 1202 | } |
| 1203 | |
| 1204 | } |
| 1205 | |
| 1206 | |
| 1207 | /// printConstant - Print out a constant pool entry... |
| 1208 | /// |
| 1209 | void CppWriter::printConstant(const Constant *CV) { |
| 1210 | const int IndentSize = 2; |
| 1211 | static std::string Indent = "\n"; |
| 1212 | std::string constName(getCppName(CV)); |
| 1213 | std::string typeName(getCppName(CV->getType())); |
| 1214 | if (CV->isNullValue()) { |
| 1215 | Out << "Constant* " << constName << " = Constant::getNullValue(" |
| 1216 | << typeName << ");\n"; |
| 1217 | return; |
| 1218 | } |
| 1219 | if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) { |
| 1220 | Out << "Constant* " << constName << " = ConstantBool::get(" |
| 1221 | << (CB == ConstantBool::True ? "true" : "false") |
| 1222 | << ");"; |
| 1223 | } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) { |
| 1224 | Out << "Constant* " << constName << " = ConstantSInt::get(" |
| 1225 | << typeName << ", " << CI->getValue() << ");"; |
| 1226 | } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) { |
| 1227 | Out << "Constant* " << constName << " = ConstantUInt::get(" |
| 1228 | << typeName << ", " << CI->getValue() << ");"; |
| 1229 | } else if (isa<ConstantAggregateZero>(CV)) { |
| 1230 | Out << "Constant* " << constName << " = ConstantAggregateZero::get(" |
| 1231 | << typeName << ");"; |
| 1232 | } else if (isa<ConstantPointerNull>(CV)) { |
| 1233 | Out << "Constant* " << constName << " = ConstanPointerNull::get(" |
| 1234 | << typeName << ");"; |
| 1235 | } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { |
| 1236 | Out << "ConstantFP::get(" << typeName << ", "; |
| 1237 | // We would like to output the FP constant value in exponential notation, |
| 1238 | // but we cannot do this if doing so will lose precision. Check here to |
| 1239 | // make sure that we only output it in exponential format if we can parse |
| 1240 | // the value back and get the same value. |
| 1241 | // |
| 1242 | std::string StrVal = ftostr(CFP->getValue()); |
| 1243 | |
| 1244 | // Check to make sure that the stringized number is not some string like |
| 1245 | // "Inf" or NaN, that atof will accept, but the lexer will not. Check that |
| 1246 | // the string matches the "[-+]?[0-9]" regex. |
| 1247 | // |
| 1248 | if ((StrVal[0] >= '0' && StrVal[0] <= '9') || |
| 1249 | ((StrVal[0] == '-' || StrVal[0] == '+') && |
| 1250 | (StrVal[1] >= '0' && StrVal[1] <= '9'))) |
| 1251 | // Reparse stringized version! |
| 1252 | if (atof(StrVal.c_str()) == CFP->getValue()) { |
| 1253 | Out << StrVal; |
| 1254 | return; |
| 1255 | } |
| 1256 | |
| 1257 | // Otherwise we could not reparse it to exactly the same value, so we must |
| 1258 | // output the string in hexadecimal format! |
| 1259 | assert(sizeof(double) == sizeof(uint64_t) && |
| 1260 | "assuming that double is 64 bits!"); |
| 1261 | Out << "0x" << utohexstr(DoubleToBits(CFP->getValue())) << ");"; |
| 1262 | } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { |
| 1263 | if (CA->isString()) { |
| 1264 | Out << "Constant* " << constName << " = ConstantArray::get(\""; |
| 1265 | PrintEscapedString(CA->getAsString(),Out); |
| 1266 | Out << "\");"; |
| 1267 | } else { |
| 1268 | Out << "std::vector<Constant*> " << constName << "_elems;\n"; |
| 1269 | unsigned N = CA->getNumOperands(); |
| 1270 | for (unsigned i = 0; i < N; ++i) { |
| 1271 | printConstant(CA->getOperand(i)); |
| 1272 | Out << constName << "_elems.push_back(" |
| 1273 | << getCppName(CA->getOperand(i)) << ");\n"; |
| 1274 | } |
| 1275 | Out << "Constant* " << constName << " = ConstantArray::get(" |
| 1276 | << typeName << ", " << constName << "_elems);"; |
| 1277 | } |
| 1278 | } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { |
| 1279 | Out << "std::vector<Constant*> " << constName << "_fields;\n"; |
| 1280 | unsigned N = CS->getNumOperands(); |
| 1281 | for (unsigned i = 0; i < N; i++) { |
| 1282 | printConstant(CS->getOperand(i)); |
| 1283 | Out << constName << "_fields.push_back(" |
| 1284 | << getCppName(CA->getOperand(i)) << ");\n"; |
| 1285 | } |
| 1286 | Out << "Constant* " << constName << " = ConstantStruct::get(" |
| 1287 | << typeName << ", " << constName << "_fields);"; |
