blob: f9ec225f3eb44ef79d31946430b681aee6a0ab7a [file] [log] [blame]
Dan Gohman343f0c02008-11-19 23:18:57 +00001//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/Target/TargetMachine.h"
18#include "llvm/Target/TargetInstrInfo.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/Support/Debug.h"
Dan Gohman40362062008-11-20 01:41:34 +000021#include <climits>
Dan Gohman343f0c02008-11-19 23:18:57 +000022using namespace llvm;
23
24ScheduleDAG::ScheduleDAG(SelectionDAG *dag, MachineBasicBlock *bb,
25 const TargetMachine &tm)
26 : DAG(dag), BB(bb), TM(tm), MRI(BB->getParent()->getRegInfo()) {
27 TII = TM.getInstrInfo();
28 MF = BB->getParent();
29 TRI = TM.getRegisterInfo();
30 TLI = TM.getTargetLowering();
31 ConstPool = MF->getConstantPool();
32}
33
34ScheduleDAG::~ScheduleDAG() {}
35
Dan Gohman343f0c02008-11-19 23:18:57 +000036/// dump - dump the schedule.
37void ScheduleDAG::dumpSchedule() const {
38 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
39 if (SUnit *SU = Sequence[i])
40 SU->dump(this);
41 else
42 cerr << "**** NOOP ****\n";
43 }
44}
45
46
47/// Run - perform scheduling.
48///
49void ScheduleDAG::Run() {
50 Schedule();
51
52 DOUT << "*** Final schedule ***\n";
53 DEBUG(dumpSchedule());
54 DOUT << "\n";
55}
56
Dan Gohmanc6b680e2008-12-16 01:05:52 +000057/// addPred - This adds the specified edge as a pred of the current node if
58/// not already. It also adds the current node as a successor of the
59/// specified node.
60void SUnit::addPred(const SDep &D) {
61 // If this node already has this depenence, don't add a redundant one.
62 for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
63 if (Preds[i] == D)
64 return;
Dan Gohmanc6b680e2008-12-16 01:05:52 +000065 // Now add a corresponding succ to N.
66 SDep P = D;
67 P.setSUnit(this);
68 SUnit *N = D.getSUnit();
Dan Gohmanc6b680e2008-12-16 01:05:52 +000069 // Update the bookkeeping.
70 if (D.getKind() == SDep::Data) {
71 ++NumPreds;
72 ++N->NumSuccs;
73 }
74 if (!N->isScheduled)
75 ++NumPredsLeft;
76 if (!isScheduled)
77 ++N->NumSuccsLeft;
Dan Gohman3f237442008-12-16 03:25:46 +000078 N->Succs.push_back(P);
79 Preds.push_back(D);
80 this->setDepthDirty();
81 N->setHeightDirty();
Dan Gohmanc6b680e2008-12-16 01:05:52 +000082}
83
84/// removePred - This removes the specified edge as a pred of the current
85/// node if it exists. It also removes the current node as a successor of
86/// the specified node.
87void SUnit::removePred(const SDep &D) {
88 // Find the matching predecessor.
89 for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
90 I != E; ++I)
91 if (*I == D) {
92 bool FoundSucc = false;
93 // Find the corresponding successor in N.