| 1288 | } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) { |
| 1289 | Out << "std::vector<Constant*> " << constName << "_elems;\n"; |
| 1290 | unsigned N = CP->getNumOperands(); |
| 1291 | for (unsigned i = 0; i < N; ++i) { |
| 1292 | printConstant(CP->getOperand(i)); |
| 1293 | Out << constName << "_elems.push_back(" |
| 1294 | << getCppName(CP->getOperand(i)) << ");\n"; |
| 1295 | } |
| 1296 | Out << "Constant* " << constName << " = ConstantPacked::get(" |
| 1297 | << typeName << ", " << constName << "_elems);"; |
| 1298 | } else if (isa<UndefValue>(CV)) { |
| 1299 | Out << "Constant* " << constName << " = UndefValue::get(" |
| 1300 | << typeName << ");\n"; |
| 1301 | } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { |
| 1302 | Out << CE->getOpcodeName() << " ("; |
| 1303 | |
| 1304 | for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { |
| 1305 | //printTypeInt(Out, (*OI)->getType(), TypeTable); |
| 1306 | //WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine); |
| 1307 | if (OI+1 != CE->op_end()) |
| 1308 | Out << ", "; |
| 1309 | } |
| 1310 | |
| 1311 | if (CE->getOpcode() == Instruction::Cast) { |
| 1312 | Out << " to "; |
| 1313 | // printTypeInt(Out, CE->getType(), TypeTable); |
| 1314 | } |
| 1315 | Out << ')'; |
| 1316 | |
| 1317 | } else { |
| 1318 | Out << "<placeholder or erroneous Constant>"; |
| 1319 | } |
| 1320 | Out << "\n"; |
| 1321 | } |
| 1322 | |
| 1323 | /// printFunction - Print all aspects of a function. |
| 1324 | /// |
| 1325 | void CppWriter::printFunction(const Function *F) { |
| 1326 | std::string funcTypeName(getCppName(F->getFunctionType())); |
| 1327 | |
| 1328 | Out << "Function* "; |
| 1329 | printCppName(F); |
| 1330 | Out << " = new Function(" << funcTypeName << ", " ; |
| 1331 | printLinkageType(F->getLinkage()); |
| 1332 | Out << ", \"" << F->getName() << "\", mod);\n"; |
| 1333 | printCppName(F); |
| 1334 | Out << "->setCallingConv("; |
| 1335 | printCallingConv(F->getCallingConv()); |
| 1336 | Out << ");\n"; |
| 1337 | if (F->hasSection()) { |
| 1338 | printCppName(F); |
| 1339 | Out << "->setSection(" << F->getSection() << ");\n"; |
| 1340 | } |
| 1341 | if (F->getAlignment()) { |
| 1342 | printCppName(F); |
| 1343 | Out << "->setAlignment(" << F->getAlignment() << ");\n"; |
| 1344 | } |
| 1345 | |
| 1346 | Machine.incorporateFunction(F); |
| 1347 | |
| 1348 | if (!F->isExternal()) { |
| 1349 | Out << "{"; |
| 1350 | // Output all of its basic blocks... for the function |
| 1351 | for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I) |
| 1352 | printBasicBlock(I); |
| 1353 | Out << "}\n"; |
| 1354 | } |
| 1355 | |
| 1356 | Machine.purgeFunction(); |
| 1357 | } |
| 1358 | |
| 1359 | /// printArgument - This member is called for every argument that is passed into |
| 1360 | /// the function. Simply print it out |
| 1361 | /// |
| 1362 | void CppWriter::printArgument(const Argument *Arg) { |
| 1363 | // Insert commas as we go... the first arg doesn't get a comma |
| 1364 | if (Arg != Arg->getParent()->arg_begin()) Out << ", "; |
| 1365 | |
| 1366 | // Output type... |
| 1367 | printType(Arg->getType()); |
| 1368 | |
| 1369 | // Output name, if available... |
| 1370 | if (Arg->hasName()) |
| 1371 | Out << ' ' << getLLVMName(Arg->getName()); |
| 1372 | } |
| 1373 | |
| 1374 | /// printBasicBlock - This member is called for each basic block in a method. |
| 1375 | /// |
| 1376 | void CppWriter::printBasicBlock(const BasicBlock *BB) { |
| 1377 | if (BB->hasName()) { // Print out the label if it exists... |
| 1378 | Out << "\n" << getLLVMName(BB->getName(), false) << ':'; |
| 1379 | } else if (!BB->use_empty()) { // Don't print block # of no uses... |
| 1380 | Out << "\n; <label>:"; |
| 1381 | int Slot = Machine.getSlot(BB); |
| 1382 | if (Slot != -1) |
| 1383 | Out << Slot; |
| 1384 | else |
| 1385 | Out << "<badref>"; |
| 1386 | } |
| 1387 | |
| 1388 | if (BB->getParent() == 0) |
| 1389 | Out << "\t\t; Error: Block without parent!"; |
| 1390 | else { |
| 1391 | if (BB != &BB->getParent()->front()) { // Not the entry block? |
| 1392 | // Output predecessors for the block... |
| 1393 | Out << "\t\t;"; |
| 1394 | pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB); |
| 1395 | |
| 1396 | if (PI == PE) { |
| 1397 | Out << " No predecessors!"; |
| 1398 | } else { |
| 1399 | Out << " preds ="; |
| 1400 | writeOperand(*PI, false, true); |
| 1401 | for (++PI; PI != PE; ++PI) { |
| 1402 | Out << ','; |
| 1403 | writeOperand(*PI, false, true); |
| 1404 | } |
| 1405 | } |
| 1406 | } |
| 1407 | } |
| 1408 | |
| 1409 | Out << "\n"; |
| 1410 | |
| 1411 | // Output all of the instructions in the basic block... |
| 1412 | for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| 1413 | printInstruction(*I); |
| 1414 | } |
| 1415 | |
| 1416 | |
| 1417 | /// printInfoComment - Print a little comment after the instruction indicating |
| 1418 | /// which slot it occupies. |
| 1419 | /// |
| 1420 | void CppWriter::printInfoComment(const Value &V) { |
| 1421 | if (V.getType() != Type::VoidTy) { |
| 1422 | Out << "\t\t; <"; |
| 1423 | printType(V.getType()) << '>'; |
| 1424 | |
| 1425 | if (!V.hasName()) { |
| 1426 | int SlotNum = Machine.getSlot(&V); |
| 1427 | if (SlotNum == -1) |
| 1428 | Out << ":<badref>"; |
| 1429 | else |
| 1430 | Out << ':' << SlotNum; // Print out the def slot taken. |
| 1431 | } |
| 1432 | Out << " [#uses=" << V.getNumUses() << ']'; // Output # uses |
| 1433 | } |
| 1434 | } |
| 1435 | |
| 1436 | /// printInstruction - This member is called for each Instruction in a function.. |
| 1437 | /// |
| 1438 | void CppWriter::printInstruction(const Instruction &I) { |
| 1439 | Out << "\t"; |
| 1440 | |
| 1441 | // Print out name if it exists... |
| 1442 | if (I.hasName()) |
| 1443 | Out << getLLVMName(I.getName()) << " = "; |
| 1444 | |
| 1445 | // If this is a volatile load or store, print out the volatile marker. |
| 1446 | if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) || |
| 1447 | (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) { |
| 1448 | Out << "volatile "; |
| 1449 | } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) { |
| 1450 | // If this is a call, check if it's a tail call. |
| 1451 | Out << "tail "; |
| 1452 | } |
| 1453 | |
| 1454 | // Print out the opcode... |
| 1455 | Out << I.getOpcodeName(); |
| 1456 | |
| 1457 | // Print out the type of the operands... |
| 1458 | const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0; |
| 1459 | |
| 1460 | // Special case conditional branches to swizzle the condition out to the front |
| 1461 | if (isa<BranchInst>(I) && I.getNumOperands() > 1) { |
| 1462 | writeOperand(I.getOperand(2), true); |
| 1463 | Out << ','; |
| 1464 | writeOperand(Operand, true); |
| 1465 | Out << ','; |
| 1466 | writeOperand(I.getOperand(1), true); |
| 1467 | |
| 1468 | } else if (isa<SwitchInst>(I)) { |
| 1469 | // Special case switch statement to get formatting nice and correct... |
| 1470 | writeOperand(Operand , true); Out << ','; |
| 1471 | writeOperand(I.getOperand(1), true); Out << " ["; |
| 1472 | |
| 1473 | for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) { |
| 1474 | Out << "\n\t\t"; |
| 1475 | writeOperand(I.getOperand(op ), true); Out << ','; |
| 1476 | writeOperand(I.getOperand(op+1), true); |
| 1477 | } |
| 1478 | Out << "\n\t]"; |
| 1479 | } else if (isa<PHINode>(I)) { |
| 1480 | Out << ' '; |
| 1481 | printType(I.getType()); |
| 1482 | Out << ' '; |
| 1483 | |
| 1484 | for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) { |
| 1485 | if (op) Out << ", "; |
| 1486 | Out << '['; |
| 1487 | writeOperand(I.getOperand(op ), false); Out << ','; |
| 1488 | writeOperand(I.getOperand(op+1), false); Out << " ]"; |
| 1489 | } |
| 1490 | } else if (isa<ReturnInst>(I) && !Operand) { |
| 1491 | Out << " void"; |
| 1492 | } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) { |
| 1493 | // Print the calling convention being used. |
| 1494 | switch (CI->getCallingConv()) { |
| 1495 | case CallingConv::C: break; // default |
| 1496 | case CallingConv::CSRet: Out << " csretcc"; break; |
| 1497 | case CallingConv::Fast: Out << " fastcc"; break; |
| 1498 | case CallingConv::Cold: Out << " coldcc"; break; |
| 1499 | default: Out << " cc" << CI->getCallingConv(); break; |
| 1500 | } |
| 1501 | |
| 1502 | const PointerType *PTy = cast<PointerType>(Operand->getType()); |