94 SDep P = D;
95 P.setSUnit(this);
96 SUnit *N = D.getSUnit();
97 for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
98 EE = N->Succs.end(); II != EE; ++II)
99 if (*II == P) {
100 FoundSucc = true;
101 N->Succs.erase(II);
102 break;
103 }
104 assert(FoundSucc && "Mismatching preds / succs lists!");
105 Preds.erase(I);
106 // Update the bookkeeping;
107 if (D.getKind() == SDep::Data) {
108 --NumPreds;
109 --N->NumSuccs;
110 }
111 if (!N->isScheduled)
112 --NumPredsLeft;
113 if (!isScheduled)
114 --N->NumSuccsLeft;
Dan Gohman3f237442008-12-16 03:25:46 +0000115 this->setDepthDirty();
116 N->setHeightDirty();
Dan Gohmanc6b680e2008-12-16 01:05:52 +0000117 return;
118 }
119}
120
Dan Gohman3f237442008-12-16 03:25:46 +0000121void SUnit::setDepthDirty() {
122 SmallVector<SUnit*, 8> WorkList;
123 WorkList.push_back(this);
124 while (!WorkList.empty()) {
125 SUnit *SU = WorkList.back();
126 WorkList.pop_back();
127 if (!SU->isDepthCurrent) continue;
128 SU->isDepthCurrent = false;
129 for (SUnit::const_succ_iterator I = Succs.begin(),
130 E = Succs.end(); I != E; ++I)
131 WorkList.push_back(I->getSUnit());
132 }
133}
134
135void SUnit::setHeightDirty() {
136 SmallVector<SUnit*, 8> WorkList;
137 WorkList.push_back(this);
138 while (!WorkList.empty()) {
139 SUnit *SU = WorkList.back();
140 WorkList.pop_back();
141 if (!SU->isHeightCurrent) continue;
142 SU->isHeightCurrent = false;
143 for (SUnit::const_pred_iterator I = Preds.begin(),
144 E = Preds.end(); I != E; ++I)
145 WorkList.push_back(I->getSUnit());
146 }
147}
148
149/// setDepthToAtLeast - Update this node's successors to reflect the
150/// fact that this node's depth just increased.
151///
152void SUnit::setDepthToAtLeast(unsigned NewDepth) {
Dan Gohmanfccf6dd2008-12-17 04:25:52 +0000153 if (NewDepth <= getDepth())
Dan Gohman3f237442008-12-16 03:25:46 +0000154 return;
155 setDepthDirty();
156 Depth = NewDepth;
157 isDepthCurrent = true;
158}
159
160/// setHeightToAtLeast - Update this node's predecessors to reflect the
161/// fact that this node's height just increased.
162///
163void SUnit::setHeightToAtLeast(unsigned NewHeight) {
Dan Gohmanfccf6dd2008-12-17 04:25:52 +0000164 if (NewHeight <= getHeight())
Dan Gohman3f237442008-12-16 03:25:46 +0000165 return;
166 setHeightDirty();
167 Height = NewHeight;
168 isHeightCurrent = true;
169}
170
171/// ComputeDepth - Calculate the maximal path from the node to the exit.
172///
173void SUnit::ComputeDepth() {
174 SmallVector<SUnit*, 8> WorkList;
175 WorkList.push_back(this);
176 while (!WorkList.empty()) {
177 SUnit *Cur = WorkList.back();
178
179 bool Done = true;
180 unsigned MaxPredDepth = 0;
181 for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
182 E = Cur->Preds.end(); I != E; ++I) {
183 SUnit *PredSU = I->getSUnit();
184 if (PredSU->isDepthCurrent)
185 MaxPredDepth = std::max(MaxPredDepth,
186 PredSU->Depth + I->getLatency());
187 else {
188 Done = false;
189 WorkList.push_back(PredSU);
190 }
191 }
192
193 if (Done) {
194 WorkList.pop_back();
195 if (MaxPredDepth != Cur->Depth) {
196 Cur->setDepthDirty();
197 Cur->Depth = MaxPredDepth;
198 }
199 Cur->isDepthCurrent = true;
200 }
201 }
202}
203
204/// ComputeHeight - Calculate the maximal path from the node to the entry.
205///
206void SUnit::ComputeHeight() {
207 SmallVector<SUnit*, 8> WorkList;
208 WorkList.push_back(this);
209 while (!WorkList.empty()) {
210 SUnit *Cur = WorkList.back();
211
212 bool Done = true;
213 unsigned MaxSuccHeight = 0;
214 for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
215 E = Cur->Succs.end(); I != E; ++I) {
216 SUnit *SuccSU = I->getSUnit();
217 if (SuccSU->isHeightCurrent)
218 MaxSuccHeight = std::max(MaxSuccHeight,
219 SuccSU->Height + I->getLatency());
220 else {
221 Done = false;
222 WorkList.push_back(SuccSU);
223 }
224 }
225
226 if (Done) {
227 WorkList.pop_back();
228 if (MaxSuccHeight != Cur->Height) {
229 Cur->setHeightDirty();
230 Cur->Height = MaxSuccHeight;
231 }
232 Cur->isHeightCurrent = true;
233 }
234 }
235}
236
Dan Gohman343f0c02008-11-19 23:18:57 +0000237/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
238/// a group of nodes flagged together.