| 1503 | const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); |
| 1504 | const Type *RetTy = FTy->getReturnType(); |
| 1505 | |
| 1506 | // If possible, print out the short form of the call instruction. We can |
| 1507 | // only do this if the first argument is a pointer to a nonvararg function, |
| 1508 | // and if the return type is not a pointer to a function. |
| 1509 | // |
| 1510 | if (!FTy->isVarArg() && |
| 1511 | (!isa<PointerType>(RetTy) || |
| 1512 | !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) { |
| 1513 | Out << ' '; printType(RetTy); |
| 1514 | writeOperand(Operand, false); |
| 1515 | } else { |
| 1516 | writeOperand(Operand, true); |
| 1517 | } |
| 1518 | Out << '('; |
| 1519 | if (CI->getNumOperands() > 1) writeOperand(CI->getOperand(1), true); |
| 1520 | for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) { |
| 1521 | Out << ','; |
| 1522 | writeOperand(I.getOperand(op), true); |
| 1523 | } |
| 1524 | |
| 1525 | Out << " )"; |
| 1526 | } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { |
| 1527 | const PointerType *PTy = cast<PointerType>(Operand->getType()); |
| 1528 | const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); |
| 1529 | const Type *RetTy = FTy->getReturnType(); |
| 1530 | |
| 1531 | // Print the calling convention being used. |
| 1532 | switch (II->getCallingConv()) { |
| 1533 | case CallingConv::C: break; // default |
| 1534 | case CallingConv::CSRet: Out << " csretcc"; break; |
| 1535 | case CallingConv::Fast: Out << " fastcc"; break; |
| 1536 | case CallingConv::Cold: Out << " coldcc"; break; |
| 1537 | default: Out << " cc" << II->getCallingConv(); break; |
| 1538 | } |
| 1539 | |
| 1540 | // If possible, print out the short form of the invoke instruction. We can |
| 1541 | // only do this if the first argument is a pointer to a nonvararg function, |
| 1542 | // and if the return type is not a pointer to a function. |
| 1543 | // |
| 1544 | if (!FTy->isVarArg() && |
| 1545 | (!isa<PointerType>(RetTy) || |
| 1546 | !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) { |
| 1547 | Out << ' '; printType(RetTy); |
| 1548 | writeOperand(Operand, false); |
| 1549 | } else { |
| 1550 | writeOperand(Operand, true); |
| 1551 | } |
| 1552 | |
| 1553 | Out << '('; |
| 1554 | if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true); |
| 1555 | for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) { |
| 1556 | Out << ','; |
| 1557 | writeOperand(I.getOperand(op), true); |
| 1558 | } |
| 1559 | |
| 1560 | Out << " )\n\t\t\tto"; |
| 1561 | writeOperand(II->getNormalDest(), true); |
| 1562 | Out << " unwind"; |
| 1563 | writeOperand(II->getUnwindDest(), true); |
| 1564 | |
| 1565 | } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) { |
| 1566 | Out << ' '; |
| 1567 | printType(AI->getType()->getElementType()); |
| 1568 | if (AI->isArrayAllocation()) { |
| 1569 | Out << ','; |
| 1570 | writeOperand(AI->getArraySize(), true); |
| 1571 | } |
| 1572 | if (AI->getAlignment()) { |
| 1573 | Out << ", align " << AI->getAlignment(); |
| 1574 | } |
| 1575 | } else if (isa<CastInst>(I)) { |
| 1576 | if (Operand) writeOperand(Operand, true); // Work with broken code |
| 1577 | Out << " to "; |
| 1578 | printType(I.getType()); |
| 1579 | } else if (isa<VAArgInst>(I)) { |
| 1580 | if (Operand) writeOperand(Operand, true); // Work with broken code |
| 1581 | Out << ", "; |
| 1582 | printType(I.getType()); |
| 1583 | } else if (Operand) { // Print the normal way... |
| 1584 | |
| 1585 | // PrintAllTypes - Instructions who have operands of all the same type |
| 1586 | // omit the type from all but the first operand. If the instruction has |
| 1587 | // different type operands (for example br), then they are all printed. |
| 1588 | bool PrintAllTypes = false; |
| 1589 | const Type *TheType = Operand->getType(); |
| 1590 | |
| 1591 | // Shift Left & Right print both types even for Ubyte LHS, and select prints |
| 1592 | // types even if all operands are bools. |
| 1593 | if (isa<ShiftInst>(I) || isa<SelectInst>(I) || isa<StoreInst>(I) || |
| 1594 | isa<ShuffleVectorInst>(I)) { |
| 1595 | PrintAllTypes = true; |
| 1596 | } else { |
| 1597 | for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) { |
| 1598 | Operand = I.getOperand(i); |
| 1599 | if (Operand->getType() != TheType) { |
| 1600 | PrintAllTypes = true; // We have differing types! Print them all! |
| 1601 | break; |
| 1602 | } |
| 1603 | } |
| 1604 | } |
| 1605 | |
| 1606 | if (!PrintAllTypes) { |
| 1607 | Out << ' '; |
| 1608 | printType(TheType); |
| 1609 | } |
| 1610 | |
| 1611 | for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) { |
| 1612 | if (i) Out << ','; |
| 1613 | writeOperand(I.getOperand(i), PrintAllTypes); |
| 1614 | } |
| 1615 | } |
| 1616 | |
| 1617 | printInfoComment(I); |
| 1618 | Out << "\n"; |
| 1619 | } |
| 1620 | |
| 1621 | |
| 1622 | //===----------------------------------------------------------------------===// |
| 1623 | // External Interface declarations |
| 1624 | //===----------------------------------------------------------------------===// |
| 1625 | |
| 1626 | |
| 1627 | //===----------------------------------------------------------------------===// |
| 1628 | //===-- SlotMachine Implementation |
| 1629 | //===----------------------------------------------------------------------===// |
| 1630 | |
| 1631 | #if 0 |
| 1632 | #define SC_DEBUG(X) std::cerr << X |
| 1633 | #else |
| 1634 | #define SC_DEBUG(X) |
| 1635 | #endif |
| 1636 | |
| 1637 | // Module level constructor. Causes the contents of the Module (sans functions) |
| 1638 | // to be added to the slot table. |
| 1639 | SlotMachine::SlotMachine(const Module *M) |
| 1640 | : TheModule(M) ///< Saved for lazy initialization. |
| 1641 | , mMap() |
| 1642 | , mTypes() |
| 1643 | , fMap() |
| 1644 | , fTypes() |
| 1645 | { |
| 1646 | assert(M != 0 && "Invalid Module"); |
| 1647 | processModule(); |
| 1648 | } |
| 1649 | |
| 1650 | // Iterate through all the global variables, functions, and global |
| 1651 | // variable initializers and create slots for them. |
| 1652 | void SlotMachine::processModule() { |
| 1653 | // Add all of the global variables to the value table... |
| 1654 | for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end(); |
| 1655 | I != E; ++I) |
| 1656 | createSlot(I); |
| 1657 | |
| 1658 | // Add all the functions to the table |
| 1659 | for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end(); |
| 1660 | FI != FE; ++FI) { |
| 1661 | createSlot(FI); |
| 1662 | // Add all the function arguments |
| 1663 | for(Function::const_arg_iterator AI = FI->arg_begin(), |
| 1664 | AE = FI->arg_end(); AI != AE; ++AI) |
| 1665 | createSlot(AI); |
| 1666 | |
| 1667 | // Add all of the basic blocks and instructions |
| 1668 | for (Function::const_iterator BB = FI->begin(), |
| 1669 | E = FI->end(); BB != E; ++BB) { |
| 1670 | createSlot(BB); |
| 1671 | for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; |
| 1672 | ++I) { |
| 1673 | createSlot(I); |
| 1674 | } |
| 1675 | } |
| 1676 | } |
| 1677 | } |
| 1678 | |
| 1679 | // Process the arguments, basic blocks, and instructions of a function. |
| 1680 | void SlotMachine::processFunction() { |
| 1681 | |
| 1682 | } |
| 1683 | |
| 1684 | // Clean up after incorporating a function. This is the only way |
| 1685 | // to get out of the function incorporation state that affects the |
| 1686 | // getSlot/createSlot lock. Function incorporation state is indicated |
| 1687 | // by TheFunction != 0. |
| 1688 | void SlotMachine::purgeFunction() { |
| 1689 | SC_DEBUG("begin purgeFunction!\n"); |
| 1690 | fMap.clear(); // Simply discard the function level map |
| 1691 | fTypes.clear(); |
| 1692 | TheFunction = 0; |
| 1693 | FunctionProcessed = false; |
| 1694 | SC_DEBUG("end purgeFunction!\n"); |
| 1695 | } |
| 1696 | |
| 1697 | /// Get the slot number for a value. This function will assert if you |
| 1698 | /// ask for a Value that hasn't previously been inserted with createSlot. |
| 1699 | /// Types are forbidden because Type does not inherit from Value (any more). |
| 1700 | int SlotMachine::getSlot(const Value *V) { |
| 1701 | assert( V && "Can't get slot for null Value" ); |
| 1702 | assert(!isa<Constant>(V) || isa<GlobalValue>(V) && |
| 1703 | "Can't insert a non-GlobalValue Constant into SlotMachine"); |
| 1704 | |