239void SUnit::dump(const ScheduleDAG *G) const {
240 cerr << "SU(" << NodeNum << "): ";
241 G->dumpNode(this);
242}
243
244void SUnit::dumpAll(const ScheduleDAG *G) const {
245 dump(G);
246
247 cerr << " # preds left : " << NumPredsLeft << "\n";
248 cerr << " # succs left : " << NumSuccsLeft << "\n";
249 cerr << " Latency : " << Latency << "\n";
250 cerr << " Depth : " << Depth << "\n";
251 cerr << " Height : " << Height << "\n";
252
253 if (Preds.size() != 0) {
254 cerr << " Predecessors:\n";
255 for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
256 I != E; ++I) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000257 cerr << " ";
258 switch (I->getKind()) {
259 case SDep::Data: cerr << "val "; break;
260 case SDep::Anti: cerr << "anti"; break;
261 case SDep::Output: cerr << "out "; break;
262 case SDep::Order: cerr << "ch "; break;
263 }
264 cerr << "#";
265 cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
266 if (I->isArtificial())
Dan Gohman343f0c02008-11-19 23:18:57 +0000267 cerr << " *";
268 cerr << "\n";
269 }
270 }
271 if (Succs.size() != 0) {
272 cerr << " Successors:\n";
273 for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
274 I != E; ++I) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000275 cerr << " ";
276 switch (I->getKind()) {
277 case SDep::Data: cerr << "val "; break;
278 case SDep::Anti: cerr << "anti"; break;
279 case SDep::Output: cerr << "out "; break;
280 case SDep::Order: cerr << "ch "; break;
281 }
282 cerr << "#";
283 cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
284 if (I->isArtificial())
Dan Gohman343f0c02008-11-19 23:18:57 +0000285 cerr << " *";
286 cerr << "\n";
287 }
288 }
289 cerr << "\n";
290}
Dan Gohmana1e6d362008-11-20 01:26:25 +0000291
292#ifndef NDEBUG
293/// VerifySchedule - Verify that all SUnits were scheduled and that
294/// their state is consistent.
295///
296void ScheduleDAG::VerifySchedule(bool isBottomUp) {
297 bool AnyNotSched = false;
298 unsigned DeadNodes = 0;
299 unsigned Noops = 0;
300 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
301 if (!SUnits[i].isScheduled) {
302 if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
303 ++DeadNodes;
304 continue;
305 }
306 if (!AnyNotSched)
307 cerr << "*** Scheduling failed! ***\n";
308 SUnits[i].dump(this);
309 cerr << "has not been scheduled!\n";
310 AnyNotSched = true;
311 }
Dan Gohman3f237442008-12-16 03:25:46 +0000312 if (SUnits[i].isScheduled &&
313 (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getHeight()) >
314 unsigned(INT_MAX)) {
Dan Gohmana1e6d362008-11-20 01:26:25 +0000315 if (!AnyNotSched)
316 cerr << "*** Scheduling failed! ***\n";
317 SUnits[i].dump(this);
Dan Gohman3f237442008-12-16 03:25:46 +0000318 cerr << "has an unexpected "
319 << (isBottomUp ? "Height" : "Depth") << " value!\n";
Dan Gohmana1e6d362008-11-20 01:26:25 +0000320 AnyNotSched = true;
321 }
322 if (isBottomUp) {
323 if (SUnits[i].NumSuccsLeft != 0) {
324 if (!AnyNotSched)
325 cerr << "*** Scheduling failed! ***\n";
326 SUnits[i].dump(this);
327 cerr << "has successors left!\n";
328 AnyNotSched = true;
329 }
330 } else {
331 if (SUnits[i].NumPredsLeft != 0) {
332 if (!AnyNotSched)
333 cerr << "*** Scheduling failed! ***\n";
334 SUnits[i].dump(this);
335 cerr << "has predecessors left!\n";
336 AnyNotSched = true;
337 }
338 }
339 }
340 for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
341 if (!Sequence[i])
342 ++Noops;
343 assert(!AnyNotSched);
344 assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
345 "The number of nodes scheduled doesn't match the expected number!");
346}
347#endif
Dan Gohman21d90032008-11-25 00:52:40 +0000348
349/// InitDAGTopologicalSorting - create the initial topological
350/// ordering from the DAG to be scheduled.