| 1705 | // Get the type of the value |
| 1706 | const Type* VTy = V->getType(); |
| 1707 | |
| 1708 | // Find the type plane in the module map |
| 1709 | TypedPlanes::const_iterator MI = mMap.find(VTy); |
| 1710 | |
| 1711 | if ( TheFunction ) { |
| 1712 | // Lookup the type in the function map too |
| 1713 | TypedPlanes::const_iterator FI = fMap.find(VTy); |
| 1714 | // If there is a corresponding type plane in the function map |
| 1715 | if ( FI != fMap.end() ) { |
| 1716 | // Lookup the Value in the function map |
| 1717 | ValueMap::const_iterator FVI = FI->second.map.find(V); |
| 1718 | // If the value doesn't exist in the function map |
| 1719 | if ( FVI == FI->second.map.end() ) { |
| 1720 | // Look up the value in the module map. |
| 1721 | if (MI == mMap.end()) return -1; |
| 1722 | ValueMap::const_iterator MVI = MI->second.map.find(V); |
| 1723 | // If we didn't find it, it wasn't inserted |
| 1724 | if (MVI == MI->second.map.end()) return -1; |
| 1725 | assert( MVI != MI->second.map.end() && "Value not found"); |
| 1726 | // We found it only at the module level |
| 1727 | return MVI->second; |
| 1728 | |
| 1729 | // else the value exists in the function map |
| 1730 | } else { |
| 1731 | // Return the slot number as the module's contribution to |
| 1732 | // the type plane plus the index in the function's contribution |
| 1733 | // to the type plane. |
| 1734 | if (MI != mMap.end()) |
| 1735 | return MI->second.next_slot + FVI->second; |
| 1736 | else |
| 1737 | return FVI->second; |
| 1738 | } |
| 1739 | } |
| 1740 | } |
| 1741 | |
| 1742 | // N.B. Can get here only if either !TheFunction or the function doesn't |
| 1743 | // have a corresponding type plane for the Value |
| 1744 | |
| 1745 | // Make sure the type plane exists |
| 1746 | if (MI == mMap.end()) return -1; |
| 1747 | // Lookup the value in the module's map |
| 1748 | ValueMap::const_iterator MVI = MI->second.map.find(V); |
| 1749 | // Make sure we found it. |
| 1750 | if (MVI == MI->second.map.end()) return -1; |
| 1751 | // Return it. |
| 1752 | return MVI->second; |
| 1753 | } |
| 1754 | |
| 1755 | /// Get the slot number for a type. This function will assert if you |
| 1756 | /// ask for a Type that hasn't previously been inserted with createSlot. |
| 1757 | int SlotMachine::getSlot(const Type *Ty) { |
| 1758 | assert( Ty && "Can't get slot for null Type" ); |
| 1759 | |
| 1760 | if ( TheFunction ) { |
| 1761 | // Lookup the Type in the function map |
| 1762 | TypeMap::const_iterator FTI = fTypes.map.find(Ty); |
| 1763 | // If the Type doesn't exist in the function map |
| 1764 | if ( FTI == fTypes.map.end() ) { |
| 1765 | TypeMap::const_iterator MTI = mTypes.map.find(Ty); |
| 1766 | // If we didn't find it, it wasn't inserted |
| 1767 | if (MTI == mTypes.map.end()) |
| 1768 | return -1; |
| 1769 | // We found it only at the module level |
| 1770 | return MTI->second; |
| 1771 | |
| 1772 | // else the value exists in the function map |
| 1773 | } else { |
| 1774 | // Return the slot number as the module's contribution to |
| 1775 | // the type plane plus the index in the function's contribution |
| 1776 | // to the type plane. |
| 1777 | return mTypes.next_slot + FTI->second; |
| 1778 | } |
| 1779 | } |
| 1780 | |
| 1781 | // N.B. Can get here only if !TheFunction |
| 1782 | |
| 1783 | // Lookup the value in the module's map |
| 1784 | TypeMap::const_iterator MTI = mTypes.map.find(Ty); |
| 1785 | // Make sure we found it. |
| 1786 | if (MTI == mTypes.map.end()) return -1; |
| 1787 | // Return it. |
| 1788 | return MTI->second; |
| 1789 | } |
| 1790 | |
| 1791 | // Create a new slot, or return the existing slot if it is already |
| 1792 | // inserted. Note that the logic here parallels getSlot but instead |
| 1793 | // of asserting when the Value* isn't found, it inserts the value. |
| 1794 | unsigned SlotMachine::createSlot(const Value *V) { |
| 1795 | assert( V && "Can't insert a null Value to SlotMachine"); |
| 1796 | assert(!isa<Constant>(V) || isa<GlobalValue>(V) && |
| 1797 | "Can't insert a non-GlobalValue Constant into SlotMachine"); |
| 1798 | |
| 1799 | const Type* VTy = V->getType(); |
| 1800 | |
| 1801 | // Just ignore void typed things |
| 1802 | if (VTy == Type::VoidTy) return 0; // FIXME: Wrong return value! |
| 1803 | |
| 1804 | // Look up the type plane for the Value's type from the module map |
| 1805 | TypedPlanes::const_iterator MI = mMap.find(VTy); |
| 1806 | |
| 1807 | if ( TheFunction ) { |
| 1808 | // Get the type plane for the Value's type from the function map |
| 1809 | TypedPlanes::const_iterator FI = fMap.find(VTy); |
| 1810 | // If there is a corresponding type plane in the function map |
| 1811 | if ( FI != fMap.end() ) { |
| 1812 | // Lookup the Value in the function map |
| 1813 | ValueMap::const_iterator FVI = FI->second.map.find(V); |
| 1814 | // If the value doesn't exist in the function map |
| 1815 | if ( FVI == FI->second.map.end() ) { |
| 1816 | // If there is no corresponding type plane in the module map |
| 1817 | if ( MI == mMap.end() ) |
| 1818 | return insertValue(V); |
| 1819 | // Look up the value in the module map |
| 1820 | ValueMap::const_iterator MVI = MI->second.map.find(V); |
| 1821 | // If we didn't find it, it wasn't inserted |
| 1822 | if ( MVI == MI->second.map.end() ) |
| 1823 | return insertValue(V); |
| 1824 | else |
| 1825 | // We found it only at the module level |
| 1826 | return MVI->second; |
| 1827 | |
| 1828 | // else the value exists in the function map |
| 1829 | } else { |
| 1830 | if ( MI == mMap.end() ) |
| 1831 | return FVI->second; |
| 1832 | else |
| 1833 | // Return the slot number as the module's contribution to |
| 1834 | // the type plane plus the index in the function's contribution |
| 1835 | // to the type plane. |
| 1836 | return MI->second.next_slot + FVI->second; |
| 1837 | } |
| 1838 | |
| 1839 | // else there is not a corresponding type plane in the function map |
| 1840 | } else { |
| 1841 | // If the type plane doesn't exists at the module level |
| 1842 | if ( MI == mMap.end() ) { |
| 1843 | return insertValue(V); |
| 1844 | // else type plane exists at the module level, examine it |
| 1845 | } else { |
| 1846 | // Look up the value in the module's map |
| 1847 | ValueMap::const_iterator MVI = MI->second.map.find(V); |
| 1848 | // If we didn't find it there either |
| 1849 | if ( MVI == MI->second.map.end() ) |
| 1850 | // Return the slot number as the module's contribution to |
| 1851 | // the type plane plus the index of the function map insertion. |
| 1852 | return MI->second.next_slot + insertValue(V); |
| 1853 | else |
| 1854 | return MVI->second; |
| 1855 | } |
| 1856 | } |
| 1857 | } |
| 1858 | |
| 1859 | // N.B. Can only get here if !TheFunction |
| 1860 | |
| 1861 | // If the module map's type plane is not for the Value's type |
| 1862 | if ( MI != mMap.end() ) { |
| 1863 | // Lookup the value in the module's map |
| 1864 | ValueMap::const_iterator MVI = MI->second.map.find(V); |
| 1865 | if ( MVI != MI->second.map.end() ) |
| 1866 | return MVI->second; |
| 1867 | } |
| 1868 | |
| 1869 | return insertValue(V); |
| 1870 | } |
| 1871 | |
| 1872 | // Create a new slot, or return the existing slot if it is already |
| 1873 | // inserted. Note that the logic here parallels getSlot but instead |
| 1874 | // of asserting when the Value* isn't found, it inserts the value. |
| 1875 | unsigned SlotMachine::createSlot(const Type *Ty) { |
| 1876 | assert( Ty && "Can't insert a null Type to SlotMachine"); |
| 1877 | |
| 1878 | if ( TheFunction ) { |
| 1879 | // Lookup the Type in the function map |
| 1880 | TypeMap::const_iterator FTI = fTypes.map.find(Ty); |
| 1881 | // If the type doesn't exist in the function map |
| 1882 | if ( FTI == fTypes.map.end() ) { |
| 1883 | // Look up the type in the module map |
| 1884 | TypeMap::const_iterator MTI = mTypes.map.find(Ty); |
| 1885 | // If we didn't find it, it wasn't inserted |
| 1886 | if ( MTI == mTypes.map.end() ) |
| 1887 | return insertValue(Ty); |
| 1888 | else |
| 1889 | // We found it only at the module level |
| 1890 | return MTI->second; |
| 1891 | |
| 1892 | // else the value exists in the function map |
| 1893 | } else { |
| 1894 | // Return the slot number as the module's contribution to |
| 1895 | // the type plane plus the index in the function's contribution |
| 1896 | // to the type plane. |