351///
352/// The idea of the algorithm is taken from
353/// "Online algorithms for managing the topological order of
354/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
355/// This is the MNR algorithm, which was first introduced by
356/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
357/// "Maintaining a topological order under edge insertions".
358///
359/// Short description of the algorithm:
360///
361/// Topological ordering, ord, of a DAG maps each node to a topological
362/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
363///
364/// This means that if there is a path from the node X to the node Z,
365/// then ord(X) < ord(Z).
366///
367/// This property can be used to check for reachability of nodes:
368/// if Z is reachable from X, then an insertion of the edge Z->X would
369/// create a cycle.
370///
371/// The algorithm first computes a topological ordering for the DAG by
372/// initializing the Index2Node and Node2Index arrays and then tries to keep
373/// the ordering up-to-date after edge insertions by reordering the DAG.
374///
375/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
376/// the nodes reachable from Y, and then shifts them using Shift to lie
377/// immediately after X in Index2Node.
378void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
379 unsigned DAGSize = SUnits.size();
380 std::vector<SUnit*> WorkList;
381 WorkList.reserve(DAGSize);
382
383 Index2Node.resize(DAGSize);
384 Node2Index.resize(DAGSize);
385
386 // Initialize the data structures.
387 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
388 SUnit *SU = &SUnits[i];
389 int NodeNum = SU->NodeNum;
390 unsigned Degree = SU->Succs.size();
391 // Temporarily use the Node2Index array as scratch space for degree counts.
392 Node2Index[NodeNum] = Degree;
393
394 // Is it a node without dependencies?
395 if (Degree == 0) {
396 assert(SU->Succs.empty() && "SUnit should have no successors");
397 // Collect leaf nodes.
398 WorkList.push_back(SU);
399 }
400 }
401
402 int Id = DAGSize;
403 while (!WorkList.empty()) {
404 SUnit *SU = WorkList.back();
405 WorkList.pop_back();
406 Allocate(SU->NodeNum, --Id);
407 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
408 I != E; ++I) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000409 SUnit *SU = I->getSUnit();
Dan Gohman21d90032008-11-25 00:52:40 +0000410 if (!--Node2Index[SU->NodeNum])
411 // If all dependencies of the node are processed already,
412 // then the node can be computed now.
413 WorkList.push_back(SU);
414 }
415 }
416
417 Visited.resize(DAGSize);
418
419#ifndef NDEBUG
420 // Check correctness of the ordering
421 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
422 SUnit *SU = &SUnits[i];
423 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
424 I != E; ++I) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000425 assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
Dan Gohman21d90032008-11-25 00:52:40 +0000426 "Wrong topological sorting");
427 }
428 }
429#endif
430}
431
432/// AddPred - Updates the topological ordering to accomodate an edge
433/// to be added from SUnit X to SUnit Y.
434void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
435 int UpperBound, LowerBound;
436 LowerBound = Node2Index[Y->NodeNum];
437 UpperBound = Node2Index[X->NodeNum];
438 bool HasLoop = false;
439 // Is Ord(X) < Ord(Y) ?
440 if (LowerBound < UpperBound) {
441 // Update the topological order.
442 Visited.reset();
443 DFS(Y, UpperBound, HasLoop);
444 assert(!HasLoop && "Inserted edge creates a loop!");
445 // Recompute topological indexes.