| 1897 | return mTypes.next_slot + FTI->second; |
| 1898 | } |
| 1899 | } |
| 1900 | |
| 1901 | // N.B. Can only get here if !TheFunction |
| 1902 | |
| 1903 | // Lookup the type in the module's map |
| 1904 | TypeMap::const_iterator MTI = mTypes.map.find(Ty); |
| 1905 | if ( MTI != mTypes.map.end() ) |
| 1906 | return MTI->second; |
| 1907 | |
| 1908 | return insertValue(Ty); |
| 1909 | } |
| 1910 | |
| 1911 | // Low level insert function. Minimal checking is done. This |
| 1912 | // function is just for the convenience of createSlot (above). |
| 1913 | unsigned SlotMachine::insertValue(const Value *V ) { |
| 1914 | assert(V && "Can't insert a null Value into SlotMachine!"); |
| 1915 | assert(!isa<Constant>(V) || isa<GlobalValue>(V) && |
| 1916 | "Can't insert a non-GlobalValue Constant into SlotMachine"); |
| 1917 | |
| 1918 | // If this value does not contribute to a plane (is void) |
| 1919 | // or if the value already has a name then ignore it. |
| 1920 | if (V->getType() == Type::VoidTy || V->hasName() ) { |
| 1921 | SC_DEBUG("ignored value " << *V << "\n"); |
| 1922 | return 0; // FIXME: Wrong return value |
| 1923 | } |
| 1924 | |
| 1925 | const Type *VTy = V->getType(); |
| 1926 | unsigned DestSlot = 0; |
| 1927 | |
| 1928 | if ( TheFunction ) { |
| 1929 | TypedPlanes::iterator I = fMap.find( VTy ); |
| 1930 | if ( I == fMap.end() ) |
| 1931 | I = fMap.insert(std::make_pair(VTy,ValuePlane())).first; |
| 1932 | DestSlot = I->second.map[V] = I->second.next_slot++; |
| 1933 | } else { |
| 1934 | TypedPlanes::iterator I = mMap.find( VTy ); |
| 1935 | if ( I == mMap.end() ) |
| 1936 | I = mMap.insert(std::make_pair(VTy,ValuePlane())).first; |
| 1937 | DestSlot = I->second.map[V] = I->second.next_slot++; |
| 1938 | } |
| 1939 | |
| 1940 | SC_DEBUG(" Inserting value [" << VTy << "] = " << V << " slot=" << |
| 1941 | DestSlot << " ["); |
| 1942 | // G = Global, C = Constant, T = Type, F = Function, o = other |
| 1943 | SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : (isa<Function>(V) ? 'F' : |
| 1944 | (isa<Constant>(V) ? 'C' : 'o')))); |
| 1945 | SC_DEBUG("]\n"); |
| 1946 | return DestSlot; |
| 1947 | } |
| 1948 | |
| 1949 | // Low level insert function. Minimal checking is done. This |
| 1950 | // function is just for the convenience of createSlot (above). |
| 1951 | unsigned SlotMachine::insertValue(const Type *Ty ) { |
| 1952 | assert(Ty && "Can't insert a null Type into SlotMachine!"); |
| 1953 | |
| 1954 | unsigned DestSlot = fTypes.map[Ty] = fTypes.next_slot++; |
| 1955 | SC_DEBUG(" Inserting type [" << DestSlot << "] = " << Ty << "\n"); |
| 1956 | return DestSlot; |
| 1957 | } |
| 1958 | |
| 1959 | } // end anonymous llvm |
| 1960 | |
| 1961 | namespace llvm { |
| 1962 | |
| 1963 | void WriteModuleToCppFile(Module* mod, std::ostream& o) { |
| 1964 | o << "#include <llvm/Module.h>\n"; |
| 1965 | o << "#include <llvm/DerivedTypes.h>\n"; |
| 1966 | o << "#include <llvm/Constants.h>\n"; |
| 1967 | o << "#include <llvm/GlobalVariable.h>\n"; |
| 1968 | o << "#include <llvm/Function.h>\n"; |
| 1969 | o << "#include <llvm/CallingConv.h>\n"; |
| 1970 | o << "#include <llvm/BasicBlock.h>\n"; |
| 1971 | o << "#include <llvm/Instructions.h>\n"; |
| 1972 | o << "#include <llvm/Pass.h>\n"; |
| 1973 | o << "#include <llvm/PassManager.h>\n"; |
| 1974 | o << "#include <llvm/Analysis/Verifier.h>\n"; |
| 1975 | o << "#include <llvm/Assembly/PrintModulePass.h>\n"; |
| 1976 | o << "#include <algorithm>\n"; |
| 1977 | o << "#include <iostream>\n\n"; |
| 1978 | o << "using namespace llvm;\n\n"; |
| 1979 | o << "Module* makeLLVMModule();\n\n"; |
| 1980 | o << "int main(int argc, char**argv) {\n"; |
| 1981 | o << " Module* Mod = makeLLVMModule();\n"; |
| 1982 | o << " verifyModule(*Mod, PrintMessageAction);\n"; |
| 1983 | o << " PassManager PM;\n"; |
| 1984 | o << " PM.add(new PrintModulePass(&std::cout));\n"; |
| 1985 | o << " PM.run(*Mod);\n"; |
| 1986 | o << " return 0;\n"; |
| 1987 | o << "}\n\n"; |
| 1988 | o << "Module* makeLLVMModule() {\n"; |
| 1989 | SlotMachine SlotTable(mod); |
| 1990 | CppWriter W(o, SlotTable, mod); |
| 1991 | W.write(mod); |
| 1992 | o << "}\n"; |
| 1993 | } |
| 1994 | |
| 1995 | } |