446 Shift(Visited, LowerBound, UpperBound);
447 }
448}
449
450/// RemovePred - Updates the topological ordering to accomodate an
451/// an edge to be removed from the specified node N from the predecessors
452/// of the current node M.
453void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
454 // InitDAGTopologicalSorting();
455}
456
457/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
458/// all nodes affected by the edge insertion. These nodes will later get new
459/// topological indexes by means of the Shift method.
Dan Gohmane3a49cd2008-12-09 16:37:48 +0000460void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
461 bool& HasLoop) {
Dan Gohman21d90032008-11-25 00:52:40 +0000462 std::vector<const SUnit*> WorkList;
463 WorkList.reserve(SUnits.size());
464
465 WorkList.push_back(SU);
466 while (!WorkList.empty()) {
467 SU = WorkList.back();
468 WorkList.pop_back();
469 Visited.set(SU->NodeNum);
470 for (int I = SU->Succs.size()-1; I >= 0; --I) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000471 int s = SU->Succs[I].getSUnit()->NodeNum;
Dan Gohman21d90032008-11-25 00:52:40 +0000472 if (Node2Index[s] == UpperBound) {
473 HasLoop = true;
474 return;
475 }
476 // Visit successors if not already and in affected region.
477 if (!Visited.test(s) && Node2Index[s] < UpperBound) {
Dan Gohman54e4c362008-12-09 22:54:47 +0000478 WorkList.push_back(SU->Succs[I].getSUnit());
Dan Gohman21d90032008-11-25 00:52:40 +0000479 }
480 }
481 }
482}
483
484/// Shift - Renumber the nodes so that the topological ordering is
485/// preserved.
486void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
Dan Gohmane3a49cd2008-12-09 16:37:48 +0000487 int UpperBound) {
Dan Gohman21d90032008-11-25 00:52:40 +0000488 std::vector<int> L;
489 int shift = 0;
490 int i;
491
492 for (i = LowerBound; i <= UpperBound; ++i) {
493 // w is node at topological index i.
494 int w = Index2Node[i];
495 if (Visited.test(w)) {
496 // Unmark.
497 Visited.reset(w);
498 L.push_back(w);
499 shift = shift + 1;
500 } else {
501 Allocate(w, i - shift);
502 }
503 }
504
505 for (unsigned j = 0; j < L.size(); ++j) {
506 Allocate(L[j], i - shift);
507 i = i + 1;
508 }
509}
510
511
512/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
513/// create a cycle.
514bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
515 if (IsReachable(TargetSU, SU))
516 return true;
517 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
518 I != E; ++I)
Dan Gohman54e4c362008-12-09 22:54:47 +0000519 if (I->isAssignedRegDep() &&
520 IsReachable(TargetSU, I->getSUnit()))
Dan Gohman21d90032008-11-25 00:52:40 +0000521 return true;
522 return false;
523}
524
525/// IsReachable - Checks if SU is reachable from TargetSU.
Dan Gohmane3a49cd2008-12-09 16:37:48 +0000526bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
527 const SUnit *TargetSU) {
Dan Gohman21d90032008-11-25 00:52:40 +0000528 // If insertion of the edge SU->TargetSU would create a cycle
529 // then there is a path from TargetSU to SU.
530 int UpperBound, LowerBound;
531 LowerBound = Node2Index[TargetSU->NodeNum];
532 UpperBound = Node2Index[SU->NodeNum];
533 bool HasLoop = false;
534 // Is Ord(TargetSU) < Ord(SU) ?
535 if (LowerBound < UpperBound) {
536 Visited.reset();
537 // There may be a path from TargetSU to SU. Check for it.
538 DFS(TargetSU, UpperBound, HasLoop);
539 }
540 return HasLoop;
541}
542
543/// Allocate - assign the topological index to the node n.
544void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
545 Node2Index[n] = index;
546 Index2Node[index] = n;
547}
548
549ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
550 std::vector<SUnit> &sunits)
551 : SUnits(sunits) {}